tulip.c revision 1.9 1 /* $NetBSD: tulip.c,v 1.9 1999/09/14 22:25:50 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Device driver for the Digital Semiconductor ``Tulip'' (21x4x)
42 * Ethernet controller family, and a variety of clone chips.
43 */
44
45 #include "opt_inet.h"
46 #include "opt_ns.h"
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58
59 #include <vm/vm.h> /* for PAGE_SIZE */
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65
66 #if NBPFILTER > 0
67 #include <net/bpf.h>
68 #endif
69
70 #ifdef INET
71 #include <netinet/in.h>
72 #include <netinet/if_inarp.h>
73 #endif
74
75 #ifdef NS
76 #include <netns/ns.h>
77 #include <netns/ns_if.h>
78 #endif
79
80 #include <machine/bus.h>
81 #include <machine/intr.h>
82
83 #include <dev/mii/mii.h>
84 #include <dev/mii/miivar.h>
85
86 #include <dev/ic/tulipreg.h>
87 #include <dev/ic/tulipvar.h>
88
89 /*
90 * The following tables compute the transmit threshold mode. We start
91 * at index 0. When ever we get a transmit underrun, we increment our
92 * index, falling back if we encounter the NULL terminator.
93 *
94 * Note: Store and forward mode is only available on the 100mbps chips
95 * (21140 and higher).
96 */
97 const struct tulip_txthresh_tab tlp_10_txthresh_tab[] = {
98 { OPMODE_TR_72, "72 bytes" },
99 { OPMODE_TR_96, "96 bytes" },
100 { OPMODE_TR_128, "128 bytes" },
101 { OPMODE_TR_160, "160 bytes" },
102 { 0, NULL },
103 };
104
105 const struct tulip_txthresh_tab tlp_10_100_txthresh_tab[] = {
106 { OPMODE_TR_72, "72/128 bytes" },
107 { OPMODE_TR_96, "96/256 bytes" },
108 { OPMODE_TR_128, "128/512 bytes" },
109 { OPMODE_TR_160, "160/1024 bytes" },
110 { OPMODE_SF, "store and forward mode" },
111 { 0, NULL },
112 };
113
114 #define TXTH_72 0
115 #define TXTH_96 1
116 #define TXTH_128 2
117 #define TXTH_160 3
118 #define TXTH_SF 4
119
120 /*
121 * The Winbond 89C840F does transmit threshold control totally
122 * differently. It simply has a 7-bit field which indicates
123 * the threshold:
124 *
125 * txth = ((OPMODE & OPMODE_WINB_TTH) >> OPMODE_WINB_TTH_SHIFT) * 16;
126 *
127 * However, we just do Store-and-Forward mode on these chips, since
128 * the DMA engines seem to be flaky.
129 */
130 const struct tulip_txthresh_tab tlp_winb_txthresh_tab[] = {
131 { 0, "store and forward mode" },
132 { 0, NULL },
133 };
134
135 #define TXTH_WINB_SF 0
136
137 void tlp_start __P((struct ifnet *));
138 void tlp_watchdog __P((struct ifnet *));
139 int tlp_ioctl __P((struct ifnet *, u_long, caddr_t));
140
141 void tlp_shutdown __P((void *));
142
143 void tlp_reset __P((struct tulip_softc *));
144 int tlp_init __P((struct tulip_softc *));
145 void tlp_rxdrain __P((struct tulip_softc *));
146 void tlp_stop __P((struct tulip_softc *, int));
147 int tlp_add_rxbuf __P((struct tulip_softc *, int));
148 void tlp_idle __P((struct tulip_softc *, u_int32_t));
149 void tlp_srom_idle __P((struct tulip_softc *));
150
151 void tlp_filter_setup __P((struct tulip_softc *));
152 void tlp_winb_filter_setup __P((struct tulip_softc *));
153
154 void tlp_rxintr __P((struct tulip_softc *));
155 void tlp_txintr __P((struct tulip_softc *));
156
157 void tlp_mii_tick __P((void *));
158 void tlp_mii_statchg __P((struct device *));
159 void tlp_winb_mii_statchg __P((struct device *));
160
161 void tlp_mii_getmedia __P((struct tulip_softc *, struct ifmediareq *));
162 int tlp_mii_setmedia __P((struct tulip_softc *));
163
164 void tlp_sio_mii_sync __P((struct tulip_softc *));
165 void tlp_sio_mii_sendbits __P((struct tulip_softc *, u_int32_t, int));
166 int tlp_sio_mii_readreg __P((struct device *, int, int));
167 void tlp_sio_mii_writereg __P((struct device *, int, int, int));
168
169 int tlp_pnic_mii_readreg __P((struct device *, int, int));
170 void tlp_pnic_mii_writereg __P((struct device *, int, int, int));
171
172 u_int32_t tlp_crc32 __P((const u_int8_t *, size_t));
173 #define tlp_mchash(addr) (tlp_crc32((addr), ETHER_ADDR_LEN) & \
174 (TULIP_MCHASHSIZE - 1))
175
176 #ifdef TLP_DEBUG
177 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
178 printf x
179 #else
180 #define DPRINTF(sc, x) /* nothing */
181 #endif
182
183 /*
184 * tlp_attach:
185 *
186 * Attach a Tulip interface to the system.
187 */
188 void
189 tlp_attach(sc, enaddr)
190 struct tulip_softc *sc;
191 const u_int8_t *enaddr;
192 {
193 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
194 int i, rseg, error;
195 bus_dma_segment_t seg;
196
197 /*
198 * NOTE: WE EXPECT THE FRONT-END TO INITIALIZE sc_regshift!
199 */
200
201 /*
202 * Setup the transmit threshold table.
203 */
204 switch (sc->sc_chip) {
205 case TULIP_CHIP_DE425:
206 case TULIP_CHIP_21040:
207 case TULIP_CHIP_21041:
208 sc->sc_txth = tlp_10_txthresh_tab;
209 break;
210
211 default:
212 sc->sc_txth = tlp_10_100_txthresh_tab;
213 break;
214 }
215
216 /*
217 * Setup the filter setup function.
218 */
219 switch (sc->sc_chip) {
220 case TULIP_CHIP_WB89C840F:
221 sc->sc_filter_setup = tlp_winb_filter_setup;
222 break;
223
224 default:
225 sc->sc_filter_setup = tlp_filter_setup;
226 break;
227 }
228
229 /*
230 * Set up the media status change function.
231 */
232 switch (sc->sc_chip) {
233 case TULIP_CHIP_WB89C840F:
234 sc->sc_statchg = tlp_winb_mii_statchg;
235 break;
236
237 default:
238 /*
239 * We may override this if we have special media
240 * handling requirements (e.g. flipping GPIO pins).
241 *
242 * The pure-MII statchg function covers the basics.
243 */
244 sc->sc_statchg = tlp_mii_statchg;
245 break;
246 }
247
248 /*
249 * Set up various chip-specific quirks.
250 */
251 switch (sc->sc_chip) {
252 case TULIP_CHIP_82C168:
253 case TULIP_CHIP_82C169:
254 /*
255 * These chips seem to have busted DMA engines; just put them
256 * in Store-and-Forward mode from the get-go.
257 */
258 sc->sc_txthresh = TXTH_SF;
259 break;
260
261 case TULIP_CHIP_WB89C840F:
262 sc->sc_flags |= TULIPF_IC_FS;
263 break;
264
265 default:
266 /* Nothing. */
267 }
268
269 SIMPLEQ_INIT(&sc->sc_txfreeq);
270 SIMPLEQ_INIT(&sc->sc_txdirtyq);
271
272 /*
273 * Allocate the control data structures, and create and load the
274 * DMA map for it.
275 */
276 if ((error = bus_dmamem_alloc(sc->sc_dmat,
277 sizeof(struct tulip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
278 0)) != 0) {
279 printf("%s: unable to allocate control data, error = %d\n",
280 sc->sc_dev.dv_xname, error);
281 goto fail_0;
282 }
283
284 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
285 sizeof(struct tulip_control_data), (caddr_t *)&sc->sc_control_data,
286 BUS_DMA_COHERENT)) != 0) {
287 printf("%s: unable to map control data, error = %d\n",
288 sc->sc_dev.dv_xname, error);
289 goto fail_1;
290 }
291
292 if ((error = bus_dmamap_create(sc->sc_dmat,
293 sizeof(struct tulip_control_data), 1,
294 sizeof(struct tulip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
295 printf("%s: unable to create control data DMA map, "
296 "error = %d\n", sc->sc_dev.dv_xname, error);
297 goto fail_2;
298 }
299
300 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
301 sc->sc_control_data, sizeof(struct tulip_control_data), NULL,
302 0)) != 0) {
303 printf("%s: unable to load control data DMA map, error = %d\n",
304 sc->sc_dev.dv_xname, error);
305 goto fail_3;
306 }
307
308 /*
309 * Create the transmit buffer DMA maps.
310 */
311 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
312 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
313 TULIP_NTXSEGS, MCLBYTES, 0, 0,
314 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
315 printf("%s: unable to create tx DMA map %d, "
316 "error = %d\n", sc->sc_dev.dv_xname, i, error);
317 goto fail_4;
318 }
319 }
320
321 /*
322 * Create the recieve buffer DMA maps.
323 */
324 for (i = 0; i < TULIP_NRXDESC; i++) {
325 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
326 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
327 printf("%s: unable to create rx DMA map %d, "
328 "error = %d\n", sc->sc_dev.dv_xname, i, error);
329 goto fail_5;
330 }
331 sc->sc_rxsoft[i].rxs_mbuf = NULL;
332 }
333
334 /*
335 * Reset the chip to a known state.
336 */
337 tlp_reset(sc);
338
339 /* Announce ourselves. */
340 printf("%s: %s%sEthernet address %s\n", sc->sc_dev.dv_xname,
341 sc->sc_name[0] != '\0' ? sc->sc_name : "",
342 sc->sc_name[0] != '\0' ? ", " : "",
343 ether_sprintf(enaddr));
344
345 /*
346 * Initialize our media structures. This may probe the MII, if
347 * present.
348 */
349 (*sc->sc_mediasw->tmsw_init)(sc);
350
351 ifp = &sc->sc_ethercom.ec_if;
352 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
353 ifp->if_softc = sc;
354 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
355 ifp->if_ioctl = tlp_ioctl;
356 ifp->if_start = tlp_start;
357 ifp->if_watchdog = tlp_watchdog;
358
359 /*
360 * Attach the interface.
361 */
362 if_attach(ifp);
363 ether_ifattach(ifp, enaddr);
364 #if NBPFILTER > 0
365 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
366 sizeof(struct ether_header));
367 #endif
368
369 /*
370 * Make sure the interface is shutdown during reboot.
371 */
372 sc->sc_sdhook = shutdownhook_establish(tlp_shutdown, sc);
373 if (sc->sc_sdhook == NULL)
374 printf("%s: WARNING: unable to establish shutdown hook\n",
375 sc->sc_dev.dv_xname);
376 return;
377
378 /*
379 * Free any resources we've allocated during the failed attach
380 * attempt. Do this in reverse order and fall through.
381 */
382 fail_5:
383 for (i = 0; i < TULIP_NRXDESC; i++) {
384 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
385 bus_dmamap_destroy(sc->sc_dmat,
386 sc->sc_rxsoft[i].rxs_dmamap);
387 }
388 fail_4:
389 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
390 if (sc->sc_txsoft[i].txs_dmamap != NULL)
391 bus_dmamap_destroy(sc->sc_dmat,
392 sc->sc_txsoft[i].txs_dmamap);
393 }
394 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
395 fail_3:
396 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
397 fail_2:
398 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
399 sizeof(struct tulip_control_data));
400 fail_1:
401 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
402 fail_0:
403 return;
404 }
405
406 /*
407 * tlp_shutdown:
408 *
409 * Make sure the interface is stopped at reboot time.
410 */
411 void
412 tlp_shutdown(arg)
413 void *arg;
414 {
415 struct tulip_softc *sc = arg;
416
417 tlp_stop(sc, 1);
418 }
419
420 /*
421 * tlp_start: [ifnet interface function]
422 *
423 * Start packet transmission on the interface.
424 */
425 void
426 tlp_start(ifp)
427 struct ifnet *ifp;
428 {
429 struct tulip_softc *sc = ifp->if_softc;
430 struct mbuf *m0, *m;
431 struct tulip_txsoft *txs, *last_txs;
432 bus_dmamap_t dmamap;
433 int error, firsttx, nexttx, lasttx, ofree, seg;
434
435 DPRINTF(sc, ("%s: tlp_start: sc_flags 0x%08x, if_flags 0x%08x\n",
436 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
437
438 /*
439 * If we want a filter setup, it means no more descriptors were
440 * available for the setup routine. Let it get a chance to wedge
441 * itself into the ring.
442 */
443 if (sc->sc_flags & TULIPF_WANT_SETUP)
444 ifp->if_flags |= IFF_OACTIVE;
445
446 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
447 return;
448
449 /*
450 * Remember the previous number of free descriptors and
451 * the first descriptor we'll use.
452 */
453 ofree = sc->sc_txfree;
454 firsttx = sc->sc_txnext;
455
456 DPRINTF(sc, ("%s: tlp_start: txfree %d, txnext %d\n",
457 sc->sc_dev.dv_xname, ofree, firsttx));
458
459 /*
460 * Loop through the send queue, setting up transmit descriptors
461 * until we drain the queue, or use up all available transmit
462 * descriptors.
