tulip.c revision 1.7 1 /* $NetBSD: tulip.c,v 1.7 1999/09/14 00:55:38 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Device driver for the Digital Semiconductor ``Tulip'' (21x4x)
42 * Ethernet controller family, and a variety of clone chips.
43 */
44
45 #include "opt_inet.h"
46 #include "opt_ns.h"
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58
59 #include <vm/vm.h> /* for PAGE_SIZE */
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65
66 #if NBPFILTER > 0
67 #include <net/bpf.h>
68 #endif
69
70 #ifdef INET
71 #include <netinet/in.h>
72 #include <netinet/if_inarp.h>
73 #endif
74
75 #ifdef NS
76 #include <netns/ns.h>
77 #include <netns/ns_if.h>
78 #endif
79
80 #include <machine/bus.h>
81 #include <machine/intr.h>
82
83 #include <dev/mii/mii.h>
84 #include <dev/mii/miivar.h>
85
86 #include <dev/ic/tulipreg.h>
87 #include <dev/ic/tulipvar.h>
88
89 /*
90 * The following tables compute the transmit threshold mode. We start
91 * at index 0. When ever we get a transmit underrun, we increment our
92 * index, falling back if we encounter the NULL terminator.
93 *
94 * Note: Store and forward mode is only available on the 100mbps chips
95 * (21140 and higher).
96 */
97 const struct tulip_txthresh_tab tlp_10_txthresh_tab[] = {
98 { OPMODE_TR_72, "72 bytes" },
99 { OPMODE_TR_96, "96 bytes" },
100 { OPMODE_TR_128, "128 bytes" },
101 { OPMODE_TR_160, "160 bytes" },
102 { 0, NULL },
103 };
104
105 const struct tulip_txthresh_tab tlp_10_100_txthresh_tab[] = {
106 { OPMODE_TR_72, "72/128 bytes" },
107 { OPMODE_TR_96, "96/256 bytes" },
108 { OPMODE_TR_128, "128/512 bytes" },
109 { OPMODE_TR_160, "160/1024 bytes" },
110 { OPMODE_SF, "store and forward mode" },
111 { 0, NULL },
112 };
113
114 #define TXTH_72 0
115 #define TXTH_96 1
116 #define TXTH_128 2
117 #define TXTH_160 3
118 #define TXTH_SF 4
119
120 /*
121 * The Winbond 89C840F does transmit threshold control totally
122 * differently. It simply has a 7-bit field which indicates
123 * the threshold:
124 *
125 * txth = ((OPMODE & OPMODE_WINB_TTH) >> OPMODE_WINB_TTH_SHIFT) * 16;
126 *
127 * However, we just do Store-and-Forward mode on these chips, since
128 * the DMA engines seem to be flaky.
129 */
130 const struct tulip_txthresh_tab tlp_winb_txthresh_tab[] = {
131 { 0, "store and forward mode" },
132 { 0, NULL },
133 };
134
135 #define TXTH_WINB_SF 0
136
137 void tlp_start __P((struct ifnet *));
138 void tlp_watchdog __P((struct ifnet *));
139 int tlp_ioctl __P((struct ifnet *, u_long, caddr_t));
140
141 void tlp_shutdown __P((void *));
142
143 void tlp_reset __P((struct tulip_softc *));
144 int tlp_init __P((struct tulip_softc *));
145 void tlp_rxdrain __P((struct tulip_softc *));
146 void tlp_stop __P((struct tulip_softc *, int));
147 int tlp_add_rxbuf __P((struct tulip_softc *, int));
148 void tlp_idle __P((struct tulip_softc *, u_int32_t));
149 void tlp_srom_idle __P((struct tulip_softc *));
150
151 void tlp_filter_setup __P((struct tulip_softc *));
152 void tlp_winb_filter_setup __P((struct tulip_softc *));
153
154 void tlp_rxintr __P((struct tulip_softc *));
155 void tlp_txintr __P((struct tulip_softc *));
156
157 void tlp_mii_tick __P((void *));
158 void tlp_mii_statchg __P((struct device *));
159 void tlp_winb_mii_statchg __P((struct device *));
160
161 void tlp_mii_getmedia __P((struct tulip_softc *, struct ifmediareq *));
162 int tlp_mii_setmedia __P((struct tulip_softc *));
163
164 void tlp_sio_mii_sync __P((struct tulip_softc *));
165 void tlp_sio_mii_sendbits __P((struct tulip_softc *, u_int32_t, int));
166 int tlp_sio_mii_readreg __P((struct device *, int, int));
167 void tlp_sio_mii_writereg __P((struct device *, int, int, int));
168
169 int tlp_pnic_mii_readreg __P((struct device *, int, int));
170 void tlp_pnic_mii_writereg __P((struct device *, int, int, int));
171
172 u_int32_t tlp_crc32 __P((const u_int8_t *, size_t));
173 #define tlp_mchash(addr) (tlp_crc32((addr), ETHER_ADDR_LEN) & \
174 (TULIP_MCHASHSIZE - 1))
175
176 #ifdef TLP_DEBUG
177 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
178 printf x
179 #else
180 #define DPRINTF(sc, x) /* nothing */
181 #endif
182
183 /*
184 * tlp_attach:
185 *
186 * Attach a Tulip interface to the system.
187 */
188 void
189 tlp_attach(sc, name, enaddr)
190 struct tulip_softc *sc;
191 const char *name;
192 const u_int8_t *enaddr;
193 {
194 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
195 int i, rseg, error;
196 bus_dma_segment_t seg;
197
198 /*
199 * NOTE: WE EXPECT THE FRONT-END TO INITIALIZE sc_regshift!
200 */
201
202 /*
203 * Setup the transmit threshold table.
204 */
205 switch (sc->sc_chip) {
206 case TULIP_CHIP_DE425:
207 case TULIP_CHIP_21040:
208 case TULIP_CHIP_21041:
209 sc->sc_txth = tlp_10_txthresh_tab;
210 break;
211
212 default:
213 sc->sc_txth = tlp_10_100_txthresh_tab;
214 break;
215 }
216
217 /*
218 * Setup the filter setup function.
219 */
220 switch (sc->sc_chip) {
221 case TULIP_CHIP_WB89C840F:
222 sc->sc_filter_setup = tlp_winb_filter_setup;
223 break;
224
225 default:
226 sc->sc_filter_setup = tlp_filter_setup;
227 break;
228 }
229
230 /*
231 * Set up the media status change function.
232 */
233 switch (sc->sc_chip) {
234 case TULIP_CHIP_WB89C840F:
235 sc->sc_statchg = tlp_winb_mii_statchg;
236 break;
237
238 default:
239 /*
240 * We may override this if we have special media
241 * handling requirements (e.g. flipping GPIO pins).
242 *
243 * The pure-MII statchg function covers the basics.
244 */
245 sc->sc_statchg = tlp_mii_statchg;
246 break;
247 }
248
249 /*
250 * Set up various chip-specific quirks.
251 */
252 switch (sc->sc_chip) {
253 case TULIP_CHIP_82C168:
254 case TULIP_CHIP_82C169:
255 /*
256 * These chips seem to have busted DMA engines; just put them
257 * in Store-and-Forward mode from the get-go.
258 */
259 sc->sc_txthresh = TXTH_SF;
260 break;
261
262 case TULIP_CHIP_WB89C840F:
263 sc->sc_flags |= TULIPF_IC_FS;
264 break;
265
266 default:
267 /* Nothing. */
268 }
269
270 SIMPLEQ_INIT(&sc->sc_txfreeq);
271 SIMPLEQ_INIT(&sc->sc_txdirtyq);
272
273 /*
274 * Allocate the control data structures, and create and load the
275 * DMA map for it.
276 */
277 if ((error = bus_dmamem_alloc(sc->sc_dmat,
278 sizeof(struct tulip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
279 0)) != 0) {
280 printf("%s: unable to allocate control data, error = %d\n",
281 sc->sc_dev.dv_xname, error);
282 goto fail_0;
283 }
284
285 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
286 sizeof(struct tulip_control_data), (caddr_t *)&sc->sc_control_data,
287 BUS_DMA_COHERENT)) != 0) {
288 printf("%s: unable to map control data, error = %d\n",
289 sc->sc_dev.dv_xname, error);
290 goto fail_1;
291 }
292
293 if ((error = bus_dmamap_create(sc->sc_dmat,
294 sizeof(struct tulip_control_data), 1,
295 sizeof(struct tulip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
296 printf("%s: unable to create control data DMA map, "
297 "error = %d\n", sc->sc_dev.dv_xname, error);
298 goto fail_2;
299 }
300
301 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
302 sc->sc_control_data, sizeof(struct tulip_control_data), NULL,
303 0)) != 0) {
304 printf("%s: unable to load control data DMA map, error = %d\n",
305 sc->sc_dev.dv_xname, error);
306 goto fail_3;
307 }
308
309 /*
310 * Create the transmit buffer DMA maps.
311 */
312 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
313 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
314 TULIP_NTXSEGS, MCLBYTES, 0, 0,
315 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
316 printf("%s: unable to create tx DMA map %d, "
317 "error = %d\n", sc->sc_dev.dv_xname, i, error);
318 goto fail_4;
319 }
320 }
321
322 /*
323 * Create the recieve buffer DMA maps.
324 */
325 for (i = 0; i < TULIP_NRXDESC; i++) {
326 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
327 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
328 printf("%s: unable to create rx DMA map %d, "
329 "error = %d\n", sc->sc_dev.dv_xname, i, error);
330 goto fail_5;
331 }
332 sc->sc_rxsoft[i].rxs_mbuf = NULL;
333 }
334
335 /*
336 * Reset the chip to a known state.
337 */
338 tlp_reset(sc);
339
340 /* Announce ourselves. */
341 printf("%s: %s%sEthernet address %s\n", sc->sc_dev.dv_xname,
342 name != NULL ? name : "", name != NULL ? ", " : "",
343 ether_sprintf(enaddr));
344
345 /*
346 * Initialize our media structures. This may probe the MII, if
347 * present.
348 */
349 (*sc->sc_mediasw->tmsw_init)(sc);
350
351 ifp = &sc->sc_ethercom.ec_if;
352 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
353 ifp->if_softc = sc;
354 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
355 ifp->if_ioctl = tlp_ioctl;
356 ifp->if_start = tlp_start;
357 ifp->if_watchdog = tlp_watchdog;
358
359 /*
360 * Attach the interface.
361 */
362 if_attach(ifp);
363 ether_ifattach(ifp, enaddr);
364 #if NBPFILTER > 0
365 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
366 sizeof(struct ether_header));
367 #endif
368
369 /*
370 * Make sure the interface is shutdown during reboot.
371 */
372 sc->sc_sdhook = shutdownhook_establish(tlp_shutdown, sc);
373 if (sc->sc_sdhook == NULL)
374 printf("%s: WARNING: unable to establish shutdown hook\n",
375 sc->sc_dev.dv_xname);
376 return;
377
378 /*
379 * Free any resources we've allocated during the failed attach
380 * attempt. Do this in reverse order and fall through.
381 */
382 fail_5:
383 for (i = 0; i < TULIP_NRXDESC; i++) {
384 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
385 bus_dmamap_destroy(sc->sc_dmat,
386 sc->sc_rxsoft[i].rxs_dmamap);
387 }
388 fail_4:
389 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
390 if (sc->sc_txsoft[i].txs_dmamap != NULL)
391 bus_dmamap_destroy(sc->sc_dmat,
392 sc->sc_txsoft[i].txs_dmamap);
393 }
394 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
395 fail_3:
396 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
397 fail_2:
398 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
399 sizeof(struct tulip_control_data));
400 fail_1:
401 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
402 fail_0:
403 return;
404 }
405
406 /*
407 * tlp_shutdown:
408 *
409 * Make sure the interface is stopped at reboot time.
410 */
411 void
412 tlp_shutdown(arg)
413 void *arg;
414 {
415 struct tulip_softc *sc = arg;
416
417 tlp_stop(sc, 1);
418 }
419
420 /*
421 * tlp_start: [ifnet interface function]
422 *
423 * Start packet transmission on the interface.
424 */
425 void
426 tlp_start(ifp)
427 struct ifnet *ifp;
428 {
429 struct tulip_softc *sc = ifp->if_softc;
430 struct mbuf *m0, *m;
431 struct tulip_txsoft *txs, *last_txs;
432 bus_dmamap_t dmamap;
433 int error, firsttx, nexttx, lasttx, ofree, seg;
434
435 DPRINTF(sc, ("%s: tlp_start: sc_flags 0x%08x, if_flags 0x%08x\n",
436 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
437
438 /*
439 * If we want a filter setup, it means no more descriptors were
440 * available for the setup routine. Let it get a chance to wedge
441 * itself into the ring.
442 */
443 if (sc->sc_flags & TULIPF_WANT_SETUP)
444 ifp->if_flags |= IFF_OACTIVE;
445
446 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
447 return;
448
449 /*
450 * Remember the previous number of free descriptors and
451 * the first descriptor we'll use.
452 */
453 ofree = sc->sc_txfree;
454 firsttx = sc->sc_txnext;
455
456 DPRINTF(sc, ("%s: tlp_start: txfree %d, txnext %d\n",
457 sc->sc_dev.dv_xname, ofree, firsttx));
458
459 /*
460 * Loop through the send queue, setting up transmit descriptors
461 * until we drain the queue, or use up all available transmit
462 * descriptors.
