wi.c revision 1.105 1 /* $NetBSD: wi.c,v 1.105 2002/12/27 07:54:35 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.105 2002/12/27 07:54:35 dyoung Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static int wi_init(struct ifnet *);
108 static void wi_stop(struct ifnet *, int);
109 static void wi_start(struct ifnet *);
110 static int wi_reset(struct wi_softc *);
111 static void wi_watchdog(struct ifnet *);
112 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
113 static int wi_media_change(struct ifnet *);
114 static void wi_media_status(struct ifnet *, struct ifmediareq *);
115
116 static void wi_rx_intr(struct wi_softc *);
117 static void wi_tx_intr(struct wi_softc *);
118 static void wi_info_intr(struct wi_softc *);
119
120 static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
121 static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
122 static int wi_write_txrate(struct wi_softc *);
123 static int wi_write_wep(struct wi_softc *);
124 static int wi_write_multi(struct wi_softc *);
125 static int wi_alloc_fid(struct wi_softc *, int, int *);
126 static void wi_read_nicid(struct wi_softc *);
127 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
128
129 static int wi_cmd(struct wi_softc *, int, int, int, int);
130 static int wi_seek_bap(struct wi_softc *, int, int);
131 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
132 static int wi_write_bap(struct wi_softc *, int, int, void *, int);
133 static int wi_read_rid(struct wi_softc *, int, void *, int *);
134 static int wi_write_rid(struct wi_softc *, int, void *, int);
135
136 static int wi_newstate(void *, enum ieee80211_state);
137
138 static int wi_scan_ap(struct wi_softc *);
139 static void wi_scan_result(struct wi_softc *, int, int);
140
141 static inline int
142 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
143 {
144
145 val = htole16(val);
146 return wi_write_rid(sc, rid, &val, sizeof(val));
147 }
148
149 #ifdef WI_DEBUG
150 int wi_debug = 0;
151
152 #define DPRINTF(X) if (wi_debug) printf X
153 #define DPRINTF2(X) if (wi_debug > 1) printf X
154 #else
155 #define DPRINTF(X)
156 #define DPRINTF2(X)
157 #endif
158
159 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
160
161 struct wi_card_ident
162 wi_card_ident[] = {
163 /* CARD_ID CARD_NAME FIRM_TYPE */
164 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
165 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
166 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
167 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
168 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
169 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
170 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
171 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
172 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
173 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
174 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
175 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
176 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
177 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
178 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
179 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
180 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
181 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
182 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
183 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
184 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
185 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
186 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
187 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
188 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
189 { 0, NULL, 0 },
190 };
191
192 int
193 wi_attach(struct wi_softc *sc)
194 {
195 struct ieee80211com *ic = &sc->sc_ic;
196 struct ifnet *ifp = &ic->ic_if;
197 int i, nrate, mword, buflen;
198 u_int8_t r;
199 u_int16_t val;
200 u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
201 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
202 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
203 };
204 int s;
205
206 s = splnet();
207
208 /* Make sure interrupts are disabled. */
209 CSR_WRITE_2(sc, WI_INT_EN, 0);
210 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
211
212 /* Reset the NIC. */
213 if (wi_reset(sc) != 0) {
214 splx(s);
215 return 1;
216 }
217
218 buflen = IEEE80211_ADDR_LEN;
219 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
220 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
221 printf(" could not get mac address, attach failed\n");
222 splx(s);
223 return 1;
224 }
225
226 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
227
228 /* Read NIC identification */
229 wi_read_nicid(sc);
230
231 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
232 ifp->if_softc = sc;
233 ifp->if_start = wi_start;
234 ifp->if_ioctl = wi_ioctl;
235 ifp->if_watchdog = wi_watchdog;
236 ifp->if_init = wi_init;
237 ifp->if_stop = wi_stop;
238 ifp->if_flags =
239 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
240 IFQ_SET_READY(&ifp->if_snd);
241
242 ic->ic_phytype = IEEE80211_T_DS;
243 ic->ic_opmode = IEEE80211_M_STA;
244 ic->ic_flags = IEEE80211_F_HASPMGT | IEEE80211_F_HASAHDEMO;
245 ic->ic_state = IEEE80211_S_INIT;
246 ic->ic_newstate = wi_newstate;
247
248 /* Find available channel */
249 buflen = sizeof(val);
250 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
251 val = htole16(0x1fff); /* assume 1-11 */
252 for (i = 0; i < 16; i++) {
253 if (isset((u_int8_t*)&val, i))
254 setbit(ic->ic_chan_avail, i + 1);
255 }
256
257 sc->sc_dbm_adjust = 100; /* default */
258
259 buflen = sizeof(val);
260 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
261 wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0) {
262 sc->sc_dbm_adjust = le16toh(val);
263 }
264
265 /* Find default IBSS channel */
266 buflen = sizeof(val);
267 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0)
268 ic->ic_ibss_chan = le16toh(val);
269 else {
270 /* use lowest available channel */
271 for (i = 0; i < 16; i++) {
272 if (isset(ic->ic_chan_avail, i))
273 break;
274 }
275 ic->ic_ibss_chan = i;
276 }
277
278 /*
279 * Set flags based on firmware version.
280 */
281 switch (sc->sc_firmware_type) {
282 case WI_LUCENT:
283 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
284 #ifdef WI_HERMES_AUTOINC_WAR
285 /* XXX: not confirmed, but never seen for recent firmware */
286 if (sc->sc_sta_firmware_ver < 40000) {
287 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
288 }
289 #endif
290 if (sc->sc_sta_firmware_ver >= 60000)
291 sc->sc_flags |= WI_FLAGS_HAS_MOR;
292 if (sc->sc_sta_firmware_ver >= 60006)
293 ic->ic_flags |= IEEE80211_F_HASIBSS;
294 sc->sc_ibss_port = 1;
295 break;
296
297 case WI_INTERSIL:
298 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
299 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
300 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
301 if (sc->sc_sta_firmware_ver > 10101)
302 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
303 if (sc->sc_sta_firmware_ver >= 800) {
304 ic->ic_flags |= IEEE80211_F_HASHOSTAP;
305 ic->ic_flags |= IEEE80211_F_HASIBSS;
306 }
307 sc->sc_ibss_port = 0;
308 break;
309
310 case WI_SYMBOL:
311 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
312 if (sc->sc_sta_firmware_ver >= 20000)
313 ic->ic_flags |= IEEE80211_F_HASIBSS;
314 sc->sc_ibss_port = 4;
315 break;
316 }
317
318 /*
319 * Find out if we support WEP on this card.