463 */
464 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
465 sc->sc_txfree != 0) {
466 /*
467 * Grab a packet off the queue.
468 */
469 IF_DEQUEUE(&ifp->if_snd, m0);
470 if (m0 == NULL)
471 break;
472
473 dmamap = txs->txs_dmamap;
474
475 /*
476 * Load the DMA map. If this fails, the packet either
477 * didn't fit in the alloted number of segments, or we were
478 * short on resources. In this case, we'll copy and try
479 * again.
480 */
481 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
482 BUS_DMA_NOWAIT) != 0) {
483 MGETHDR(m, M_DONTWAIT, MT_DATA);
484 if (m == NULL) {
485 printf("%s: unable to allocate Tx mbuf\n",
486 sc->sc_dev.dv_xname);
487 IF_PREPEND(&ifp->if_snd, m0);
488 break;
489 }
490 if (m0->m_pkthdr.len > MHLEN) {
491 MCLGET(m, M_DONTWAIT);
492 if ((m->m_flags & M_EXT) == 0) {
493 printf("%s: unable to allocate Tx "
494 "cluster\n", sc->sc_dev.dv_xname);
495 m_freem(m);
496 IF_PREPEND(&ifp->if_snd, m0);
497 break;
498 }
499 }
500 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
501 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
502 m_freem(m0);
503 m0 = m;
504 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
505 m0, BUS_DMA_NOWAIT);
506 if (error) {
507 printf("%s: unable to load Tx buffer, "
508 "error = %d\n", sc->sc_dev.dv_xname, error);
509 IF_PREPEND(&ifp->if_snd, m0);
510 break;
511 }
512 }
513
514 /*
515 * Ensure we have enough descriptors free to describe
516 * the packet.
517 */
518 if (dmamap->dm_nsegs > sc->sc_txfree) {
519 /*
520 * Not enough free descriptors to transmit this
521 * packet. We haven't committed to anything yet,
522 * so just unload the DMA map, put the packet
523 * back on the queue, and punt. Notify the upper
524 * layer that there are no more slots left.
525 *
526 * XXX We could allocate an mbuf and copy, but
527 * XXX it is worth it?
528 */
529 ifp->if_flags |= IFF_OACTIVE;
530 bus_dmamap_unload(sc->sc_dmat, dmamap);
531 IF_PREPEND(&ifp->if_snd, m0);
532 break;
533 }
534
535 /*
536 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
537 */
538
539 /* Sync the DMA map. */
540 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
541 BUS_DMASYNC_PREWRITE);
542
543 /*
544 * Initialize the transmit descriptors.
545 */
546 for (nexttx = sc->sc_txnext, seg = 0;
547 seg < dmamap->dm_nsegs;
548 seg++, nexttx = TULIP_NEXTTX(nexttx)) {
549 /*
550 * If this is the first descriptor we're
551 * enqueueing, don't set the OWN bit just
552 * yet. That could cause a race condition.
553 * We'll do it below.
554 */
555 sc->sc_txdescs[nexttx].td_status =
556 (nexttx == firsttx) ? 0 : TDSTAT_OWN;
557 sc->sc_txdescs[nexttx].td_bufaddr1 =
558 dmamap->dm_segs[seg].ds_addr;
559 sc->sc_txdescs[nexttx].td_ctl =
560 (dmamap->dm_segs[seg].ds_len << TDCTL_SIZE1_SHIFT) |
561 TDCTL_CH;
562 lasttx = nexttx;
563 }
564
565 /* Set `first segment' and `last segment' appropriately. */
566 sc->sc_txdescs[sc->sc_txnext].td_ctl |= TDCTL_Tx_FS;
567 sc->sc_txdescs[lasttx].td_ctl |= TDCTL_Tx_LS;
568
569 #ifdef TLP_DEBUG
570 if (ifp->if_flags & IFF_DEBUG) {
571 printf(" txsoft %p trainsmit chain:\n", txs);
572 for (seg = sc->sc_txnext;; seg = TULIP_NEXTTX(seg)) {
573 printf(" descriptor %d:\n", seg);
574 printf(" td_status: 0x%08x\n",
575 sc->sc_txdescs[seg].td_status);
576 printf(" td_ctl: 0x%08x\n",
577 sc->sc_txdescs[seg].td_ctl);
578 printf(" td_bufaddr1: 0x%08x\n",
579 sc->sc_txdescs[seg].td_bufaddr1);
580 printf(" td_bufaddr2: 0x%08x\n",
581 sc->sc_txdescs[seg].td_bufaddr2);
582 if (seg == lasttx)
583 break;
584 }
585 }
586 #endif
587
588 /* Sync the descriptors we're using. */
589 TULIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
590 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
591
592 /*
593 * Store a pointer to the packet so we can free it later,
594 * and remember what txdirty will be once the packet is
595 * done.
596 */
597 txs->txs_mbuf = m0;
598 txs->txs_firstdesc = sc->sc_txnext;
599 txs->txs_lastdesc = lasttx;
600
601 /* Advance the tx pointer. */
602 sc->sc_txfree -= dmamap->dm_nsegs;
603 sc->sc_txnext = nexttx;
604
605 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
606 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
607
608 last_txs = txs;
609
610 #if NBPFILTER > 0
611 /*
612 * Pass the packet to any BPF listeners.
613 */
614 if (ifp->if_bpf)
615 bpf_mtap(ifp->if_bpf, m0);
616 #endif /* NBPFILTER > 0 */
617 }
618
619 if (txs == NULL || sc->sc_txfree == 0) {
620 /* No more slots left; notify upper layer. */
621 ifp->if_flags |= IFF_OACTIVE;
622 }
623
624 if (sc->sc_txfree != ofree) {
625 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
626 sc->sc_dev.dv_xname, lasttx, firsttx));
627 /*
628 * Cause a transmit interrupt to happen on the
629 * last packet we enqueued.
630 */
631 sc->sc_txdescs[lasttx].td_ctl |= TDCTL_Tx_IC;
632 TULIP_CDTXSYNC(sc, lasttx, 1,
633 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
634
635 /*
636 * Some clone chips want IC on the *first* segment in
637 * the packet. Appease them.
638 */
639 if ((sc->sc_flags & TULIPF_IC_FS) != 0 &&
640 last_txs->txs_firstdesc != lasttx) {
641 sc->sc_txdescs[last_txs->txs_firstdesc].td_ctl |=
642 TDCTL_Tx_IC;
643 TULIP_CDTXSYNC(sc, last_txs->txs_firstdesc, 1,
644 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
645 }
646
647 /*
648 * The entire packet chain is set up. Give the
649 * first descriptor to the chip now.
650 */
651 sc->sc_txdescs[firsttx].td_status |= TDSTAT_OWN;
652 TULIP_CDTXSYNC(sc, firsttx, 1,
653 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
654
655 /* Wake up the transmitter. */
656 /* XXX USE AUTOPOLLING? */
657 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
658
659 /* Set a watchdog timer in case the chip flakes out. */
660 ifp->if_timer = 5;
661 }
662 }
663
664 /*
665 * tlp_watchdog: [ifnet interface function]
666 *
667 * Watchdog timer handler.
668 */
669 void
670 tlp_watchdog(ifp)
671 struct ifnet *ifp;
672 {
673 struct tulip_softc *sc = ifp->if_softc;
674 int doing_setup, doing_transmit;
675
676 doing_setup = (sc->sc_flags & TULIPF_DOING_SETUP);
677 doing_transmit = (SIMPLEQ_FIRST(&sc->sc_txdirtyq) != NULL);
678
679 if (doing_setup && doing_transmit) {
680 printf("%s: filter setup and transmit timeout\n",
681 sc->sc_dev.dv_xname);
682 ifp->if_oerrors++;
683 } else if (doing_transmit) {
684 printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
685 ifp->if_oerrors++;
686 } else if (doing_setup)
687 printf("%s: filter setup timeout\n", sc->sc_dev.dv_xname);
688 else
689 printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
690
691 (void) tlp_init(sc);
692
693 /* Try to get more packets going. */
694 tlp_start(ifp);
695 }
696
697 /*
698 * tlp_ioctl: [ifnet interface function]
699 *
700 * Handle control requests from the operator.
701 */
702 int
703 tlp_ioctl(ifp, cmd, data)
704 struct ifnet *ifp;
705 u_long cmd;
706 caddr_t data;
707 {
708 struct tulip_softc *sc = ifp->if_softc;
709 struct ifreq *ifr = (struct ifreq *)data;
710 struct ifaddr *ifa = (struct ifaddr *)data;
711 int s, error = 0;
712
713 s = splnet();
714
715 switch (cmd) {
716 case SIOCSIFADDR:
717 ifp->if_flags |= IFF_UP;
718
719 switch (ifa->ifa_addr->sa_family) {
720 #ifdef INET
721 case AF_INET:
722 if ((error = tlp_init(sc)) != 0)
723 break;
724 arp_ifinit(ifp, ifa);
725 break;
726 #endif /* INET */
727 #ifdef NS
728 case AF_NS:
729 {
730 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
731
732 if (ns_nullhost(*ina))
733 ina->x_host = *(union ns_host *)
734 LLADDR(ifp->if_sadl);
735 else
736 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
737 ifp->if_addrlen);
738 /* Set new address. */
739 error = tlp_init(sc);
740 break;
741 }
742 #endif /* NS */
743 default:
744 error = tlp_init(sc);
745 break;
746 }
747 break;
748
749 case SIOCSIFMTU:
750 if (ifr->ifr_mtu > ETHERMTU)
751 error = EINVAL;
752 else
753 ifp->if_mtu = ifr->ifr_mtu;
754 break;
755
756 case SIOCSIFFLAGS:
757 if ((ifp->if_flags & IFF_UP) == 0 &&
758 (ifp->if_flags & IFF_RUNNING) != 0) {
759 /*
760 * If interface is marked down and it is running, then
761 * stop it.
762 */
763 tlp_stop(sc, 1);
764 } else if ((ifp->if_flags & IFF_UP) != 0 &&
765 (ifp->if_flags & IFF_RUNNING) == 0) {
766 /*
767 * If interfase it marked up and it is stopped, then
768 * start it.
769 */
770 error = tlp_init(sc);
771 } else if ((ifp->if_flags & IFF_UP) != 0) {
772 /*
773 * Reset the interface to pick up changes in any other
774 * flags that affect the hardware state.
775 */
776 error = tlp_init(sc);
777 }
778 break;
779
780 case SIOCADDMULTI:
781 case SIOCDELMULTI:
782 error = (cmd == SIOCADDMULTI) ?
783 ether_addmulti(ifr, &sc->sc_ethercom) :
784 ether_delmulti(ifr, &sc->sc_ethercom);
785
786 if (error == ENETRESET) {
787 /*
788 * Multicast list has changed. Set the filter
789 * accordingly.
790 */
791 (*sc->sc_filter_setup)(sc);
792 error = 0;
793 }
794 break;
795
796 case SIOCSIFMEDIA:
797 case SIOCGIFMEDIA:
798 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
799 break;
800
801 default:
802 error = EINVAL;
803 break;
804 }
805
806 /* Try to get more packets going. */
807 tlp_start(ifp);
808
809 splx(s);
810 return (error);
811 }
812
813 /*
814 * tlp_intr:
815 *
816 * Interrupt service routine.
817 */
818 int
819 tlp_intr(arg)
820 void *arg;
821 {
822 struct tulip_softc *sc = arg;
823 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
824 u_int32_t status, rxstatus, txstatus;
825 int handled = 0, txthresh;
826
827 DPRINTF(sc, ("%s: tlp_intr\n", sc->sc_dev.dv_xname));
828
829 for (;;) {
830 status = TULIP_READ(sc, CSR_STATUS);
831 if (status)
832 TULIP_WRITE(sc, CSR_STATUS, status);
833
834 if ((status & sc->sc_inten) == 0)
835 break;
836
837 handled = 1;
838
839 rxstatus = status & sc->sc_rxint_mask;
840 txstatus = status & sc->sc_txint_mask;
841
842 if (rxstatus) {
843 /* Grab new any new packets. */
844 tlp_rxintr(sc);
845
846 if (rxstatus & STATUS_RWT)
847 printf("%s: receive watchdog timeout\n",
848 sc->sc_dev.dv_xname);
849
850 if (rxstatus & STATUS_RU) {
851 printf("%s: receive ring overrun\n",
852 sc->sc_dev.dv_xname);
853 /* Get the receive process going again. */
854 tlp_idle(sc, OPMODE_SR);
855 TULIP_WRITE(sc, CSR_RXLIST,
856 TULIP_CDRXADDR(sc, sc->sc_rxptr));
857 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
858 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
859 break;
860 }
861 }
862
863 if (txstatus) {
864 /* Sweep up transmit descriptors. */
865 tlp_txintr(sc);
866
867 if (txstatus & STATUS_TJT)
868 printf("%s: transmit jabber timeout\n",
869 sc->sc_dev.dv_xname);
870
871 if (txstatus & STATUS_UNF) {
872 /*
873 * Increase our transmit threshold if
874 * another is available.