463 */
464 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
465 sc->sc_txfree != 0) {
466 /*
467 * Grab a packet off the queue.
468 */
469 IF_DEQUEUE(&ifp->if_snd, m0);
470 if (m0 == NULL)
471 break;
472
473 dmamap = txs->txs_dmamap;
474
475 /*
476 * Load the DMA map. If this fails, the packet either
477 * didn't fit in the alloted number of segments, or we were
478 * short on resources. In this case, we'll copy and try
479 * again.
480 */
481 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
482 BUS_DMA_NOWAIT) != 0) {
483 MGETHDR(m, M_DONTWAIT, MT_DATA);
484 if (m == NULL) {
485 printf("%s: unable to allocate Tx mbuf\n",
486 sc->sc_dev.dv_xname);
487 IF_PREPEND(&ifp->if_snd, m0);
488 break;
489 }
490 if (m0->m_pkthdr.len > MHLEN) {
491 MCLGET(m, M_DONTWAIT);
492 if ((m->m_flags & M_EXT) == 0) {
493 printf("%s: unable to allocate Tx "
494 "cluster\n", sc->sc_dev.dv_xname);
495 m_freem(m);
496 IF_PREPEND(&ifp->if_snd, m0);
497 break;
498 }
499 }
500 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
501 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
502 m_freem(m0);
503 m0 = m;
504 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
505 m0, BUS_DMA_NOWAIT);
506 if (error) {
507 printf("%s: unable to load Tx buffer, "
508 "error = %d\n", sc->sc_dev.dv_xname, error);
509 IF_PREPEND(&ifp->if_snd, m0);
510 break;
511 }
512 }
513
514 /*
515 * Ensure we have enough descriptors free to describe
516 * the packet.
517 */
518 if (dmamap->dm_nsegs > sc->sc_txfree) {
519 /*
520 * Not enough free descriptors to transmit this
521 * packet. We haven't committed to anything yet,
522 * so just unload the DMA map, put the packet
523 * back on the queue, and punt. Notify the upper
524 * layer that there are no more slots left.
525 *
526 * XXX We could allocate an mbuf and copy, but
527 * XXX it is worth it?
528 */
529 ifp->if_flags |= IFF_OACTIVE;
530 bus_dmamap_unload(sc->sc_dmat, dmamap);
531 IF_PREPEND(&ifp->if_snd, m0);
532 break;
533 }
534
535 /*
536 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
537 */
538
539 /* Sync the DMA map. */
540 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
541 BUS_DMASYNC_PREWRITE);
542
543 /*
544 * Initialize the transmit descriptors.
545 */
546 for (nexttx = sc->sc_txnext, seg = 0;
547 seg < dmamap->dm_nsegs;
548 seg++, nexttx = TULIP_NEXTTX(nexttx)) {
549 /*
550 * If this is the first descriptor we're
551 * enqueueing, don't set the OWN bit just
552 * yet. That could cause a race condition.
553 * We'll do it below.
554 */
555 sc->sc_txdescs[nexttx].td_status =
556 (nexttx == firsttx) ? 0 : TDSTAT_OWN;
557 sc->sc_txdescs[nexttx].td_bufaddr1 =
558 dmamap->dm_segs[seg].ds_addr;
559 sc->sc_txdescs[nexttx].td_ctl =
560 (dmamap->dm_segs[seg].ds_len << TDCTL_SIZE1_SHIFT) |
561 TDCTL_CH;
562 lasttx = nexttx;
563 }
564
565 /* Set `first segment' and `last segment' appropriately. */
566 sc->sc_txdescs[sc->sc_txnext].td_ctl |= TDCTL_Tx_FS;
567 sc->sc_txdescs[lasttx].td_ctl |= TDCTL_Tx_LS;
568
569 #ifdef TLP_DEBUG
570 if (ifp->if_flags & IFF_DEBUG) {
571 printf(" txsoft %p trainsmit chain:\n", txs);
572 for (seg = sc->sc_txnext;; seg = TULIP_NEXTTX(seg)) {
573 printf(" descriptor %d:\n", seg);
574 printf(" td_status: 0x%08x\n",
575 sc->sc_txdescs[seg].td_status);
576 printf(" td_ctl: 0x%08x\n",
577 sc->sc_txdescs[seg].td_ctl);
578 printf(" td_bufaddr1: 0x%08x\n",
579 sc->sc_txdescs[seg].td_bufaddr1);
580 printf(" td_bufaddr2: 0x%08x\n",
581 sc->sc_txdescs[seg].td_bufaddr2);
582 if (seg == lasttx)
583 break;
584 }
585 }
586 #endif
587
588 /* Sync the descriptors we're using. */
589 TULIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
590 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
591
592 /*
593 * Store a pointer to the packet so we can free it later,
594 * and remember what txdirty will be once the packet is
595 * done.
596 */
597 txs->txs_mbuf = m0;
598 txs->txs_firstdesc = sc->sc_txnext;
599 txs->txs_lastdesc = lasttx;
600
601 /* Advance the tx pointer. */
602 sc->sc_txfree -= dmamap->dm_nsegs;
603 sc->sc_txnext = nexttx;
604
605 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
606 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
607
608 last_txs = txs;
609
610 #if NBPFILTER > 0
611 /*
612 * Pass the packet to any BPF listeners.
613 */
614 if (ifp->if_bpf)
615 bpf_mtap(ifp->if_bpf, m0);
616 #endif /* NBPFILTER > 0 */
617 }
618
619 if (txs == NULL || sc->sc_txfree == 0) {
620 /* No more slots left; notify upper layer. */
621 ifp->if_flags |= IFF_OACTIVE;
622 }
623
624 if (sc->sc_txfree != ofree) {
625 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
626 sc->sc_dev.dv_xname, lasttx, firsttx));
627 /*
628 * Cause a transmit interrupt to happen on the
629 * last packet we enqueued.
630 */
631 sc->sc_txdescs[lasttx].td_ctl |= TDCTL_Tx_IC;
632 TULIP_CDTXSYNC(sc, lasttx, 1,
633 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
634
635 /*
636 * Some clone chips want IC on the *first* segment in
637 * the packet. Appease them.
638 */
639 if ((sc->sc_flags & TULIPF_IC_FS) != 0 &&
640 last_txs->txs_firstdesc != lasttx) {
641 sc->sc_txdescs[last_txs->txs_firstdesc].td_ctl |=
642 TDCTL_Tx_IC;
643 TULIP_CDTXSYNC(sc, last_txs->txs_firstdesc, 1,
644 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
645 }
646
647 /*
648 * The entire packet chain is set up. Give the
649 * first descriptor to the chip now.
650 */
651 sc->sc_txdescs[firsttx].td_status |= TDSTAT_OWN;
652 TULIP_CDTXSYNC(sc, firsttx, 1,
653 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
654
655 /* Wake up the transmitter. */
656 /* XXX USE AUTOPOLLING? */
657 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
658
659 /* Set a watchdog timer in case the chip flakes out. */
660 ifp->if_timer = 5;
661 }
662 }
663
664 /*
665 * tlp_watchdog: [ifnet interface function]
666 *
667 * Watchdog timer handler.
668 */
669 void
670 tlp_watchdog(ifp)
671 struct ifnet *ifp;
672 {
673 struct tulip_softc *sc = ifp->if_softc;
674 int doing_setup, doing_transmit;
675
676 doing_setup = (sc->sc_flags & TULIPF_DOING_SETUP);
677 doing_transmit = (SIMPLEQ_FIRST(&sc->sc_txdirtyq) != NULL);
678
679 if (doing_setup && doing_transmit) {
680 printf("%s: filter setup and transmit timeout\n",
681 sc->sc_dev.dv_xname);
682 ifp->if_oerrors++;
683 } else if (doing_transmit) {
684 printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
685 ifp->if_oerrors++;
686 } else if (doing_setup)
687 printf("%s: filter setup timeout\n", sc->sc_dev.dv_xname);
688 else
689 printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
690
691 (void) tlp_init(sc);
692
693 /* Try to get more packets going. */
694 tlp_start(ifp);
695 }
696
697 /*
698 * tlp_ioctl: [ifnet interface function]
699 *
700 * Handle control requests from the operator.
701 */
702 int
703 tlp_ioctl(ifp, cmd, data)
704 struct ifnet *ifp;
705 u_long cmd;
706 caddr_t data;
707 {
708 struct tulip_softc *sc = ifp->if_softc;
709 struct ifreq *ifr = (struct ifreq *)data;
710 struct ifaddr *ifa = (struct ifaddr *)data;
711 int s, error = 0;
712
713 s = splnet();
714
715 switch (cmd) {
716 case SIOCSIFADDR:
717 ifp->if_flags |= IFF_UP;
718
719 switch (ifa->ifa_addr->sa_family) {
720 #ifdef INET
721 case AF_INET:
722 if ((error = tlp_init(sc)) != 0)
723 break;
724 arp_ifinit(ifp, ifa);
725 break;
726 #endif /* INET */
727 #ifdef NS
728 case AF_NS:
729 {
730 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
731
732 if (ns_nullhost(*ina))
733 ina->x_host = *(union ns_host *)
734 LLADDR(ifp->if_sadl);
735 else
736 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
737 ifp->if_addrlen);
738 /* Set new address. */
739 error = tlp_init(sc);
740 break;
741 }
742 #endif /* NS */
743 default:
744 error = tlp_init(sc);
745 break;
746 }
747 break;
748
749 case SIOCSIFMTU:
750 if (ifr->ifr_mtu > ETHERMTU)
751 error = EINVAL;
752 else
753 ifp->if_mtu = ifr->ifr_mtu;
754 break;
755
756 case SIOCSIFFLAGS:
757 if ((ifp->if_flags & IFF_UP) == 0 &&
758 (ifp->if_flags & IFF_RUNNING) != 0) {
759 /*
760 * If interface is marked down and it is running, then
761 * stop it.
762 */
763 tlp_stop(sc, 1);
764 } else if ((ifp->if_flags & IFF_UP) != 0 &&
765 (ifp->if_flags & IFF_RUNNING) == 0) {
766 /*
767 * If interfase it marked up and it is stopped, then
768 * start it.
769 */
770 error = tlp_init(sc);
771 } else if ((ifp->if_flags & IFF_UP) != 0) {
772 /*
773 * Reset the interface to pick up changes in any other
774 * flags that affect the hardware state.
775 */
776 error = tlp_init(sc);
777 }
778 break;
779
780 case SIOCADDMULTI:
781 case SIOCDELMULTI:
782 error = (cmd == SIOCADDMULTI) ?
783 ether_addmulti(ifr, &sc->sc_ethercom) :
784 ether_delmulti(ifr, &sc->sc_ethercom);
785
786 if (error == ENETRESET) {
787 /*
788 * Multicast list has changed. Set the filter
789 * accordingly.
790 */
791 (*sc->sc_filter_setup)(sc);
792 error = 0;
793 }
794 break;
795
796 case SIOCSIFMEDIA:
797 case SIOCGIFMEDIA:
798 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
799 break;
800
801 default:
802 error = EINVAL;
803 break;
804 }
805
806 /* Try to get more packets going. */
807 tlp_start(ifp);
808
809 splx(s);
810 return (error);
811 }
812
813 /*
814 * tlp_intr:
815 *
816 * Interrupt service routine.
817 */
818 int
819 tlp_intr(arg)
820 void *arg;
821 {
822 struct tulip_softc *sc = arg;
823 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
824 u_int32_t status, rxstatus, txstatus;
825 int handled = 0, txthresh;
826
827 DPRINTF(sc, ("%s: tlp_intr\n", sc->sc_dev.dv_xname));
828
829 for (;;) {
830 status = TULIP_READ(sc, CSR_STATUS);
831 if (status)
832 TULIP_WRITE(sc, CSR_STATUS, status);
833
834 if ((status & sc->sc_inten) == 0)
835 break;
836
837 handled = 1;
838
839 rxstatus = status & sc->sc_rxint_mask;
840 txstatus = status & sc->sc_txint_mask;
841
842 if (rxstatus) {
843 /* Grab new any new packets. */
844 tlp_rxintr(sc);
845
846 if (rxstatus & STATUS_RWT)
847 printf("%s: receive watchdog timeout\n",
848 sc->sc_dev.dv_xname);
849
850 if (rxstatus & STATUS_RU) {
851 printf("%s: receive ring overrun\n",
852 sc->sc_dev.dv_xname);
853 /* Get the receive process going again. */
854 tlp_idle(sc, OPMODE_SR);
855 TULIP_WRITE(sc, CSR_RXLIST,
856 TULIP_CDRXADDR(sc, sc->sc_rxptr));
857 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
858 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
859 break;
860 }
861 }
862
863 if (txstatus) {
864 /* Sweep up transmit descriptors. */
865 tlp_txintr(sc);
866
867 if (txstatus & STATUS_TJT)
868 printf("%s: transmit jabber timeout\n",
869 sc->sc_dev.dv_xname);
870
871 if (txstatus & STATUS_UNF) {
872 /*
873 * Increase our transmit threshold if
874 * another is available.