320 */
321 buflen = sizeof(val);
322 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
323 val != htole16(0))
324 ic->ic_flags |= IEEE80211_F_HASWEP;
325
326 /* Find supported rates. */
327 buflen = sizeof(ratebuf);
328 if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
329 nrate = le16toh(*(u_int16_t *)ratebuf);
330 if (nrate > IEEE80211_RATE_SIZE)
331 nrate = IEEE80211_RATE_SIZE;
332 memcpy(ic->ic_sup_rates, ratebuf + 2, nrate);
333 }
334 buflen = sizeof(val);
335
336 sc->sc_max_datalen = 2304;
337 sc->sc_rts_thresh = 2347;
338 sc->sc_frag_thresh = 2346;
339 sc->sc_system_scale = 1;
340 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
341 sc->sc_roaming_mode = 1;
342
343 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
344 printf("%s: supported rates: ", sc->sc_dev.dv_xname);
345 #define ADD(s, o) ifmedia_add(&sc->sc_media, \
346 IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL)
347 ADD(IFM_AUTO, 0);
348 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
349 ADD(IFM_AUTO, IFM_IEEE80211_HOSTAP);
350 if (ic->ic_flags & IEEE80211_F_HASIBSS)
351 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC);
352 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC | IFM_FLAG0);
353 for (i = 0; i < nrate; i++) {
354 r = ic->ic_sup_rates[i];
355 mword = ieee80211_rate2media(r, IEEE80211_T_DS);
356 if (mword == 0)
357 continue;
358 printf("%s%d%sMbps", (i != 0 ? " " : ""),
359 (r & IEEE80211_RATE_VAL) / 2, ((r & 0x1) != 0 ? ".5" : ""));
360 ADD(mword, 0);
361 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
362 ADD(mword, IFM_IEEE80211_HOSTAP);
363 if (ic->ic_flags & IEEE80211_F_HASIBSS)
364 ADD(mword, IFM_IEEE80211_ADHOC);
365 ADD(mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
366 }
367 printf("\n");
368 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
369 #undef ADD
370
371 /*
372 * Call MI attach routines.
373 */
374
375 if_attach(ifp);
376 ieee80211_ifattach(ifp);
377
378 /* Attach is successful. */
379 sc->sc_attached = 1;
380
381 splx(s);
382 return 0;
383 }
384
385 int
386 wi_detach(struct wi_softc *sc)
387 {
388 struct ifnet *ifp = &sc->sc_ic.ic_if;
389 int s;
390
391 if (!sc->sc_attached)
392 return 0;
393
394 s = splnet();
395
396 /* Delete all remaining media. */
397 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
398
399 ieee80211_ifdetach(ifp);
400 if_detach(ifp);
401 if (sc->sc_enabled) {
402 if (sc->sc_disable)
403 (*sc->sc_disable)(sc);
404 sc->sc_enabled = 0;
405 }
406 splx(s);
407 return 0;
408 }
409
410 int
411 wi_activate(struct device *self, enum devact act)
412 {
413 struct wi_softc *sc = (struct wi_softc *)self;
414 int rv = 0, s;
415
416 s = splnet();
417 switch (act) {
418 case DVACT_ACTIVATE:
419 rv = EOPNOTSUPP;
420 break;
421
422 case DVACT_DEACTIVATE:
423 if_deactivate(&sc->sc_ic.ic_if);
424 break;
425 }
426 splx(s);
427 return rv;
428 }
429
430 void
431 wi_power(struct wi_softc *sc, int why)
432 {
433 struct ifnet *ifp = &sc->sc_ic.ic_if;
434 int s;
435
436 s = splnet();
437 switch (why) {
438 case PWR_SUSPEND:
439 case PWR_STANDBY:
440 wi_stop(ifp, 1);
441 break;
442 case PWR_RESUME:
443 if (ifp->if_flags & IFF_UP) {
444 wi_init(ifp);
445 (void)wi_intr(sc);
446 }
447 break;
448 case PWR_SOFTSUSPEND:
449 case PWR_SOFTSTANDBY:
450 case PWR_SOFTRESUME:
451 break;
452 }
453 splx(s);
454 }
455
456 void
457 wi_shutdown(struct wi_softc *sc)
458 {
459 struct ifnet *ifp = &sc->sc_ic.ic_if;
460
461 if (sc->sc_attached)
462 wi_stop(ifp, 1);
463 }
464
465 int
466 wi_intr(void *arg)
467 {
468 int i;
469 struct wi_softc *sc = arg;
470 struct ifnet *ifp = &sc->sc_ic.ic_if;
471 u_int16_t status, raw_status, last_status;
472
473 if (sc->sc_enabled == 0 ||
474 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
475 (ifp->if_flags & IFF_RUNNING) == 0)
476 return 0;
477
478 if ((ifp->if_flags & IFF_UP) == 0) {
479 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
480 CSR_WRITE_2(sc, WI_INT_EN, 0);
481 return 1;
482 }
483
484 /* maximum 10 loops per interrupt */
485 last_status = 0;
486 for (i = 0; i < 10; i++) {
487 /*
488 * Only believe a status bit when we enter wi_intr, or when
489 * the bit was "off" the last time through the loop. This is
490 * my strategy to avoid racing the hardware/firmware if I
491 * can re-read the event status register more quickly than
492 * it is updated.
493 */
494 raw_status = CSR_READ_2(sc, WI_EVENT_STAT);
495 status = raw_status & ~last_status;
496 if ((status & WI_INTRS) == 0)
497 break;
498 last_status = raw_status;
499
500 if (status & WI_EV_RX)
501 wi_rx_intr(sc);
502
503 if (status & WI_EV_ALLOC)
504 wi_tx_intr(sc);
505
506 if (status & WI_EV_INFO)
507 wi_info_intr(sc);
508
509 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
510 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
511 !IFQ_IS_EMPTY(&ifp->if_snd))
512 wi_start(ifp);
513 }
514
515 return 1;
516 }
517
518 static int
519 wi_init(struct ifnet *ifp)
520 {
521 struct wi_softc *sc = ifp->if_softc;
522 struct ieee80211com *ic = &sc->sc_ic;
523 struct wi_joinreq join;
524 int i;
525 int error = 0, wasenabled;
526
527 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
528 wasenabled = sc->sc_enabled;
529 if (!sc->sc_enabled) {
530 if ((error = (*sc->sc_enable)(sc)) != 0)
531 goto out;
532 sc->sc_enabled = 1;
533 } else
534 wi_stop(ifp, 0);
535
536 /* Symbol firmware cannot be initialized more than once */
537 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
538 if ((error = wi_reset(sc)) != 0)
539 goto out;
540 }
541
542 /* common 802.11 configuration */
543 ic->ic_flags &= ~IEEE80211_F_IBSSON;
544 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
545 switch (ic->ic_opmode) {
546 case IEEE80211_M_STA:
547 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
548 break;
549 case IEEE80211_M_IBSS:
550 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
551 ic->ic_flags |= IEEE80211_F_IBSSON;
552 break;
553 case IEEE80211_M_AHDEMO:
554 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
555 break;
556 case IEEE80211_M_HOSTAP:
557 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
558 break;
559 }
560
561 /* Intersil interprets this RID as joining ESS even in IBSS mode */
562 if (sc->sc_firmware_type == WI_LUCENT &&
563 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
564 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
565 else
566 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
567 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
568 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
569 ic->ic_des_esslen);
570 wi_write_val(sc, WI_RID_OWN_CHNL, ic->ic_ibss_chan);
571 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
572 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
573 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
574 wi_write_val(sc, WI_RID_PM_ENABLED,
575 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
576
577 /* not yet common 802.11 configuration */
578 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
579 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
580 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
581 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
582
583 /* driver specific 802.11 configuration */
584 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
585 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
586 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
587 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
588 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
589 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
590 wi_write_txrate(sc);
591 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
592
593 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
594 sc->sc_firmware_type == WI_INTERSIL) {
595 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
596 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
597 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
598 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
599 }
600
601 /*
602 * Initialize promisc mode.
