wi.c revision 1.104 1 /* $NetBSD: wi.c,v 1.104 2002/11/18 15:10:22 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.104 2002/11/18 15:10:22 dyoung Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static int wi_init(struct ifnet *);
108 static void wi_stop(struct ifnet *, int);
109 static void wi_start(struct ifnet *);
110 static int wi_reset(struct wi_softc *);
111 static void wi_watchdog(struct ifnet *);
112 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
113 static int wi_media_change(struct ifnet *);
114 static void wi_media_status(struct ifnet *, struct ifmediareq *);
115
116 static void wi_rx_intr(struct wi_softc *);
117 static void wi_tx_intr(struct wi_softc *);
118 static void wi_info_intr(struct wi_softc *);
119
120 static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
121 static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
122 static int wi_write_txrate(struct wi_softc *);
123 static int wi_write_wep(struct wi_softc *);
124 static int wi_write_multi(struct wi_softc *);
125 static int wi_alloc_fid(struct wi_softc *, int, int *);
126 static void wi_read_nicid(struct wi_softc *);
127 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
128
129 static int wi_cmd(struct wi_softc *, int, int, int, int);
130 static int wi_seek_bap(struct wi_softc *, int, int);
131 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
132 static int wi_write_bap(struct wi_softc *, int, int, void *, int);
133 static int wi_read_rid(struct wi_softc *, int, void *, int *);
134 static int wi_write_rid(struct wi_softc *, int, void *, int);
135
136 static int wi_newstate(void *, enum ieee80211_state);
137
138 static int wi_scan_ap(struct wi_softc *);
139 static void wi_scan_result(struct wi_softc *, int, int);
140
141 static inline int
142 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
143 {
144
145 val = htole16(val);
146 return wi_write_rid(sc, rid, &val, sizeof(val));
147 }
148
149 #ifdef WI_DEBUG
150 int wi_debug = 0;
151
152 #define DPRINTF(X) if (wi_debug) printf X
153 #define DPRINTF2(X) if (wi_debug > 1) printf X
154 #else
155 #define DPRINTF(X)
156 #define DPRINTF2(X)
157 #endif
158
159 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
160
161 struct wi_card_ident
162 wi_card_ident[] = {
163 /* CARD_ID CARD_NAME FIRM_TYPE */
164 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
165 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
166 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
167 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
168 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
169 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
170 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
171 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
172 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
173 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
174 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
175 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
176 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
177 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
178 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
179 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
180 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
181 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
182 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
183 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
184 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
185 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
186 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
187 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
188 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
189 { 0, NULL, 0 },
190 };
191
192 int
193 wi_attach(struct wi_softc *sc)
194 {
195 struct ieee80211com *ic = &sc->sc_ic;
196 struct ifnet *ifp = &ic->ic_if;
197 int i, nrate, mword, buflen;
198 u_int8_t r;
199 u_int16_t val;
200 u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
201 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
202 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
203 };
204 int s;
205
206 s = splnet();
207
208 /* Make sure interrupts are disabled. */
209 CSR_WRITE_2(sc, WI_INT_EN, 0);
210 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
211
212 /* Reset the NIC. */
213 if (wi_reset(sc) != 0) {
214 splx(s);
215 return 1;
216 }
217
218 buflen = IEEE80211_ADDR_LEN;
219 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
220 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
221 printf(" could not get mac address, attach failed\n");
222 splx(s);
223 return 1;
224 }
225
226 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
227
228 /* Read NIC identification */
229 wi_read_nicid(sc);
230
231 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
232 ifp->if_softc = sc;
233 ifp->if_start = wi_start;
234 ifp->if_ioctl = wi_ioctl;
235 ifp->if_watchdog = wi_watchdog;
236 ifp->if_init = wi_init;
237 ifp->if_stop = wi_stop;
238 ifp->if_flags =
239 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
240 IFQ_SET_READY(&ifp->if_snd);
241
242 ic->ic_phytype = IEEE80211_T_DS;
243 ic->ic_opmode = IEEE80211_M_STA;
244 ic->ic_flags = IEEE80211_F_HASPMGT | IEEE80211_F_HASAHDEMO;
245 ic->ic_state = IEEE80211_S_INIT;
246 ic->ic_newstate = wi_newstate;
247
248 /* Find available channel */
249 buflen = sizeof(val);
250 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
251 val = htole16(0x1fff); /* assume 1-11 */
252 for (i = 0; i < 16; i++) {
253 if (isset((u_int8_t*)&val, i))
254 setbit(ic->ic_chan_avail, i + 1);
255 }
256
257 sc->sc_dbm_adjust = 100; /* default */
258
259 if (sc->sc_firmware_type == WI_INTERSIL &&
260 wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0) {
261 sc->sc_dbm_adjust = le16toh(val);
262 }
263
264 /* Find default IBSS channel */
265 buflen = sizeof(val);
266 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0)
267 ic->ic_ibss_chan = le16toh(val);
268 else {
269 /* use lowest available channel */
270 for (i = 0; i < 16; i++) {
271 if (isset(ic->ic_chan_avail, i))
272 break;
273 }
274 ic->ic_ibss_chan = i;
275 }
276
277 /*
278 * Set flags based on firmware version.
279 */
280 switch (sc->sc_firmware_type) {
281 case WI_LUCENT:
282 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
283 #ifdef WI_HERMES_AUTOINC_WAR
284 /* XXX: not confirmed, but never seen for recent firmware */
285 if (sc->sc_sta_firmware_ver < 40000) {
286 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
287 }
288 #endif
289 if (sc->sc_sta_firmware_ver >= 60000)
290 sc->sc_flags |= WI_FLAGS_HAS_MOR;
291 if (sc->sc_sta_firmware_ver >= 60006)
292 ic->ic_flags |= IEEE80211_F_HASIBSS;
293 sc->sc_ibss_port = 1;
294 break;
295
296 case WI_INTERSIL:
297 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
298 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
299 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
300 if (sc->sc_sta_firmware_ver >= 800) {
301 ic->ic_flags |= IEEE80211_F_HASHOSTAP;
302 ic->ic_flags |= IEEE80211_F_HASIBSS;
303 }
304 sc->sc_ibss_port = 0;
305 break;
306
307 case WI_SYMBOL:
308 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
309 if (sc->sc_sta_firmware_ver >= 20000)
310 ic->ic_flags |= IEEE80211_F_HASIBSS;
311 sc->sc_ibss_port = 4;
312 break;
313 }
314
315 /*
316 * Find out if we support WEP on this card.
317 */
318 buflen = sizeof(val);
319 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
320 val != htole16(0))
321 ic->ic_flags |= IEEE80211_F_HASWEP;
322
323 /* Find supported rates. */
324 buflen = sizeof(ratebuf);
325 if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
326 nrate = le16toh(*(u_int16_t *)ratebuf);
327 if (nrate > IEEE80211_RATE_SIZE)
328 nrate = IEEE80211_RATE_SIZE;
329 memcpy(ic->ic_sup_rates, ratebuf + 2, nrate);
330 }
331 buflen = sizeof(val);
332
333 sc->sc_max_datalen = 2304;
334 sc->sc_rts_thresh = 2347;
335 sc->sc_frag_thresh = 2346;
336 sc->sc_system_scale = 1;
337 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
338 sc->sc_roaming_mode = 1;
339
340 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
341 printf("%s: supported rates: ", sc->sc_dev.dv_xname);
342 #define ADD(s, o) ifmedia_add(&sc->sc_media, \
343 IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL)
344 ADD(IFM_AUTO, 0);
345 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
346 ADD(IFM_AUTO, IFM_IEEE80211_HOSTAP);
347 if (ic->ic_flags & IEEE80211_F_HASIBSS)
348 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC);
349 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC | IFM_FLAG0);
350 for (i = 0; i < nrate; i++) {
351 r = ic->ic_sup_rates[i];
352 mword = ieee80211_rate2media(r, IEEE80211_T_DS);
353 if (mword == 0)
354 continue;
355 printf("%s%d%sMbps", (i != 0 ? " " : ""),
356 (r & IEEE80211_RATE_VAL) / 2, ((r & 0x1) != 0 ? ".5" : ""));
357 ADD(mword, 0);
358 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
359 ADD(mword, IFM_IEEE80211_HOSTAP);
360 if (ic->ic_flags & IEEE80211_F_HASIBSS)
361 ADD(mword, IFM_IEEE80211_ADHOC);
362 ADD(mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
363 }
364 printf("\n");
365 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
366 #undef ADD
367
368 /*
369 * Call MI attach routines.