875 */
876 txthresh = sc->sc_txthresh + 1;
877 if (sc->sc_txth[txthresh].txth_name != NULL) {
878 /* Idle the transmit process. */
879 tlp_idle(sc, OPMODE_ST);
880
881 sc->sc_txthresh = txthresh;
882 sc->sc_opmode &= ~(OPMODE_TR|OPMODE_SF);
883 sc->sc_opmode |=
884 sc->sc_txth[txthresh].txth_opmode;
885 printf("%s: transmit underrun; new "
886 "threshold: %s\n",
887 sc->sc_dev.dv_xname,
888 sc->sc_txth[txthresh].txth_name);
889
890 /*
891 * Set the new threshold and restart
892 * the transmit process.
893 */
894 TULIP_WRITE(sc, CSR_OPMODE,
895 sc->sc_opmode);
896 }
897 /*
898 * XXX Log every Nth underrun from
899 * XXX now on?
900 */
901 }
902 }
903
904 if (status & (STATUS_TPS|STATUS_RPS)) {
905 if (status & STATUS_TPS)
906 printf("%s: transmit process stopped\n",
907 sc->sc_dev.dv_xname);
908 if (status & STATUS_RPS)
909 printf("%s: receive process stopped\n",
910 sc->sc_dev.dv_xname);
911 (void) tlp_init(sc);
912 break;
913 }
914
915 if (status & STATUS_SE) {
916 const char *str;
917 switch (status & STATUS_EB) {
918 case STATUS_EB_PARITY:
919 str = "parity error";
920 break;
921
922 case STATUS_EB_MABT:
923 str = "master abort";
924 break;
925
926 case STATUS_EB_TABT:
927 str = "target abort";
928 break;
929
930 default:
931 str = "unknown error";
932 break;
933 }
934 printf("%s: fatal system error: %s\n",
935 sc->sc_dev.dv_xname, str);
936 (void) tlp_init(sc);
937 break;
938 }
939
940 /*
941 * Not handled:
942 *
943 * Transmit buffer unavailable -- normal
944 * condition, nothing to do, really.
945 *
946 * General purpose timer experied -- we don't
947 * use the general purpose timer.
948 *
949 * Early receive interrupt -- not available on
950 * all chips, we just use RI. We also only
951 * use single-segment receive DMA, so this
952 * is mostly useless.
953 */
954 }
955
956 /* Try to get more packets going. */
957 tlp_start(ifp);
958
959 return (handled);
960 }
961
962 /*
963 * tlp_rxintr:
964 *
965 * Helper; handle receive interrupts.
966 */
967 void
968 tlp_rxintr(sc)
969 struct tulip_softc *sc;
970 {
971 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
972 struct ether_header *eh;
973 struct tulip_rxsoft *rxs;
974 struct mbuf *m;
975 u_int32_t rxstat;
976 int i, len;
977
978 for (i = sc->sc_rxptr;; i = TULIP_NEXTRX(i)) {
979 rxs = &sc->sc_rxsoft[i];
980
981 TULIP_CDRXSYNC(sc, i,
982 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
983
984 rxstat = sc->sc_rxdescs[i].td_status;
985
986 if (rxstat & TDSTAT_OWN) {
987 /*
988 * We have processed all of the receive buffers.
989 */
990 break;
991 }
992
993 /*
994 * Make sure the packet fit in one buffer. This should
995 * always be the case. But the Lite-On PNIC, rev 33
996 * has an awful receive engine bug, which may require
997 * a very icky work-around.
998 */
999 if ((rxstat & (TDSTAT_Rx_FS|TDSTAT_Rx_LS)) !=
1000 (TDSTAT_Rx_FS|TDSTAT_Rx_LS)) {
1001 printf("%s: incoming packet spilled, resetting\n",
1002 sc->sc_dev.dv_xname);
1003 (void) tlp_init(sc);
1004 return;
1005 }
1006
1007 /*
1008 * If any collisions were seen on the wire, count one.
1009 */
1010 if (rxstat & TDSTAT_Rx_CS)
1011 ifp->if_collisions++;
1012
1013 /*
1014 * If an error occured, update stats, clear the status
1015 * word, and leave the packet buffer in place. It will
1016 * simply be reused the next time the ring comes around.
1017 */
1018 if (rxstat & TDSTAT_ES) {
1019 #define PRINTERR(bit, str) \
1020 if (rxstat & (bit)) \
1021 printf("%s: receive error: %s\n", \
1022 sc->sc_dev.dv_xname, str)
1023 ifp->if_ierrors++;
1024 PRINTERR(TDSTAT_Rx_DE, "descriptor error");
1025 PRINTERR(TDSTAT_Rx_RF, "runt frame");
1026 PRINTERR(TDSTAT_Rx_TL, "frame too long");
1027 PRINTERR(TDSTAT_Rx_RE, "MII error");
1028 PRINTERR(TDSTAT_Rx_DB, "dribbling bit");
1029 PRINTERR(TDSTAT_Rx_CE, "CRC error");
1030 #undef PRINTERR
1031 TULIP_INIT_RXDESC(sc, i);
1032 continue;
1033 }
1034
1035 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1036 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1037
1038 /*
1039 * No errors; receive the packet. Note the Tulip
1040 * includes the CRC with every packet; trim it.
1041 */
1042 len = TDSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1043
1044 #ifdef __NO_STRICT_ALIGNMENT
1045 /*
1046 * Allocate a new mbuf cluster. If that fails, we are
1047 * out of memory, and must drop the packet and recycle
1048 * the buffer that's already attached to this descriptor.
1049 */
1050 m = rxs->rxs_mbuf;
1051 if (tlp_add_rxbuf(sc, i) != 0) {
1052 ifp->if_ierrors++;
1053 TULIP_INIT_RXDESC(sc, i);
1054 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1055 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1056 continue;
1057 }
1058 #else
1059 /*
1060 * The Tulip's receive buffers must be 4-byte aligned.
1061 * But this means that the data after the Ethernet header
1062 * is misaligned. We must allocate a new buffer and
1063 * copy the data, shifted forward 2 bytes.
1064 */
1065 MGETHDR(m, M_DONTWAIT, MT_DATA);
1066 if (m == NULL) {
1067 dropit:
1068 ifp->if_ierrors++;
1069 TULIP_INIT_RXDESC(sc, i);
1070 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1071 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1072 continue;
1073 }
1074 if (len > (MHLEN - 2)) {
1075 MCLGET(m, M_DONTWAIT);
1076 if ((m->m_flags & M_EXT) == 0) {
1077 m_freem(m);
1078 goto dropit;
1079 }
1080 }
1081 m->m_data += 2;
1082
1083 /*
1084 * Note that we use clusters for incoming frames, so the
1085 * buffer is virtually contiguous.
1086 */
1087 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1088
1089 /* Allow the receive descriptor to continue using its mbuf. */
1090 TULIP_INIT_RXDESC(sc, i);
1091 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1092 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1093 #endif /* __NO_STRICT_ALIGNMENT */
1094
1095 ifp->if_ipackets++;
1096 eh = mtod(m, struct ether_header *);
1097 m->m_pkthdr.rcvif = ifp;
1098 m->m_pkthdr.len = m->m_len = len;
1099
1100 #if NBPFILTER > 0
1101 /*
1102 * Pass this up to any BPF listeners, but only
1103 * pass it up the stack if its for us.
1104 */
1105 if (ifp->if_bpf)
1106 bpf_mtap(ifp->if_bpf, m);
1107 #endif /* NPBFILTER > 0 */
1108
1109 /*
1110 * This test is outside the NBPFILTER block because
1111 * on the 21140 we have to use Hash-Only mode due to
1112 * a bug in the filter logic.
1113 */
1114 if ((ifp->if_flags & IFF_PROMISC) != 0 ||
1115 sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) {
1116 if (memcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
1117 ETHER_ADDR_LEN) != 0 &&
1118 ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
1119 m_freem(m);
1120 continue;
1121 }
1122 }
1123
1124 /* Pass it on. */
1125 (*ifp->if_input)(ifp, m);
1126 }
1127
1128 /* Update the recieve pointer. */
1129 sc->sc_rxptr = i;
1130 }
1131
1132 /*
1133 * tlp_txintr:
1134 *
1135 * Helper; handle transmit interrupts.
1136 */
1137 void
1138 tlp_txintr(sc)
1139 struct tulip_softc *sc;
1140 {
1141 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1142 struct tulip_txsoft *txs;
1143 u_int32_t txstat;
1144
1145 DPRINTF(sc, ("%s: tlp_txintr: sc_flags 0x%08x\n",
1146 sc->sc_dev.dv_xname, sc->sc_flags));
1147
1148 ifp->if_flags &= ~IFF_OACTIVE;
1149
1150 /*
1151 * If we were doing a filter setup, check to see if it completed.
1152 */
1153 if (sc->sc_flags & TULIPF_DOING_SETUP) {
1154 TULIP_CDSDSYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1155 if ((sc->sc_setup_desc.td_status & TDSTAT_OWN) == 0)
1156 sc->sc_flags &= ~TULIPF_DOING_SETUP;
1157 }
1158
1159 /*
1160 * Go through our Tx list and free mbufs for those
1161 * frames that have been transmitted.
1162 */
1163 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1164 TULIP_CDTXSYNC(sc, txs->txs_firstdesc,
1165 txs->txs_dmamap->dm_nsegs,
1166 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1167
1168 #ifdef TLP_DEBUG
1169 if (ifp->if_flags & IFF_DEBUG) {
1170 int i;
1171 printf(" txsoft %p trainsmit chain:\n", txs);
1172 for (i = txs->txs_firstdesc;; i = TULIP_NEXTTX(i)) {
1173 printf(" descriptor %d:\n", i);
1174 printf(" td_status: 0x%08x\n",
1175 sc->sc_txdescs[i].td_status);
1176 printf(" td_ctl: 0x%08x\n",
1177 sc->sc_txdescs[i].td_ctl);
1178 printf(" td_bufaddr1: 0x%08x\n",
1179 sc->sc_txdescs[i].td_bufaddr1);
1180 printf(" td_bufaddr2: 0x%08x\n",
1181 sc->sc_txdescs[i].td_bufaddr2);
1182 if (i == txs->txs_lastdesc)
1183 break;
1184 }
1185 }
1186 #endif
1187
1188 txstat = sc->sc_txdescs[txs->txs_firstdesc].td_status;
1189 if (txstat & TDSTAT_OWN)
1190 break;
1191
1192 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1193
1194 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1195
1196 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1197 0, txs->txs_dmamap->dm_mapsize,
1198 BUS_DMASYNC_POSTWRITE);
1199 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1200 m_freem(txs->txs_mbuf);
1201 txs->txs_mbuf = NULL;
1202
1203 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1204
1205 /*
1206 * Check for errors and collisions.
1207 */
1208 if (txstat & TDSTAT_ES) {
1209 ifp->if_oerrors++;
1210 if (txstat & TDSTAT_Tx_EC)
1211 ifp->if_collisions += 16;
1212 if (txstat & TDSTAT_Tx_LC)
1213 ifp->if_collisions++;
1214 } else {
1215 /* Packet was transmitted successfully. */
1216 ifp->if_opackets++;
1217 ifp->if_collisions += TDSTAT_Tx_COLLISIONS(txstat);
1218 }
1219 }
1220
1221 /*
1222 * If there are no more pending transmissions, cancel the watchdog
1223 * timer.
1224 */
1225 if (txs == NULL && (sc->sc_flags & TULIPF_DOING_SETUP) == 0)
1226 ifp->if_timer = 0;
1227
1228 /*
1229 * If we have a receive filter setup pending, do it now.
1230 */
1231 if (sc->sc_flags & TULIPF_WANT_SETUP)
1232 (*sc->sc_filter_setup)(sc);
1233 }
1234
1235 /*
1236 * tlp_reset:
1237 *
1238 * Perform a soft reset on the Tulip.
1239 */
1240 void
1241 tlp_reset(sc)
1242 struct tulip_softc *sc;
1243 {
1244 int i;
1245
1246 TULIP_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1247
1248 for (i = 0; i < 1000; i++) {
1249 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1250 break;
1251 delay(10);
1252 }
1253
1254 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1255 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1256
1257 delay(1000);
1258 }
1259
1260 /*
1261 * tlp_init:
1262 *
1263 * Initialize the interface. Must be called at splnet().
1264 */
1265 int
1266 tlp_init(sc)
1267 struct tulip_softc *sc;
1268 {
1269 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1270 struct tulip_txsoft *txs;
1271 struct tulip_rxsoft *rxs;
1272 int i, error = 0;
1273
1274 /*
1275 * Cancel any pending I/O.
1276 */
1277 tlp_stop(sc, 0);
1278
1279 /*
1280 * Reset the Tulip to a known state.
1281 */
1282 tlp_reset(sc);
1283
1284 /*
1285 * Initialize the BUSMODE register.
1286 *
1287 * XXX What about read-multiple/read-line/write-line on
1288 * XXX the 21140 and up?
1289 */
1290 sc->sc_busmode = BUSMODE_BAR | BUSMODE_PBL_DEFAULT;
1291 switch (sc->sc_cacheline) {
1292 default:
1293 /*
1294 * Note: We must *always* set these bits; a cache
1295 * alignment of 0 is RESERVED.