875 */
876 txthresh = sc->sc_txthresh + 1;
877 if (sc->sc_txth[txthresh].txth_name != NULL) {
878 /* Idle the transmit process. */
879 tlp_idle(sc, OPMODE_ST);
880
881 sc->sc_txthresh = txthresh;
882 sc->sc_opmode &= ~(OPMODE_TR|OPMODE_SF);
883 sc->sc_opmode |=
884 sc->sc_txth[txthresh].txth_opmode;
885 printf("%s: transmit underrun; new "
886 "threshold: %s\n",
887 sc->sc_dev.dv_xname,
888 sc->sc_txth[txthresh].txth_name);
889
890 /*
891 * Set the new threshold and restart
892 * the transmit process.
893 */
894 TULIP_WRITE(sc, CSR_OPMODE,
895 sc->sc_opmode);
896 }
897 /*
898 * XXX Log every Nth underrun from
899 * XXX now on?
900 */
901 }
902 }
903
904 if (status & (STATUS_TPS|STATUS_RPS)) {
905 if (status & STATUS_TPS)
906 printf("%s: transmit process stopped\n",
907 sc->sc_dev.dv_xname);
908 if (status & STATUS_RPS)
909 printf("%s: receive process stopped\n",
910 sc->sc_dev.dv_xname);
911 (void) tlp_init(sc);
912 break;
913 }
914
915 if (status & STATUS_SE) {
916 const char *str;
917 switch (status & STATUS_EB) {
918 case STATUS_EB_PARITY:
919 str = "parity error";
920 break;
921
922 case STATUS_EB_MABT:
923 str = "master abort";
924 break;
925
926 case STATUS_EB_TABT:
927 str = "target abort";
928 break;
929
930 default:
931 str = "unknown error";
932 break;
933 }
934 printf("%s: fatal system error: %s\n",
935 sc->sc_dev.dv_xname, str);
936 (void) tlp_init(sc);
937 break;
938 }
939
940 /*
941 * Not handled:
942 *
943 * Transmit buffer unavailable -- normal
944 * condition, nothing to do, really.
945 *
946 * General purpose timer experied -- we don't
947 * use the general purpose timer.
948 *
949 * Early receive interrupt -- not available on
950 * all chips, we just use RI. We also only
951 * use single-segment receive DMA, so this
952 * is mostly useless.
953 */
954 }
955
956 /* Try to get more packets going. */
957 tlp_start(ifp);
958
959 return (handled);
960 }
961
962 /*
963 * tlp_rxintr:
964 *
965 * Helper; handle receive interrupts.
966 */
967 void
968 tlp_rxintr(sc)
969 struct tulip_softc *sc;
970 {
971 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
972 struct ether_header *eh;
973 struct tulip_rxsoft *rxs;
974 struct mbuf *m;
975 u_int32_t rxstat;
976 int i, len;
977
978 for (i = sc->sc_rxptr;; i = TULIP_NEXTRX(i)) {
979 rxs = &sc->sc_rxsoft[i];
980
981 TULIP_CDRXSYNC(sc, i,
982 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
983
984 rxstat = sc->sc_rxdescs[i].td_status;
985
986 if (rxstat & TDSTAT_OWN) {
987 /*
988 * We have processed all of the receive buffers.
989 */
990 break;
991 }
992
993 /*
994 * Make sure the packet fit in one buffer. This should
995 * always be the case. But the Lite-On PNIC, rev 33
996 * has an awful receive engine bug, which may require
997 * a very icky work-around.
998 */
999 if ((rxstat & (TDSTAT_Rx_FS|TDSTAT_Rx_LS)) !=
1000 (TDSTAT_Rx_FS|TDSTAT_Rx_LS)) {
1001 printf("%s: incoming packet spilled, resetting\n",
1002 sc->sc_dev.dv_xname);
1003 (void) tlp_init(sc);
1004 return;
1005 }
1006
1007 /*
1008 * If any collisions were seen on the wire, count one.
1009 */
1010 if (rxstat & TDSTAT_Rx_CS)
1011 ifp->if_collisions++;
1012
1013 /*
1014 * If an error occured, update stats, clear the status
1015 * word, and leave the packet buffer in place. It will
1016 * simply be reused the next time the ring comes around.
1017 */
1018 if (rxstat & TDSTAT_ES) {
1019 #define PRINTERR(bit, str) \
1020 if (rxstat & (bit)) \
1021 printf("%s: receive error: %s\n", \
1022 sc->sc_dev.dv_xname, str)
1023 ifp->if_ierrors++;
1024 PRINTERR(TDSTAT_Rx_DE, "descriptor error");
1025 PRINTERR(TDSTAT_Rx_RF, "runt frame");
1026 PRINTERR(TDSTAT_Rx_TL, "frame too long");
1027 PRINTERR(TDSTAT_Rx_RE, "MII error");
1028 PRINTERR(TDSTAT_Rx_DB, "dribbling bit");
1029 PRINTERR(TDSTAT_Rx_CE, "CRC error");
1030 #undef PRINTERR
1031 TULIP_INIT_RXDESC(sc, i);
1032 continue;
1033 }
1034
1035 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1036 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1037
1038 /*
1039 * No errors; receive the packet. Note the Tulip
1040 * includes the CRC with every packet; trim it.
1041 */
1042 len = TDSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1043
1044 #ifdef __NO_STRICT_ALIGNMENT
1045 /*
1046 * Allocate a new mbuf cluster. If that fails, we are
1047 * out of memory, and must drop the packet and recycle
1048 * the buffer that's already attached to this descriptor.
1049 */
1050 m = rxs->rxs_mbuf;
1051 if (tlp_add_rxbuf(sc, i) != 0) {
1052 ifp->if_ierrors++;
1053 TULIP_INIT_RXDESC(sc, i);
1054 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1055 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1056 continue;
1057 }
1058 #else
1059 /*
1060 * The Tulip's receive buffers must be 4-byte aligned.
1061 * But this means that the data after the Ethernet header
1062 * is misaligned. We must allocate a new buffer and
1063 * copy the data, shifted forward 2 bytes.
1064 */
1065 MGETHDR(m, M_DONTWAIT, MT_DATA);
1066 if (m == NULL) {
1067 dropit:
1068 ifp->if_ierrors++;
1069 TULIP_INIT_RXDESC(sc, i);
1070 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1071 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1072 continue;
1073 }
1074 if (len > (MHLEN - 2)) {
1075 MCLGET(m, M_DONTWAIT);
1076 if ((m->m_flags & M_EXT) == 0) {
1077 m_freem(m);
1078 goto dropit;
1079 }
1080 }
1081 m->m_data += 2;
1082
1083 /*
1084 * Note that we use clusters for incoming frames, so the
1085 * buffer is virtually contiguous.
1086 */
1087 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1088
1089 /* Allow the receive descriptor to continue using its mbuf. */
1090 TULIP_INIT_RXDESC(sc, i);
1091 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1092 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1093 #endif /* __NO_STRICT_ALIGNMENT */
1094
1095 ifp->if_ipackets++;
1096 eh = mtod(m, struct ether_header *);
1097 m->m_pkthdr.rcvif = ifp;
1098 m->m_pkthdr.len = m->m_len = len;
1099
1100 #if NBPFILTER > 0
1101 /*
1102 * Pass this up to any BPF listeners, but only
1103 * pass it up the stack if its for us.
1104 */
1105 if (ifp->if_bpf)
1106 bpf_mtap(ifp->if_bpf, m);
1107 #endif /* NPBFILTER > 0 */
1108
1109 /*
1110 * This test is outside the NBPFILTER block because
1111 * on the 21140 we have to use Hash-Only mode due to
1112 * a bug in the filter logic.
1113 */
1114 if ((ifp->if_flags & IFF_PROMISC) != 0 ||
1115 sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) {
1116 if (memcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
1117 ETHER_ADDR_LEN) != 0 &&
1118 ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
1119 m_freem(m);
1120 continue;
1121 }
1122 }
1123
1124 /* Pass it on. */
1125 (*ifp->if_input)(ifp, m);
1126 }
1127
1128 /* Update the recieve pointer. */
1129 sc->sc_rxptr = i;
1130 }
1131
1132 /*
1133 * tlp_txintr:
1134 *
1135 * Helper; handle transmit interrupts.
1136 */
1137 void
1138 tlp_txintr(sc)
1139 struct tulip_softc *sc;
1140 {
1141 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1142 struct tulip_txsoft *txs;
1143 u_int32_t txstat;
1144
1145 DPRINTF(sc, ("%s: tlp_txintr: sc_flags 0x%08x\n",
1146 sc->sc_dev.dv_xname, sc->sc_flags));
1147
1148 ifp->if_flags &= ~IFF_OACTIVE;
1149
1150 /*
1151 * If we were doing a filter setup, check to see if it completed.
1152 */
1153 if (sc->sc_flags & TULIPF_DOING_SETUP) {
1154 TULIP_CDSDSYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1155 if ((sc->sc_setup_desc.td_status & TDSTAT_OWN) == 0)
1156 sc->sc_flags &= ~TULIPF_DOING_SETUP;
1157 }
1158
1159 /*
1160 * Go through our Tx list and free mbufs for those
1161 * frames that have been transmitted.
1162 */
1163 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1164 TULIP_CDTXSYNC(sc, txs->txs_firstdesc,
1165 txs->txs_dmamap->dm_nsegs,
1166 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1167
1168 #ifdef TLP_DEBUG
1169 if (ifp->if_flags & IFF_DEBUG) {
1170 int i;
1171 printf(" txsoft %p trainsmit chain:\n", txs);
1172 for (i = txs->txs_firstdesc;; i = TULIP_NEXTTX(i)) {
1173 printf(" descriptor %d:\n", i);
1174 printf(" td_status: 0x%08x\n",
1175 sc->sc_txdescs[i].td_status);
1176 printf(" td_ctl: 0x%08x\n",
1177 sc->sc_txdescs[i].td_ctl);
1178 printf(" td_bufaddr1: 0x%08x\n",
1179 sc->sc_txdescs[i].td_bufaddr1);
1180 printf(" td_bufaddr2: 0x%08x\n",
1181 sc->sc_txdescs[i].td_bufaddr2);
1182 if (i == txs->txs_lastdesc)
1183 break;
1184 }
1185 }
1186 #endif
1187
1188 txstat = sc->sc_txdescs[txs->txs_firstdesc].td_status;
1189 if (txstat & TDSTAT_OWN)
1190 break;
1191
1192 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1193
1194 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1195
1196 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1197 0, txs->txs_dmamap->dm_mapsize,
1198 BUS_DMASYNC_POSTWRITE);
1199 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1200 m_freem(txs->txs_mbuf);
1201 txs->txs_mbuf = NULL;
1202
1203 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1204
1205 /*
1206 * Check for errors and collisions.
1207 */
1208 if (txstat & TDSTAT_ES) {
1209 ifp->if_oerrors++;
1210 if (txstat & TDSTAT_Tx_EC)
1211 ifp->if_collisions += 16;
1212 if (txstat & TDSTAT_Tx_LC)
1213 ifp->if_collisions++;
1214 } else {
1215 /* Packet was transmitted successfully. */
1216 ifp->if_opackets++;
1217 ifp->if_collisions += TDSTAT_Tx_COLLISIONS(txstat);
1218 }
1219 }
1220
1221 /*
1222 * If there are no more pending transmissions, cancel the watchdog
1223 * timer.
1224 */
1225 if (txs == NULL && (sc->sc_flags & TULIPF_DOING_SETUP) == 0)
1226 ifp->if_timer = 0;
1227
1228 /*
1229 * If we have a receive filter setup pending, do it now.
1230 */
1231 if (sc->sc_flags & TULIPF_WANT_SETUP)
1232 (*sc->sc_filter_setup)(sc);
1233 }
1234
1235 /*
1236 * tlp_reset:
1237 *
1238 * Perform a soft reset on the Tulip.
1239 */
1240 void
1241 tlp_reset(sc)
1242 struct tulip_softc *sc;
1243 {
1244 int i;
1245
1246 TULIP_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1247
1248 for (i = 0; i < 1000; i++) {
1249 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1250 break;
1251 delay(10);
1252 }
1253
1254 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1255 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1256
1257 delay(1000);
1258 }
1259
1260 /*
1261 * tlp_init:
1262 *
1263 * Initialize the interface. Must be called at splnet().
1264 */
1265 int
1266 tlp_init(sc)
1267 struct tulip_softc *sc;
1268 {
1269 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1270 struct tulip_txsoft *txs;
1271 struct tulip_rxsoft *rxs;
1272 int i, error = 0;
1273
1274 /*
1275 * Cancel any pending I/O.
1276 */
1277 tlp_stop(sc, 0);
1278
1279 /*
1280 * Reset the Tulip to a known state.
1281 */
1282 tlp_reset(sc);
1283
1284 /*
1285 * Initialize the BUSMODE register.
1286 *
1287 * XXX What about read-multiple/read-line/write-line on
1288 * XXX the 21140 and up?
1289 */
1290 sc->sc_busmode = BUSMODE_BAR | BUSMODE_PBL_DEFAULT;
1291 switch (sc->sc_cacheline) {
1292 default:
1293 /*
1294 * Note: We must *always* set these bits; a cache
1295 * alignment of 0 is RESERVED.