370 */
371
372 if_attach(ifp);
373 ieee80211_ifattach(ifp);
374
375 /* Attach is successful. */
376 sc->sc_attached = 1;
377
378 splx(s);
379 return 0;
380 }
381
382 int
383 wi_detach(struct wi_softc *sc)
384 {
385 struct ifnet *ifp = &sc->sc_ic.ic_if;
386 int s;
387
388 if (!sc->sc_attached)
389 return 0;
390
391 s = splnet();
392
393 /* Delete all remaining media. */
394 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
395
396 ieee80211_ifdetach(ifp);
397 if_detach(ifp);
398 if (sc->sc_enabled) {
399 if (sc->sc_disable)
400 (*sc->sc_disable)(sc);
401 sc->sc_enabled = 0;
402 }
403 splx(s);
404 return 0;
405 }
406
407 int
408 wi_activate(struct device *self, enum devact act)
409 {
410 struct wi_softc *sc = (struct wi_softc *)self;
411 int rv = 0, s;
412
413 s = splnet();
414 switch (act) {
415 case DVACT_ACTIVATE:
416 rv = EOPNOTSUPP;
417 break;
418
419 case DVACT_DEACTIVATE:
420 if_deactivate(&sc->sc_ic.ic_if);
421 break;
422 }
423 splx(s);
424 return rv;
425 }
426
427 void
428 wi_power(struct wi_softc *sc, int why)
429 {
430 struct ifnet *ifp = &sc->sc_ic.ic_if;
431 int s;
432
433 s = splnet();
434 switch (why) {
435 case PWR_SUSPEND:
436 case PWR_STANDBY:
437 wi_stop(ifp, 1);
438 break;
439 case PWR_RESUME:
440 if (ifp->if_flags & IFF_UP) {
441 wi_init(ifp);
442 (void)wi_intr(sc);
443 }
444 break;
445 case PWR_SOFTSUSPEND:
446 case PWR_SOFTSTANDBY:
447 case PWR_SOFTRESUME:
448 break;
449 }
450 splx(s);
451 }
452
453 void
454 wi_shutdown(struct wi_softc *sc)
455 {
456 struct ifnet *ifp = &sc->sc_ic.ic_if;
457
458 if (sc->sc_attached)
459 wi_stop(ifp, 1);
460 }
461
462 int
463 wi_intr(void *arg)
464 {
465 int i;
466 struct wi_softc *sc = arg;
467 struct ifnet *ifp = &sc->sc_ic.ic_if;
468 u_int16_t status, raw_status, last_status;
469
470 if (sc->sc_enabled == 0 ||
471 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
472 (ifp->if_flags & IFF_RUNNING) == 0)
473 return 0;
474
475 if ((ifp->if_flags & IFF_UP) == 0) {
476 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
477 CSR_WRITE_2(sc, WI_INT_EN, 0);
478 return 1;
479 }
480
481 /* maximum 10 loops per interrupt */
482 last_status = 0;
483 for (i = 0; i < 10; i++) {
484 /*
485 * Only believe a status bit when we enter wi_intr, or when
486 * the bit was "off" the last time through the loop. This is
487 * my strategy to avoid racing the hardware/firmware if I
488 * can re-read the event status register more quickly than
489 * it is updated.
490 */
491 raw_status = CSR_READ_2(sc, WI_EVENT_STAT);
492 status = raw_status & ~last_status;
493 if ((status & WI_INTRS) == 0)
494 break;
495 last_status = raw_status;
496
497 if (status & WI_EV_RX)
498 wi_rx_intr(sc);
499
500 if (status & WI_EV_ALLOC)
501 wi_tx_intr(sc);
502
503 if (status & WI_EV_INFO)
504 wi_info_intr(sc);
505
506 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
507 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
508 !IFQ_IS_EMPTY(&ifp->if_snd))
509 wi_start(ifp);
510 }
511
512 return 1;
513 }
514
515 static int
516 wi_init(struct ifnet *ifp)
517 {
518 struct wi_softc *sc = ifp->if_softc;
519 struct ieee80211com *ic = &sc->sc_ic;
520 struct wi_joinreq join;
521 int i;
522 int error = 0, wasenabled;
523
524 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
525 wasenabled = sc->sc_enabled;
526 if (!sc->sc_enabled) {
527 if ((error = (*sc->sc_enable)(sc)) != 0)
528 goto out;
529 sc->sc_enabled = 1;
530 } else
531 wi_stop(ifp, 0);
532
533 /* Symbol firmware cannot be initialized more than once */
534 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
535 if ((error = wi_reset(sc)) != 0)
536 goto out;
537 }
538
539 /* common 802.11 configuration */
540 ic->ic_flags &= ~IEEE80211_F_IBSSON;
541 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
542 switch (ic->ic_opmode) {
543 case IEEE80211_M_STA:
544 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
545 break;
546 case IEEE80211_M_IBSS:
547 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
548 ic->ic_flags |= IEEE80211_F_IBSSON;
549 break;
550 case IEEE80211_M_AHDEMO:
551 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
552 break;
553 case IEEE80211_M_HOSTAP:
554 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
555 break;
556 }
557
558 /* Intersil interprets this RID as joining ESS even in IBSS mode */
559 if (sc->sc_firmware_type == WI_LUCENT &&
560 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
561 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
562 else
563 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
564 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
565 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
566 ic->ic_des_esslen);
567 wi_write_val(sc, WI_RID_OWN_CHNL, ic->ic_ibss_chan);
568 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
569 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
570 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
571 wi_write_val(sc, WI_RID_PM_ENABLED,
572 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
573
574 /* not yet common 802.11 configuration */
575 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
576 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
577 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
578 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
579
580 /* driver specific 802.11 configuration */
581 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
582 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
583 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
584 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
585 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
586 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
587 wi_write_txrate(sc);
588 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
589
590 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
591 sc->sc_firmware_type == WI_INTERSIL) {
592 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
593 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
594 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
595 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
596 }
597
598 /*
599 * Initialize promisc mode.
600 * Being in the Host-AP mode causes a great
601 * deal of pain if primisc mode is set.
602 * Therefore we avoid confusing the firmware
603 * and always reset promisc mode in Host-AP
604 * mode. Host-AP sees all the packets anyway.