1296 */
1297 case 8:
1298 sc->sc_busmode |= BUSMODE_CAL_8LW;
1299 break;
1300 case 16:
1301 sc->sc_busmode |= BUSMODE_CAL_16LW;
1302 break;
1303 case 32:
1304 sc->sc_busmode |= BUSMODE_CAL_32LW;
1305 break;
1306 }
1307 switch (sc->sc_chip) {
1308 case TULIP_CHIP_82C168:
1309 case TULIP_CHIP_82C169:
1310 sc->sc_busmode |= BUSMODE_PNIC_MBO;
1311 break;
1312 default:
1313 /* Nothing. */
1314 break;
1315 }
1316 #if BYTE_ORDER == BIG_ENDIAN
1317 /*
1318 * XXX There are reports that this doesn't work properly
1319 * in the old Tulip driver, but BUSMODE_DBO does. However,
1320 * BUSMODE_DBO is not available on the 21040, and requires
1321 * us to byte-swap the setup packet. What to do?
1322 */
1323 sc->sc_busmode |= BUSMODE_BLE;
1324 #endif
1325 TULIP_WRITE(sc, CSR_BUSMODE, sc->sc_busmode);
1326
1327 /*
1328 * Initialize the OPMODE register. We don't write it until
1329 * we're ready to begin the transmit and receive processes.
1330 *
1331 * Media-related OPMODE bits are set in the media callbacks
1332 * for each specific chip/board.
1333 */
1334 sc->sc_opmode = OPMODE_SR | OPMODE_ST |
1335 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1336 switch (sc->sc_chip) {
1337 case TULIP_CHIP_21140:
1338 case TULIP_CHIP_21140A:
1339 case TULIP_CHIP_21142:
1340 case TULIP_CHIP_21143:
1341 sc->sc_opmode |= OPMODE_MBO;
1342 break;
1343
1344 default:
1345 /* Nothing. */
1346 }
1347
1348 if (sc->sc_flags & TULIPF_HAS_MII) {
1349 switch (sc->sc_chip) {
1350 case TULIP_CHIP_82C168:
1351 case TULIP_CHIP_82C169:
1352 /* Enable the MII port. */
1353 sc->sc_opmode |= OPMODE_PS;
1354
1355 TULIP_WRITE(sc, CSR_PNIC_ENDEC, PNIC_ENDEC_JDIS);
1356 break;
1357
1358 case TULIP_CHIP_WB89C840F:
1359 /* Nothing. */
1360 break;
1361
1362 default:
1363 /* Enable the MII port. */
1364 sc->sc_opmode |= OPMODE_PS;
1365 break;
1366 }
1367 } else {
1368 switch (sc->sc_chip) {
1369 case TULIP_CHIP_82C168:
1370 case TULIP_CHIP_82C169:
1371 sc->sc_opmode |= OPMODE_PNIC_TBEN;
1372 break;
1373
1374 default:
1375 /* Nothing. */
1376 }
1377 }
1378
1379 /*
1380 * Magical mystery initialization on the Macronix chips.
1381 * The MX98713 uses its own magic value, the rest share
1382 * a common one.
1383 */
1384 switch (sc->sc_chip) {
1385 case TULIP_CHIP_MX98713:
1386 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98713);
1387 break;
1388
1389 case TULIP_CHIP_MX98713A:
1390 case TULIP_CHIP_MX98715:
1391 case TULIP_CHIP_MX98725:
1392 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98715);
1393 break;
1394
1395 default:
1396 /* Nothing. */
1397 }
1398
1399 /*
1400 * Initialize the transmit descriptor ring.
1401 */
1402 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1403 for (i = 0; i < TULIP_NTXDESC; i++) {
1404 sc->sc_txdescs[i].td_ctl = TDCTL_CH;
1405 sc->sc_txdescs[i].td_bufaddr2 =
1406 TULIP_CDTXADDR(sc, TULIP_NEXTTX(i));
1407 }
1408 TULIP_CDTXSYNC(sc, 0, TULIP_NTXDESC,
1409 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1410 sc->sc_txfree = TULIP_NTXDESC;
1411 sc->sc_txnext = 0;
1412
1413 /*
1414 * Initialize the transmit job descriptors.
1415 */
1416 SIMPLEQ_INIT(&sc->sc_txfreeq);
1417 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1418 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
1419 txs = &sc->sc_txsoft[i];
1420 txs->txs_mbuf = NULL;
1421 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1422 }
1423
1424 /*
1425 * Initialize the receive descriptor and receive job
1426 * descriptor rings.
1427 */
1428 for (i = 0; i < TULIP_NRXDESC; i++) {
1429 rxs = &sc->sc_rxsoft[i];
1430 if (rxs->rxs_mbuf == NULL) {
1431 if ((error = tlp_add_rxbuf(sc, i)) != 0) {
1432 printf("%s: unable to allocate or map rx "
1433 "buffer %d, error = %d\n",
1434 sc->sc_dev.dv_xname, i, error);
1435 /*
1436 * XXX Should attempt to run with fewer receive
1437 * XXX buffers instead of just failing.
1438 */
1439 tlp_rxdrain(sc);
1440 goto out;
1441 }
1442 }
1443 }
1444 sc->sc_rxptr = 0;
1445
1446 /*
1447 * Initialize the interrupt mask and enable interrupts.
1448 */
1449 /* normal interrupts */
1450 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1451
1452 /* abnormal interrupts */
1453 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1454 STATUS_RU | STATUS_RPS | STATUS_RWT | STATUS_SE | STATUS_AIS;
1455
1456 sc->sc_rxint_mask = STATUS_RI|STATUS_RU|STATUS_RWT;
1457 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1458
1459 switch (sc->sc_chip) {
1460 case TULIP_CHIP_WB89C840F:
1461 /*
1462 * Clear bits that we don't want that happen to
1463 * overlap or don't exist.
1464 */
1465 sc->sc_inten &= ~(STATUS_WINB_REI|STATUS_RWT);
1466 break;
1467
1468 default:
1469 /* Nothing. */
1470 }
1471
1472 sc->sc_rxint_mask &= sc->sc_inten;
1473 sc->sc_txint_mask &= sc->sc_inten;
1474
1475 TULIP_WRITE(sc, CSR_INTEN, sc->sc_inten);
1476 TULIP_WRITE(sc, CSR_STATUS, 0xffffffff);
1477
1478 /*
1479 * Give the transmit and receive rings to the Tulip.
1480 */
1481 TULIP_WRITE(sc, CSR_TXLIST, TULIP_CDTXADDR(sc, sc->sc_txnext));
1482 TULIP_WRITE(sc, CSR_RXLIST, TULIP_CDRXADDR(sc, sc->sc_rxptr));
1483
1484 /*
1485 * On chips that do this differently, set the station address.
1486 */
1487 switch (sc->sc_chip) {
1488 case TULIP_CHIP_WB89C840F:
1489 /* XXX Do this with stream writes? */
1490 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1491 bus_space_write_1(sc->sc_st, sc->sc_sh,
1492 (CSR_WINB_CPA0 >> sc->sc_regshift) + i,
1493 LLADDR(ifp->if_sadl)[i]);
1494 }
1495 break;
1496
1497 default:
1498 /* Nothing. */
1499 }
1500
1501 /*
1502 * Set the receive filter. This will start the transmit and
1503 * receive processes.
1504 */
1505 (*sc->sc_filter_setup)(sc);
1506
1507 /*
1508 * Start the receive process.
1509 */
1510 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1511
1512 if (sc->sc_tick != NULL) {
1513 /* Start the one second clock. */
1514 timeout(sc->sc_tick, sc, hz);
1515 }
1516
1517 /*
1518 * Note that the interface is now running.
1519 */
1520 ifp->if_flags |= IFF_RUNNING;
1521 ifp->if_flags &= ~IFF_OACTIVE;
1522
1523 /*
1524 * Set the media. We must do this after the transmit process is
1525 * running, since we may actually have to transmit packets on
1526 * our board to test link integrity.
1527 */
1528 (void) (*sc->sc_mediasw->tmsw_set)(sc);
1529
1530 out:
1531 if (error)
1532 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1533 return (error);
1534 }
1535
1536 /*
1537 * tlp_rxdrain:
1538 *
1539 * Drain the receive queue.
1540 */
1541 void
1542 tlp_rxdrain(sc)
1543 struct tulip_softc *sc;
1544 {
1545 struct tulip_rxsoft *rxs;
1546 int i;
1547
1548 for (i = 0; i < TULIP_NRXDESC; i++) {
1549 rxs = &sc->sc_rxsoft[i];
1550 if (rxs->rxs_mbuf != NULL) {
1551 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1552 m_freem(rxs->rxs_mbuf);
1553 rxs->rxs_mbuf = NULL;
1554 }
1555 }
1556 }
1557
1558 /*
1559 * tlp_stop:
1560 *
1561 * Stop transmission on the interface.
1562 */
1563 void
1564 tlp_stop(sc, drain)
1565 struct tulip_softc *sc;
1566 int drain;
1567 {
1568 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1569 struct tulip_txsoft *txs;
1570
1571 if (sc->sc_tick != NULL) {
1572 /* Stop the one second clock. */
1573 untimeout(sc->sc_tick, sc);
1574 }
1575
1576 /* Disable interrupts. */
1577 TULIP_WRITE(sc, CSR_INTEN, 0);
1578
1579 /* Stop the transmit and receive processes. */
1580 TULIP_WRITE(sc, CSR_OPMODE, 0);
1581 TULIP_WRITE(sc, CSR_RXLIST, 0);
1582 TULIP_WRITE(sc, CSR_TXLIST, 0);
1583
1584 /*
1585 * Release any queued transmit buffers.
1586 */
1587 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1588 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1589 if (txs->txs_mbuf != NULL) {
1590 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1591 m_freem(txs->txs_mbuf);
1592 txs->txs_mbuf = NULL;
1593 }
1594 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1595 }
1596
1597 if (drain) {
1598 /*
1599 * Release the receive buffers.
1600 */
1601 tlp_rxdrain(sc);
1602 }
1603
1604 sc->sc_flags &= ~(TULIPF_WANT_SETUP|TULIPF_DOING_SETUP);
1605
1606 /*
1607 * Mark the interface down and cancel the watchdog timer.
1608 */
1609 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1610 ifp->if_timer = 0;
1611 }
1612
1613 #define SROM_EMIT(sc, x) \
1614 do { \
1615 TULIP_WRITE((sc), CSR_MIIROM, (x)); \
1616 delay(1); \
1617 } while (0)
1618
1619 /*
1620 * tlp_srom_idle:
1621 *
1622 * Put the SROM in idle state.
1623 */
1624 void
1625 tlp_srom_idle(sc)
1626 struct tulip_softc *sc;
1627 {
1628 u_int32_t miirom;
1629 int i;
1630
1631 miirom = MIIROM_SR;
1632 SROM_EMIT(sc, miirom);
1633
1634 miirom |= MIIROM_RD;
1635 SROM_EMIT(sc, miirom);
1636
1637 miirom |= MIIROM_SROMCS;
1638 SROM_EMIT(sc, miirom);
1639
1640 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1641
1642 /* Strobe the clock 25 times. */
1643 for (i = 0; i < 25; i++) {
1644 SROM_EMIT(sc, miirom);
1645 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1646 }
1647
1648 SROM_EMIT(sc, miirom);
1649
1650 miirom &= ~MIIROM_SROMCS;
1651 SROM_EMIT(sc, miirom);
1652
1653 SROM_EMIT(sc, 0);
1654 }
1655
1656 /*
1657 * tlp_read_srom:
1658 *
1659 * Read the Tulip SROM.
1660 */
1661 void
1662 tlp_read_srom(sc, word, wordcnt, data)
1663 struct tulip_softc *sc;
1664 int word, wordcnt;
1665 u_int16_t *data;
1666 {
1667 u_int32_t miirom;
1668 int i, x;
1669
1670 tlp_srom_idle(sc);
1671
1672 /* Select the SROM. */
1673 miirom = MIIROM_SR;
1674 SROM_EMIT(sc, miirom);
1675
1676 miirom |= MIIROM_RD;
1677 SROM_EMIT(sc, miirom);
1678
1679 for (i = 0; i < wordcnt; i++) {
1680 /* Send CHIP SELECT for one clock tick. */
1681 miirom |= MIIROM_SROMCS;
1682 SROM_EMIT(sc, miirom);
1683
1684 /* Shift in the READ opcode. */
1685 for (x = 3; x > 0; x--) {
1686 if (TULIP_SROM_OPC_READ & (1 << (x - 1)))
1687 miirom |= MIIROM_SROMDI;
1688 else
1689 miirom &= ~MIIROM_SROMDI;
1690 SROM_EMIT(sc, miirom);
1691 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1692 SROM_EMIT(sc, miirom);
1693 }
1694
1695 /* Shift in address. */
1696 for (x = 6; x > 0; x--) {
1697 if ((word + i) & (1 << (x - 1)))
1698 miirom |= MIIROM_SROMDI;
1699 else
1700 miirom &= ~MIIROM_SROMDI;
1701 SROM_EMIT(sc, miirom);
1702 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1703 SROM_EMIT(sc, miirom);
1704 }
1705
1706 /* Shift out data. */
1707 miirom &= ~MIIROM_SROMDI;
1708 data[i] = 0;
1709 for (x = 16; x > 0; x--) {
1710 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1711 if (TULIP_ISSET(sc, CSR_MIIROM, MIIROM_SROMDO))
1712 data[i] |= (1 << (x - 1));
1713 SROM_EMIT(sc, miirom);
1714 }
1715
1716 /* Clear CHIP SELECT. */
1717 miirom &= ~MIIROM_SROMCS;
1718 SROM_EMIT(sc, miirom);
1719 }
1720
1721 /* Deselect the SROM. */
1722 SROM_EMIT(sc, 0);
1723
1724 /* ...and idle it. */
1725 tlp_srom_idle(sc);
1726 }
1727
1728 #undef SROM_EMIT
1729
1730 /*
1731 * tlp_add_rxbuf:
1732 *
1733 * Add a receive buffer to the indicated descriptor.