1296 */
1297 case 8:
1298 sc->sc_busmode |= BUSMODE_CAL_8LW;
1299 break;
1300 case 16:
1301 sc->sc_busmode |= BUSMODE_CAL_16LW;
1302 break;
1303 case 32:
1304 sc->sc_busmode |= BUSMODE_CAL_32LW;
1305 break;
1306 }
1307 switch (sc->sc_chip) {
1308 case TULIP_CHIP_82C168:
1309 case TULIP_CHIP_82C169:
1310 sc->sc_busmode |= BUSMODE_PNIC_MBO;
1311 break;
1312 default:
1313 /* Nothing. */
1314 break;
1315 }
1316 #if BYTE_ORDER == BIG_ENDIAN
1317 /*
1318 * XXX There are reports that this doesn't work properly
1319 * in the old Tulip driver, but BUSMODE_DBO does. However,
1320 * BUSMODE_DBO is not available on the 21040, and requires
1321 * us to byte-swap the setup packet. What to do?
1322 */
1323 sc->sc_busmode |= BUSMODE_BLE;
1324 #endif
1325 TULIP_WRITE(sc, CSR_BUSMODE, sc->sc_busmode);
1326
1327 /*
1328 * Initialize the OPMODE register. We don't write it until
1329 * we're ready to begin the transmit and receive processes.
1330 *
1331 * Media-related OPMODE bits are set in the media callbacks
1332 * for each specific chip/board.
1333 */
1334 sc->sc_opmode = OPMODE_SR | OPMODE_ST |
1335 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1336 switch (sc->sc_chip) {
1337 case TULIP_CHIP_21140:
1338 case TULIP_CHIP_21140A:
1339 case TULIP_CHIP_21142:
1340 case TULIP_CHIP_21143:
1341 sc->sc_opmode |= OPMODE_MBO;
1342 break;
1343
1344 default:
1345 /* Nothing. */
1346 }
1347
1348 if (sc->sc_flags & TULIPF_HAS_MII) {
1349 switch (sc->sc_chip) {
1350 case TULIP_CHIP_82C168:
1351 case TULIP_CHIP_82C169:
1352 /* Enable the MII port. */
1353 sc->sc_opmode |= OPMODE_PS;
1354
1355 TULIP_WRITE(sc, CSR_PNIC_ENDEC, PNIC_ENDEC_JDIS);
1356 break;
1357
1358 case TULIP_CHIP_WB89C840F:
1359 /* Nothing. */
1360 break;
1361
1362 default:
1363 /* Enable the MII port. */
1364 sc->sc_opmode |= OPMODE_PS;
1365 break;
1366 }
1367 } else {
1368 switch (sc->sc_chip) {
1369 case TULIP_CHIP_82C168:
1370 case TULIP_CHIP_82C169:
1371 sc->sc_opmode |= OPMODE_PNIC_TBEN;
1372 break;
1373
1374 default:
1375 /* Nothing. */
1376 }
1377 }
1378
1379 /*
1380 * Magical mystery initialization on the Macronix chips.
1381 * The MX98713 uses its own magic value, the rest share
1382 * a common one.
1383 */
1384 switch (sc->sc_chip) {
1385 case TULIP_CHIP_MX98713:
1386 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98713);
1387 break;
1388
1389 case TULIP_CHIP_MX98713A:
1390 case TULIP_CHIP_MX98715:
1391 case TULIP_CHIP_MX98725:
1392 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98715);
1393 break;
1394
1395 default:
1396 /* Nothing. */
1397 }
1398
1399 /*
1400 * Initialize the transmit descriptor ring.
1401 */
1402 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1403 for (i = 0; i < TULIP_NTXDESC; i++) {
1404 sc->sc_txdescs[i].td_ctl = TDCTL_CH;
1405 sc->sc_txdescs[i].td_bufaddr2 =
1406 TULIP_CDTXADDR(sc, TULIP_NEXTTX(i));
1407 }
1408 TULIP_CDTXSYNC(sc, 0, TULIP_NTXDESC,
1409 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1410 sc->sc_txfree = TULIP_NTXDESC;
1411 sc->sc_txnext = 0;
1412
1413 /*
1414 * Initialize the transmit job descriptors.
1415 */
1416 SIMPLEQ_INIT(&sc->sc_txfreeq);
1417 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1418 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
1419 txs = &sc->sc_txsoft[i];
1420 txs->txs_mbuf = NULL;
1421 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1422 }
1423
1424 /*
1425 * Initialize the receive descriptor and receive job
1426 * descriptor rings.
1427 */
1428 for (i = 0; i < TULIP_NRXDESC; i++) {
1429 rxs = &sc->sc_rxsoft[i];
1430 if (rxs->rxs_mbuf == NULL) {
1431 if ((error = tlp_add_rxbuf(sc, i)) != 0) {
1432 printf("%s: unable to allocate or map rx "
1433 "buffer %d, error = %d\n",
1434 sc->sc_dev.dv_xname, i, error);
1435 /*
1436 * XXX Should attempt to run with fewer receive
1437 * XXX buffers instead of just failing.
1438 */
1439 tlp_rxdrain(sc);
1440 goto out;
1441 }
1442 }
1443 }
1444 sc->sc_rxptr = 0;
1445
1446 /*
1447 * Initialize the interrupt mask and enable interrupts.
1448 */
1449 /* normal interrupts */
1450 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1451
1452 /* abnormal interrupts */
1453 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1454 STATUS_RU | STATUS_RPS | STATUS_RWT | STATUS_SE | STATUS_AIS;
1455
1456 sc->sc_rxint_mask = STATUS_RI|STATUS_RU|STATUS_RWT;
1457 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1458
1459 switch (sc->sc_chip) {
1460 case TULIP_CHIP_WB89C840F:
1461 /*
1462 * Clear bits that we don't want that happen to
1463 * overlap or don't exist.
1464 */
1465 sc->sc_inten &= ~(STATUS_WINB_REI|STATUS_RWT);
1466 break;
1467
1468 default:
1469 /* Nothing. */
1470 }
1471
1472 sc->sc_rxint_mask &= sc->sc_inten;
1473 sc->sc_txint_mask &= sc->sc_inten;
1474
1475 TULIP_WRITE(sc, CSR_INTEN, sc->sc_inten);
1476 TULIP_WRITE(sc, CSR_STATUS, 0xffffffff);
1477
1478 /*
1479 * Give the transmit and receive rings to the Tulip.
1480 */
1481 TULIP_WRITE(sc, CSR_TXLIST, TULIP_CDTXADDR(sc, sc->sc_txnext));
1482 TULIP_WRITE(sc, CSR_RXLIST, TULIP_CDRXADDR(sc, sc->sc_rxptr));
1483
1484 /*
1485 * On chips that do this differently, set the station address.
1486 */
1487 switch (sc->sc_chip) {
1488 case TULIP_CHIP_WB89C840F:
1489 {
1490 /* XXX Do this with stream writes? */
1491 bus_addr_t cpa = TULIP_CSR_OFFSET(sc, CSR_WINB_CPA0);
1492
1493 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1494 bus_space_write_1(sc->sc_st, sc->sc_sh,
1495 cpa + i, LLADDR(ifp->if_sadl)[i]);
1496 }
1497 break;
1498 }
1499
1500 default:
1501 /* Nothing. */
1502 }
1503
1504 /*
1505 * Set the receive filter. This will start the transmit and
1506 * receive processes.
1507 */
1508 (*sc->sc_filter_setup)(sc);
1509
1510 /*
1511 * Start the receive process.
1512 */
1513 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1514
1515 if (sc->sc_tick != NULL) {
1516 /* Start the one second clock. */
1517 timeout(sc->sc_tick, sc, hz);
1518 }
1519
1520 /*
1521 * Note that the interface is now running.
1522 */
1523 ifp->if_flags |= IFF_RUNNING;
1524 ifp->if_flags &= ~IFF_OACTIVE;
1525
1526 /*
1527 * Set the media. We must do this after the transmit process is
1528 * running, since we may actually have to transmit packets on
1529 * our board to test link integrity.
1530 */
1531 (void) (*sc->sc_mediasw->tmsw_set)(sc);
1532
1533 out:
1534 if (error)
1535 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1536 return (error);
1537 }
1538
1539 /*
1540 * tlp_rxdrain:
1541 *
1542 * Drain the receive queue.
1543 */
1544 void
1545 tlp_rxdrain(sc)
1546 struct tulip_softc *sc;
1547 {
1548 struct tulip_rxsoft *rxs;
1549 int i;
1550
1551 for (i = 0; i < TULIP_NRXDESC; i++) {
1552 rxs = &sc->sc_rxsoft[i];
1553 if (rxs->rxs_mbuf != NULL) {
1554 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1555 m_freem(rxs->rxs_mbuf);
1556 rxs->rxs_mbuf = NULL;
1557 }
1558 }
1559 }
1560
1561 /*
1562 * tlp_stop:
1563 *
1564 * Stop transmission on the interface.
1565 */
1566 void
1567 tlp_stop(sc, drain)
1568 struct tulip_softc *sc;
1569 int drain;
1570 {
1571 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1572 struct tulip_txsoft *txs;
1573
1574 if (sc->sc_tick != NULL) {
1575 /* Stop the one second clock. */
1576 untimeout(sc->sc_tick, sc);
1577 }
1578
1579 /* Disable interrupts. */
1580 TULIP_WRITE(sc, CSR_INTEN, 0);
1581
1582 /* Stop the transmit and receive processes. */
1583 TULIP_WRITE(sc, CSR_OPMODE, 0);
1584 TULIP_WRITE(sc, CSR_RXLIST, 0);
1585 TULIP_WRITE(sc, CSR_TXLIST, 0);
1586
1587 /*
1588 * Release any queued transmit buffers.
1589 */
1590 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1591 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1592 if (txs->txs_mbuf != NULL) {
1593 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1594 m_freem(txs->txs_mbuf);
1595 txs->txs_mbuf = NULL;
1596 }
1597 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1598 }
1599
1600 if (drain) {
1601 /*
1602 * Release the receive buffers.
1603 */
1604 tlp_rxdrain(sc);
1605 }
1606
1607 sc->sc_flags &= ~(TULIPF_WANT_SETUP|TULIPF_DOING_SETUP);
1608
1609 /*
1610 * Mark the interface down and cancel the watchdog timer.
1611 */
1612 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1613 ifp->if_timer = 0;
1614 }
1615
1616 #define SROM_EMIT(sc, x) \
1617 do { \
1618 TULIP_WRITE((sc), CSR_MIIROM, (x)); \
1619 delay(1); \
1620 } while (0)
1621
1622 /*
1623 * tlp_srom_idle:
1624 *
1625 * Put the SROM in idle state.
1626 */
1627 void
1628 tlp_srom_idle(sc)
1629 struct tulip_softc *sc;
1630 {
1631 u_int32_t miirom;
1632 int i;
1633
1634 miirom = MIIROM_SR;
1635 SROM_EMIT(sc, miirom);
1636
1637 miirom |= MIIROM_RD;
1638 SROM_EMIT(sc, miirom);
1639
1640 miirom |= MIIROM_SROMCS;
1641 SROM_EMIT(sc, miirom);
1642
1643 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1644
1645 /* Strobe the clock 25 times. */
1646 for (i = 0; i < 25; i++) {
1647 SROM_EMIT(sc, miirom);
1648 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1649 }
1650
1651 SROM_EMIT(sc, miirom);
1652
1653 miirom &= ~MIIROM_SROMCS;
1654 SROM_EMIT(sc, miirom);
1655
1656 SROM_EMIT(sc, 0);
1657 }
1658
1659 /*
1660 * tlp_read_srom:
1661 *
1662 * Read the Tulip SROM.
1663 */
1664 void
1665 tlp_read_srom(sc, word, wordcnt, data)
1666 struct tulip_softc *sc;
1667 int word, wordcnt;
1668 u_int16_t *data;
1669 {
1670 u_int32_t miirom;
1671 int i, x;
1672
1673 tlp_srom_idle(sc);
1674
1675 /* Select the SROM. */
1676 miirom = MIIROM_SR;
1677 SROM_EMIT(sc, miirom);
1678
1679 miirom |= MIIROM_RD;
1680 SROM_EMIT(sc, miirom);
1681
1682 for (i = 0; i < wordcnt; i++) {
1683 /* Send CHIP SELECT for one clock tick. */
1684 miirom |= MIIROM_SROMCS;
1685 SROM_EMIT(sc, miirom);
1686
1687 /* Shift in the READ opcode. */
1688 for (x = 3; x > 0; x--) {
1689 if (TULIP_SROM_OPC_READ & (1 << (x - 1)))
1690 miirom |= MIIROM_SROMDI;
1691 else
1692 miirom &= ~MIIROM_SROMDI;
1693 SROM_EMIT(sc, miirom);
1694 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1695 SROM_EMIT(sc, miirom);
1696 }
1697
1698 /* Shift in address. */
1699 for (x = 6; x > 0; x--) {
1700 if ((word + i) & (1 << (x - 1)))
1701 miirom |= MIIROM_SROMDI;
1702 else
1703 miirom &= ~MIIROM_SROMDI;
1704 SROM_EMIT(sc, miirom);
1705 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1706 SROM_EMIT(sc, miirom);
1707 }
1708
1709 /* Shift out data. */
1710 miirom &= ~MIIROM_SROMDI;
1711 data[i] = 0;
1712 for (x = 16; x > 0; x--) {
1713 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1714 if (TULIP_ISSET(sc, CSR_MIIROM, MIIROM_SROMDO))
1715 data[i] |= (1 << (x - 1));
1716 SROM_EMIT(sc, miirom);
1717 }
1718
1719 /* Clear CHIP SELECT. */
1720 miirom &= ~MIIROM_SROMCS;
1721 SROM_EMIT(sc, miirom);
1722 }
1723
1724 /* Deselect the SROM. */
1725 SROM_EMIT(sc, 0);
1726
1727 /* ...and idle it. */
1728 tlp_srom_idle(sc);
1729 }
1730
1731 #undef SROM_EMIT
1732
1733 /*
1734 * tlp_add_rxbuf:
1735 *
1736 * Add a receive buffer to the indicated descriptor.