603 * Being in the Host-AP mode causes a great
604 * deal of pain if primisc mode is set.
605 * Therefore we avoid confusing the firmware
606 * and always reset promisc mode in Host-AP
607 * mode. Host-AP sees all the packets anyway.
608 */
609 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
610 (ifp->if_flags & IFF_PROMISC) != 0) {
611 wi_write_val(sc, WI_RID_PROMISC, 1);
612 } else {
613 wi_write_val(sc, WI_RID_PROMISC, 0);
614 }
615
616 /* Configure WEP. */
617 if (ic->ic_flags & IEEE80211_F_HASWEP)
618 wi_write_wep(sc);
619
620 /* Set multicast filter. */
621 wi_write_multi(sc);
622
623 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
624 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
625 if (sc->sc_firmware_type == WI_SYMBOL)
626 sc->sc_buflen = 1585; /* XXX */
627 for (i = 0; i < WI_NTXBUF; i++) {
628 error = wi_alloc_fid(sc, sc->sc_buflen,
629 &sc->sc_txd[i].d_fid);
630 if (error) {
631 printf("%s: tx buffer allocation failed\n",
632 sc->sc_dev.dv_xname);
633 goto out;
634 }
635 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
636 sc->sc_txd[i].d_fid));
637 sc->sc_txd[i].d_len = 0;
638 }
639 }
640 sc->sc_txcur = sc->sc_txnext = 0;
641
642 /* Enable port 0 */
643 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
644 ifp->if_flags |= IFF_RUNNING;
645 ifp->if_flags &= ~IFF_OACTIVE;
646 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
647 ic->ic_opmode == IEEE80211_M_HOSTAP)
648 wi_newstate(sc, IEEE80211_S_RUN);
649
650 /* Enable interrupts */
651 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
652
653 if (!wasenabled &&
654 ic->ic_opmode == IEEE80211_M_HOSTAP &&
655 sc->sc_firmware_type == WI_INTERSIL) {
656 /* XXX: some card need to be re-enabled for hostap */
657 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
658 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
659 }
660
661 if (ic->ic_opmode == IEEE80211_M_STA &&
662 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
663 ic->ic_des_chan != IEEE80211_CHAN_ANY)) {
664 memset(&join, 0, sizeof(join));
665 if (ic->ic_flags & IEEE80211_F_DESBSSID)
666 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
667 if (ic->ic_des_chan != IEEE80211_CHAN_ANY)
668 join.wi_chan = htole16(ic->ic_des_chan);
669 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
670 }
671
672 out:
673 if (error) {
674 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
675 wi_stop(ifp, 0);
676 }
677 DPRINTF(("wi_init: return %d\n", error));
678 return error;
679 }
680
681 static void
682 wi_stop(struct ifnet *ifp, int disable)
683 {
684 struct wi_softc *sc = ifp->if_softc;
685
686 DPRINTF(("wi_stop: disable %d\n", disable));
687 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
688 if (sc->sc_enabled) {
689 CSR_WRITE_2(sc, WI_INT_EN, 0);
690 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
691 if (disable) {
692 if (sc->sc_disable)
693 (*sc->sc_disable)(sc);
694 sc->sc_enabled = 0;
695 }
696 }
697
698 sc->sc_tx_timer = 0;
699 sc->sc_scan_timer = 0;
700 sc->sc_naps = 0;
701 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
702 ifp->if_timer = 0;
703 }
704
705 static void
706 wi_start(struct ifnet *ifp)
707 {
708 struct wi_softc *sc = ifp->if_softc;
709 struct ieee80211com *ic = &sc->sc_ic;
710 struct ieee80211_node *ni;
711 struct ieee80211_frame *wh;
712 struct mbuf *m0, *m;
713 struct wi_frame frmhdr;
714 int cur, fid, off;
715
716 if (ifp->if_flags & IFF_OACTIVE)
717 return;
718 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
719 return;
720
721 memset(&frmhdr, 0, sizeof(frmhdr));
722 cur = sc->sc_txnext;
723 for (;;) {
724 IF_POLL(&ic->ic_mgtq, m0);
725 if (m0 != NULL) {
726 if (sc->sc_txd[cur].d_len != 0) {
727 ifp->if_flags |= IFF_OACTIVE;
728 break;
729 }
730 IF_DEQUEUE(&ic->ic_mgtq, m0);
731 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
732 (caddr_t)&frmhdr.wi_ehdr);
733 frmhdr.wi_ehdr.ether_type = 0;
734 wh = mtod(m0, struct ieee80211_frame *);
735 } else {
736 if (ic->ic_state != IEEE80211_S_RUN)
737 break;
738 IFQ_POLL(&ifp->if_snd, m0);
739 if (m0 == NULL)
740 break;
741 if (sc->sc_txd[cur].d_len != 0) {
742 ifp->if_flags |= IFF_OACTIVE;
743 break;
744 }
745 IFQ_DEQUEUE(&ifp->if_snd, m0);
746 ifp->if_opackets++;
747 m_copydata(m0, 0, ETHER_HDR_LEN,
748 (caddr_t)&frmhdr.wi_ehdr);
749 #if NBPFILTER > 0
750 if (ifp->if_bpf)
751 bpf_mtap(ifp->if_bpf, m0);
752 #endif
753
754 if ((m0 = ieee80211_encap(ifp, m0)) == NULL) {
755 ifp->if_oerrors++;
756 continue;
757 }
758 wh = mtod(m0, struct ieee80211_frame *);
759 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
760 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
761 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
762 IEEE80211_FC0_TYPE_DATA &&
763 ((ni = ieee80211_find_node(ic, wh->i_addr1)) ==
764 NULL || ni->ni_associd == 0)) {
765 m_freem(m0);
766 ifp->if_oerrors++;
767 continue;
768 }
769 if (ic->ic_flags & IEEE80211_F_WEPON)
770 wh->i_fc[1] |= IEEE80211_FC1_WEP;
771
772 }
773 #if NBPFILTER > 0
774 if (ic->ic_rawbpf)
775 bpf_mtap(ic->ic_rawbpf, m0);
776 #endif
777 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11);
778 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
779 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
780 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
781 ifp->if_oerrors++;
782 continue;
783 }
784 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
785 }
786 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
787 (caddr_t)&frmhdr.wi_whdr);
788 m_adj(m0, sizeof(struct ieee80211_frame));
789 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
790 #if NBPFILTER > 0
791 if (sc->sc_drvbpf) {
792 struct mbuf mb;
793
794 M_COPY_PKTHDR(&mb, m0);
795 mb.m_data = (caddr_t)&frmhdr;
796 mb.m_len = sizeof(frmhdr);
797 mb.m_next = m0;
798 mb.m_pkthdr.len += mb.m_len;
799 bpf_mtap(sc->sc_drvbpf, &mb);
800 }
801 #endif
802 fid = sc->sc_txd[cur].d_fid;
803 wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr));
804 off = sizeof(frmhdr);
805 for (m = m0; m != NULL; m = m->m_next) {
806 if (m->m_len == 0)
807 continue;
808 wi_write_bap(sc, fid, off, m->m_data, m->m_len);
809 off += m->m_len;
810 }
811 m_freem(m0);
812 sc->sc_txd[cur].d_len = off;
813 if (sc->sc_txcur == cur) {