1734 */
1735 int
1736 tlp_add_rxbuf(sc, idx)
1737 struct tulip_softc *sc;
1738 int idx;
1739 {
1740 struct tulip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1741 struct mbuf *m;
1742 int error;
1743
1744 MGETHDR(m, M_DONTWAIT, MT_DATA);
1745 if (m == NULL)
1746 return (ENOBUFS);
1747
1748 MCLGET(m, M_DONTWAIT);
1749 if ((m->m_flags & M_EXT) == 0) {
1750 m_freem(m);
1751 return (ENOBUFS);
1752 }
1753
1754 if (rxs->rxs_mbuf != NULL)
1755 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1756
1757 rxs->rxs_mbuf = m;
1758
1759 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1760 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1761 if (error) {
1762 printf("%s: can't load rx DMA map %d, error = %d\n",
1763 sc->sc_dev.dv_xname, idx, error);
1764 panic("tlp_add_rxbuf"); /* XXX */
1765 }
1766
1767 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1768 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1769
1770 TULIP_INIT_RXDESC(sc, idx);
1771
1772 return (0);
1773 }
1774
1775 /*
1776 * tlp_crc32:
1777 *
1778 * Compute the 32-bit CRC of the provided buffer.
1779 */
1780 u_int32_t
1781 tlp_crc32(buf, len)
1782 const u_int8_t *buf;
1783 size_t len;
1784 {
1785 static const u_int32_t crctab[] = {
1786 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1787 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1788 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1789 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1790 };
1791 u_int32_t crc;
1792 int i;
1793
1794 crc = 0xffffffff;
1795 for (i = 0; i < len; i++) {
1796 crc ^= buf[i];
1797 crc = (crc >> 4) ^ crctab[crc & 0xf];
1798 crc = (crc >> 4) ^ crctab[crc & 0xf];
1799 }
1800 return (crc);
1801 }
1802
1803 /*
1804 * tlp_srom_crcok:
1805 *
1806 * Check the CRC of the Tulip SROM.
1807 */
1808 int
1809 tlp_srom_crcok(romdata)
1810 u_int8_t *romdata;
1811 {
1812 u_int32_t crc;
1813
1814 crc = tlp_crc32(romdata, TULIP_ROM_CRC32_CHECKSUM);
1815 crc = (crc & 0xffff) ^ 0xffff;
1816 if (crc == TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM))
1817 return (1);
1818 return (0);
1819 }
1820
1821 /*
1822 * tlp_parse_old_srom:
1823 *
1824 * Parse old-format SROMs.
1825 *
1826 * This routine is largely lifted from Matt Thomas's `de' driver.
1827 */
1828 int
1829 tlp_parse_old_srom(sc, enaddr)
1830 struct tulip_softc *sc;
1831 u_int8_t *enaddr;
1832 {
1833 static const u_int8_t testpat[] =
1834 { 0xff, 0, 0x55, 0xaa, 0xff, 0, 0x55, 0xaa };
1835 int i;
1836 u_int32_t cksum;
1837
1838 if (memcmp(&sc->sc_srom[0], &sc->sc_srom[16], 8) != 0) {
1839 /*
1840 * Some vendors (e.g. ZNYX) don't use the standard
1841 * DEC Address ROM format, but rather just have an
1842 * Ethernet address in the first 6 bytes, maybe a
1843 * 2 byte checksum, and then all 0xff's.
1844 */
1845 for (i = 8; i < 32; i++) {
1846 if (sc->sc_srom[i] != 0xff)
1847 return (0);
1848 }
1849
1850 /*
1851 * Sanity check the Ethernet address:
1852 *
1853 * - Make sure it's not multicast or locally
1854 * assigned
1855 * - Make sure it has a non-0 OUI
1856 */
1857 if (sc->sc_srom[0] & 3)
1858 return (0);
1859 if (sc->sc_srom[0] == 0 && sc->sc_srom[1] == 0 &&
1860 sc->sc_srom[2] == 0)
1861 return (0);
1862
1863 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN);
1864 return (1);
1865 }
1866
1867 /*
1868 * Standard DEC Address ROM test.
1869 */
1870
1871 if (memcmp(&sc->sc_srom[24], testpat, 8) != 0)
1872 return (0);
1873
1874 for (i = 0; i < 8; i++) {
1875 if (sc->sc_srom[i] != sc->sc_srom[15 - i])
1876 return (0);
1877 }
1878
1879 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN);
1880
1881 cksum = *(u_int16_t *) &enaddr[0];
1882
1883 cksum <<= 1;
1884 if (cksum > 0xffff)
1885 cksum -= 0xffff;
1886
1887 cksum += *(u_int16_t *) &enaddr[2];
1888 if (cksum > 0xffff)
1889 cksum -= 0xffff;
1890
1891 cksum <<= 1;
1892 if (cksum > 0xffff)
1893 cksum -= 0xffff;
1894
1895 cksum += *(u_int16_t *) &enaddr[4];
1896 if (cksum >= 0xffff)
1897 cksum -= 0xffff;
1898
1899 if (cksum != *(u_int16_t *) &sc->sc_srom[6])
1900 return (0);
1901
1902 return (1);
1903 }
1904
1905 /*
1906 * tlp_filter_setup:
1907 *
1908 * Set the Tulip's receive filter.
1909 */
1910 void
1911 tlp_filter_setup(sc)
1912 struct tulip_softc *sc;
1913 {
1914 struct ethercom *ec = &sc->sc_ethercom;
1915 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1916 struct ether_multi *enm;
1917 struct ether_multistep step;
1918 __volatile u_int32_t *sp;
1919 u_int8_t enaddr[ETHER_ADDR_LEN];
1920 u_int32_t hash;
1921 int cnt;
1922
1923 DPRINTF(sc, ("%s: tlp_filter_setup: sc_flags 0x%08x\n",
1924 sc->sc_dev.dv_xname, sc->sc_flags));
1925
1926 memcpy(enaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1927
1928 /*
1929 * If there are transmissions pending, wait until they have
1930 * completed.
1931 */
1932 if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) != NULL ||
1933 (sc->sc_flags & TULIPF_DOING_SETUP) != 0) {
1934 sc->sc_flags |= TULIPF_WANT_SETUP;
1935 DPRINTF(sc, ("%s: tlp_filter_setup: deferring\n",
1936 sc->sc_dev.dv_xname));
1937 return;
1938 }
1939 sc->sc_flags &= ~TULIPF_WANT_SETUP;
1940
1941 /*
1942 * If we're running, idle the transmit and receive engines. If
1943 * we're NOT running, we're being called from tlp_init(), and our
1944 * writing OPMODE will start the transmit and receive processes
1945 * in motion.
1946 */
1947 if (ifp->if_flags & IFF_RUNNING)
1948 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
1949
1950 sc->sc_opmode &= ~(OPMODE_PR|OPMODE_PM);
1951
1952 if (ifp->if_flags & IFF_PROMISC) {
1953 sc->sc_opmode |= OPMODE_PR;
1954 goto allmulti;
1955 }
1956
1957 /*
1958 * Try Perfect filtering first.
1959 */
1960
1961 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT;
1962 sp = TULIP_CDSP(sc);
1963 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
1964 cnt = 0;
1965 ETHER_FIRST_MULTI(step, ec, enm);
1966 while (enm != NULL) {
1967 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1968 /*
1969 * We must listen to a range of multicast addresses.
1970 * For now, just accept all multicasts, rather than
1971 * trying to set only those filter bits needed to match
1972 * the range. (At this time, the only use of address
1973 * ranges is for IP multicast routing, for which the
1974 * range is big enough to require all bits set.)
1975 */
1976 goto allmulti;
1977 }
1978 if (cnt == (TULIP_MAXADDRS - 2)) {
1979 /*
1980 * We already have our multicast limit (still need
1981 * our station address and broadcast). Go to
1982 * Hash-Perfect mode.
1983 */
1984 goto hashperfect;
1985 }
1986 *sp++ = ((u_int16_t *) enm->enm_addrlo)[0];
1987 *sp++ = ((u_int16_t *) enm->enm_addrlo)[1];
1988 *sp++ = ((u_int16_t *) enm->enm_addrlo)[2];
1989 ETHER_NEXT_MULTI(step, enm);
1990 }
1991
1992 if (ifp->if_flags & IFF_BROADCAST) {
1993 /* ...and the broadcast address. */
1994 cnt++;
1995 *sp++ = 0xffff;
1996 *sp++ = 0xffff;
1997 *sp++ = 0xffff;
1998 }
1999
2000 /* Pad the rest with our station address. */
2001 for (; cnt < TULIP_MAXADDRS; cnt++) {
2002 *sp++ = ((u_int16_t *) enaddr)[0];
2003 *sp++ = ((u_int16_t *) enaddr)[1];
2004 *sp++ = ((u_int16_t *) enaddr)[2];
2005 }
2006 ifp->if_flags &= ~IFF_ALLMULTI;
2007 goto setit;
2008
2009 hashperfect:
2010 /*
2011 * Try Hash-Perfect mode.
2012 */
2013
2014 /*
2015 * Some 21140 chips have broken Hash-Perfect modes. On these
2016 * chips, we simply use Hash-Only mode, and put our station
2017 * address into the filter.
2018 */
2019 if (sc->sc_chip == TULIP_CHIP_21140)
2020 sc->sc_filtmode = TDCTL_Tx_FT_HASHONLY;
2021 else
2022 sc->sc_filtmode = TDCTL_Tx_FT_HASH;
2023 sp = TULIP_CDSP(sc);
2024 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
2025 ETHER_FIRST_MULTI(step, ec, enm);
2026 while (enm != NULL) {
2027 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2028 /*
2029 * We must listen to a range of multicast addresses.
2030 * For now, just accept all multicasts, rather than
2031 * trying to set only those filter bits needed to match
2032 * the range. (At this time, the only use of address
2033 * ranges is for IP multicast routing, for which the
2034 * range is big enough to require all bits set.)
2035 */
2036 goto allmulti;
2037 }
2038 hash = tlp_mchash(enm->enm_addrlo);
2039 sp[hash >> 4] |= 1 << (hash & 0xf);
2040 ETHER_NEXT_MULTI(step, enm);
2041 }
2042
2043 if (ifp->if_flags & IFF_BROADCAST) {
2044 /* ...and the broadcast address. */
2045 hash = tlp_mchash(etherbroadcastaddr);
2046 sp[hash >> 4] |= 1 << (hash & 0xf);
2047 }
2048
2049 if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) {
2050 /* ...and our station address. */
2051 hash = tlp_mchash(enaddr);
2052 sp[hash >> 4] |= 1 << (hash & 0xf);
2053 } else {
2054 /*
2055 * Hash-Perfect mode; put our station address after
2056 * the hash table.
2057 */
2058 sp[39] = ((u_int16_t *) enaddr)[0];
2059 sp[40] = ((u_int16_t *) enaddr)[1];
2060 sp[41] = ((u_int16_t *) enaddr)[2];
2061 }
2062 ifp->if_flags &= ~IFF_ALLMULTI;
2063 goto setit;
2064
2065 allmulti:
2066 /*
2067 * Use Perfect filter mode. First address is the broadcast address,
2068 * and pad the rest with our station address. We'll set Pass-all-
2069 * multicast in OPMODE below.
2070 */
2071 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT;
2072 sp = TULIP_CDSP(sc);
2073 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
2074 cnt = 0;
2075 if (ifp->if_flags & IFF_BROADCAST) {
2076 cnt++;
2077 *sp++ = 0xffff;
2078 *sp++ = 0xffff;
2079 *sp++ = 0xffff;
2080 }
2081 for (; cnt < TULIP_MAXADDRS; cnt++) {
2082 *sp++ = ((u_int16_t *) enaddr)[0];
2083 *sp++ = ((u_int16_t *) enaddr)[1];
2084 *sp++ = ((u_int16_t *) enaddr)[2];
2085 }
2086 ifp->if_flags |= IFF_ALLMULTI;
2087
2088 setit:
2089 if (ifp->if_flags & IFF_ALLMULTI)
2090 sc->sc_opmode |= OPMODE_PM;
2091
2092 /* Sync the setup packet buffer. */
2093 TULIP_CDSPSYNC(sc, BUS_DMASYNC_PREWRITE);
2094
2095 /*
2096 * Fill in the setup packet descriptor.
2097 */
2098 sc->sc_setup_desc.td_bufaddr1 = TULIP_CDSPADDR(sc);
2099 sc->sc_setup_desc.td_bufaddr2 = TULIP_CDTXADDR(sc, sc->sc_txnext);
2100 sc->sc_setup_desc.td_ctl =
2101 (TULIP_SETUP_PACKET_LEN << TDCTL_SIZE1_SHIFT) |
2102 sc->sc_filtmode | TDCTL_Tx_SET | TDCTL_Tx_FS | TDCTL_Tx_LS |
2103 TDCTL_Tx_IC | TDCTL_CH;
2104 sc->sc_setup_desc.td_status = TDSTAT_OWN;
2105 TULIP_CDSDSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2106
2107 /*
2108 * Write the address of the setup descriptor. This also has
2109 * the side effect of giving the transmit ring to the chip,
2110 * since the setup descriptor points to the next available
2111 * descriptor in the ring.