605 */
606 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
607 (ifp->if_flags & IFF_PROMISC) != 0) {
608 wi_write_val(sc, WI_RID_PROMISC, 1);
609 } else {
610 wi_write_val(sc, WI_RID_PROMISC, 0);
611 }
612
613 /* Configure WEP. */
614 if (ic->ic_flags & IEEE80211_F_HASWEP)
615 wi_write_wep(sc);
616
617 /* Set multicast filter. */
618 wi_write_multi(sc);
619
620 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
621 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
622 if (sc->sc_firmware_type == WI_SYMBOL)
623 sc->sc_buflen = 1585; /* XXX */
624 for (i = 0; i < WI_NTXBUF; i++) {
625 error = wi_alloc_fid(sc, sc->sc_buflen,
626 &sc->sc_txd[i].d_fid);
627 if (error) {
628 printf("%s: tx buffer allocation failed\n",
629 sc->sc_dev.dv_xname);
630 goto out;
631 }
632 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
633 sc->sc_txd[i].d_fid));
634 sc->sc_txd[i].d_len = 0;
635 }
636 }
637 sc->sc_txcur = sc->sc_txnext = 0;
638
639 /* Enable port 0 */
640 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
641 ifp->if_flags |= IFF_RUNNING;
642 ifp->if_flags &= ~IFF_OACTIVE;
643 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
644 ic->ic_opmode == IEEE80211_M_HOSTAP)
645 wi_newstate(sc, IEEE80211_S_RUN);
646
647 /* Enable interrupts */
648 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
649
650 if (!wasenabled &&
651 ic->ic_opmode == IEEE80211_M_HOSTAP &&
652 sc->sc_firmware_type == WI_INTERSIL) {
653 /* XXX: some card need to be re-enabled for hostap */
654 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
655 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
656 }
657
658 if (ic->ic_opmode == IEEE80211_M_STA &&
659 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
660 ic->ic_des_chan != IEEE80211_CHAN_ANY)) {
661 memset(&join, 0, sizeof(join));
662 if (ic->ic_flags & IEEE80211_F_DESBSSID)
663 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
664 if (ic->ic_des_chan != IEEE80211_CHAN_ANY)
665 join.wi_chan = htole16(ic->ic_des_chan);
666 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
667 }
668
669 out:
670 if (error) {
671 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
672 wi_stop(ifp, 0);
673 }
674 DPRINTF(("wi_init: return %d\n", error));
675 return error;
676 }
677
678 static void
679 wi_stop(struct ifnet *ifp, int disable)
680 {
681 struct wi_softc *sc = ifp->if_softc;
682
683 DPRINTF(("wi_stop: disable %d\n", disable));
684 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
685 if (sc->sc_enabled) {
686 CSR_WRITE_2(sc, WI_INT_EN, 0);
687 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
688 if (disable) {
689 if (sc->sc_disable)
690 (*sc->sc_disable)(sc);
691 sc->sc_enabled = 0;
692 }
693 }
694
695 sc->sc_tx_timer = 0;
696 sc->sc_scan_timer = 0;
697 sc->sc_naps = 0;
698 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
699 ifp->if_timer = 0;
700 }
701
702 static void
703 wi_start(struct ifnet *ifp)
704 {
705 struct wi_softc *sc = ifp->if_softc;
706 struct ieee80211com *ic = &sc->sc_ic;
707 struct ieee80211_node *ni;
708 struct ieee80211_frame *wh;
709 struct mbuf *m0, *m;
710 struct wi_frame frmhdr;
711 int cur, fid, off;
712
713 if (ifp->if_flags & IFF_OACTIVE)
714 return;
715 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
716 return;
717
718 memset(&frmhdr, 0, sizeof(frmhdr));
719 cur = sc->sc_txnext;
720 for (;;) {
721 IF_POLL(&ic->ic_mgtq, m0);
722 if (m0 != NULL) {
723 if (sc->sc_txd[cur].d_len != 0) {
724 ifp->if_flags |= IFF_OACTIVE;
725 break;
726 }
727 IF_DEQUEUE(&ic->ic_mgtq, m0);
728 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
729 (caddr_t)&frmhdr.wi_ehdr);
730 frmhdr.wi_ehdr.ether_type = 0;
731 wh = mtod(m0, struct ieee80211_frame *);
732 } else {
733 if (ic->ic_state != IEEE80211_S_RUN)
734 break;
735 IFQ_POLL(&ifp->if_snd, m0);
736 if (m0 == NULL)
737 break;
738 if (sc->sc_txd[cur].d_len != 0) {
739 ifp->if_flags |= IFF_OACTIVE;
740 break;
741 }
742 IFQ_DEQUEUE(&ifp->if_snd, m0);
743 ifp->if_opackets++;
744 m_copydata(m0, 0, ETHER_HDR_LEN,
745 (caddr_t)&frmhdr.wi_ehdr);
746 #if NBPFILTER > 0
747 if (ifp->if_bpf)
748 bpf_mtap(ifp->if_bpf, m0);
749 #endif
750
751 if ((m0 = ieee80211_encap(ifp, m0)) == NULL) {
752 ifp->if_oerrors++;
753 continue;
754 }
755 wh = mtod(m0, struct ieee80211_frame *);
756 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
757 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
758 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
759 IEEE80211_FC0_TYPE_DATA &&
760 ((ni = ieee80211_find_node(ic, wh->i_addr1)) ==
761 NULL || ni->ni_associd == 0)) {
762 m_freem(m0);
763 ifp->if_oerrors++;
764 continue;
765 }
766 if (ic->ic_flags & IEEE80211_F_WEPON)
767 wh->i_fc[1] |= IEEE80211_FC1_WEP;
768
769 }
770 #if NBPFILTER > 0
771 if (ic->ic_rawbpf)
772 bpf_mtap(ic->ic_rawbpf, m0);
773 #endif
774 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11);
775 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
776 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
777 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
778 ifp->if_oerrors++;
779 continue;
780 }
781 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
782 }
783 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
784 (caddr_t)&frmhdr.wi_whdr);
785 m_adj(m0, sizeof(struct ieee80211_frame));
786 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
787 #if NBPFILTER > 0
788 if (sc->sc_drvbpf) {
789 struct mbuf mb;
790
791 M_COPY_PKTHDR(&mb, m0);
792 mb.m_data = (caddr_t)&frmhdr;
793 mb.m_len = sizeof(frmhdr);
794 mb.m_next = m0;
795 mb.m_pkthdr.len += mb.m_len;
796 bpf_mtap(sc->sc_drvbpf, &mb);
797 }
798 #endif
799 fid = sc->sc_txd[cur].d_fid;
800 wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr));
801 off = sizeof(frmhdr);
802 for (m = m0; m != NULL; m = m->m_next) {
803 if (m->m_len == 0)
804 continue;
805 wi_write_bap(sc, fid, off, m->m_data, m->m_len);
806 off += m->m_len;
807 }
808 m_freem(m0);
809 sc->sc_txd[cur].d_len = off;
810 if (sc->sc_txcur == cur) {
811 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
812 printf("%s: xmit failed\n",
813 sc->sc_dev.dv_xname);
814 sc->sc_txd[cur].d_len = 0;
815 continue;
816 }
817 sc->sc_tx_timer = 5;
818 ifp->if_timer = 1;
819 }
820 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF;
821 }
822 }
823
824
825 static int
826 wi_reset(struct wi_softc *sc)
827 {
828 int i, error;
829
830 DPRINTF(("wi_reset\n"));
831 error = 0;
832 for (i = 0; i < 5; i++) {
833 DELAY(20*1000); /* XXX: way too long! */
834 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
835 break;
836 }
837 if (error) {
838 printf("%s: init failed\n", sc->sc_dev.dv_xname);
839 return error;
840 }
841 CSR_WRITE_2(sc, WI_INT_EN, 0);
842 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
843
844 /* Calibrate timer. */
845 wi_write_val(sc, WI_RID_TICK_TIME, 0);
846 return 0;
847 }
848
849 static void
850 wi_watchdog(struct ifnet *ifp)
851 {
852 struct wi_softc *sc = ifp->if_softc;
853
854 ifp->if_timer = 0;
855 if (!sc->sc_enabled)
856 return;
857
858 if (sc->sc_tx_timer) {
859 if (--sc->sc_tx_timer == 0) {
860 printf("%s: device timeout\n", ifp->if_xname);
861 ifp->if_oerrors++;
862 wi_init(ifp);
863 return;
864 }
865 ifp->if_timer = 1;
866 }
867
868 if (sc->sc_scan_timer) {
869 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
870 sc->sc_firmware_type == WI_INTERSIL) {
871 DPRINTF(("wi_watchdog: inquire scan\n"));
872 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
873 }
874 if (sc->sc_scan_timer)
875 ifp->if_timer = 1;
876 }
877
878 /* TODO: rate control */
879 ieee80211_watchdog(ifp);
880 }
881
882 static int
883 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
884 {
885 struct wi_softc *sc = ifp->if_softc;
886 struct ieee80211com *ic = &sc->sc_ic;
887 struct ifreq *ifr = (struct ifreq *)data;
888 int s, error = 0;
889
890 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
891 return ENXIO;
892
893 s = splnet();
894
895 switch (cmd) {
896 case SIOCSIFFLAGS:
897 if (ifp->if_flags & IFF_UP) {
898 if (sc->sc_enabled) {
899 /*
900 * To avoid rescanning another access point,
901 * do not call wi_init() here. Instead,
902 * only reflect promisc mode settings.