814 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
815 printf("%s: xmit failed\n",
816 sc->sc_dev.dv_xname);
817 sc->sc_txd[cur].d_len = 0;
818 continue;
819 }
820 sc->sc_tx_timer = 5;
821 ifp->if_timer = 1;
822 }
823 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF;
824 }
825 }
826
827
828 static int
829 wi_reset(struct wi_softc *sc)
830 {
831 int i, error;
832
833 DPRINTF(("wi_reset\n"));
834 error = 0;
835 for (i = 0; i < 5; i++) {
836 DELAY(20*1000); /* XXX: way too long! */
837 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
838 break;
839 }
840 if (error) {
841 printf("%s: init failed\n", sc->sc_dev.dv_xname);
842 return error;
843 }
844 CSR_WRITE_2(sc, WI_INT_EN, 0);
845 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
846
847 /* Calibrate timer. */
848 wi_write_val(sc, WI_RID_TICK_TIME, 0);
849 return 0;
850 }
851
852 static void
853 wi_watchdog(struct ifnet *ifp)
854 {
855 struct wi_softc *sc = ifp->if_softc;
856
857 ifp->if_timer = 0;
858 if (!sc->sc_enabled)
859 return;
860
861 if (sc->sc_tx_timer) {
862 if (--sc->sc_tx_timer == 0) {
863 printf("%s: device timeout\n", ifp->if_xname);
864 ifp->if_oerrors++;
865 wi_init(ifp);
866 return;
867 }
868 ifp->if_timer = 1;
869 }
870
871 if (sc->sc_scan_timer) {
872 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
873 sc->sc_firmware_type == WI_INTERSIL) {
874 DPRINTF(("wi_watchdog: inquire scan\n"));
875 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
876 }
877 if (sc->sc_scan_timer)
878 ifp->if_timer = 1;
879 }
880
881 /* TODO: rate control */
882 ieee80211_watchdog(ifp);
883 }
884
885 static int
886 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
887 {
888 struct wi_softc *sc = ifp->if_softc;
889 struct ieee80211com *ic = &sc->sc_ic;
890 struct ifreq *ifr = (struct ifreq *)data;
891 int s, error = 0;
892
893 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
894 return ENXIO;
895
896 s = splnet();
897
898 switch (cmd) {
899 case SIOCSIFFLAGS:
900 if (ifp->if_flags & IFF_UP) {
901 if (sc->sc_enabled) {
902 /*
903 * To avoid rescanning another access point,
904 * do not call wi_init() here. Instead,
905 * only reflect promisc mode settings.
906 */
907 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
908 (ifp->if_flags & IFF_PROMISC) != 0)
909 wi_write_val(sc, WI_RID_PROMISC, 1);
910 else
911 wi_write_val(sc, WI_RID_PROMISC, 0);
912 } else
913 error = wi_init(ifp);
914 } else if (sc->sc_enabled)
915 wi_stop(ifp, 1);
916 break;
917 case SIOCSIFMEDIA:
918 case SIOCGIFMEDIA:
919 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
920 break;
921 case SIOCADDMULTI:
922 case SIOCDELMULTI:
923 error = (cmd == SIOCADDMULTI) ?
924 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
925 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
926 if (error == ENETRESET) {
927 if (sc->sc_enabled) {
928 /* do not rescan */
929 error = wi_write_multi(sc);
930 } else
931 error = 0;
932 }
933 break;
934 case SIOCGIFGENERIC:
935 error = wi_get_cfg(ifp, cmd, data);
936 break;
937 case SIOCSIFGENERIC:
938 error = suser(curproc->p_ucred, &curproc->p_acflag);
939 if (error)
940 break;
941 error = wi_set_cfg(ifp, cmd, data);
942 if (error == ENETRESET) {
943 if (sc->sc_enabled)
944 error = wi_init(ifp);
945 else
946 error = 0;
947 }
948 break;
949 default:
950 error = ieee80211_ioctl(ifp, cmd, data);
951 if (error == ENETRESET) {
952 if (sc->sc_enabled)
953 error = wi_init(ifp);
954 else
955 error = 0;
956 }
957 break;
958 }
959 splx(s);
960 return error;
961 }
962
963 static int
964 wi_media_change(struct ifnet *ifp)
965 {
966 struct wi_softc *sc = ifp->if_softc;
967 struct ieee80211com *ic = &sc->sc_ic;
968 struct ifmedia_entry *ime;
969 enum ieee80211_opmode newmode;
970 int i, rate, error = 0;
971
972 ime = sc->sc_media.ifm_cur;
973 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
974 i = -1;
975 } else {
976 rate = ieee80211_media2rate(ime->ifm_media, IEEE80211_T_DS);
977 if (rate == 0)
978 return EINVAL;
979 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
980 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL) == rate)
981 break;
982 }
983 if (i == IEEE80211_RATE_SIZE)
984 return EINVAL;
985 }
986 if (ic->ic_fixed_rate != i) {
987 ic->ic_fixed_rate = i;
988 error = ENETRESET;
989 }
990
991 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
992 (ime->ifm_media & IFM_FLAG0))
993 newmode = IEEE80211_M_AHDEMO;
994 else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
995 newmode = IEEE80211_M_IBSS;
996 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
997 newmode = IEEE80211_M_HOSTAP;
998 else
999 newmode = IEEE80211_M_STA;
1000 if (ic->ic_opmode != newmode) {
1001 ic->ic_opmode = newmode;
1002 error = ENETRESET;
1003 }
1004 if (error == ENETRESET) {
1005 if (sc->sc_enabled)
1006 error = wi_init(ifp);
1007 else
1008 error = 0;
1009 }
1010 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
1011
1012 return error;
1013 }
1014
1015 static void
1016 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1017 {
1018 struct wi_softc *sc = ifp->if_softc;
1019 struct ieee80211com *ic = &sc->sc_ic;
1020 u_int16_t val;
1021 int rate, len;
1022
1023 if (sc->sc_enabled == 0) {
1024 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1025 imr->ifm_status = 0;
1026 return;
1027 }
1028
1029 imr->ifm_status = IFM_AVALID;
1030 imr->ifm_active = IFM_IEEE80211;
1031 if (ic->ic_state == IEEE80211_S_RUN &&
1032 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1033 imr->ifm_status |= IFM_ACTIVE;
1034 len = sizeof(val);
1035 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1036 rate = 0;
1037 else {
1038 /* convert to 802.11 rate */
1039 rate = val * 2;
1040 if (sc->sc_firmware_type == WI_LUCENT) {
1041 if (rate == 10)
1042 rate = 11; /* 5.5Mbps */
1043 } else {
1044 if (rate == 4*2)
1045 rate = 11; /* 5.5Mbps */
1046 else if (rate == 8*2)
1047 rate = 22; /* 11Mbps */
1048 }
1049 }
1050 imr->ifm_active |= ieee80211_rate2media(rate, IEEE80211_T_DS);
1051 switch (ic->ic_opmode) {
1052 case IEEE80211_M_STA:
1053 break;
1054 case IEEE80211_M_IBSS:
1055 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1056 break;
1057 case IEEE80211_M_AHDEMO:
1058 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1059 break;