2112 */
2113 TULIP_WRITE(sc, CSR_TXLIST, TULIP_CDSDADDR(sc));
2114
2115 /*
2116 * Set the OPMODE register. This will also resume the
2117 * transmit transmit process we idled above.
2118 */
2119 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2120
2121 sc->sc_flags |= TULIPF_DOING_SETUP;
2122
2123 /*
2124 * Kick the transmitter; this will cause the Tulip to
2125 * read the setup descriptor.
2126 */
2127 /* XXX USE AUTOPOLLING? */
2128 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
2129
2130 /* Set up a watchdog timer in case the chip flakes out. */
2131 ifp->if_timer = 5;
2132
2133 DPRINTF(sc, ("%s: tlp_filter_setup: returning\n", sc->sc_dev.dv_xname));
2134 }
2135
2136 /*
2137 * tlp_winb_filter_setup:
2138 *
2139 * Set the Winbond 89C840F's receive filter.
2140 */
2141 void
2142 tlp_winb_filter_setup(sc)
2143 struct tulip_softc *sc;
2144 {
2145 struct ethercom *ec = &sc->sc_ethercom;
2146 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2147 struct ether_multi *enm;
2148 struct ether_multistep step;
2149 u_int32_t hash, mchash[2];
2150
2151 DPRINTF(sc, ("%s: tlp_winb_filter_setup: sc_flags 0x%08x\n",
2152 sc->sc_dev.dv_xname, sc->sc_flags));
2153
2154 sc->sc_opmode &= ~(OPMODE_WINB_APP|OPMODE_WINB_AMP|OPMODE_WINB_ABP);
2155
2156 if (ifp->if_flags & IFF_MULTICAST)
2157 sc->sc_opmode |= OPMODE_WINB_AMP;
2158
2159 if (ifp->if_flags & IFF_BROADCAST)
2160 sc->sc_opmode |= OPMODE_WINB_ABP;
2161
2162 if (ifp->if_flags & IFF_PROMISC) {
2163 sc->sc_opmode |= OPMODE_WINB_APP;
2164 goto allmulti;
2165 }
2166
2167 mchash[0] = mchash[1] = 0;
2168
2169 ETHER_FIRST_MULTI(step, ec, enm);
2170 while (enm != NULL) {
2171 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2172 /*
2173 * We must listen to a range of multicast addresses.
2174 * For now, just accept all multicasts, rather than
2175 * trying to set only those filter bits needed to match
2176 * the range. (At this time, the only use of address
2177 * ranges is for IP multicast routing, for which the
2178 * range is big enough to require all bits set.)
2179 */
2180 goto allmulti;
2181 }
2182
2183 /*
2184 * According to the FreeBSD `wb' driver, yes, you
2185 * really do invert the hash.
2186 */
2187 hash = (~(tlp_crc32(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26))
2188 & 0x3f;
2189 mchash[hash >> 5] |= 1 << (hash & 0x1f);
2190 ETHER_NEXT_MULTI(step, enm);
2191 }
2192 ifp->if_flags &= ~IFF_ALLMULTI;
2193 goto setit;
2194
2195 allmulti:
2196 ifp->if_flags |= IFF_ALLMULTI;
2197 mchash[0] = mchash[1] = 0xffffffff;
2198
2199 setit:
2200 TULIP_WRITE(sc, CSR_WINB_CMA0, mchash[0]);
2201 TULIP_WRITE(sc, CSR_WINB_CMA1, mchash[1]);
2202 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2203 DPRINTF(sc, ("%s: tlp_winb_filter_setup: returning\n",
2204 sc->sc_dev.dv_xname));
2205 }
2206
2207 /*
2208 * tlp_idle:
2209 *
2210 * Cause the transmit and/or receive processes to go idle.
2211 */
2212 void
2213 tlp_idle(sc, bits)
2214 struct tulip_softc *sc;
2215 u_int32_t bits;
2216 {
2217 static const char *tx_state_names[] = {
2218 "STOPPED",
2219 "RUNNING - FETCH",
2220 "RUNNING - WAIT",
2221 "RUNNING - READING",
2222 "-- RESERVED --",
2223 "RUNNING - SETUP",
2224 "SUSPENDED",
2225 "RUNNING - CLOSE",
2226 };
2227 static const char *rx_state_names[] = {
2228 "STOPPED",
2229 "RUNNING - FETCH",
2230 "RUNNING - CHECK",
2231 "RUNNING - WAIT",
2232 "SUSPENDED",
2233 "RUNNING - CLOSE",
2234 "RUNNING - FLUSH",
2235 "RUNNING - QUEUE",
2236 };
2237 u_int32_t csr, ackmask = 0;
2238 int i;
2239
2240 if (bits & OPMODE_ST)
2241 ackmask |= STATUS_TPS;
2242
2243 if (bits & OPMODE_SR)
2244 ackmask |= STATUS_RPS;
2245
2246 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode & ~bits);
2247
2248 for (i = 0; i < 1000; i++) {
2249 if (TULIP_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
2250 break;
2251 delay(10);
2252 }
2253
2254 csr = TULIP_READ(sc, CSR_STATUS);
2255 if ((csr & ackmask) != ackmask) {
2256 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
2257 (csr & STATUS_TS) != STATUS_TS_STOPPED)
2258 printf("%s: transmit process failed to idle: "
2259 "state %s\n", sc->sc_dev.dv_xname,
2260 tx_state_names[(csr & STATUS_TS) >> 20]);
2261 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
2262 (csr & STATUS_RS) != STATUS_RS_STOPPED)
2263 printf("%s: receive process failed to idle: "
2264 "state %s\n", sc->sc_dev.dv_xname,
2265 rx_state_names[(csr & STATUS_RS) >> 17]);
2266 }
2267 TULIP_WRITE(sc, CSR_STATUS, ackmask);
2268 }
2269
2270 /*****************************************************************************
2271 * Generic media support functions.
2272 *****************************************************************************/
2273
2274 /*
2275 * tlp_mediastatus: [ifmedia interface function]
2276 *
2277 * Query the current media.
2278 */
2279 void
2280 tlp_mediastatus(ifp, ifmr)
2281 struct ifnet *ifp;
2282 struct ifmediareq *ifmr;
2283 {
2284 struct tulip_softc *sc = ifp->if_softc;
2285
2286 (*sc->sc_mediasw->tmsw_get)(sc, ifmr);
2287 }
2288
2289 /*
2290 * tlp_mediachange: [ifmedia interface function]
2291 *
2292 * Update the current media.
2293 */
2294 int
2295 tlp_mediachange(ifp)
2296 struct ifnet *ifp;
2297 {
2298 struct tulip_softc *sc = ifp->if_softc;
2299
2300 return ((*sc->sc_mediasw->tmsw_set)(sc));
2301 }
2302
2303 /*****************************************************************************
2304 * Support functions for MII-attached media.
2305 *****************************************************************************/
2306
2307 /*
2308 * tlp_mii_tick:
2309 *
2310 * One second timer, used to tick the MII.
2311 */
2312 void
2313 tlp_mii_tick(arg)
2314 void *arg;
2315 {
2316 struct tulip_softc *sc = arg;
2317 int s;
2318
2319 s = splnet();
2320 mii_tick(&sc->sc_mii);
2321 splx(s);
2322
2323 timeout(sc->sc_tick, sc, hz);
2324 }
2325
2326 /*
2327 * tlp_mii_statchg: [mii interface function]
2328 *
2329 * Callback from PHY when media changes.
2330 */
2331 void
2332 tlp_mii_statchg(self)
2333 struct device *self;
2334 {
2335 struct tulip_softc *sc = (struct tulip_softc *)self;
2336
2337 /* Idle the transmit and receive processes. */
2338 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2339
2340 /*
2341 * XXX What about Heartbeat Disable? Is it magically frobbed
2342 * XXX by the PHY? I hope so...
2343 */
2344
2345 sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD);
2346
2347 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T)
2348 sc->sc_opmode |= OPMODE_TTM;
2349
2350 if (sc->sc_mii.mii_media_active & IFM_FDX)
2351 sc->sc_opmode |= OPMODE_FD;
2352
2353 /*
2354 * Write new OPMODE bits. This also restarts the transmit
2355 * and receive processes.
2356 */
2357 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2358
2359 /* XXX Update ifp->if_baudrate */
2360 }
2361
2362 /*
2363 * tlp_winb_mii_statchg: [mii interface function]
2364 *
2365 * Callback from PHY when media changes. This version is
2366 * for the Winbond 89C840F, which has different OPMODE bits.
2367 */
2368 void
2369 tlp_winb_mii_statchg(self)
2370 struct device *self;
2371 {
2372 struct tulip_softc *sc = (struct tulip_softc *)self;
2373
2374 /* Idle the transmit and receive processes. */
2375 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2376
2377 /*
2378 * XXX What about Heartbeat Disable? Is it magically frobbed
2379 * XXX by the PHY? I hope so...
2380 */
2381
2382 sc->sc_opmode &= ~(OPMODE_WINB_FES|OPMODE_FD);
2383
2384 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX)
2385 sc->sc_opmode |= OPMODE_WINB_FES;
2386
2387 if (sc->sc_mii.mii_media_active & IFM_FDX)
2388 sc->sc_opmode |= OPMODE_FD;
2389
2390 /*
2391 * Write new OPMODE bits. This also restarts the transmit
2392 * and receive processes.
2393 */
2394 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2395
2396 /* XXX Update ifp->if_baudrate */
2397 }
2398
2399 /*
2400 * tlp_mii_getmedia:
2401 *
2402 * Callback from ifmedia to request current media status.
2403 */
2404 void
2405 tlp_mii_getmedia(sc, ifmr)
2406 struct tulip_softc *sc;
2407 struct ifmediareq *ifmr;
2408 {
2409
2410 mii_pollstat(&sc->sc_mii);
2411 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2412 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2413 }
2414
2415 /*
2416 * tlp_mii_setmedia:
2417 *
2418 * Callback from ifmedia to request new media setting.
2419 */
2420 int
2421 tlp_mii_setmedia(sc)
2422 struct tulip_softc *sc;
2423 {
2424 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2425
2426 if (ifp->if_flags & IFF_UP)
2427 mii_mediachg(&sc->sc_mii);
2428 return (0);
2429 }
2430
2431 #define MII_EMIT(sc, x) \
2432 do { \
2433 TULIP_WRITE((sc), CSR_MIIROM, (x)); \
2434 delay(1); \
2435 } while (0)
2436
2437 /*
2438 * tlp_sio_mii_sync:
2439 *
2440 * Synchronize the SIO-attached MII.
2441 */
2442 void
2443 tlp_sio_mii_sync(sc)
2444 struct tulip_softc *sc;
2445 {
2446 u_int32_t miirom;
2447 int i;
2448
2449 miirom = MIIROM_MIIDIR|MIIROM_MDO;
2450
2451 MII_EMIT(sc, miirom);
2452 for (i = 0; i < 32; i++) {
2453 MII_EMIT(sc, miirom | MIIROM_MDC);
2454 MII_EMIT(sc, miirom);
2455 }
2456 }
2457
2458 /*
2459 * tlp_sio_mii_sendbits:
2460 *
2461 * Send a series of bits out the SIO to the MII.
2462 */
2463 void
2464 tlp_sio_mii_sendbits(sc, data, nbits)
2465 struct tulip_softc *sc;
2466 u_int32_t data;
2467 int nbits;
2468 {
2469 u_int32_t miirom, i;
2470
2471 miirom = MIIROM_MIIDIR;
2472 MII_EMIT(sc, miirom);
2473
2474 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
2475 if (data & i)
2476 miirom |= MIIROM_MDO;
2477 else
2478 miirom &= ~MIIROM_MDO;
2479 MII_EMIT(sc, miirom);
2480 MII_EMIT(sc, miirom|MIIROM_MDC);
2481 MII_EMIT(sc, miirom);
2482 }
2483 }
2484
2485 /*
2486 * tlp_sio_mii_readreg:
2487 *
2488 * Read a PHY register via SIO-attached MII.
2489 */
2490 int
2491 tlp_sio_mii_readreg(self, phy, reg)
2492 struct device *self;
2493 int phy, reg;
2494 {
2495 struct tulip_softc *sc = (void *) self;
2496 int val = 0, err = 0, i;
2497
2498 tlp_sio_mii_sync(sc);
2499
2500 tlp_sio_mii_sendbits(sc, MII_COMMAND_START, 2);
2501 tlp_sio_mii_sendbits(sc, MII_COMMAND_READ, 2);
2502 tlp_sio_mii_sendbits(sc, phy, 5);
2503 tlp_sio_mii_sendbits(sc, reg, 5);
2504
2505 MII_EMIT(sc, MIIROM_MIIDIR);
2506 MII_EMIT(sc, MIIROM_MIIDIR|MIIROM_MDC);
2507
2508 MII_EMIT(sc, 0);
2509 MII_EMIT(sc, MIIROM_MDC);
2510
2511 err = TULIP_ISSET(sc, CSR_MIIROM, MIIROM_MDI);
2512
2513 MII_EMIT(sc, 0);
2514 MII_EMIT(sc, MIIROM_MDC);
2515
2516 for (i = 0; i < 16; i++) {
2517 val <<= 1;
2518 MII_EMIT(sc, 0);
2519 if (err == 0 && TULIP_ISSET(sc, CSR_MIIROM, MIIROM_MDI))
2520 val |= 1;
2521 MII_EMIT(sc, MIIROM_MDC);
2522 }
2523
2524 MII_EMIT(sc, 0);
2525
2526 return (err ? 0 : val);
2527 }
2528
2529 /*
2530 * tlp_sio_mii_writereg:
2531 *
2532 * Write a PHY register via SIO-attached MII.