903 */
904 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
905 (ifp->if_flags & IFF_PROMISC) != 0)
906 wi_write_val(sc, WI_RID_PROMISC, 1);
907 else
908 wi_write_val(sc, WI_RID_PROMISC, 0);
909 } else
910 error = wi_init(ifp);
911 } else if (sc->sc_enabled)
912 wi_stop(ifp, 1);
913 break;
914 case SIOCSIFMEDIA:
915 case SIOCGIFMEDIA:
916 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
917 break;
918 case SIOCADDMULTI:
919 case SIOCDELMULTI:
920 error = (cmd == SIOCADDMULTI) ?
921 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
922 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
923 if (error == ENETRESET) {
924 if (sc->sc_enabled) {
925 /* do not rescan */
926 error = wi_write_multi(sc);
927 } else
928 error = 0;
929 }
930 break;
931 case SIOCGIFGENERIC:
932 error = wi_get_cfg(ifp, cmd, data);
933 break;
934 case SIOCSIFGENERIC:
935 error = suser(curproc->p_ucred, &curproc->p_acflag);
936 if (error)
937 break;
938 error = wi_set_cfg(ifp, cmd, data);
939 if (error == ENETRESET) {
940 if (sc->sc_enabled)
941 error = wi_init(ifp);
942 else
943 error = 0;
944 }
945 break;
946 default:
947 error = ieee80211_ioctl(ifp, cmd, data);
948 if (error == ENETRESET) {
949 if (sc->sc_enabled)
950 error = wi_init(ifp);
951 else
952 error = 0;
953 }
954 break;
955 }
956 splx(s);
957 return error;
958 }
959
960 static int
961 wi_media_change(struct ifnet *ifp)
962 {
963 struct wi_softc *sc = ifp->if_softc;
964 struct ieee80211com *ic = &sc->sc_ic;
965 struct ifmedia_entry *ime;
966 enum ieee80211_opmode newmode;
967 int i, rate, error = 0;
968
969 ime = sc->sc_media.ifm_cur;
970 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
971 i = -1;
972 } else {
973 rate = ieee80211_media2rate(ime->ifm_media, IEEE80211_T_DS);
974 if (rate == 0)
975 return EINVAL;
976 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
977 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL) == rate)
978 break;
979 }
980 if (i == IEEE80211_RATE_SIZE)
981 return EINVAL;
982 }
983 if (ic->ic_fixed_rate != i) {
984 ic->ic_fixed_rate = i;
985 error = ENETRESET;
986 }
987
988 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
989 (ime->ifm_media & IFM_FLAG0))
990 newmode = IEEE80211_M_AHDEMO;
991 else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
992 newmode = IEEE80211_M_IBSS;
993 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
994 newmode = IEEE80211_M_HOSTAP;
995 else
996 newmode = IEEE80211_M_STA;
997 if (ic->ic_opmode != newmode) {
998 ic->ic_opmode = newmode;
999 error = ENETRESET;
1000 }
1001 if (error == ENETRESET) {
1002 if (sc->sc_enabled)
1003 error = wi_init(ifp);
1004 else
1005 error = 0;
1006 }
1007 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
1008
1009 return error;
1010 }
1011
1012 static void
1013 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1014 {
1015 struct wi_softc *sc = ifp->if_softc;
1016 struct ieee80211com *ic = &sc->sc_ic;
1017 u_int16_t val;
1018 int rate, len;
1019
1020 if (sc->sc_enabled == 0) {
1021 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1022 imr->ifm_status = 0;
1023 return;
1024 }
1025
1026 imr->ifm_status = IFM_AVALID;
1027 imr->ifm_active = IFM_IEEE80211;
1028 if (ic->ic_state == IEEE80211_S_RUN &&
1029 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1030 imr->ifm_status |= IFM_ACTIVE;
1031 len = sizeof(val);
1032 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1033 rate = 0;
1034 else {
1035 /* convert to 802.11 rate */
1036 rate = val * 2;
1037 if (sc->sc_firmware_type == WI_LUCENT) {
1038 if (rate == 10)
1039 rate = 11; /* 5.5Mbps */
1040 } else {
1041 if (rate == 4*2)
1042 rate = 11; /* 5.5Mbps */
1043 else if (rate == 8*2)
1044 rate = 22; /* 11Mbps */
1045 }
1046 }
1047 imr->ifm_active |= ieee80211_rate2media(rate, IEEE80211_T_DS);
1048 switch (ic->ic_opmode) {
1049 case IEEE80211_M_STA:
1050 break;
1051 case IEEE80211_M_IBSS:
1052 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1053 break;
1054 case IEEE80211_M_AHDEMO:
1055 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1056 break;
1057 case IEEE80211_M_HOSTAP:
1058 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1059 break;
1060 }
1061 }
1062
1063 static void
1064 wi_rx_intr(struct wi_softc *sc)
1065 {
1066 struct ieee80211com *ic = &sc->sc_ic;
1067 struct ifnet *ifp = &ic->ic_if;
1068 struct wi_frame frmhdr;
1069 struct mbuf *m;
1070 struct ieee80211_frame *wh;
1071 int fid, len, off, rssi;
1072 u_int16_t status;
1073 u_int32_t rstamp;
1074
1075 fid = CSR_READ_2(sc, WI_RX_FID);
1076
1077 /* First read in the frame header */
1078 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1079 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1080 ifp->if_ierrors++;
1081 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1082 return;
1083 }
1084
1085 /*
1086 * Drop undecryptable or packets with receive errors here
1087 */
1088 status = le16toh(frmhdr.wi_status);
1089 if (status & WI_STAT_ERRSTAT) {
1090 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1091 ifp->if_ierrors++;
1092 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1093 return;
1094 }
1095 rssi = frmhdr.wi_rx_signal;
1096 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1097 le16toh(frmhdr.wi_rx_tstamp1);
1098
1099 len = le16toh(frmhdr.wi_dat_len);
1100 off = ALIGN(sizeof(struct ieee80211_frame));
1101
1102 MGETHDR(m, M_DONTWAIT, MT_DATA);
1103 if (m == NULL) {
1104 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1105 ifp->if_ierrors++;
1106 DPRINTF(("wi_rx_intr: MGET failed\n"));
1107 return;
1108 }
1109 if (off + len > MHLEN) {
1110 MCLGET(m, M_DONTWAIT);
1111 if ((m->m_flags & M_EXT) == 0) {
1112 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1113 m_freem(m);
1114 ifp->if_ierrors++;
1115 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1116 return;
1117 }
1118 }
1119
1120 m->m_data += off - sizeof(struct ieee80211_frame);
1121 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1122 wi_read_bap(sc, fid, sizeof(frmhdr),
1123 m->m_data + sizeof(struct ieee80211_frame), len);
1124 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1125 m->m_pkthdr.rcvif = ifp;
1126
1127 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1128
1129 #if NBPFILTER > 0
1130 if (sc->sc_drvbpf) {
1131 struct mbuf mb;
1132
1133 M_COPY_PKTHDR(&mb, m);
1134 mb.m_data = (caddr_t)&frmhdr;
1135 mb.m_len = sizeof(frmhdr);
1136 mb.m_next = m;
1137 mb.m_pkthdr.len += mb.m_len;
1138 bpf_mtap(sc->sc_drvbpf, &mb);
1139 }
1140 #endif
1141 wh = mtod(m, struct ieee80211_frame *);
1142 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1143 /*
1144 * WEP is decrypted by hardware. Clear WEP bit
1145 * header for ieee80211_input().