1737 */
1738 int
1739 tlp_add_rxbuf(sc, idx)
1740 struct tulip_softc *sc;
1741 int idx;
1742 {
1743 struct tulip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1744 struct mbuf *m;
1745 int error;
1746
1747 MGETHDR(m, M_DONTWAIT, MT_DATA);
1748 if (m == NULL)
1749 return (ENOBUFS);
1750
1751 MCLGET(m, M_DONTWAIT);
1752 if ((m->m_flags & M_EXT) == 0) {
1753 m_freem(m);
1754 return (ENOBUFS);
1755 }
1756
1757 if (rxs->rxs_mbuf != NULL)
1758 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1759
1760 rxs->rxs_mbuf = m;
1761
1762 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1763 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1764 if (error) {
1765 printf("%s: can't load rx DMA map %d, error = %d\n",
1766 sc->sc_dev.dv_xname, idx, error);
1767 panic("tlp_add_rxbuf"); /* XXX */
1768 }
1769
1770 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1771 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1772
1773 TULIP_INIT_RXDESC(sc, idx);
1774
1775 return (0);
1776 }
1777
1778 /*
1779 * tlp_crc32:
1780 *
1781 * Compute the 32-bit CRC of the provided buffer.
1782 */
1783 u_int32_t
1784 tlp_crc32(buf, len)
1785 const u_int8_t *buf;
1786 size_t len;
1787 {
1788 static const u_int32_t crctab[] = {
1789 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1790 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1791 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1792 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1793 };
1794 u_int32_t crc;
1795 int i;
1796
1797 crc = 0xffffffff;
1798 for (i = 0; i < len; i++) {
1799 crc ^= buf[i];
1800 crc = (crc >> 4) ^ crctab[crc & 0xf];
1801 crc = (crc >> 4) ^ crctab[crc & 0xf];
1802 }
1803 return (crc);
1804 }
1805
1806 /*
1807 * tlp_srom_crcok:
1808 *
1809 * Check the CRC of the Tulip SROM.
1810 */
1811 int
1812 tlp_srom_crcok(romdata)
1813 u_int8_t *romdata;
1814 {
1815 u_int32_t crc;
1816
1817 crc = tlp_crc32(romdata, TULIP_ROM_CRC32_CHECKSUM);
1818 crc = (crc & 0xffff) ^ 0xffff;
1819 if (crc == TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM))
1820 return (1);
1821 return (0);
1822 }
1823
1824 /*
1825 * tlp_parse_old_srom:
1826 *
1827 * Parse old-format SROMs.
1828 *
1829 * This routine is largely lifted from Matt Thomas's `de' driver.
1830 */
1831 int
1832 tlp_parse_old_srom(sc, enaddr)
1833 struct tulip_softc *sc;
1834 u_int8_t *enaddr;
1835 {
1836 static const u_int8_t testpat[] =
1837 { 0xff, 0, 0x55, 0xaa, 0xff, 0, 0x55, 0xaa };
1838 int i;
1839 u_int32_t cksum;
1840
1841 if (memcmp(&sc->sc_srom[0], &sc->sc_srom[16], 8) != 0) {
1842 /*
1843 * Some vendors (e.g. ZNYX) don't use the standard
1844 * DEC Address ROM format, but rather just have an
1845 * Ethernet address in the first 6 bytes, maybe a
1846 * 2 byte checksum, and then all 0xff's.
1847 */
1848 for (i = 8; i < 32; i++) {
1849 if (sc->sc_srom[i] != 0xff)
1850 return (0);
1851 }
1852
1853 /*
1854 * Sanity check the Ethernet address:
1855 *
1856 * - Make sure it's not multicast or locally
1857 * assigned
1858 * - Make sure it has a non-0 OUI
1859 */
1860 if (sc->sc_srom[0] & 3)
1861 return (0);
1862 if (sc->sc_srom[0] == 0 && sc->sc_srom[1] == 0 &&
1863 sc->sc_srom[2] == 0)
1864 return (0);
1865
1866 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN);
1867 return (1);
1868 }
1869
1870 /*
1871 * Standard DEC Address ROM test.
1872 */
1873
1874 if (memcmp(&sc->sc_srom[24], testpat, 8) != 0)
1875 return (0);
1876
1877 for (i = 0; i < 8; i++) {
1878 if (sc->sc_srom[i] != sc->sc_srom[15 - i])
1879 return (0);
1880 }
1881
1882 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN);
1883
1884 cksum = *(u_int16_t *) &enaddr[0];
1885
1886 cksum <<= 1;
1887 if (cksum > 0xffff)
1888 cksum -= 0xffff;
1889
1890 cksum += *(u_int16_t *) &enaddr[2];
1891 if (cksum > 0xffff)
1892 cksum -= 0xffff;
1893
1894 cksum <<= 1;
1895 if (cksum > 0xffff)
1896 cksum -= 0xffff;
1897
1898 cksum += *(u_int16_t *) &enaddr[4];
1899 if (cksum >= 0xffff)
1900 cksum -= 0xffff;
1901
1902 if (cksum != *(u_int16_t *) &sc->sc_srom[6])
1903 return (0);
1904
1905 return (1);
1906 }
1907
1908 /*
1909 * tlp_filter_setup:
1910 *
1911 * Set the Tulip's receive filter.
1912 */
1913 void
1914 tlp_filter_setup(sc)
1915 struct tulip_softc *sc;
1916 {
1917 struct ethercom *ec = &sc->sc_ethercom;
1918 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1919 struct ether_multi *enm;
1920 struct ether_multistep step;
1921 __volatile u_int32_t *sp;
1922 u_int8_t enaddr[ETHER_ADDR_LEN];
1923 u_int32_t hash;
1924 int cnt;
1925
1926 DPRINTF(sc, ("%s: tlp_filter_setup: sc_flags 0x%08x\n",
1927 sc->sc_dev.dv_xname, sc->sc_flags));
1928
1929 memcpy(enaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1930
1931 /*
1932 * If there are transmissions pending, wait until they have
1933 * completed.
1934 */
1935 if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) != NULL ||
1936 (sc->sc_flags & TULIPF_DOING_SETUP) != 0) {
1937 sc->sc_flags |= TULIPF_WANT_SETUP;
1938 DPRINTF(sc, ("%s: tlp_filter_setup: deferring\n",
1939 sc->sc_dev.dv_xname));
1940 return;
1941 }
1942 sc->sc_flags &= ~TULIPF_WANT_SETUP;
1943
1944 /*
1945 * If we're running, idle the transmit and receive engines. If
1946 * we're NOT running, we're being called from tlp_init(), and our
1947 * writing OPMODE will start the transmit and receive processes
1948 * in motion.
1949 */
1950 if (ifp->if_flags & IFF_RUNNING)
1951 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
1952
1953 sc->sc_opmode &= ~(OPMODE_PR|OPMODE_PM);
1954
1955 if (ifp->if_flags & IFF_PROMISC) {
1956 sc->sc_opmode |= OPMODE_PR;
1957 goto allmulti;
1958 }
1959
1960 /*
1961 * Try Perfect filtering first.
1962 */
1963
1964 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT;
1965 sp = TULIP_CDSP(sc);
1966 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
1967 cnt = 0;
1968 ETHER_FIRST_MULTI(step, ec, enm);
1969 while (enm != NULL) {
1970 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1971 /*
1972 * We must listen to a range of multicast addresses.
1973 * For now, just accept all multicasts, rather than
1974 * trying to set only those filter bits needed to match
1975 * the range. (At this time, the only use of address
1976 * ranges is for IP multicast routing, for which the
1977 * range is big enough to require all bits set.)
1978 */
1979 goto allmulti;
1980 }
1981 if (cnt == (TULIP_MAXADDRS - 2)) {
1982 /*
1983 * We already have our multicast limit (still need
1984 * our station address and broadcast). Go to
1985 * Hash-Perfect mode.
1986 */
1987 goto hashperfect;
1988 }
1989 *sp++ = ((u_int16_t *) enm->enm_addrlo)[0];
1990 *sp++ = ((u_int16_t *) enm->enm_addrlo)[1];
1991 *sp++ = ((u_int16_t *) enm->enm_addrlo)[2];
1992 ETHER_NEXT_MULTI(step, enm);
1993 }
1994
1995 if (ifp->if_flags & IFF_BROADCAST) {
1996 /* ...and the broadcast address. */
1997 cnt++;
1998 *sp++ = 0xffff;
1999 *sp++ = 0xffff;
2000 *sp++ = 0xffff;
2001 }
2002
2003 /* Pad the rest with our station address. */
2004 for (; cnt < TULIP_MAXADDRS; cnt++) {
2005 *sp++ = ((u_int16_t *) enaddr)[0];
2006 *sp++ = ((u_int16_t *) enaddr)[1];
2007 *sp++ = ((u_int16_t *) enaddr)[2];
2008 }
2009 ifp->if_flags &= ~IFF_ALLMULTI;
2010 goto setit;
2011
2012 hashperfect:
2013 /*
2014 * Try Hash-Perfect mode.
2015 */
2016
2017 /*
2018 * Some 21140 chips have broken Hash-Perfect modes. On these
2019 * chips, we simply use Hash-Only mode, and put our station
2020 * address into the filter.
2021 */
2022 if (sc->sc_chip == TULIP_CHIP_21140)
2023 sc->sc_filtmode = TDCTL_Tx_FT_HASHONLY;
2024 else
2025 sc->sc_filtmode = TDCTL_Tx_FT_HASH;
2026 sp = TULIP_CDSP(sc);
2027 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
2028 ETHER_FIRST_MULTI(step, ec, enm);
2029 while (enm != NULL) {
2030 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2031 /*
2032 * We must listen to a range of multicast addresses.
2033 * For now, just accept all multicasts, rather than
2034 * trying to set only those filter bits needed to match
2035 * the range. (At this time, the only use of address
2036 * ranges is for IP multicast routing, for which the
2037 * range is big enough to require all bits set.)
2038 */
2039 goto allmulti;
2040 }
2041 hash = tlp_mchash(enm->enm_addrlo);
2042 sp[hash >> 4] |= 1 << (hash & 0xf);
2043 ETHER_NEXT_MULTI(step, enm);
2044 }
2045
2046 if (ifp->if_flags & IFF_BROADCAST) {
2047 /* ...and the broadcast address. */
2048 hash = tlp_mchash(etherbroadcastaddr);
2049 sp[hash >> 4] |= 1 << (hash & 0xf);
2050 }
2051
2052 if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) {
2053 /* ...and our station address. */
2054 hash = tlp_mchash(enaddr);
2055 sp[hash >> 4] |= 1 << (hash & 0xf);
2056 } else {
2057 /*
2058 * Hash-Perfect mode; put our station address after
2059 * the hash table.
2060 */
2061 sp[39] = ((u_int16_t *) enaddr)[0];
2062 sp[40] = ((u_int16_t *) enaddr)[1];
2063 sp[41] = ((u_int16_t *) enaddr)[2];
2064 }
2065 ifp->if_flags &= ~IFF_ALLMULTI;
2066 goto setit;
2067
2068 allmulti:
2069 /*
2070 * Use Perfect filter mode. First address is the broadcast address,
2071 * and pad the rest with our station address. We'll set Pass-all-
2072 * multicast in OPMODE below.
2073 */
2074 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT;
2075 sp = TULIP_CDSP(sc);
2076 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
2077 cnt = 0;
2078 if (ifp->if_flags & IFF_BROADCAST) {
2079 cnt++;
2080 *sp++ = 0xffff;
2081 *sp++ = 0xffff;
2082 *sp++ = 0xffff;
2083 }
2084 for (; cnt < TULIP_MAXADDRS; cnt++) {
2085 *sp++ = ((u_int16_t *) enaddr)[0];
2086 *sp++ = ((u_int16_t *) enaddr)[1];
2087 *sp++ = ((u_int16_t *) enaddr)[2];
2088 }
2089 ifp->if_flags |= IFF_ALLMULTI;
2090
2091 setit:
2092 if (ifp->if_flags & IFF_ALLMULTI)
2093 sc->sc_opmode |= OPMODE_PM;
2094
2095 /* Sync the setup packet buffer. */
2096 TULIP_CDSPSYNC(sc, BUS_DMASYNC_PREWRITE);
2097
2098 /*
2099 * Fill in the setup packet descriptor.
2100 */
2101 sc->sc_setup_desc.td_bufaddr1 = TULIP_CDSPADDR(sc);
2102 sc->sc_setup_desc.td_bufaddr2 = TULIP_CDTXADDR(sc, sc->sc_txnext);
2103 sc->sc_setup_desc.td_ctl =
2104 (TULIP_SETUP_PACKET_LEN << TDCTL_SIZE1_SHIFT) |
2105 sc->sc_filtmode | TDCTL_Tx_SET | TDCTL_Tx_FS | TDCTL_Tx_LS |
2106 TDCTL_Tx_IC | TDCTL_CH;
2107 sc->sc_setup_desc.td_status = TDSTAT_OWN;
2108 TULIP_CDSDSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2109
2110 /*
2111 * Write the address of the setup descriptor. This also has
2112 * the side effect of giving the transmit ring to the chip,
2113 * since the setup descriptor points to the next available
2114 * descriptor in the ring.