2533 */
2534 void
2535 tlp_sio_mii_writereg(self, phy, reg, val)
2536 struct device *self;
2537 int phy, reg, val;
2538 {
2539 struct tulip_softc *sc = (void *) self;
2540
2541 tlp_sio_mii_sync(sc);
2542
2543 tlp_sio_mii_sendbits(sc, MII_COMMAND_START, 2);
2544 tlp_sio_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
2545 tlp_sio_mii_sendbits(sc, phy, 5);
2546 tlp_sio_mii_sendbits(sc, reg, 5);
2547 tlp_sio_mii_sendbits(sc, MII_COMMAND_ACK, 2);
2548 tlp_sio_mii_sendbits(sc, val, 16);
2549
2550 MII_EMIT(sc, 0);
2551 }
2552
2553 #undef MII_EMIT
2554
2555 /*
2556 * tlp_pnic_mii_readreg:
2557 *
2558 * Read a PHY register on the Lite-On PNIC.
2559 */
2560 int
2561 tlp_pnic_mii_readreg(self, phy, reg)
2562 struct device *self;
2563 int phy, reg;
2564 {
2565 struct tulip_softc *sc = (void *) self;
2566 u_int32_t val;
2567 int i;
2568
2569 TULIP_WRITE(sc, CSR_PNIC_MII,
2570 PNIC_MII_MBO | PNIC_MII_RESERVED |
2571 PNIC_MII_READ | (phy << PNIC_MII_PHYSHIFT) |
2572 (reg << PNIC_MII_REGSHIFT));
2573
2574 for (i = 0; i < 1000; i++) {
2575 delay(10);
2576 val = TULIP_READ(sc, CSR_PNIC_MII);
2577 if ((val & PNIC_MII_BUSY) == 0) {
2578 if ((val & PNIC_MII_DATA) == PNIC_MII_DATA)
2579 return (0);
2580 else
2581 return (val & PNIC_MII_DATA);
2582 }
2583 }
2584 printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
2585 return (0);
2586 }
2587
2588 /*
2589 * tlp_pnic_mii_writereg:
2590 *
2591 * Write a PHY register on the Lite-On PNIC.
2592 */
2593 void
2594 tlp_pnic_mii_writereg(self, phy, reg, val)
2595 struct device *self;
2596 int phy, reg, val;
2597 {
2598 struct tulip_softc *sc = (void *) self;
2599 int i;
2600
2601 TULIP_WRITE(sc, CSR_PNIC_MII,
2602 PNIC_MII_MBO | PNIC_MII_RESERVED |
2603 PNIC_MII_WRITE | (phy << PNIC_MII_PHYSHIFT) |
2604 (reg << PNIC_MII_REGSHIFT) | val);
2605
2606 for (i = 0; i < 1000; i++) {
2607 delay(10);
2608 if (TULIP_ISSET(sc, CSR_PNIC_MII, PNIC_MII_BUSY) == 0)
2609 return;
2610 }
2611 printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
2612 }
2613
2614 /*****************************************************************************
2615 * Chip/board-specific media switches. The ones here are ones that
2616 * are potentially common to multiple front-ends.
2617 *****************************************************************************/
2618
2619 /*
2620 * 21040 and 21041 media switches.
2621 */
2622 void tlp_21040_tmsw_init __P((struct tulip_softc *));
2623 void tlp_21040_tp_tmsw_init __P((struct tulip_softc *));
2624 void tlp_21040_auibnc_tmsw_init __P((struct tulip_softc *));
2625 void tlp_21040_21041_tmsw_get __P((struct tulip_softc *,
2626 struct ifmediareq *));
2627 int tlp_21040_21041_tmsw_set __P((struct tulip_softc *));
2628
2629 const struct tulip_mediasw tlp_21040_mediasw = {
2630 tlp_21040_tmsw_init, tlp_21040_21041_tmsw_get, tlp_21040_21041_tmsw_set
2631 };
2632
2633 const struct tulip_mediasw tlp_21040_tp_mediasw = {
2634 tlp_21040_tp_tmsw_init, tlp_21040_21041_tmsw_get,
2635 tlp_21040_21041_tmsw_set
2636 };
2637
2638 const struct tulip_mediasw tlp_21040_auibnc_mediasw = {
2639 tlp_21040_auibnc_tmsw_init, tlp_21040_21041_tmsw_get,
2640 tlp_21040_21041_tmsw_set
2641 };
2642
2643 #define ADD(m, t) ifmedia_add(&sc->sc_mii.mii_media, (m), 0, (t))
2644 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
2645
2646 void
2647 tlp_21040_tmsw_init(sc)
2648 struct tulip_softc *sc;
2649 {
2650 struct tulip_21040_21041_sia_media *tsm;
2651 const char *sep = "";
2652
2653 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
2654 tlp_mediastatus);
2655
2656 printf("%s: ", sc->sc_dev.dv_xname);
2657
2658 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2659 M_WAITOK);
2660 tsm->tsm_siaconn = SIACONN_21040_10BASET;
2661 tsm->tsm_siatxrx = SIATXRX_21040_10BASET;
2662 tsm->tsm_siagen = SIAGEN_21040_10BASET;
2663 ADD(IFM_ETHER|IFM_10_T, tsm);
2664 PRINT("10baseT");
2665
2666 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2667 M_WAITOK);
2668 tsm->tsm_siaconn = SIACONN_21040_10BASET_FDX;
2669 tsm->tsm_siatxrx = SIATXRX_21040_10BASET_FDX;
2670 tsm->tsm_siagen = SIAGEN_21040_10BASET_FDX;
2671 ADD(IFM_ETHER|IFM_10_T|IFM_FDX, tsm);
2672 PRINT("10baseT-FDX");
2673
2674 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2675 M_WAITOK);
2676 tsm->tsm_siaconn = SIACONN_21040_AUI;
2677 tsm->tsm_siatxrx = SIATXRX_21040_AUI;
2678 tsm->tsm_siagen = SIAGEN_21040_AUI;
2679 ADD(IFM_ETHER|IFM_10_5, tsm);
2680 PRINT("10base5");
2681
2682 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2683 M_WAITOK);
2684 tsm->tsm_siaconn = SIACONN_21040_EXTSIA;
2685 tsm->tsm_siatxrx = SIATXRX_21040_EXTSIA;
2686 tsm->tsm_siagen = SIAGEN_21040_EXTSIA;
2687 ADD(IFM_ETHER|IFM_MANUAL, tsm);
2688 PRINT("manual");
2689
2690 /*
2691 * XXX Autosense not yet supported.
2692 */
2693
2694 /* XXX This should be auto-sense. */
2695 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
2696 printf(", default 10baseT");
2697
2698 printf("\n");
2699 }
2700
2701 void
2702 tlp_21040_tp_tmsw_init(sc)
2703 struct tulip_softc *sc;
2704 {
2705 struct tulip_21040_21041_sia_media *tsm;
2706 const char *sep = "";
2707
2708 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
2709 tlp_mediastatus);
2710
2711 printf("%s: ", sc->sc_dev.dv_xname);
2712
2713 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2714 M_WAITOK);
2715 tsm->tsm_siaconn = SIACONN_21040_10BASET;
2716 tsm->tsm_siatxrx = SIATXRX_21040_10BASET;
2717 tsm->tsm_siagen = SIAGEN_21040_10BASET;
2718 ADD(IFM_ETHER|IFM_10_T, tsm);
2719 PRINT("10baseT");
2720
2721 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2722 M_WAITOK);
2723 tsm->tsm_siaconn = SIACONN_21040_10BASET_FDX;
2724 tsm->tsm_siatxrx = SIATXRX_21040_10BASET_FDX;
2725 tsm->tsm_siagen = SIAGEN_21040_10BASET_FDX;
2726 ADD(IFM_ETHER|IFM_10_T|IFM_FDX, tsm);
2727 PRINT("10baseT-FDX");
2728
2729 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
2730 printf(", default 10baseT");
2731
2732 printf("\n");
2733 }
2734
2735 void
2736 tlp_21040_auibnc_tmsw_init(sc)
2737 struct tulip_softc *sc;
2738 {
2739 struct tulip_21040_21041_sia_media *tsm;
2740 const char *sep = "";
2741
2742 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
2743 tlp_mediastatus);
2744
2745 printf("%s: ", sc->sc_dev.dv_xname);
2746
2747 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2748 M_WAITOK);
2749 tsm->tsm_siaconn = SIACONN_21040_AUI;
2750 tsm->tsm_siatxrx = SIATXRX_21040_AUI;
2751 tsm->tsm_siagen = SIAGEN_21040_AUI;
2752 ADD(IFM_ETHER|IFM_10_5, tsm);
2753 PRINT("10base5");
2754
2755 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_5);
2756
2757 printf("\n");
2758 }
2759
2760 #undef ADD
2761 #undef PRINT
2762
2763 void
2764 tlp_21040_21041_tmsw_get(sc, ifmr)
2765 struct tulip_softc *sc;
2766 struct ifmediareq *ifmr;
2767 {
2768 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
2769
2770 ifmr->ifm_status = 0;
2771
2772 switch (IFM_SUBTYPE(ife->ifm_media)) {
2773 case IFM_AUTO:
2774 /*
2775 * XXX Implement autosensing case.
2776 */
2777 break;
2778
2779 case IFM_10_T:
2780 /*
2781 * We're able to detect link directly on twisted pair.
2782 */
2783 ifmr->ifm_status = IFM_AVALID;
2784 if (TULIP_ISSET(sc, CSR_SIASTAT, SIASTAT_LKF) == 0)
2785 ifmr->ifm_status |= IFM_ACTIVE;
2786 /* FALLTHROUGH */
2787 default:
2788 /*
2789 * If not autosensing, active media is the currently
2790 * selected media.
2791 */
2792 ifmr->ifm_active = ife->ifm_media;
2793 }
2794 }
2795
2796 int
2797 tlp_21040_21041_tmsw_set(sc)
2798 struct tulip_softc *sc;
2799 {
2800 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
2801 struct tulip_21040_21041_sia_media *tsm;
2802
2803 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
2804 /*
2805 * If not autosensing, just pull the SIA settings out
2806 * of the media entry.
2807 */
2808 tsm = ife->ifm_aux;
2809 TULIP_WRITE(sc, CSR_SIACONN, SIACONN_SRL);
2810 TULIP_WRITE(sc, CSR_SIATXRX, tsm->tsm_siatxrx);
2811 TULIP_WRITE(sc, CSR_SIAGEN, tsm->tsm_siagen);
2812 TULIP_WRITE(sc, CSR_SIACONN, tsm->tsm_siaconn);
2813
2814 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2815 sc->sc_opmode &= ~OPMODE_FD;
2816 if (ife->ifm_media & IFM_FDX)
2817 sc->sc_opmode |= OPMODE_FD;
2818 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2819 } else {
2820 /*
2821 * XXX Implement autosensing case.
2822 */
2823 }
2824
2825 return (0);
2826 }
2827
2828 /*
2829 * MII-on-SIO media switch. Handles only MII attached to the SIO.
2830 */
2831 void tlp_sio_mii_tmsw_init __P((struct tulip_softc *));
2832
2833 const struct tulip_mediasw tlp_sio_mii_mediasw = {
2834 tlp_sio_mii_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
2835 };
2836
2837 void
2838 tlp_sio_mii_tmsw_init(sc)
2839 struct tulip_softc *sc;
2840 {
2841 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2842
2843 sc->sc_mii.mii_ifp = ifp;
2844 sc->sc_mii.mii_readreg = tlp_sio_mii_readreg;
2845 sc->sc_mii.mii_writereg = tlp_sio_mii_writereg;
2846 sc->sc_mii.mii_statchg = sc->sc_statchg;
2847 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
2848 tlp_mediastatus);
2849 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
2850 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2851 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2852 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2853 } else {
2854 sc->sc_flags |= TULIPF_HAS_MII;
2855 sc->sc_tick = tlp_mii_tick;
2856 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2857 }
2858 }
2859
2860 /*
2861 * Lite-On PNIC media switch. Must handle MII or internal NWAY.