1146 */
1147 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1148 }
1149 ieee80211_input(ifp, m, rssi, rstamp);
1150 }
1151
1152 static void
1153 wi_tx_intr(struct wi_softc *sc)
1154 {
1155 struct ieee80211com *ic = &sc->sc_ic;
1156 struct ifnet *ifp = &ic->ic_if;
1157 int fid, cur;
1158
1159 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1160 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1161
1162 cur = sc->sc_txcur;
1163 if (sc->sc_txd[cur].d_fid != fid) {
1164 printf("%s: bad alloc %x != %x, cur %d nxt %d\n",
1165 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1166 sc->sc_txnext);
1167 return;
1168 }
1169 sc->sc_tx_timer = 0;
1170 sc->sc_txd[cur].d_len = 0;
1171 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF;
1172 if (sc->sc_txd[cur].d_len == 0)
1173 ifp->if_flags &= ~IFF_OACTIVE;
1174 else {
1175 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1176 0, 0)) {
1177 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1178 sc->sc_txd[cur].d_len = 0;
1179 } else {
1180 sc->sc_tx_timer = 5;
1181 ifp->if_timer = 1;
1182 }
1183 }
1184 }
1185
1186 static void
1187 wi_info_intr(struct wi_softc *sc)
1188 {
1189 struct ieee80211com *ic = &sc->sc_ic;
1190 struct ifnet *ifp = &ic->ic_if;
1191 int i, fid, len, off;
1192 u_int16_t ltbuf[2];
1193 u_int16_t stat;
1194 u_int32_t *ptr;
1195
1196 fid = CSR_READ_2(sc, WI_INFO_FID);
1197 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1198
1199 switch (le16toh(ltbuf[1])) {
1200
1201 case WI_INFO_LINK_STAT:
1202 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1203 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1204 switch (le16toh(stat)) {
1205 case CONNECTED:
1206 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1207 if (ic->ic_state == IEEE80211_S_RUN &&
1208 ic->ic_opmode != IEEE80211_M_IBSS)
1209 break;
1210 /* FALLTHROUGH */
1211 case AP_CHANGE:
1212 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
1213 break;
1214 case AP_IN_RANGE:
1215 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1216 break;
1217 case AP_OUT_OF_RANGE:
1218 if (sc->sc_firmware_type == WI_SYMBOL &&
1219 sc->sc_scan_timer > 0) {
1220 if (wi_cmd(sc, WI_CMD_INQUIRE,
1221 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1222 sc->sc_scan_timer = 0;
1223 break;
1224 }
1225 if (ic->ic_opmode == IEEE80211_M_STA)
1226 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1227 break;
1228 case DISCONNECTED:
1229 case ASSOC_FAILED:
1230 if (ic->ic_opmode == IEEE80211_M_STA)
1231 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
1232 break;
1233 }
1234 break;
1235
1236 case WI_INFO_COUNTERS:
1237 /* some card versions have a larger stats structure */
1238 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1239 ptr = (u_int32_t *)&sc->sc_stats;
1240 off = sizeof(ltbuf);
1241 for (i = 0; i < len; i++, off += 2, ptr++) {
1242 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1243 #ifdef WI_HERMES_STATS_WAR
1244 if (stat & 0xf000)
1245 stat = ~stat;
1246 #endif
1247 *ptr += stat;
1248 }
1249 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1250 sc->sc_stats.wi_tx_multi_retries +
1251 sc->sc_stats.wi_tx_retry_limit;
1252 break;
1253
1254 case WI_INFO_SCAN_RESULTS:
1255 case WI_INFO_HOST_SCAN_RESULTS:
1256 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1257 break;
1258
1259 default:
1260 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1261 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1262 break;
1263 }
1264 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1265 }
1266
1267 /*
1268 * Allocate a region of memory inside the NIC and zero
1269 * it out.
1270 */
1271 static int
1272 wi_write_multi(struct wi_softc *sc)
1273 {
1274 struct ifnet *ifp = &sc->sc_ic.ic_if;
1275 int n = 0;
1276 struct wi_mcast mlist;
1277 struct ether_multi *enm;
1278 struct ether_multistep estep;
1279
1280 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1281 allmulti:
1282 ifp->if_flags |= IFF_ALLMULTI;
1283 memset(&mlist, 0, sizeof(mlist));
1284 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1285 sizeof(mlist));
1286 }
1287
1288 n = 0;
1289 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1290 while (enm != NULL) {
1291 /* Punt on ranges or too many multicast addresses. */
1292 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1293 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1294 goto allmulti;
1295
1296 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1297 n++;
1298 ETHER_NEXT_MULTI(estep, enm);
1299 }
1300 ifp->if_flags &= ~IFF_ALLMULTI;
1301 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1302 IEEE80211_ADDR_LEN * n);
1303 }
1304
1305
1306 static void
1307 wi_read_nicid(sc)
1308 struct wi_softc *sc;
1309 {
1310 struct wi_card_ident *id;
1311 char *p;
1312 int len;
1313 u_int16_t ver[4];
1314
1315 /* getting chip identity */
1316 memset(ver, 0, sizeof(ver));
1317 len = sizeof(ver);
1318 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1319 printf("%s: using ", sc->sc_dev.dv_xname);
1320 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1321
1322 sc->sc_firmware_type = WI_NOTYPE;
1323 for (id = wi_card_ident; id->card_name != NULL; id++) {
1324 if (le16toh(ver[0]) == id->card_id) {
1325 printf("%s", id->card_name);
1326 sc->sc_firmware_type = id->firm_type;
1327 break;
1328 }
1329 }
1330 if (sc->sc_firmware_type == WI_NOTYPE) {
1331 if (le16toh(ver[0]) & 0x8000) {
1332 printf("Unknown PRISM2 chip");
1333 sc->sc_firmware_type = WI_INTERSIL;
1334 } else {
1335 printf("Unknown Lucent chip");
1336 sc->sc_firmware_type = WI_LUCENT;
1337 }
1338 }
1339
1340 /* get primary firmware version (Only Prism chips) */
1341 if (sc->sc_firmware_type != WI_LUCENT) {
1342 memset(ver, 0, sizeof(ver));
1343 len = sizeof(ver);
1344 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1345 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1346 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1347 DPRINTF2(("wi_read_nicid: PRI_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1348 }
1349
1350 /* get station firmware version */
1351 memset(ver, 0, sizeof(ver));
1352 len = sizeof(ver);
1353 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1354 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1355 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1356 DPRINTF2(("wi_read_nicid: STA_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1357 if (sc->sc_firmware_type == WI_INTERSIL &&
1358 (sc->sc_sta_firmware_ver == 10102 ||
1359 sc->sc_sta_firmware_ver == 20102)) {
1360 char ident[12];
1361 memset(ident, 0, sizeof(ident));
1362 len = sizeof(ident);
1363 /* value should be the format like "V2.00-11" */
1364 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1365 *(p = (char *)ident) >= 'A' &&
1366 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1367 sc->sc_firmware_type = WI_SYMBOL;
1368 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1369 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1370 (p[6] - '0') * 10 + (p[7] - '0');
1371 }
1372 DPRINTF2(("wi_read_nicid: SYMBOL_ID: %x %x %x %x\n", le16toh(ident[0]), le16toh(ident[1]), le16toh(ident[2]), le16toh(ident[3])));
1373 }
1374
1375 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1376 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1377 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1378 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1379 printf("Primary (%u.%u.%u), ",
1380 sc->sc_pri_firmware_ver / 10000,
1381 (sc->sc_pri_firmware_ver % 10000) / 100,
1382 sc->sc_pri_firmware_ver % 100);
1383 printf("Station (%u.%u.%u)\n",
1384 sc->sc_sta_firmware_ver / 10000,
1385 (sc->sc_sta_firmware_ver % 10000) / 100,
1386 sc->sc_sta_firmware_ver % 100);
1387 }
1388
1389 static int
1390 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1391 {
1392 struct wi_ssid ssid;
1393
1394 if (buflen > IEEE80211_NWID_LEN)
1395 return ENOBUFS;
1396 memset(&ssid, 0, sizeof(ssid));
1397 ssid.wi_len = htole16(buflen);
1398 memcpy(ssid.wi_ssid, buf, buflen);
1399 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
1400 }
1401
1402 static int