2115 */
2116 TULIP_WRITE(sc, CSR_TXLIST, TULIP_CDSDADDR(sc));
2117
2118 /*
2119 * Set the OPMODE register. This will also resume the
2120 * transmit transmit process we idled above.
2121 */
2122 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2123
2124 sc->sc_flags |= TULIPF_DOING_SETUP;
2125
2126 /*
2127 * Kick the transmitter; this will cause the Tulip to
2128 * read the setup descriptor.
2129 */
2130 /* XXX USE AUTOPOLLING? */
2131 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
2132
2133 /* Set up a watchdog timer in case the chip flakes out. */
2134 ifp->if_timer = 5;
2135
2136 DPRINTF(sc, ("%s: tlp_filter_setup: returning\n", sc->sc_dev.dv_xname));
2137 }
2138
2139 /*
2140 * tlp_winb_filter_setup:
2141 *
2142 * Set the Winbond 89C840F's receive filter.
2143 */
2144 void
2145 tlp_winb_filter_setup(sc)
2146 struct tulip_softc *sc;
2147 {
2148 struct ethercom *ec = &sc->sc_ethercom;
2149 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2150 struct ether_multi *enm;
2151 struct ether_multistep step;
2152 u_int32_t hash, mchash[2];
2153
2154 DPRINTF(sc, ("%s: tlp_winb_filter_setup: sc_flags 0x%08x\n",
2155 sc->sc_dev.dv_xname, sc->sc_flags));
2156
2157 sc->sc_opmode &= ~(OPMODE_WINB_APP|OPMODE_WINB_AMP|OPMODE_WINB_ABP);
2158
2159 if (ifp->if_flags & IFF_MULTICAST)
2160 sc->sc_opmode |= OPMODE_WINB_AMP;
2161
2162 if (ifp->if_flags & IFF_BROADCAST)
2163 sc->sc_opmode |= OPMODE_WINB_ABP;
2164
2165 if (ifp->if_flags & IFF_PROMISC) {
2166 sc->sc_opmode |= OPMODE_WINB_APP;
2167 goto allmulti;
2168 }
2169
2170 mchash[0] = mchash[1] = 0;
2171
2172 ETHER_FIRST_MULTI(step, ec, enm);
2173 while (enm != NULL) {
2174 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2175 /*
2176 * We must listen to a range of multicast addresses.
2177 * For now, just accept all multicasts, rather than
2178 * trying to set only those filter bits needed to match
2179 * the range. (At this time, the only use of address
2180 * ranges is for IP multicast routing, for which the
2181 * range is big enough to require all bits set.)
2182 */
2183 goto allmulti;
2184 }
2185
2186 /*
2187 * According to the FreeBSD `wb' driver, yes, you
2188 * really do invert the hash.
2189 */
2190 hash = (~(tlp_crc32(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26))
2191 & 0x3f;
2192 mchash[hash >> 5] |= 1 << (hash & 0x1f);
2193 ETHER_NEXT_MULTI(step, enm);
2194 }
2195 ifp->if_flags &= ~IFF_ALLMULTI;
2196 goto setit;
2197
2198 allmulti:
2199 ifp->if_flags |= IFF_ALLMULTI;
2200 mchash[0] = mchash[1] = 0xffffffff;
2201
2202 setit:
2203 TULIP_WRITE(sc, CSR_WINB_CMA0, mchash[0]);
2204 TULIP_WRITE(sc, CSR_WINB_CMA1, mchash[1]);
2205 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2206 DPRINTF(sc, ("%s: tlp_winb_filter_setup: returning\n",
2207 sc->sc_dev.dv_xname));
2208 }
2209
2210 /*
2211 * tlp_idle:
2212 *
2213 * Cause the transmit and/or receive processes to go idle.
2214 */
2215 void
2216 tlp_idle(sc, bits)
2217 struct tulip_softc *sc;
2218 u_int32_t bits;
2219 {
2220 static const char *tx_state_names[] = {
2221 "STOPPED",
2222 "RUNNING - FETCH",
2223 "RUNNING - WAIT",
2224 "RUNNING - READING",
2225 "-- RESERVED --",
2226 "RUNNING - SETUP",
2227 "SUSPENDED",
2228 "RUNNING - CLOSE",
2229 };
2230 static const char *rx_state_names[] = {
2231 "STOPPED",
2232 "RUNNING - FETCH",
2233 "RUNNING - CHECK",
2234 "RUNNING - WAIT",
2235 "SUSPENDED",
2236 "RUNNING - CLOSE",
2237 "RUNNING - FLUSH",
2238 "RUNNING - QUEUE",
2239 };
2240 u_int32_t csr, ackmask = 0;
2241 int i;
2242
2243 if (bits & OPMODE_ST)
2244 ackmask |= STATUS_TPS;
2245
2246 if (bits & OPMODE_SR)
2247 ackmask |= STATUS_RPS;
2248
2249 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode & ~bits);
2250
2251 for (i = 0; i < 1000; i++) {
2252 if (TULIP_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
2253 break;
2254 delay(10);
2255 }
2256
2257 csr = TULIP_READ(sc, CSR_STATUS);
2258 if ((csr & ackmask) != ackmask) {
2259 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
2260 (csr & STATUS_TS) != STATUS_TS_STOPPED)
2261 printf("%s: transmit process failed to idle: "
2262 "state %s\n", sc->sc_dev.dv_xname,
2263 tx_state_names[(csr & STATUS_TS) >> 20]);
2264 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
2265 (csr & STATUS_RS) != STATUS_RS_STOPPED)
2266 printf("%s: receive process failed to idle: "
2267 "state %s\n", sc->sc_dev.dv_xname,
2268 rx_state_names[(csr & STATUS_RS) >> 17]);
2269 }
2270 TULIP_WRITE(sc, CSR_STATUS, ackmask);
2271 }
2272
2273 /*****************************************************************************
2274 * Generic media support functions.
2275 *****************************************************************************/
2276
2277 /*
2278 * tlp_mediastatus: [ifmedia interface function]
2279 *
2280 * Query the current media.
2281 */
2282 void
2283 tlp_mediastatus(ifp, ifmr)
2284 struct ifnet *ifp;
2285 struct ifmediareq *ifmr;
2286 {
2287 struct tulip_softc *sc = ifp->if_softc;
2288
2289 (*sc->sc_mediasw->tmsw_get)(sc, ifmr);
2290 }
2291
2292 /*
2293 * tlp_mediachange: [ifmedia interface function]
2294 *
2295 * Update the current media.
2296 */
2297 int
2298 tlp_mediachange(ifp)
2299 struct ifnet *ifp;
2300 {
2301 struct tulip_softc *sc = ifp->if_softc;
2302
2303 return ((*sc->sc_mediasw->tmsw_set)(sc));
2304 }
2305
2306 /*****************************************************************************
2307 * Support functions for MII-attached media.
2308 *****************************************************************************/
2309
2310 /*
2311 * tlp_mii_tick:
2312 *
2313 * One second timer, used to tick the MII.
2314 */
2315 void
2316 tlp_mii_tick(arg)
2317 void *arg;
2318 {
2319 struct tulip_softc *sc = arg;
2320 int s;
2321
2322 s = splnet();
2323 mii_tick(&sc->sc_mii);
2324 splx(s);
2325
2326 timeout(sc->sc_tick, sc, hz);
2327 }
2328
2329 /*
2330 * tlp_mii_statchg: [mii interface function]
2331 *
2332 * Callback from PHY when media changes.
2333 */
2334 void
2335 tlp_mii_statchg(self)
2336 struct device *self;
2337 {
2338 struct tulip_softc *sc = (struct tulip_softc *)self;
2339
2340 /* Idle the transmit and receive processes. */
2341 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2342
2343 /*
2344 * XXX What about Heartbeat Disable? Is it magically frobbed
2345 * XXX by the PHY? I hope so...
2346 */
2347
2348 sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD);
2349
2350 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T)
2351 sc->sc_opmode |= OPMODE_TTM;
2352
2353 if (sc->sc_mii.mii_media_active & IFM_FDX)
2354 sc->sc_opmode |= OPMODE_FD;
2355
2356 /*
2357 * Write new OPMODE bits. This also restarts the transmit
2358 * and receive processes.
2359 */
2360 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2361
2362 /* XXX Update ifp->if_baudrate */
2363 }
2364
2365 /*
2366 * tlp_winb_mii_statchg: [mii interface function]
2367 *
2368 * Callback from PHY when media changes. This version is
2369 * for the Winbond 89C840F, which has different OPMODE bits.
2370 */
2371 void
2372 tlp_winb_mii_statchg(self)
2373 struct device *self;
2374 {
2375 struct tulip_softc *sc = (struct tulip_softc *)self;
2376
2377 /* Idle the transmit and receive processes. */
2378 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2379
2380 /*
2381 * XXX What about Heartbeat Disable? Is it magically frobbed
2382 * XXX by the PHY? I hope so...
2383 */
2384
2385 sc->sc_opmode &= ~(OPMODE_WINB_FES|OPMODE_FD);
2386
2387 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX)
2388 sc->sc_opmode |= OPMODE_WINB_FES;
2389
2390 if (sc->sc_mii.mii_media_active & IFM_FDX)
2391 sc->sc_opmode |= OPMODE_FD;
2392
2393 /*
2394 * Write new OPMODE bits. This also restarts the transmit
2395 * and receive processes.
2396 */
2397 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2398
2399 /* XXX Update ifp->if_baudrate */
2400 }
2401
2402 /*
2403 * tlp_mii_getmedia:
2404 *
2405 * Callback from ifmedia to request current media status.
2406 */
2407 void
2408 tlp_mii_getmedia(sc, ifmr)
2409 struct tulip_softc *sc;
2410 struct ifmediareq *ifmr;
2411 {
2412
2413 mii_pollstat(&sc->sc_mii);
2414 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2415 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2416 }
2417
2418 /*
2419 * tlp_mii_setmedia:
2420 *
2421 * Callback from ifmedia to request new media setting.
2422 */
2423 int
2424 tlp_mii_setmedia(sc)
2425 struct tulip_softc *sc;
2426 {
2427 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2428
2429 if (ifp->if_flags & IFF_UP)
2430 mii_mediachg(&sc->sc_mii);
2431 return (0);
2432 }
2433
2434 #define MII_EMIT(sc, x) \
2435 do { \
2436 TULIP_WRITE((sc), CSR_MIIROM, (x)); \
2437 delay(1); \
2438 } while (0)
2439
2440 /*
2441 * tlp_sio_mii_sync:
2442 *
2443 * Synchronize the SIO-attached MII.
2444 */
2445 void
2446 tlp_sio_mii_sync(sc)
2447 struct tulip_softc *sc;
2448 {
2449 u_int32_t miirom;
2450 int i;
2451
2452 miirom = MIIROM_MIIDIR|MIIROM_MDO;
2453
2454 MII_EMIT(sc, miirom);
2455 for (i = 0; i < 32; i++) {
2456 MII_EMIT(sc, miirom | MIIROM_MDC);
2457 MII_EMIT(sc, miirom);
2458 }
2459 }
2460
2461 /*
2462 * tlp_sio_mii_sendbits:
2463 *
2464 * Send a series of bits out the SIO to the MII.
2465 */
2466 void
2467 tlp_sio_mii_sendbits(sc, data, nbits)
2468 struct tulip_softc *sc;
2469 u_int32_t data;
2470 int nbits;
2471 {
2472 u_int32_t miirom, i;
2473
2474 miirom = MIIROM_MIIDIR;
2475 MII_EMIT(sc, miirom);
2476
2477 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
2478 if (data & i)
2479 miirom |= MIIROM_MDO;
2480 else
2481 miirom &= ~MIIROM_MDO;
2482 MII_EMIT(sc, miirom);
2483 MII_EMIT(sc, miirom|MIIROM_MDC);
2484 MII_EMIT(sc, miirom);
2485 }
2486 }
2487
2488 /*
2489 * tlp_sio_mii_readreg:
2490 *
2491 * Read a PHY register via SIO-attached MII.
2492 */
2493 int
2494 tlp_sio_mii_readreg(self, phy, reg)
2495 struct device *self;
2496 int phy, reg;
2497 {
2498 struct tulip_softc *sc = (void *) self;
2499 int val = 0, err = 0, i;
2500
2501 tlp_sio_mii_sync(sc);
2502
2503 tlp_sio_mii_sendbits(sc, MII_COMMAND_START, 2);
2504 tlp_sio_mii_sendbits(sc, MII_COMMAND_READ, 2);
2505 tlp_sio_mii_sendbits(sc, phy, 5);
2506 tlp_sio_mii_sendbits(sc, reg, 5);
2507
2508 MII_EMIT(sc, MIIROM_MIIDIR);
2509 MII_EMIT(sc, MIIROM_MIIDIR|MIIROM_MDC);
2510
2511 MII_EMIT(sc, 0);
2512 MII_EMIT(sc, MIIROM_MDC);
2513
2514 err = TULIP_ISSET(sc, CSR_MIIROM, MIIROM_MDI);
2515
2516 MII_EMIT(sc, 0);
2517 MII_EMIT(sc, MIIROM_MDC);
2518
2519 for (i = 0; i < 16; i++) {
2520 val <<= 1;
2521 MII_EMIT(sc, 0);
2522 if (err == 0 && TULIP_ISSET(sc, CSR_MIIROM, MIIROM_MDI))
2523 val |= 1;
2524 MII_EMIT(sc, MIIROM_MDC);
2525 }
2526
2527 MII_EMIT(sc, 0);
2528
2529 return (err ? 0 : val);
2530 }
2531
2532 /*
2533 * tlp_sio_mii_writereg:
2534 *
2535 * Write a PHY register via SIO-attached MII.