1060 case IEEE80211_M_HOSTAP:
1061 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1062 break;
1063 }
1064 }
1065
1066 static void
1067 wi_rx_intr(struct wi_softc *sc)
1068 {
1069 struct ieee80211com *ic = &sc->sc_ic;
1070 struct ifnet *ifp = &ic->ic_if;
1071 struct wi_frame frmhdr;
1072 struct mbuf *m;
1073 struct ieee80211_frame *wh;
1074 int fid, len, off, rssi;
1075 u_int16_t status;
1076 u_int32_t rstamp;
1077
1078 fid = CSR_READ_2(sc, WI_RX_FID);
1079
1080 /* First read in the frame header */
1081 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1082 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1083 ifp->if_ierrors++;
1084 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1085 return;
1086 }
1087
1088 /*
1089 * Drop undecryptable or packets with receive errors here
1090 */
1091 status = le16toh(frmhdr.wi_status);
1092 if (status & WI_STAT_ERRSTAT) {
1093 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1094 ifp->if_ierrors++;
1095 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1096 return;
1097 }
1098 rssi = frmhdr.wi_rx_signal;
1099 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1100 le16toh(frmhdr.wi_rx_tstamp1);
1101
1102 len = le16toh(frmhdr.wi_dat_len);
1103 off = ALIGN(sizeof(struct ieee80211_frame));
1104
1105 MGETHDR(m, M_DONTWAIT, MT_DATA);
1106 if (m == NULL) {
1107 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1108 ifp->if_ierrors++;
1109 DPRINTF(("wi_rx_intr: MGET failed\n"));
1110 return;
1111 }
1112 if (off + len > MHLEN) {
1113 MCLGET(m, M_DONTWAIT);
1114 if ((m->m_flags & M_EXT) == 0) {
1115 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1116 m_freem(m);
1117 ifp->if_ierrors++;
1118 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1119 return;
1120 }
1121 }
1122
1123 m->m_data += off - sizeof(struct ieee80211_frame);
1124 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1125 wi_read_bap(sc, fid, sizeof(frmhdr),
1126 m->m_data + sizeof(struct ieee80211_frame), len);
1127 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1128 m->m_pkthdr.rcvif = ifp;
1129
1130 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1131
1132 #if NBPFILTER > 0
1133 if (sc->sc_drvbpf) {
1134 struct mbuf mb;
1135
1136 M_COPY_PKTHDR(&mb, m);
1137 mb.m_data = (caddr_t)&frmhdr;
1138 mb.m_len = sizeof(frmhdr);
1139 mb.m_next = m;
1140 mb.m_pkthdr.len += mb.m_len;
1141 bpf_mtap(sc->sc_drvbpf, &mb);
1142 }
1143 #endif
1144 wh = mtod(m, struct ieee80211_frame *);
1145 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1146 /*
1147 * WEP is decrypted by hardware. Clear WEP bit
1148 * header for ieee80211_input().
1149 */
1150 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1151 }
1152 ieee80211_input(ifp, m, rssi, rstamp);
1153 }
1154
1155 static void
1156 wi_tx_intr(struct wi_softc *sc)
1157 {
1158 struct ieee80211com *ic = &sc->sc_ic;
1159 struct ifnet *ifp = &ic->ic_if;
1160 int fid, cur;
1161
1162 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1163 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1164
1165 cur = sc->sc_txcur;
1166 if (sc->sc_txd[cur].d_fid != fid) {
1167 printf("%s: bad alloc %x != %x, cur %d nxt %d\n",
1168 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1169 sc->sc_txnext);
1170 return;
1171 }
1172 sc->sc_tx_timer = 0;
1173 sc->sc_txd[cur].d_len = 0;
1174 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF;
1175 if (sc->sc_txd[cur].d_len == 0)
1176 ifp->if_flags &= ~IFF_OACTIVE;
1177 else {
1178 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1179 0, 0)) {
1180 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1181 sc->sc_txd[cur].d_len = 0;
1182 } else {
1183 sc->sc_tx_timer = 5;
1184 ifp->if_timer = 1;
1185 }
1186 }
1187 }
1188
1189 static void
1190 wi_info_intr(struct wi_softc *sc)
1191 {
1192 struct ieee80211com *ic = &sc->sc_ic;
1193 struct ifnet *ifp = &ic->ic_if;
1194 int i, fid, len, off;
1195 u_int16_t ltbuf[2];
1196 u_int16_t stat;
1197 u_int32_t *ptr;
1198
1199 fid = CSR_READ_2(sc, WI_INFO_FID);
1200 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1201
1202 switch (le16toh(ltbuf[1])) {
1203
1204 case WI_INFO_LINK_STAT:
1205 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1206 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1207 switch (le16toh(stat)) {
1208 case CONNECTED:
1209 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1210 if (ic->ic_state == IEEE80211_S_RUN &&
1211 ic->ic_opmode != IEEE80211_M_IBSS)
1212 break;
1213 /* FALLTHROUGH */
1214 case AP_CHANGE:
1215 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
1216 break;
1217 case AP_IN_RANGE:
1218 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1219 break;
1220 case AP_OUT_OF_RANGE:
1221 if (sc->sc_firmware_type == WI_SYMBOL &&
1222 sc->sc_scan_timer > 0) {
1223 if (wi_cmd(sc, WI_CMD_INQUIRE,
1224 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1225 sc->sc_scan_timer = 0;
1226 break;
1227 }
1228 if (ic->ic_opmode == IEEE80211_M_STA)
1229 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1230 break;
1231 case DISCONNECTED:
1232 case ASSOC_FAILED:
1233 if (ic->ic_opmode == IEEE80211_M_STA)
1234 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
1235 break;
1236 }
1237 break;
1238
1239 case WI_INFO_COUNTERS:
1240 /* some card versions have a larger stats structure */
1241 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1242 ptr = (u_int32_t *)&sc->sc_stats;
1243 off = sizeof(ltbuf);
1244 for (i = 0; i < len; i++, off += 2, ptr++) {
1245 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1246 #ifdef WI_HERMES_STATS_WAR
1247 if (stat & 0xf000)
1248 stat = ~stat;
1249 #endif
1250 *ptr += stat;
1251 }
1252 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1253 sc->sc_stats.wi_tx_multi_retries +
1254 sc->sc_stats.wi_tx_retry_limit;
1255 break;
1256
1257 case WI_INFO_SCAN_RESULTS:
1258 case WI_INFO_HOST_SCAN_RESULTS:
1259 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1260 break;
1261
1262 default:
1263 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1264 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1265 break;
1266 }
1267 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1268 }
1269
1270 /*
1271 * Allocate a region of memory inside the NIC and zero
1272 * it out.