1403 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1404 {
1405 struct wi_softc *sc = ifp->if_softc;
1406 struct ieee80211com *ic = &sc->sc_ic;
1407 struct ifreq *ifr = (struct ifreq *)data;
1408 struct wi_req wreq;
1409 int len, n, error;
1410
1411 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1412 if (error)
1413 return error;
1414 len = (wreq.wi_len - 1) * 2;
1415 if (len < sizeof(u_int16_t))
1416 return ENOSPC;
1417 if (len > sizeof(wreq.wi_val))
1418 len = sizeof(wreq.wi_val);
1419
1420 switch (wreq.wi_type) {
1421
1422 case WI_RID_IFACE_STATS:
1423 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1424 if (len < sizeof(sc->sc_stats))
1425 error = ENOSPC;
1426 else
1427 len = sizeof(sc->sc_stats);
1428 break;
1429
1430 case WI_RID_ENCRYPTION:
1431 case WI_RID_TX_CRYPT_KEY:
1432 case WI_RID_DEFLT_CRYPT_KEYS:
1433 case WI_RID_TX_RATE:
1434 return ieee80211_cfgget(ifp, cmd, data);
1435
1436 case WI_RID_MICROWAVE_OVEN:
1437 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1438 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1439 &len);
1440 break;
1441 }
1442 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1443 len = sizeof(u_int16_t);
1444 break;
1445
1446 case WI_RID_ROAMING_MODE:
1447 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
1448 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1449 &len);
1450 break;
1451 }
1452 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
1453 len = sizeof(u_int16_t);
1454 break;
1455
1456 case WI_RID_SYSTEM_SCALE:
1457 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
1458 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1459 &len);
1460 break;
1461 }
1462 wreq.wi_val[0] = htole16(sc->sc_system_scale);
1463 len = sizeof(u_int16_t);
1464 break;
1465
1466 case WI_RID_FRAG_THRESH:
1467 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
1468 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1469 &len);
1470 break;
1471 }
1472 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
1473 len = sizeof(u_int16_t);
1474 break;
1475
1476 case WI_RID_READ_APS:
1477 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1478 return ieee80211_cfgget(ifp, cmd, data);
1479 if (sc->sc_scan_timer > 0) {
1480 error = EINPROGRESS;
1481 break;
1482 }
1483 n = sc->sc_naps;
1484 if (len < sizeof(n)) {
1485 error = ENOSPC;
1486 break;
1487 }
1488 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
1489 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
1490 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
1491 memcpy(wreq.wi_val, &n, sizeof(n));
1492 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
1493 sizeof(struct wi_apinfo) * n);
1494 break;
1495
1496 default:
1497 if (sc->sc_enabled) {
1498 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1499 &len);
1500 break;
1501 }
1502 switch (wreq.wi_type) {
1503 case WI_RID_MAX_DATALEN:
1504 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
1505 len = sizeof(u_int16_t);
1506 break;
1507 case WI_RID_RTS_THRESH:
1508 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
1509 len = sizeof(u_int16_t);
1510 break;
1511 case WI_RID_CNFAUTHMODE:
1512 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
1513 len = sizeof(u_int16_t);
1514 break;
1515 case WI_RID_NODENAME:
1516 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
1517 error = ENOSPC;
1518 break;
1519 }
1520 len = sc->sc_nodelen + sizeof(u_int16_t);
1521 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
1522 memcpy(&wreq.wi_val[1], sc->sc_nodename,
1523 sc->sc_nodelen);
1524 break;
1525 default:
1526 return ieee80211_cfgget(ifp, cmd, data);
1527 }
1528 break;
1529 }
1530 if (error)
1531 return error;
1532 wreq.wi_len = (len + 1) / 2 + 1;
1533 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
1534 }
1535
1536 static int
1537 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1538 {
1539 struct wi_softc *sc = ifp->if_softc;
1540 struct ieee80211com *ic = &sc->sc_ic;
1541 struct ifreq *ifr = (struct ifreq *)data;
1542 struct wi_req wreq;
1543 struct mbuf *m;
1544 int i, len, error;
1545
1546 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1547 if (error)
1548 return error;
1549 len = (wreq.wi_len - 1) * 2;
1550 switch (wreq.wi_type) {
1551 case WI_RID_NODENAME:
1552 if (le16toh(wreq.wi_val[0]) * 2 > len ||
1553 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
1554 error = ENOSPC;
1555 break;
1556 }
1557 if (sc->sc_enabled) {
1558 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1559 len);
1560 if (error)
1561 break;
1562 }
1563 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
1564 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
1565 break;
1566
1567 case WI_RID_MICROWAVE_OVEN:
1568 case WI_RID_ROAMING_MODE:
1569 case WI_RID_SYSTEM_SCALE:
1570 case WI_RID_FRAG_THRESH:
1571 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
1572 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
1573 break;
1574 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
1575 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
1576 break;
1577 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
1578 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
1579 break;
1580 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
1581 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
1582 break;
1583 /* FALLTHROUGH */
1584 case WI_RID_RTS_THRESH:
1585 case WI_RID_CNFAUTHMODE:
1586 case WI_RID_MAX_DATALEN:
1587 if (sc->sc_enabled) {
1588 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1589 sizeof(u_int16_t));
1590 if (error)
1591 break;
1592 }
1593 switch (wreq.wi_type) {
1594 case WI_RID_FRAG_THRESH:
1595 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
1596 break;
1597 case WI_RID_RTS_THRESH:
1598 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
1599 break;
1600 case WI_RID_MICROWAVE_OVEN:
1601 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
1602 break;
1603 case WI_RID_ROAMING_MODE:
1604 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
1605 break;
1606 case WI_RID_SYSTEM_SCALE:
1607 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
1608 break;
1609 case WI_RID_CNFAUTHMODE:
1610 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
1611 break;
1612 case WI_RID_MAX_DATALEN:
1613 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
1614 break;
1615 }
1616 break;
1617
1618 case WI_RID_TX_RATE:
1619 switch (le16toh(wreq.wi_val[0])) {
1620 case 3:
1621 ic->ic_fixed_rate = -1;
1622 break;
1623 default:
1624 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1625 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL)
1626 / 2 == le16toh(wreq.wi_val[0]))
1627 break;
1628 }
1629 if (i == IEEE80211_RATE_SIZE)
1630 return EINVAL;
1631 ic->ic_fixed_rate = i;
1632 }
1633 if (sc->sc_enabled)
1634 error = wi_write_txrate(sc);
1635 break;
1636
1637 case WI_RID_SCAN_APS:
1638 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
1639 error = wi_scan_ap(sc);
1640 break;
1641
1642 case WI_RID_MGMT_XMIT:
1643 if (!sc->sc_enabled) {
1644 error = ENETDOWN;
1645 break;
1646 }
1647 if (ic->ic_mgtq.ifq_len > 5) {
1648 error = EAGAIN;
1649 break;
1650 }
1651 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
1652 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
1653 if (m == NULL) {
1654 error = ENOMEM;
1655 break;
1656 }
1657 IF_ENQUEUE(&ic->ic_mgtq, m);
1658 break;
1659
1660 default:
1661 if (sc->sc_enabled) {
1662 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1663 len);
1664 if (error)
1665 break;
1666 }
1667 error = ieee80211_cfgset(ifp, cmd, data);
1668 break;
1669 }
1670 return error;
1671 }
1672
1673 static int
1674 wi_write_txrate(struct wi_softc *sc)
1675 {
1676 struct ieee80211com *ic = &sc->sc_ic;
1677 int i;
1678 u_int16_t rate;
1679
1680 if (ic->ic_fixed_rate < 0)
1681 rate = 0; /* auto */
1682 else
1683 rate = (ic->ic_sup_rates[ic->ic_fixed_rate] &
1684 IEEE80211_RATE_VAL) / 2;
1685
1686 /* rate: 0, 1, 2, 5, 11 */
1687
1688 switch (sc->sc_firmware_type) {
1689 case WI_LUCENT:
1690 if (rate == 0)
1691 rate = 3; /* auto */
1692 break;
1693 default:
1694 /* Choose a bit according to this table.