2536 */
2537 void
2538 tlp_sio_mii_writereg(self, phy, reg, val)
2539 struct device *self;
2540 int phy, reg, val;
2541 {
2542 struct tulip_softc *sc = (void *) self;
2543
2544 tlp_sio_mii_sync(sc);
2545
2546 tlp_sio_mii_sendbits(sc, MII_COMMAND_START, 2);
2547 tlp_sio_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
2548 tlp_sio_mii_sendbits(sc, phy, 5);
2549 tlp_sio_mii_sendbits(sc, reg, 5);
2550 tlp_sio_mii_sendbits(sc, MII_COMMAND_ACK, 2);
2551 tlp_sio_mii_sendbits(sc, val, 16);
2552
2553 MII_EMIT(sc, 0);
2554 }
2555
2556 #undef MII_EMIT
2557
2558 /*
2559 * tlp_pnic_mii_readreg:
2560 *
2561 * Read a PHY register on the Lite-On PNIC.
2562 */
2563 int
2564 tlp_pnic_mii_readreg(self, phy, reg)
2565 struct device *self;
2566 int phy, reg;
2567 {
2568 struct tulip_softc *sc = (void *) self;
2569 u_int32_t val;
2570 int i;
2571
2572 TULIP_WRITE(sc, CSR_PNIC_MII,
2573 PNIC_MII_MBO | PNIC_MII_RESERVED |
2574 PNIC_MII_READ | (phy << PNIC_MII_PHYSHIFT) |
2575 (reg << PNIC_MII_REGSHIFT));
2576
2577 for (i = 0; i < 1000; i++) {
2578 delay(10);
2579 val = TULIP_READ(sc, CSR_PNIC_MII);
2580 if ((val & PNIC_MII_BUSY) == 0) {
2581 if ((val & PNIC_MII_DATA) == PNIC_MII_DATA)
2582 return (0);
2583 else
2584 return (val & PNIC_MII_DATA);
2585 }
2586 }
2587 printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
2588 return (0);
2589 }
2590
2591 /*
2592 * tlp_pnic_mii_writereg:
2593 *
2594 * Write a PHY register on the Lite-On PNIC.
2595 */
2596 void
2597 tlp_pnic_mii_writereg(self, phy, reg, val)
2598 struct device *self;
2599 int phy, reg, val;
2600 {
2601 struct tulip_softc *sc = (void *) self;
2602 int i;
2603
2604 TULIP_WRITE(sc, CSR_PNIC_MII,
2605 PNIC_MII_MBO | PNIC_MII_RESERVED |
2606 PNIC_MII_WRITE | (phy << PNIC_MII_PHYSHIFT) |
2607 (reg << PNIC_MII_REGSHIFT) | val);
2608
2609 for (i = 0; i < 1000; i++) {
2610 delay(10);
2611 if (TULIP_ISSET(sc, CSR_PNIC_MII, PNIC_MII_BUSY) == 0)
2612 return;
2613 }
2614 printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
2615 }
2616
2617 /*****************************************************************************
2618 * Chip/board-specific media switches. The ones here are ones that
2619 * are potentially common to multiple front-ends.
2620 *****************************************************************************/
2621
2622 /*
2623 * 21040 and 21041 media switches.
2624 */
2625 void tlp_21040_tmsw_init __P((struct tulip_softc *));
2626 void tlp_21040_tp_tmsw_init __P((struct tulip_softc *));
2627 void tlp_21040_auibnc_tmsw_init __P((struct tulip_softc *));
2628 void tlp_21040_21041_tmsw_get __P((struct tulip_softc *,
2629 struct ifmediareq *));
2630 int tlp_21040_21041_tmsw_set __P((struct tulip_softc *));
2631
2632 const struct tulip_mediasw tlp_21040_mediasw = {
2633 tlp_21040_tmsw_init, tlp_21040_21041_tmsw_get, tlp_21040_21041_tmsw_set
2634 };
2635
2636 const struct tulip_mediasw tlp_21040_tp_mediasw = {
2637 tlp_21040_tp_tmsw_init, tlp_21040_21041_tmsw_get,
2638 tlp_21040_21041_tmsw_set
2639 };
2640
2641 const struct tulip_mediasw tlp_21040_auibnc_mediasw = {
2642 tlp_21040_auibnc_tmsw_init, tlp_21040_21041_tmsw_get,
2643 tlp_21040_21041_tmsw_set
2644 };
2645
2646 #define ADD(m, t) ifmedia_add(&sc->sc_mii.mii_media, (m), 0, (t))
2647 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
2648
2649 void
2650 tlp_21040_tmsw_init(sc)
2651 struct tulip_softc *sc;
2652 {
2653 struct tulip_21040_21041_sia_media *tsm;
2654 const char *sep = "";
2655
2656 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
2657 tlp_mediastatus);
2658
2659 printf("%s: ", sc->sc_dev.dv_xname);
2660
2661 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2662 M_WAITOK);
2663 tsm->tsm_siaconn = SIACONN_21040_10BASET;
2664 tsm->tsm_siatxrx = SIATXRX_21040_10BASET;
2665 tsm->tsm_siagen = SIAGEN_21040_10BASET;
2666 ADD(IFM_ETHER|IFM_10_T, tsm);
2667 PRINT("10baseT");
2668
2669 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2670 M_WAITOK);
2671 tsm->tsm_siaconn = SIACONN_21040_10BASET_FDX;
2672 tsm->tsm_siatxrx = SIATXRX_21040_10BASET_FDX;
2673 tsm->tsm_siagen = SIAGEN_21040_10BASET_FDX;
2674 ADD(IFM_ETHER|IFM_10_T|IFM_FDX, tsm);
2675 PRINT("10baseT-FDX");
2676
2677 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2678 M_WAITOK);
2679 tsm->tsm_siaconn = SIACONN_21040_AUI;
2680 tsm->tsm_siatxrx = SIATXRX_21040_AUI;
2681 tsm->tsm_siagen = SIAGEN_21040_AUI;
2682 ADD(IFM_ETHER|IFM_10_5, tsm);
2683 PRINT("10base5");
2684
2685 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2686 M_WAITOK);
2687 tsm->tsm_siaconn = SIACONN_21040_EXTSIA;
2688 tsm->tsm_siatxrx = SIATXRX_21040_EXTSIA;
2689 tsm->tsm_siagen = SIAGEN_21040_EXTSIA;
2690 ADD(IFM_ETHER|IFM_MANUAL, tsm);
2691 PRINT("manual");
2692
2693 /*
2694 * XXX Autosense not yet supported.
2695 */
2696
2697 /* XXX This should be auto-sense. */
2698 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
2699 printf(", default 10baseT");
2700
2701 printf("\n");
2702 }
2703
2704 void
2705 tlp_21040_tp_tmsw_init(sc)
2706 struct tulip_softc *sc;
2707 {
2708 struct tulip_21040_21041_sia_media *tsm;
2709 const char *sep = "";
2710
2711 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
2712 tlp_mediastatus);
2713
2714 printf("%s: ", sc->sc_dev.dv_xname);
2715
2716 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2717 M_WAITOK);
2718 tsm->tsm_siaconn = SIACONN_21040_10BASET;
2719 tsm->tsm_siatxrx = SIATXRX_21040_10BASET;
2720 tsm->tsm_siagen = SIAGEN_21040_10BASET;
2721 ADD(IFM_ETHER|IFM_10_T, tsm);
2722 PRINT("10baseT");
2723
2724 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2725 M_WAITOK);
2726 tsm->tsm_siaconn = SIACONN_21040_10BASET_FDX;
2727 tsm->tsm_siatxrx = SIATXRX_21040_10BASET_FDX;
2728 tsm->tsm_siagen = SIAGEN_21040_10BASET_FDX;
2729 ADD(IFM_ETHER|IFM_10_T|IFM_FDX, tsm);
2730 PRINT("10baseT-FDX");
2731
2732 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
2733 printf(", default 10baseT");
2734
2735 printf("\n");
2736 }
2737
2738 void
2739 tlp_21040_auibnc_tmsw_init(sc)
2740 struct tulip_softc *sc;
2741 {
2742 struct tulip_21040_21041_sia_media *tsm;
2743 const char *sep = "";
2744
2745 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
2746 tlp_mediastatus);
2747
2748 printf("%s: ", sc->sc_dev.dv_xname);
2749
2750 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2751 M_WAITOK);
2752 tsm->tsm_siaconn = SIACONN_21040_AUI;
2753 tsm->tsm_siatxrx = SIATXRX_21040_AUI;
2754 tsm->tsm_siagen = SIAGEN_21040_AUI;
2755 ADD(IFM_ETHER|IFM_10_5, tsm);
2756 PRINT("10base5");
2757
2758 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_5);
2759
2760 printf("\n");
2761 }
2762
2763 #undef ADD
2764 #undef PRINT
2765
2766 void
2767 tlp_21040_21041_tmsw_get(sc, ifmr)
2768 struct tulip_softc *sc;
2769 struct ifmediareq *ifmr;
2770 {
2771 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
2772
2773 ifmr->ifm_status = 0;
2774
2775 switch (IFM_SUBTYPE(ife->ifm_media)) {
2776 case IFM_AUTO:
2777 /*
2778 * XXX Implement autosensing case.
2779 */
2780 break;
2781
2782 case IFM_10_T:
2783 /*
2784 * We're able to detect link directly on twisted pair.
2785 */
2786 ifmr->ifm_status = IFM_AVALID;
2787 if (TULIP_ISSET(sc, CSR_SIASTAT, SIASTAT_LKF) == 0)
2788 ifmr->ifm_status |= IFM_ACTIVE;
2789 /* FALLTHROUGH */
2790 default:
2791 /*
2792 * If not autosensing, active media is the currently
2793 * selected media.
2794 */
2795 ifmr->ifm_active = ife->ifm_media;
2796 }
2797 }
2798
2799 int
2800 tlp_21040_21041_tmsw_set(sc)
2801 struct tulip_softc *sc;
2802 {
2803 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
2804 struct tulip_21040_21041_sia_media *tsm;
2805
2806 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
2807 /*
2808 * If not autosensing, just pull the SIA settings out
2809 * of the media entry.
2810 */
2811 tsm = ife->ifm_aux;
2812 TULIP_WRITE(sc, CSR_SIACONN, SIACONN_SRL);
2813 TULIP_WRITE(sc, CSR_SIATXRX, tsm->tsm_siatxrx);
2814 TULIP_WRITE(sc, CSR_SIAGEN, tsm->tsm_siagen);
2815 TULIP_WRITE(sc, CSR_SIACONN, tsm->tsm_siaconn);
2816
2817 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2818 sc->sc_opmode &= ~OPMODE_FD;
2819 if (ife->ifm_media & IFM_FDX)
2820 sc->sc_opmode |= OPMODE_FD;
2821 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2822 } else {
2823 /*
2824 * XXX Implement autosensing case.
2825 */
2826 }
2827
2828 return (0);
2829 }
2830
2831 /*
2832 * MII-on-SIO media switch. Handles only MII attached to the SIO.
2833 */
2834 void tlp_sio_mii_tmsw_init __P((struct tulip_softc *));
2835
2836 const struct tulip_mediasw tlp_sio_mii_mediasw = {
2837 tlp_sio_mii_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
2838 };
2839
2840 void
2841 tlp_sio_mii_tmsw_init(sc)
2842 struct tulip_softc *sc;
2843 {
2844 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2845
2846 sc->sc_mii.mii_ifp = ifp;
2847 sc->sc_mii.mii_readreg = tlp_sio_mii_readreg;
2848 sc->sc_mii.mii_writereg = tlp_sio_mii_writereg;
2849 sc->sc_mii.mii_statchg = sc->sc_statchg;
2850 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
2851 tlp_mediastatus);
2852 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
2853 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2854 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2855 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2856 } else {
2857 sc->sc_flags |= TULIPF_HAS_MII;
2858 sc->sc_tick = tlp_mii_tick;
2859 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2860 }
2861 }
2862
2863 /*
2864 * Lite-On PNIC media switch. Must handle MII or internal NWAY.