1273 */
1274 static int
1275 wi_write_multi(struct wi_softc *sc)
1276 {
1277 struct ifnet *ifp = &sc->sc_ic.ic_if;
1278 int n = 0;
1279 struct wi_mcast mlist;
1280 struct ether_multi *enm;
1281 struct ether_multistep estep;
1282
1283 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1284 allmulti:
1285 ifp->if_flags |= IFF_ALLMULTI;
1286 memset(&mlist, 0, sizeof(mlist));
1287 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1288 sizeof(mlist));
1289 }
1290
1291 n = 0;
1292 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1293 while (enm != NULL) {
1294 /* Punt on ranges or too many multicast addresses. */
1295 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1296 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1297 goto allmulti;
1298
1299 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1300 n++;
1301 ETHER_NEXT_MULTI(estep, enm);
1302 }
1303 ifp->if_flags &= ~IFF_ALLMULTI;
1304 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1305 IEEE80211_ADDR_LEN * n);
1306 }
1307
1308
1309 static void
1310 wi_read_nicid(sc)
1311 struct wi_softc *sc;
1312 {
1313 struct wi_card_ident *id;
1314 char *p;
1315 int len;
1316 u_int16_t ver[4];
1317
1318 /* getting chip identity */
1319 memset(ver, 0, sizeof(ver));
1320 len = sizeof(ver);
1321 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1322 printf("%s: using ", sc->sc_dev.dv_xname);
1323 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1324
1325 sc->sc_firmware_type = WI_NOTYPE;
1326 for (id = wi_card_ident; id->card_name != NULL; id++) {
1327 if (le16toh(ver[0]) == id->card_id) {
1328 printf("%s", id->card_name);
1329 sc->sc_firmware_type = id->firm_type;
1330 break;
1331 }
1332 }
1333 if (sc->sc_firmware_type == WI_NOTYPE) {
1334 if (le16toh(ver[0]) & 0x8000) {
1335 printf("Unknown PRISM2 chip");
1336 sc->sc_firmware_type = WI_INTERSIL;
1337 } else {
1338 printf("Unknown Lucent chip");
1339 sc->sc_firmware_type = WI_LUCENT;
1340 }
1341 }
1342
1343 /* get primary firmware version (Only Prism chips) */
1344 if (sc->sc_firmware_type != WI_LUCENT) {
1345 memset(ver, 0, sizeof(ver));
1346 len = sizeof(ver);
1347 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1348 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1349 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1350 DPRINTF2(("wi_read_nicid: PRI_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1351 }
1352
1353 /* get station firmware version */
1354 memset(ver, 0, sizeof(ver));
1355 len = sizeof(ver);
1356 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1357 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1358 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1359 DPRINTF2(("wi_read_nicid: STA_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1360 if (sc->sc_firmware_type == WI_INTERSIL &&
1361 (sc->sc_sta_firmware_ver == 10102 ||
1362 sc->sc_sta_firmware_ver == 20102)) {
1363 char ident[12];
1364 memset(ident, 0, sizeof(ident));
1365 len = sizeof(ident);
1366 /* value should be the format like "V2.00-11" */
1367 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1368 *(p = (char *)ident) >= 'A' &&
1369 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1370 sc->sc_firmware_type = WI_SYMBOL;
1371 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1372 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1373 (p[6] - '0') * 10 + (p[7] - '0');
1374 }
1375 DPRINTF2(("wi_read_nicid: SYMBOL_ID: %x %x %x %x\n", le16toh(ident[0]), le16toh(ident[1]), le16toh(ident[2]), le16toh(ident[3])));
1376 }
1377
1378 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1379 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1380 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1381 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1382 printf("Primary (%u.%u.%u), ",
1383 sc->sc_pri_firmware_ver / 10000,
1384 (sc->sc_pri_firmware_ver % 10000) / 100,
1385 sc->sc_pri_firmware_ver % 100);
1386 printf("Station (%u.%u.%u)\n",
1387 sc->sc_sta_firmware_ver / 10000,
1388 (sc->sc_sta_firmware_ver % 10000) / 100,
1389 sc->sc_sta_firmware_ver % 100);
1390 }
1391
1392 static int
1393 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1394 {
1395 struct wi_ssid ssid;
1396
1397 if (buflen > IEEE80211_NWID_LEN)
1398 return ENOBUFS;
1399 memset(&ssid, 0, sizeof(ssid));
1400 ssid.wi_len = htole16(buflen);
1401 memcpy(ssid.wi_ssid, buf, buflen);
1402 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
1403 }
1404
1405 static int
1406 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1407 {
1408 struct wi_softc *sc = ifp->if_softc;
1409 struct ieee80211com *ic = &sc->sc_ic;
1410 struct ifreq *ifr = (struct ifreq *)data;
1411 struct wi_req wreq;
1412 int len, n, error;
1413
1414 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1415 if (error)
1416 return error;
1417 len = (wreq.wi_len - 1) * 2;
1418 if (len < sizeof(u_int16_t))
1419 return ENOSPC;
1420 if (len > sizeof(wreq.wi_val))
1421 len = sizeof(wreq.wi_val);
1422
1423 switch (wreq.wi_type) {
1424
1425 case WI_RID_IFACE_STATS:
1426 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1427 if (len < sizeof(sc->sc_stats))
1428 error = ENOSPC;
1429 else
1430 len = sizeof(sc->sc_stats);
1431 break;
1432
1433 case WI_RID_ENCRYPTION:
1434 case WI_RID_TX_CRYPT_KEY:
1435 case WI_RID_DEFLT_CRYPT_KEYS:
1436 case WI_RID_TX_RATE:
1437 return ieee80211_cfgget(ifp, cmd, data);
1438
1439 case WI_RID_MICROWAVE_OVEN:
1440 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1441 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1442 &len);
1443 break;
1444 }
1445 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1446 len = sizeof(u_int16_t);
1447 break;
1448
1449 case WI_RID_DBM_ADJUST:
1450 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
1451 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1452 &len);
1453 break;
1454 }
1455 wreq.wi_val[0] = htole16(sc->sc_dbm_adjust);
1456 len = sizeof(u_int16_t);
1457 break;
1458
1459 case WI_RID_ROAMING_MODE:
1460 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
1461 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1462 &len);
1463 break;
1464 }
1465 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
1466 len = sizeof(u_int16_t);
1467 break;
1468
1469 case WI_RID_SYSTEM_SCALE:
1470 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
1471 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1472 &len);
1473 break;
1474 }
1475 wreq.wi_val[0] = htole16(sc->sc_system_scale);
1476 len = sizeof(u_int16_t);
1477 break;
1478
1479 case WI_RID_FRAG_THRESH:
1480 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
1481 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1482 &len);
1483 break;
1484 }
1485 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
1486 len = sizeof(u_int16_t);
1487 break;
1488
1489 case WI_RID_READ_APS:
1490 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1491 return ieee80211_cfgget(ifp, cmd, data);
1492 if (sc->sc_scan_timer > 0) {
1493 error = EINPROGRESS;
1494 break;
1495 }
1496 n = sc->sc_naps;
1497 if (len < sizeof(n)) {
1498 error = ENOSPC;
1499 break;
1500 }
1501 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
1502 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