1695 *
1696 * bit | data rate
1697 * ----+-------------------
1698 * 0 | 1Mbps
1699 * 1 | 2Mbps
1700 * 2 | 5.5Mbps
1701 * 3 | 11Mbps
1702 */
1703 for (i = 8; i > 0; i >>= 1) {
1704 if (rate >= i)
1705 break;
1706 }
1707 if (i == 0)
1708 rate = 0xf; /* auto */
1709 else
1710 rate = i;
1711 break;
1712 }
1713 return wi_write_val(sc, WI_RID_TX_RATE, rate);
1714 }
1715
1716 static int
1717 wi_write_wep(struct wi_softc *sc)
1718 {
1719 struct ieee80211com *ic = &sc->sc_ic;
1720 int error = 0;
1721 int i, keylen;
1722 u_int16_t val;
1723 struct wi_key wkey[IEEE80211_WEP_NKID];
1724
1725 switch (sc->sc_firmware_type) {
1726 case WI_LUCENT:
1727 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
1728 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
1729 if (error)
1730 break;
1731 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
1732 if (error)
1733 break;
1734 memset(wkey, 0, sizeof(wkey));
1735 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1736 keylen = ic->ic_nw_keys[i].wk_len;
1737 wkey[i].wi_keylen = htole16(keylen);
1738 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
1739 keylen);
1740 }
1741 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
1742 wkey, sizeof(wkey));
1743 break;
1744
1745 case WI_INTERSIL:
1746 case WI_SYMBOL:
1747 if (ic->ic_flags & IEEE80211_F_WEPON) {
1748 /*
1749 * ONLY HWB3163 EVAL-CARD Firmware version
1750 * less than 0.8 variant2
1751 *
1752 * If promiscuous mode disable, Prism2 chip
1753 * does not work with WEP .
1754 * It is under investigation for details.
1755 * (ichiro (at) netbsd.org)
1756 */
1757 if (sc->sc_firmware_type == WI_INTERSIL &&
1758 sc->sc_sta_firmware_ver < 802 ) {
1759 /* firm ver < 0.8 variant 2 */
1760 wi_write_val(sc, WI_RID_PROMISC, 1);
1761 }
1762 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1763 sc->sc_cnfauthmode);
1764 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
1765 /*
1766 * Encryption firmware has a bug for HostAP mode.
1767 */
1768 if (sc->sc_firmware_type == WI_INTERSIL &&
1769 ic->ic_opmode == IEEE80211_M_HOSTAP)
1770 val |= HOST_ENCRYPT;
1771 } else {
1772 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1773 IEEE80211_AUTH_OPEN);
1774 val = HOST_ENCRYPT | HOST_DECRYPT;
1775 }
1776 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
1777 if (error)
1778 break;
1779 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
1780 ic->ic_wep_txkey);
1781 if (error)
1782 break;
1783 /*
1784 * It seems that the firmware accept 104bit key only if
1785 * all the keys have 104bit length. We get the length of
1786 * the transmit key and use it for all other keys.
1787 * Perhaps we should use software WEP for such situation.
1788 */
1789 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
1790 if (keylen > IEEE80211_WEP_KEYLEN)
1791 keylen = 13; /* 104bit keys */
1792 else
1793 keylen = IEEE80211_WEP_KEYLEN;
1794 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1795 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
1796 ic->ic_nw_keys[i].wk_key, keylen);
1797 if (error)
1798 break;
1799 }
1800 break;
1801 }
1802 return error;
1803 }
1804
1805 /* Must be called at proper protection level! */
1806 static int
1807 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
1808 {
1809 int i, status;
1810
1811 /* wait for the busy bit to clear */
1812 for (i = 0; ; i++) {
1813 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
1814 break;
1815 if (i == WI_TIMEOUT) {
1816 printf("%s: wi_cmd: BUSY did not clear, "
1817 "cmd=0x%x, prev=0x%x\n", sc->sc_dev.dv_xname,
1818 cmd, CSR_READ_2(sc, WI_COMMAND));
1819 return EIO;
1820 }
1821 DELAY(1);
1822 }
1823
1824 CSR_WRITE_2(sc, WI_PARAM0, val0);
1825 CSR_WRITE_2(sc, WI_PARAM1, val1);
1826 CSR_WRITE_2(sc, WI_PARAM2, val2);
1827 CSR_WRITE_2(sc, WI_COMMAND, cmd);
1828
1829 if (cmd == WI_CMD_INI) {
1830 /* XXX: should sleep here. */
1831 DELAY(100*1000);
1832 }
1833 /* wait for the cmd completed bit */
1834 for (i = 0; i < WI_TIMEOUT; i++) {
1835 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
1836 break;
1837 DELAY(1);
1838 }
1839
1840 status = CSR_READ_2(sc, WI_STATUS);
1841
1842 /* Ack the command */
1843 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1844
1845 if (i == WI_TIMEOUT) {
1846 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
1847 sc->sc_dev.dv_xname, cmd, val0);
1848 return ETIMEDOUT;
1849 }
1850
1851 if (status & WI_STAT_CMD_RESULT) {
1852 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
1853 sc->sc_dev.dv_xname, cmd, val0);
1854 return EIO;
1855 }
1856 return 0;
1857 }
1858
1859 static int
1860 wi_seek_bap(struct wi_softc *sc, int id, int off)
1861 {
1862 int i, status;
1863
1864 CSR_WRITE_2(sc, WI_SEL0, id);
1865 CSR_WRITE_2(sc, WI_OFF0, off);
1866
1867 for (i = 0; ; i++) {
1868 status = CSR_READ_2(sc, WI_OFF0);
1869 if ((status & WI_OFF_BUSY) == 0)
1870 break;
1871 if (i == WI_TIMEOUT) {
1872 printf("%s: timeout in wi_seek to %x/%x\n",
1873 sc->sc_dev.dv_xname, id, off);
1874 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1875 return ETIMEDOUT;
1876 }
1877 DELAY(1);
1878 }
1879 if (status & WI_OFF_ERR) {
1880 printf("%s: failed in wi_seek to %x/%x\n",
1881 sc->sc_dev.dv_xname, id, off);
1882 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1883 return EIO;
1884 }
1885 sc->sc_bap_id = id;
1886 sc->sc_bap_off = off;
1887 return 0;
1888 }
1889
1890 static int
1891 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1892 {
1893 int error, cnt;
1894
1895 if (buflen == 0)
1896 return 0;
1897 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1898 if ((error = wi_seek_bap(sc, id, off)) != 0)
1899 return error;
1900 }
1901 cnt = (buflen + 1) / 2;
1902 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1903 sc->sc_bap_off += cnt * 2;
1904 return 0;
1905 }
1906
1907 static int
1908 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1909 {
1910 int error, cnt;
1911
1912 if (buflen == 0)
1913 return 0;
1914
1915 #ifdef WI_HERMES_AUTOINC_WAR
1916 again:
1917 #endif
1918 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1919 if ((error = wi_seek_bap(sc, id, off)) != 0)
1920 return error;
1921 }
1922 cnt = (buflen + 1) / 2;
1923 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1924 sc->sc_bap_off += cnt * 2;
1925
1926 #ifdef WI_HERMES_AUTOINC_WAR
1927 /*
1928 * According to the comments in the HCF Light code, there is a bug
1929 * in the Hermes (or possibly in certain Hermes firmware revisions)
1930 * where the chip's internal autoincrement counter gets thrown off
1931 * during data writes: the autoincrement is missed, causing one
1932 * data word to be overwritten and subsequent words to be written to
1933 * the wrong memory locations. The end result is that we could end
1934 * up transmitting bogus frames without realizing it. The workaround
1935 * for this is to write a couple of extra guard words after the end
1936 * of the transfer, then attempt to read then back. If we fail to
1937 * locate the guard words where we expect them, we preform the
1938 * transfer over again.