2865 */
2866 void tlp_pnic_tmsw_init __P((struct tulip_softc *));
2867 void tlp_pnic_tmsw_get __P((struct tulip_softc *, struct ifmediareq *));
2868 int tlp_pnic_tmsw_set __P((struct tulip_softc *));
2869
2870 const struct tulip_mediasw tlp_pnic_mediasw = {
2871 tlp_pnic_tmsw_init, tlp_pnic_tmsw_get, tlp_pnic_tmsw_set
2872 };
2873
2874 void tlp_pnic_nway_statchg __P((struct device *));
2875 void tlp_pnic_nway_tick __P((void *));
2876 int tlp_pnic_nway_service __P((struct tulip_softc *, int));
2877 void tlp_pnic_nway_reset __P((struct tulip_softc *));
2878 int tlp_pnic_nway_auto __P((struct tulip_softc *, int));
2879 void tlp_pnic_nway_auto_timeout __P((void *));
2880 void tlp_pnic_nway_status __P((struct tulip_softc *));
2881 void tlp_pnic_nway_acomp __P((struct tulip_softc *));
2882
2883 void
2884 tlp_pnic_tmsw_init(sc)
2885 struct tulip_softc *sc;
2886 {
2887 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2888 const char *sep = "";
2889
2890 #define ADD(m, c) ifmedia_add(&sc->sc_mii.mii_media, (m), (c), NULL)
2891 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
2892
2893 sc->sc_mii.mii_ifp = ifp;
2894 sc->sc_mii.mii_readreg = tlp_pnic_mii_readreg;
2895 sc->sc_mii.mii_writereg = tlp_pnic_mii_writereg;
2896 sc->sc_mii.mii_statchg = sc->sc_statchg;
2897 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
2898 tlp_mediastatus);
2899 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
2900 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2901 /* XXX What about AUI/BNC support? */
2902 printf("%s: ", sc->sc_dev.dv_xname);
2903
2904 tlp_pnic_nway_reset(sc);
2905
2906 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0),
2907 PNIC_NWAY_TW|PNIC_NWAY_CAP10T);
2908 PRINT("10baseT");
2909
2910 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, IFM_FDX, 0),
2911 PNIC_NWAY_TW|PNIC_NWAY_FD|PNIC_NWAY_CAP10TFDX);
2912 PRINT("10baseT-FDX");
2913
2914 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, 0, 0),
2915 PNIC_NWAY_TW|PNIC_NWAY_100|PNIC_NWAY_CAP100TX);
2916 PRINT("100baseTX");
2917
2918 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, IFM_FDX, 0),
2919 PNIC_NWAY_TW|PNIC_NWAY_100|PNIC_NWAY_FD|
2920 PNIC_NWAY_CAP100TXFDX);
2921 PRINT("100baseTX-FDX");
2922
2923 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0),
2924 PNIC_NWAY_TW|PNIC_NWAY_RN|PNIC_NWAY_NW|
2925 PNIC_NWAY_CAP10T|PNIC_NWAY_CAP10TFDX|
2926 PNIC_NWAY_CAP100TXFDX|PNIC_NWAY_CAP100TX);
2927 PRINT("auto");
2928
2929 printf("\n");
2930
2931 sc->sc_statchg = tlp_pnic_nway_statchg;
2932 sc->sc_tick = tlp_pnic_nway_tick;
2933 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2934 } else {
2935 sc->sc_flags |= TULIPF_HAS_MII;
2936 sc->sc_tick = tlp_mii_tick;
2937 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2938 }
2939
2940 #undef ADD
2941 #undef PRINT
2942 }
2943
2944 void
2945 tlp_pnic_tmsw_get(sc, ifmr)
2946 struct tulip_softc *sc;
2947 struct ifmediareq *ifmr;
2948 {
2949 struct mii_data *mii = &sc->sc_mii;
2950
2951 if (sc->sc_flags & TULIPF_HAS_MII)
2952 tlp_mii_getmedia(sc, ifmr);
2953 else {
2954 mii->mii_media_status = 0;
2955 mii->mii_media_active = IFM_NONE;
2956 tlp_pnic_nway_service(sc, MII_POLLSTAT);
2957 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2958 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2959 }
2960 }
2961
2962 int
2963 tlp_pnic_tmsw_set(sc)
2964 struct tulip_softc *sc;
2965 {
2966 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2967 struct mii_data *mii = &sc->sc_mii;
2968
2969 if (sc->sc_flags & TULIPF_HAS_MII)
2970 return (tlp_mii_setmedia(sc));
2971
2972 if (ifp->if_flags & IFF_UP) {
2973 mii->mii_media_status = 0;
2974 mii->mii_media_active = IFM_NONE;
2975 return (tlp_pnic_nway_service(sc, MII_MEDIACHG));
2976 }
2977
2978 return (0);
2979 }
2980
2981 void
2982 tlp_pnic_nway_statchg(self)
2983 struct device *self;
2984 {
2985 struct tulip_softc *sc = (struct tulip_softc *)self;
2986
2987 /* Idle the transmit and receive processes. */
2988 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2989
2990 /*
2991 * XXX What about Heartbeat Disable? Is it magically frobbed
2992 * XXX by the PHY? I hope so...
2993 */
2994
2995 sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD|OPMODE_PS|OPMODE_PCS|
2996 OPMODE_SCR);
2997
2998 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
2999 sc->sc_opmode |= OPMODE_TTM;
3000 TULIP_WRITE(sc, CSR_GPP,
3001 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 0) |
3002 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1));
3003 } else {
3004 sc->sc_opmode |= OPMODE_PS|OPMODE_PCS|OPMODE_SCR;
3005 TULIP_WRITE(sc, CSR_GPP,
3006 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 1) |
3007 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1));
3008 }
3009
3010 if (sc->sc_mii.mii_media_active & IFM_FDX)
3011 sc->sc_opmode |= OPMODE_FD;
3012
3013 /*
3014 * Write new OPMODE bits. This also restarts the transmit
3015 * and receive processes.
3016 */
3017 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
3018
3019 /* XXX Update ifp->if_baudrate */
3020 }
3021
3022 void
3023 tlp_pnic_nway_tick(arg)
3024 void *arg;
3025 {
3026 struct tulip_softc *sc = arg;
3027 int s;
3028
3029 s = splnet();
3030 tlp_pnic_nway_service(sc, MII_TICK);
3031 splx(s);
3032
3033 timeout(tlp_pnic_nway_tick, sc, hz);
3034 }
3035
3036 /*
3037 * Support for the Lite-On PNIC internal NWay block. This is constructed
3038 * somewhat like a PHY driver for simplicity.
3039 */
3040
3041 int
3042 tlp_pnic_nway_service(sc, cmd)
3043 struct tulip_softc *sc;
3044 int cmd;
3045 {
3046 struct mii_data *mii = &sc->sc_mii;
3047 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
3048
3049 if ((mii->mii_ifp->if_flags & IFF_UP) == 0)
3050 return (0);
3051
3052 switch (cmd) {
3053 case MII_POLLSTAT:
3054 /* Nothing special to do here. */
3055 break;
3056
3057 case MII_MEDIACHG:
3058 switch (IFM_SUBTYPE(ife->ifm_media)) {
3059 case IFM_AUTO:
3060 (void) tlp_pnic_nway_auto(sc, 1);
3061 break;
3062 case IFM_100_T4:
3063 /*
3064 * XXX Not supported as a manual setting right now.
3065 */
3066 return (EINVAL);
3067 default:
3068 /*
3069 * NWAY register data is stored in the ifmedia entry.
3070 */
3071 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data);
3072 }
3073 break;
3074
3075 case MII_TICK:
3076 /*
3077 * Only used for autonegotiation.
3078 */
3079 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
3080 return (0);
3081
3082 /*
3083 * Check to see if we have link. If we do, we don't
3084 * need to restart the autonegotiation process.
3085 */
3086 if (sc->sc_flags & TULIPF_LINK_UP)
3087 return (0);
3088
3089 /*
3090 * Only retry autonegotiation every 5 seconds.
3091 */
3092 if (++sc->sc_nway_ticks != 5)
3093 return (0);
3094
3095 sc->sc_nway_ticks = 0;
3096 tlp_pnic_nway_reset(sc);
3097 if (tlp_pnic_nway_auto(sc, 0) == EJUSTRETURN)
3098 return (0);
3099 break;
3100 }
3101
3102 /* Update the media status. */
3103 tlp_pnic_nway_status(sc);
3104
3105 /* Callback if something changed. */
3106 if (sc->sc_nway_active != mii->mii_media_active ||
3107 cmd == MII_MEDIACHG) {
3108 (*sc->sc_statchg)(&sc->sc_dev);
3109 sc->sc_nway_active = mii->mii_media_active;
3110 }
3111 return (0);
3112 }
3113
3114 void
3115 tlp_pnic_nway_reset(sc)
3116 struct tulip_softc *sc;
3117 {
3118
3119 TULIP_WRITE(sc, CSR_PNIC_NWAY, PNIC_NWAY_RS);
3120 delay(100);
3121 TULIP_WRITE(sc, CSR_PNIC_NWAY, 0);
3122 }
3123
3124 int
3125 tlp_pnic_nway_auto(sc, waitfor)
3126 struct tulip_softc *sc;
3127 int waitfor;
3128 {
3129 struct mii_data *mii = &sc->sc_mii;
3130 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
3131 u_int32_t reg;
3132 int i;
3133
3134 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0)
3135 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data);
3136
3137 if (waitfor) {
3138 /* Wait 500ms for it to complete. */
3139 for (i = 0; i < 500; i++) {
3140 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
3141 if (reg & PNIC_NWAY_LPAR_MASK) {
3142 tlp_pnic_nway_acomp(sc);
3143 return (0);
3144 }
3145 delay(1000);
3146 }
3147 #if 0
3148 if ((reg & PNIC_NWAY_LPAR_MASK) == 0)
3149 printf("%s: autonegotiation failed to complete\n",
3150 sc->sc_dev.dv_xname);
3151 #endif
3152
3153 /*
3154 * Don't need to worry about clearing DOINGAUTO.
3155 * If that's set, a timeout is pending, and it will
3156 * clear the flag.
3157 */
3158 return (EIO);
3159 }
3160
3161 /*
3162 * Just let it finish asynchronously. This is for the benefit of
3163 * the tick handler driving autonegotiation. Don't want 500ms
3164 * delays all the time while the system is running!
3165 */
3166 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0) {
3167 sc->sc_flags |= TULIPF_DOINGAUTO;
3168 timeout(tlp_pnic_nway_auto_timeout, sc, hz >> 1);
3169 }
3170 return (EJUSTRETURN);
3171 }
3172
3173 void
3174 tlp_pnic_nway_auto_timeout(arg)
3175 void *arg;
3176 {
3177 struct tulip_softc *sc = arg;
3178 u_int32_t reg;
3179 int s;
3180
3181 s = splnet();
3182 sc->sc_flags &= ~TULIPF_DOINGAUTO;
3183 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
3184 #if 0
3185 if ((reg & PNIC_NWAY_LPAR_MASK) == 0)
3186 printf("%s: autonegotiation failed to complete\n",
3187 sc->sc_dev.dv_xname);
3188 #endif
3189
3190 tlp_pnic_nway_acomp(sc);
3191
3192 /* Update the media status. */
3193 (void) tlp_pnic_nway_service(sc, MII_POLLSTAT);
3194 splx(s);
3195 }
3196
3197 void
3198 tlp_pnic_nway_status(sc)
3199 struct tulip_softc *sc;
3200 {
3201 struct mii_data *mii = &sc->sc_mii;
3202 u_int32_t reg;
3203
3204 mii->mii_media_status = IFM_AVALID;
3205 mii->mii_media_active = IFM_ETHER;
3206
3207 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
3208
3209 if (sc->sc_flags & TULIPF_LINK_UP)
3210 mii->mii_media_status |= IFM_ACTIVE;
3211
3212 if (reg & PNIC_NWAY_NW) {
3213 if ((reg & PNIC_NWAY_LPAR_MASK) == 0) {
3214 /* Erg, still trying, I guess... */
3215 mii->mii_media_active |= IFM_NONE;
3216 return;
3217 }
3218
3219 #if 0
3220 if (reg & PNIC_NWAY_LPAR100T4)
3221 mii->mii_media_active |= IFM_100_T4;
3222 else
3223 #endif
3224 if (reg & PNIC_NWAY_LPAR100TXFDX)
3225 mii->mii_media_active |= IFM_100_TX|IFM_FDX;
3226 else if (reg & PNIC_NWAY_LPAR100TX)
3227 mii->mii_media_active |= IFM_100_TX;
3228 else if (reg & PNIC_NWAY_LPAR10TFDX)
3229 mii->mii_media_active |= IFM_10_T|IFM_FDX;
3230 else if (reg & PNIC_NWAY_LPAR10T)
3231 mii->mii_media_active |= IFM_10_T;
3232 else
3233 mii->mii_media_active |= IFM_NONE;
3234 } else {
3235 if (reg & PNIC_NWAY_100)
3236 mii->mii_media_active |= IFM_100_TX;
3237 else
3238 mii->mii_media_active |= IFM_10_T;
3239 if (reg & PNIC_NWAY_FD)
3240 mii->mii_media_active |= IFM_FDX;
3241 }
3242 }
3243
3244 void
3245 tlp_pnic_nway_acomp(sc)
3246 struct tulip_softc *sc;
3247 {
3248 u_int32_t reg;
3249
3250 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
3251 reg &= ~(PNIC_NWAY_FD|PNIC_NWAY_100|PNIC_NWAY_RN);
3252
3253 if (reg & (PNIC_NWAY_LPAR100TXFDX|PNIC_NWAY_LPAR100TX))
3254 reg |= PNIC_NWAY_100;
3255 if (reg & (PNIC_NWAY_LPAR10TFDX|PNIC_NWAY_LPAR100TXFDX))
3256 reg |= PNIC_NWAY_FD;
3257
3258 TULIP_WRITE(sc, CSR_PNIC_NWAY, reg);
3259 }
3260