1503 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
1504 memcpy(wreq.wi_val, &n, sizeof(n));
1505 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
1506 sizeof(struct wi_apinfo) * n);
1507 break;
1508
1509 default:
1510 if (sc->sc_enabled) {
1511 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1512 &len);
1513 break;
1514 }
1515 switch (wreq.wi_type) {
1516 case WI_RID_MAX_DATALEN:
1517 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
1518 len = sizeof(u_int16_t);
1519 break;
1520 case WI_RID_RTS_THRESH:
1521 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
1522 len = sizeof(u_int16_t);
1523 break;
1524 case WI_RID_CNFAUTHMODE:
1525 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
1526 len = sizeof(u_int16_t);
1527 break;
1528 case WI_RID_NODENAME:
1529 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
1530 error = ENOSPC;
1531 break;
1532 }
1533 len = sc->sc_nodelen + sizeof(u_int16_t);
1534 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
1535 memcpy(&wreq.wi_val[1], sc->sc_nodename,
1536 sc->sc_nodelen);
1537 break;
1538 default:
1539 return ieee80211_cfgget(ifp, cmd, data);
1540 }
1541 break;
1542 }
1543 if (error)
1544 return error;
1545 wreq.wi_len = (len + 1) / 2 + 1;
1546 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
1547 }
1548
1549 static int
1550 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1551 {
1552 struct wi_softc *sc = ifp->if_softc;
1553 struct ieee80211com *ic = &sc->sc_ic;
1554 struct ifreq *ifr = (struct ifreq *)data;
1555 struct wi_req wreq;
1556 struct mbuf *m;
1557 int i, len, error;
1558
1559 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1560 if (error)
1561 return error;
1562 len = (wreq.wi_len - 1) * 2;
1563 switch (wreq.wi_type) {
1564 case WI_RID_DBM_ADJUST:
1565 return ENODEV;
1566
1567 case WI_RID_NODENAME:
1568 if (le16toh(wreq.wi_val[0]) * 2 > len ||
1569 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
1570 error = ENOSPC;
1571 break;
1572 }
1573 if (sc->sc_enabled) {
1574 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1575 len);
1576 if (error)
1577 break;
1578 }
1579 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
1580 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
1581 break;
1582
1583 case WI_RID_MICROWAVE_OVEN:
1584 case WI_RID_ROAMING_MODE:
1585 case WI_RID_SYSTEM_SCALE:
1586 case WI_RID_FRAG_THRESH:
1587 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
1588 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
1589 break;
1590 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
1591 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
1592 break;
1593 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
1594 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
1595 break;
1596 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
1597 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
1598 break;
1599 /* FALLTHROUGH */
1600 case WI_RID_RTS_THRESH:
1601 case WI_RID_CNFAUTHMODE:
1602 case WI_RID_MAX_DATALEN:
1603 if (sc->sc_enabled) {
1604 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1605 sizeof(u_int16_t));
1606 if (error)
1607 break;
1608 }
1609 switch (wreq.wi_type) {
1610 case WI_RID_FRAG_THRESH:
1611 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
1612 break;
1613 case WI_RID_RTS_THRESH:
1614 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
1615 break;
1616 case WI_RID_MICROWAVE_OVEN:
1617 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
1618 break;
1619 case WI_RID_ROAMING_MODE:
1620 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
1621 break;
1622 case WI_RID_SYSTEM_SCALE:
1623 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
1624 break;
1625 case WI_RID_CNFAUTHMODE:
1626 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
1627 break;
1628 case WI_RID_MAX_DATALEN:
1629 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
1630 break;
1631 }
1632 break;
1633
1634 case WI_RID_TX_RATE:
1635 switch (le16toh(wreq.wi_val[0])) {
1636 case 3:
1637 ic->ic_fixed_rate = -1;
1638 break;
1639 default:
1640 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1641 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL)
1642 / 2 == le16toh(wreq.wi_val[0]))
1643 break;
1644 }
1645 if (i == IEEE80211_RATE_SIZE)
1646 return EINVAL;
1647 ic->ic_fixed_rate = i;
1648 }
1649 if (sc->sc_enabled)
1650 error = wi_write_txrate(sc);
1651 break;
1652
1653 case WI_RID_SCAN_APS:
1654 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
1655 error = wi_scan_ap(sc);
1656 break;
1657
1658 case WI_RID_MGMT_XMIT:
1659 if (!sc->sc_enabled) {
1660 error = ENETDOWN;
1661 break;
1662 }
1663 if (ic->ic_mgtq.ifq_len > 5) {
1664 error = EAGAIN;
1665 break;
1666 }
1667 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
1668 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
1669 if (m == NULL) {
1670 error = ENOMEM;
1671 break;
1672 }
1673 IF_ENQUEUE(&ic->ic_mgtq, m);
1674 break;
1675
1676 default:
1677 if (sc->sc_enabled) {
1678 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1679 len);
1680 if (error)
1681 break;
1682 }
1683 error = ieee80211_cfgset(ifp, cmd, data);
1684 break;
1685 }
1686 return error;
1687 }
1688
1689 static int
1690 wi_write_txrate(struct wi_softc *sc)
1691 {
1692 struct ieee80211com *ic = &sc->sc_ic;
1693 int i;
1694 u_int16_t rate;
1695
1696 if (ic->ic_fixed_rate < 0)
1697 rate = 0; /* auto */
1698 else
1699 rate = (ic->ic_sup_rates[ic->ic_fixed_rate] &
1700 IEEE80211_RATE_VAL) / 2;
1701
1702 /* rate: 0, 1, 2, 5, 11 */
1703
1704 switch (sc->sc_firmware_type) {
1705 case WI_LUCENT:
1706 if (rate == 0)
1707 rate = 3; /* auto */
1708 break;
1709 default:
1710 /* Choose a bit according to this table.
1711 *
1712 * bit | data rate
1713 * ----+-------------------
1714 * 0 | 1Mbps
1715 * 1 | 2Mbps
1716 * 2 | 5.5Mbps
1717 * 3 | 11Mbps
1718 */
1719 for (i = 8; i > 0; i >>= 1) {
1720 if (rate >= i)
1721 break;
1722 }
1723 if (i == 0)
1724 rate = 0xf; /* auto */
1725 else
1726 rate = i;
1727 break;
1728 }
1729 return wi_write_val(sc, WI_RID_TX_RATE, rate);
1730 }
1731
1732 static int
1733 wi_write_wep(struct wi_softc *sc)
1734 {
1735 struct ieee80211com *ic = &sc->sc_ic;
1736 int error = 0;
1737 int i, keylen;
1738 u_int16_t val;
1739 struct wi_key wkey[IEEE80211_WEP_NKID];
1740
1741 switch (sc->sc_firmware_type) {
1742 case WI_LUCENT:
1743 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
1744 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
1745 if (error)
1746 break;
1747 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
1748 if (error)
1749 break;
1750 memset(wkey, 0, sizeof(wkey));
1751 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1752 keylen = ic->ic_nw_keys[i].wk_len;
1753 wkey[i].wi_keylen = htole16(keylen);
1754 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
1755 keylen);
1756 }
1757 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
1758 wkey, sizeof(wkey));
1759 break;
1760
1761 case WI_INTERSIL:
1762 case WI_SYMBOL:
1763 if (ic->ic_flags & IEEE80211_F_WEPON) {
1764 /*
1765 * ONLY HWB3163 EVAL-CARD Firmware version
1766 * less than 0.8 variant2
1767 *
1768 * If promiscuous mode disable, Prism2 chip
1769 * does not work with WEP .