1939 */
1940 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
1941 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1942 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1943 wi_seek_bap(sc, id, sc->sc_bap_off);
1944 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1945 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1946 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
1947 printf("%s: detect auto increment bug, try again\n",
1948 sc->sc_dev.dv_xname);
1949 goto again;
1950 }
1951 }
1952 #endif
1953 return 0;
1954 }
1955
1956 static int
1957 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
1958 {
1959 int i;
1960
1961 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
1962 printf("%s: failed to allocate %d bytes on NIC\n",
1963 sc->sc_dev.dv_xname, len);
1964 return ENOMEM;
1965 }
1966
1967 for (i = 0; i < WI_TIMEOUT; i++) {
1968 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1969 break;
1970 if (i == WI_TIMEOUT) {
1971 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
1972 return ETIMEDOUT;
1973 }
1974 DELAY(1);
1975 }
1976 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
1977 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1978 return 0;
1979 }
1980
1981 static int
1982 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
1983 {
1984 int error, len;
1985 u_int16_t ltbuf[2];
1986
1987 /* Tell the NIC to enter record read mode. */
1988 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
1989 if (error)
1990 return error;
1991
1992 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
1993 if (error)
1994 return error;
1995
1996 if (le16toh(ltbuf[1]) != rid) {
1997 printf("%s: record read mismatch, rid=%x, got=%x\n",
1998 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
1999 return EIO;
2000 }
2001 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
2002 if (*buflenp < len) {
2003 printf("%s: record buffer is too small, "
2004 "rid=%x, size=%d, len=%d\n",
2005 sc->sc_dev.dv_xname, rid, *buflenp, len);
2006 return ENOSPC;
2007 }
2008 *buflenp = len;
2009 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2010 }
2011
2012 static int
2013 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2014 {
2015 int error;
2016 u_int16_t ltbuf[2];
2017
2018 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
2019 ltbuf[1] = htole16(rid);
2020
2021 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2022 if (error)
2023 return error;
2024 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2025 if (error)
2026 return error;
2027
2028 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2029 }
2030
2031 static int
2032 wi_newstate(void *arg, enum ieee80211_state nstate)
2033 {
2034 struct wi_softc *sc = arg;
2035 struct ieee80211com *ic = &sc->sc_ic;
2036 struct ieee80211_node *ni = &ic->ic_bss;
2037 int i, buflen;
2038 u_int16_t val;
2039 struct wi_ssid ssid;
2040 enum ieee80211_state ostate;
2041 #ifdef WI_DEBUG
2042 static const char *stname[] =
2043 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
2044 #endif /* WI_DEBUG */
2045
2046 ostate = ic->ic_state;
2047 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
2048
2049 ic->ic_state = nstate;
2050 switch (nstate) {
2051 case IEEE80211_S_INIT:
2052 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2053 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2054 return 0;
2055
2056 case IEEE80211_S_RUN:
2057 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2058 buflen = IEEE80211_ADDR_LEN;
2059 wi_read_rid(sc, WI_RID_CURRENT_BSSID, ni->ni_bssid, &buflen);
2060 IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
2061 buflen = sizeof(val);
2062 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
2063 ni->ni_chan = le16toh(val);
2064
2065 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2066 ni->ni_esslen = ic->ic_des_esslen;
2067 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2068 ni->ni_nrate = 0;
2069 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2070 if (ic->ic_sup_rates[i])
2071 ni->ni_rates[ni->ni_nrate++] =
2072 ic->ic_sup_rates[i];
2073 }
2074 ni->ni_intval = ic->ic_lintval;
2075 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2076 if (ic->ic_flags & IEEE80211_F_WEPON)
2077 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2078 } else {
2079 buflen = sizeof(ssid);
2080 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2081 ni->ni_esslen = le16toh(ssid.wi_len);
2082 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2083 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2084 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2085 }
2086 break;
2087
2088 case IEEE80211_S_SCAN:
2089 case IEEE80211_S_AUTH:
2090 case IEEE80211_S_ASSOC:
2091 break;
2092 }
2093
2094 /* skip standard ieee80211 handling */
2095 return EINPROGRESS;
2096 }
2097
2098 static int
2099 wi_scan_ap(struct wi_softc *sc)
2100 {
2101 int error = 0;
2102 u_int16_t val[2];
2103
2104 if (!sc->sc_enabled)
2105 return ENXIO;
2106 switch (sc->sc_firmware_type) {
2107 case WI_LUCENT:
2108 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2109 break;
2110 case WI_INTERSIL:
2111 val[0] = 0x3fff; /* channel */
2112 val[1] = 0x000f; /* tx rate */
2113 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2114 break;
2115 case WI_SYMBOL:
2116 /*
2117 * XXX only supported on 3.x ?
2118 */
2119 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2120 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2121 val, sizeof(val[0]));
2122 break;
2123 }
2124 if (error == 0) {
2125 sc->sc_scan_timer = WI_SCAN_WAIT;
2126 sc->sc_ic.ic_if.if_timer = 1;
2127 DPRINTF(("wi_scan_ap: start scanning\n"));
2128 }
2129 return error;
2130 }
2131
2132 static void
2133 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2134 {
2135 int i, naps, off, szbuf;
2136 struct wi_scan_header ws_hdr; /* Prism2 header */
2137 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2138 struct wi_apinfo *ap;
2139
2140 off = sizeof(u_int16_t) * 2;
2141 memset(&ws_hdr, 0, sizeof(ws_hdr));
2142 switch (sc->sc_firmware_type) {
2143 case WI_INTERSIL:
2144 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2145 off += sizeof(ws_hdr);
2146 szbuf = sizeof(struct wi_scan_data_p2);
2147 break;
2148 case WI_SYMBOL:
2149 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2150 break;
2151 case WI_LUCENT:
2152 szbuf = sizeof(struct wi_scan_data);
2153 break;
2154 }
2155 naps = (cnt * 2 + 2 - off) / szbuf;
2156 if (naps > MAXAPINFO)
2157 naps = MAXAPINFO;
2158 sc->sc_naps = naps;
2159 /* Read Data */
2160 ap = sc->sc_aps;
2161 memset(&ws_dat, 0, sizeof(ws_dat));
2162 for (i = 0; i < naps; i++, ap++) {
2163 wi_read_bap(sc, fid, off, &ws_dat,
2164 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2165 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
2166 ether_sprintf(ws_dat.wi_bssid)));
2167 off += szbuf;
2168 ap->scanreason = le16toh(ws_hdr.wi_reason);
2169 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2170 ap->channel = le16toh(ws_dat.wi_chid);
2171 ap->signal = le16toh(ws_dat.wi_signal);
2172 ap->noise = le16toh(ws_dat.wi_noise);
2173 ap->quality = ap->signal - ap->noise;
2174 ap->capinfo = le16toh(ws_dat.wi_capinfo);
2175 ap->interval = le16toh(ws_dat.wi_interval);
2176 ap->rate = le16toh(ws_dat.wi_rate);
2177 ap->namelen = le16toh(ws_dat.wi_namelen);
2178 if (ap->namelen > sizeof(ap->name))
2179 ap->namelen = sizeof(ap->name);
2180 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2181 }
2182 /* Done scanning */
2183 sc->sc_scan_timer = 0;
2184 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
2185 }
2186