2862 */
2863 void tlp_pnic_tmsw_init __P((struct tulip_softc *));
2864 void tlp_pnic_tmsw_get __P((struct tulip_softc *, struct ifmediareq *));
2865 int tlp_pnic_tmsw_set __P((struct tulip_softc *));
2866
2867 const struct tulip_mediasw tlp_pnic_mediasw = {
2868 tlp_pnic_tmsw_init, tlp_pnic_tmsw_get, tlp_pnic_tmsw_set
2869 };
2870
2871 void tlp_pnic_nway_statchg __P((struct device *));
2872 void tlp_pnic_nway_tick __P((void *));
2873 int tlp_pnic_nway_service __P((struct tulip_softc *, int));
2874 void tlp_pnic_nway_reset __P((struct tulip_softc *));
2875 int tlp_pnic_nway_auto __P((struct tulip_softc *, int));
2876 void tlp_pnic_nway_auto_timeout __P((void *));
2877 void tlp_pnic_nway_status __P((struct tulip_softc *));
2878 void tlp_pnic_nway_acomp __P((struct tulip_softc *));
2879
2880 void
2881 tlp_pnic_tmsw_init(sc)
2882 struct tulip_softc *sc;
2883 {
2884 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2885 const char *sep = "";
2886
2887 #define ADD(m, c) ifmedia_add(&sc->sc_mii.mii_media, (m), (c), NULL)
2888 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
2889
2890 sc->sc_mii.mii_ifp = ifp;
2891 sc->sc_mii.mii_readreg = tlp_pnic_mii_readreg;
2892 sc->sc_mii.mii_writereg = tlp_pnic_mii_writereg;
2893 sc->sc_mii.mii_statchg = sc->sc_statchg;
2894 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
2895 tlp_mediastatus);
2896 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
2897 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2898 /* XXX What about AUI/BNC support? */
2899 printf("%s: ", sc->sc_dev.dv_xname);
2900
2901 tlp_pnic_nway_reset(sc);
2902
2903 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0),
2904 PNIC_NWAY_TW|PNIC_NWAY_CAP10T);
2905 PRINT("10baseT");
2906
2907 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, IFM_FDX, 0),
2908 PNIC_NWAY_TW|PNIC_NWAY_FD|PNIC_NWAY_CAP10TFDX);
2909 PRINT("10baseT-FDX");
2910
2911 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, 0, 0),
2912 PNIC_NWAY_TW|PNIC_NWAY_100|PNIC_NWAY_CAP100TX);
2913 PRINT("100baseTX");
2914
2915 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, IFM_FDX, 0),
2916 PNIC_NWAY_TW|PNIC_NWAY_100|PNIC_NWAY_FD|
2917 PNIC_NWAY_CAP100TXFDX);
2918 PRINT("100baseTX-FDX");
2919
2920 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0),
2921 PNIC_NWAY_TW|PNIC_NWAY_RN|PNIC_NWAY_NW|
2922 PNIC_NWAY_CAP10T|PNIC_NWAY_CAP10TFDX|
2923 PNIC_NWAY_CAP100TXFDX|PNIC_NWAY_CAP100TX);
2924 PRINT("auto");
2925
2926 printf("\n");
2927
2928 sc->sc_statchg = tlp_pnic_nway_statchg;
2929 sc->sc_tick = tlp_pnic_nway_tick;
2930 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2931 } else {
2932 sc->sc_flags |= TULIPF_HAS_MII;
2933 sc->sc_tick = tlp_mii_tick;
2934 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2935 }
2936
2937 #undef ADD
2938 #undef PRINT
2939 }
2940
2941 void
2942 tlp_pnic_tmsw_get(sc, ifmr)
2943 struct tulip_softc *sc;
2944 struct ifmediareq *ifmr;
2945 {
2946 struct mii_data *mii = &sc->sc_mii;
2947
2948 if (sc->sc_flags & TULIPF_HAS_MII)
2949 tlp_mii_getmedia(sc, ifmr);
2950 else {
2951 mii->mii_media_status = 0;
2952 mii->mii_media_active = IFM_NONE;
2953 tlp_pnic_nway_service(sc, MII_POLLSTAT);
2954 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2955 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2956 }
2957 }
2958
2959 int
2960 tlp_pnic_tmsw_set(sc)
2961 struct tulip_softc *sc;
2962 {
2963 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2964 struct mii_data *mii = &sc->sc_mii;
2965
2966 if (sc->sc_flags & TULIPF_HAS_MII)
2967 return (tlp_mii_setmedia(sc));
2968
2969 if (ifp->if_flags & IFF_UP) {
2970 mii->mii_media_status = 0;
2971 mii->mii_media_active = IFM_NONE;
2972 return (tlp_pnic_nway_service(sc, MII_MEDIACHG));
2973 }
2974
2975 return (0);
2976 }
2977
2978 void
2979 tlp_pnic_nway_statchg(self)
2980 struct device *self;
2981 {
2982 struct tulip_softc *sc = (struct tulip_softc *)self;
2983
2984 /* Idle the transmit and receive processes. */
2985 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2986
2987 /*
2988 * XXX What about Heartbeat Disable? Is it magically frobbed
2989 * XXX by the PHY? I hope so...
2990 */
2991
2992 sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD|OPMODE_PS|OPMODE_PCS|
2993 OPMODE_SCR);
2994
2995 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
2996 sc->sc_opmode |= OPMODE_TTM;
2997 TULIP_WRITE(sc, CSR_GPP,
2998 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 0) |
2999 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1));
3000 } else {
3001 sc->sc_opmode |= OPMODE_PS|OPMODE_PCS|OPMODE_SCR;
3002 TULIP_WRITE(sc, CSR_GPP,
3003 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 1) |
3004 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1));
3005 }
3006
3007 if (sc->sc_mii.mii_media_active & IFM_FDX)
3008 sc->sc_opmode |= OPMODE_FD;
3009
3010 /*
3011 * Write new OPMODE bits. This also restarts the transmit
3012 * and receive processes.
3013 */
3014 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
3015
3016 /* XXX Update ifp->if_baudrate */
3017 }
3018
3019 void
3020 tlp_pnic_nway_tick(arg)
3021 void *arg;
3022 {
3023 struct tulip_softc *sc = arg;
3024 int s;
3025
3026 s = splnet();
3027 tlp_pnic_nway_service(sc, MII_TICK);
3028 splx(s);
3029
3030 timeout(tlp_pnic_nway_tick, sc, hz);
3031 }
3032
3033 /*
3034 * Support for the Lite-On PNIC internal NWay block. This is constructed
3035 * somewhat like a PHY driver for simplicity.
3036 */
3037
3038 int
3039 tlp_pnic_nway_service(sc, cmd)
3040 struct tulip_softc *sc;
3041 int cmd;
3042 {
3043 struct mii_data *mii = &sc->sc_mii;
3044 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
3045
3046 if ((mii->mii_ifp->if_flags & IFF_UP) == 0)
3047 return (0);
3048
3049 switch (cmd) {
3050 case MII_POLLSTAT:
3051 /* Nothing special to do here. */
3052 break;
3053
3054 case MII_MEDIACHG:
3055 switch (IFM_SUBTYPE(ife->ifm_media)) {
3056 case IFM_AUTO:
3057 (void) tlp_pnic_nway_auto(sc, 1);
3058 break;
3059 case IFM_100_T4:
3060 /*
3061 * XXX Not supported as a manual setting right now.
3062 */
3063 return (EINVAL);
3064 default:
3065 /*
3066 * NWAY register data is stored in the ifmedia entry.
3067 */
3068 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data);
3069 }
3070 break;
3071
3072 case MII_TICK:
3073 /*
3074 * Only used for autonegotiation.
3075 */
3076 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
3077 return (0);
3078
3079 /*
3080 * Check to see if we have link. If we do, we don't
3081 * need to restart the autonegotiation process.
3082 */
3083 if (sc->sc_flags & TULIPF_LINK_UP)
3084 return (0);
3085
3086 /*
3087 * Only retry autonegotiation every 5 seconds.
3088 */
3089 if (++sc->sc_nway_ticks != 5)
3090 return (0);
3091
3092 sc->sc_nway_ticks = 0;
3093 tlp_pnic_nway_reset(sc);
3094 if (tlp_pnic_nway_auto(sc, 0) == EJUSTRETURN)
3095 return (0);
3096 break;
3097 }
3098
3099 /* Update the media status. */
3100 tlp_pnic_nway_status(sc);
3101
3102 /* Callback if something changed. */
3103 if (sc->sc_nway_active != mii->mii_media_active ||
3104 cmd == MII_MEDIACHG) {
3105 (*sc->sc_statchg)(&sc->sc_dev);
3106 sc->sc_nway_active = mii->mii_media_active;
3107 }
3108 return (0);
3109 }
3110
3111 void
3112 tlp_pnic_nway_reset(sc)
3113 struct tulip_softc *sc;
3114 {
3115
3116 TULIP_WRITE(sc, CSR_PNIC_NWAY, PNIC_NWAY_RS);
3117 delay(100);
3118 TULIP_WRITE(sc, CSR_PNIC_NWAY, 0);
3119 }
3120
3121 int
3122 tlp_pnic_nway_auto(sc, waitfor)
3123 struct tulip_softc *sc;
3124 int waitfor;
3125 {
3126 struct mii_data *mii = &sc->sc_mii;
3127 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
3128 u_int32_t reg;
3129 int i;
3130
3131 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0)
3132 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data);
3133
3134 if (waitfor) {
3135 /* Wait 500ms for it to complete. */
3136 for (i = 0; i < 500; i++) {
3137 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
3138 if (reg & PNIC_NWAY_LPAR_MASK) {
3139 tlp_pnic_nway_acomp(sc);
3140 return (0);
3141 }
3142 delay(1000);
3143 }
3144 #if 0
3145 if ((reg & PNIC_NWAY_LPAR_MASK) == 0)
3146 printf("%s: autonegotiation failed to complete\n",
3147 sc->sc_dev.dv_xname);
3148 #endif
3149
3150 /*
3151 * Don't need to worry about clearing DOINGAUTO.
3152 * If that's set, a timeout is pending, and it will
3153 * clear the flag.
3154 */
3155 return (EIO);
3156 }
3157
3158 /*
3159 * Just let it finish asynchronously. This is for the benefit of
3160 * the tick handler driving autonegotiation. Don't want 500ms
3161 * delays all the time while the system is running!
3162 */
3163 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0) {
3164 sc->sc_flags |= TULIPF_DOINGAUTO;
3165 timeout(tlp_pnic_nway_auto_timeout, sc, hz >> 1);
3166 }
3167 return (EJUSTRETURN);
3168 }
3169
3170 void
3171 tlp_pnic_nway_auto_timeout(arg)
3172 void *arg;
3173 {
3174 struct tulip_softc *sc = arg;
3175 u_int32_t reg;
3176 int s;
3177
3178 s = splnet();
3179 sc->sc_flags &= ~TULIPF_DOINGAUTO;
3180 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
3181 #if 0
3182 if ((reg & PNIC_NWAY_LPAR_MASK) == 0)
3183 printf("%s: autonegotiation failed to complete\n",
3184 sc->sc_dev.dv_xname);
3185 #endif
3186
3187 tlp_pnic_nway_acomp(sc);
3188
3189 /* Update the media status. */
3190 (void) tlp_pnic_nway_service(sc, MII_POLLSTAT);
3191 splx(s);
3192 }
3193
3194 void
3195 tlp_pnic_nway_status(sc)
3196 struct tulip_softc *sc;
3197 {
3198 struct mii_data *mii = &sc->sc_mii;
3199 u_int32_t reg;
3200
3201 mii->mii_media_status = IFM_AVALID;
3202 mii->mii_media_active = IFM_ETHER;
3203
3204 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
3205
3206 if (sc->sc_flags & TULIPF_LINK_UP)
3207 mii->mii_media_status |= IFM_ACTIVE;
3208
3209 if (reg & PNIC_NWAY_NW) {
3210 if ((reg & PNIC_NWAY_LPAR_MASK) == 0) {
3211 /* Erg, still trying, I guess... */
3212 mii->mii_media_active |= IFM_NONE;
3213 return;
3214 }
3215
3216 #if 0
3217 if (reg & PNIC_NWAY_LPAR100T4)
3218 mii->mii_media_active |= IFM_100_T4;
3219 else
3220 #endif
3221 if (reg & PNIC_NWAY_LPAR100TXFDX)
3222 mii->mii_media_active |= IFM_100_TX|IFM_FDX;
3223 else if (reg & PNIC_NWAY_LPAR100TX)
3224 mii->mii_media_active |= IFM_100_TX;
3225 else if (reg & PNIC_NWAY_LPAR10TFDX)
3226 mii->mii_media_active |= IFM_10_T|IFM_FDX;
3227 else if (reg & PNIC_NWAY_LPAR10T)
3228 mii->mii_media_active |= IFM_10_T;
3229 else
3230 mii->mii_media_active |= IFM_NONE;
3231 } else {
3232 if (reg & PNIC_NWAY_100)
3233 mii->mii_media_active |= IFM_100_TX;
3234 else
3235 mii->mii_media_active |= IFM_10_T;
3236 if (reg & PNIC_NWAY_FD)
3237 mii->mii_media_active |= IFM_FDX;
3238 }
3239 }
3240
3241 void
3242 tlp_pnic_nway_acomp(sc)
3243 struct tulip_softc *sc;
3244 {
3245 u_int32_t reg;
3246
3247 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
3248 reg &= ~(PNIC_NWAY_FD|PNIC_NWAY_100|PNIC_NWAY_RN);
3249
3250 if (reg & (PNIC_NWAY_LPAR100TXFDX|PNIC_NWAY_LPAR100TX))
3251 reg |= PNIC_NWAY_100;
3252 if (reg & (PNIC_NWAY_LPAR10TFDX|PNIC_NWAY_LPAR100TXFDX))
3253 reg |= PNIC_NWAY_FD;
3254
3255 TULIP_WRITE(sc, CSR_PNIC_NWAY, reg);
3256 }
3257