1770 * It is under investigation for details.
1771 * (ichiro (at) netbsd.org)
1772 */
1773 if (sc->sc_firmware_type == WI_INTERSIL &&
1774 sc->sc_sta_firmware_ver < 802 ) {
1775 /* firm ver < 0.8 variant 2 */
1776 wi_write_val(sc, WI_RID_PROMISC, 1);
1777 }
1778 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1779 sc->sc_cnfauthmode);
1780 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
1781 /*
1782 * Encryption firmware has a bug for HostAP mode.
1783 */
1784 if (sc->sc_firmware_type == WI_INTERSIL &&
1785 ic->ic_opmode == IEEE80211_M_HOSTAP)
1786 val |= HOST_ENCRYPT;
1787 } else {
1788 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1789 IEEE80211_AUTH_OPEN);
1790 val = HOST_ENCRYPT | HOST_DECRYPT;
1791 }
1792 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
1793 if (error)
1794 break;
1795 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
1796 ic->ic_wep_txkey);
1797 if (error)
1798 break;
1799 /*
1800 * It seems that the firmware accept 104bit key only if
1801 * all the keys have 104bit length. We get the length of
1802 * the transmit key and use it for all other keys.
1803 * Perhaps we should use software WEP for such situation.
1804 */
1805 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
1806 if (keylen > IEEE80211_WEP_KEYLEN)
1807 keylen = 13; /* 104bit keys */
1808 else
1809 keylen = IEEE80211_WEP_KEYLEN;
1810 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1811 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
1812 ic->ic_nw_keys[i].wk_key, keylen);
1813 if (error)
1814 break;
1815 }
1816 break;
1817 }
1818 return error;
1819 }
1820
1821 /* Must be called at proper protection level! */
1822 static int
1823 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
1824 {
1825 int i, status;
1826
1827 /* wait for the busy bit to clear */
1828 for (i = 0; ; i++) {
1829 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
1830 break;
1831 if (i == WI_TIMEOUT) {
1832 printf("%s: wi_cmd: BUSY did not clear, "
1833 "cmd=0x%x, prev=0x%x\n", sc->sc_dev.dv_xname,
1834 cmd, CSR_READ_2(sc, WI_COMMAND));
1835 return EIO;
1836 }
1837 DELAY(1);
1838 }
1839
1840 CSR_WRITE_2(sc, WI_PARAM0, val0);
1841 CSR_WRITE_2(sc, WI_PARAM1, val1);
1842 CSR_WRITE_2(sc, WI_PARAM2, val2);
1843 CSR_WRITE_2(sc, WI_COMMAND, cmd);
1844
1845 if (cmd == WI_CMD_INI) {
1846 /* XXX: should sleep here. */
1847 DELAY(100*1000);
1848 }
1849 /* wait for the cmd completed bit */
1850 for (i = 0; i < WI_TIMEOUT; i++) {
1851 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
1852 break;
1853 DELAY(1);
1854 }
1855
1856 status = CSR_READ_2(sc, WI_STATUS);
1857
1858 /* Ack the command */
1859 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1860
1861 if (i == WI_TIMEOUT) {
1862 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
1863 sc->sc_dev.dv_xname, cmd, val0);
1864 return ETIMEDOUT;
1865 }
1866
1867 if (status & WI_STAT_CMD_RESULT) {
1868 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
1869 sc->sc_dev.dv_xname, cmd, val0);
1870 return EIO;
1871 }
1872 return 0;
1873 }
1874
1875 static int
1876 wi_seek_bap(struct wi_softc *sc, int id, int off)
1877 {
1878 int i, status;
1879
1880 CSR_WRITE_2(sc, WI_SEL0, id);
1881 CSR_WRITE_2(sc, WI_OFF0, off);
1882
1883 for (i = 0; ; i++) {
1884 status = CSR_READ_2(sc, WI_OFF0);
1885 if ((status & WI_OFF_BUSY) == 0)
1886 break;
1887 if (i == WI_TIMEOUT) {
1888 printf("%s: timeout in wi_seek to %x/%x\n",
1889 sc->sc_dev.dv_xname, id, off);
1890 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1891 return ETIMEDOUT;
1892 }
1893 DELAY(1);
1894 }
1895 if (status & WI_OFF_ERR) {
1896 printf("%s: failed in wi_seek to %x/%x\n",
1897 sc->sc_dev.dv_xname, id, off);
1898 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1899 return EIO;
1900 }
1901 sc->sc_bap_id = id;
1902 sc->sc_bap_off = off;
1903 return 0;
1904 }
1905
1906 static int
1907 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1908 {
1909 int error, cnt;
1910
1911 if (buflen == 0)
1912 return 0;
1913 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1914 if ((error = wi_seek_bap(sc, id, off)) != 0)
1915 return error;
1916 }
1917 cnt = (buflen + 1) / 2;
1918 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1919 sc->sc_bap_off += cnt * 2;
1920 return 0;
1921 }
1922
1923 static int
1924 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1925 {
1926 int error, cnt;
1927
1928 if (buflen == 0)
1929 return 0;
1930
1931 #ifdef WI_HERMES_AUTOINC_WAR
1932 again:
1933 #endif
1934 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1935 if ((error = wi_seek_bap(sc, id, off)) != 0)
1936 return error;
1937 }
1938 cnt = (buflen + 1) / 2;
1939 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1940 sc->sc_bap_off += cnt * 2;
1941
1942 #ifdef WI_HERMES_AUTOINC_WAR
1943 /*
1944 * According to the comments in the HCF Light code, there is a bug
1945 * in the Hermes (or possibly in certain Hermes firmware revisions)
1946 * where the chip's internal autoincrement counter gets thrown off
1947 * during data writes: the autoincrement is missed, causing one
1948 * data word to be overwritten and subsequent words to be written to
1949 * the wrong memory locations. The end result is that we could end
1950 * up transmitting bogus frames without realizing it. The workaround
1951 * for this is to write a couple of extra guard words after the end
1952 * of the transfer, then attempt to read then back. If we fail to
1953 * locate the guard words where we expect them, we preform the
1954 * transfer over again.
1955 */
1956 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
1957 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1958 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1959 wi_seek_bap(sc, id, sc->sc_bap_off);
1960 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1961 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1962 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
1963 printf("%s: detect auto increment bug, try again\n",
1964 sc->sc_dev.dv_xname);
1965 goto again;
1966 }
1967 }
1968 #endif
1969 return 0;
1970 }
1971
1972 static int
1973 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
1974 {
1975 int i;
1976
1977 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
1978 printf("%s: failed to allocate %d bytes on NIC\n",
1979 sc->sc_dev.dv_xname, len);
1980 return ENOMEM;
1981 }
1982
1983 for (i = 0; i < WI_TIMEOUT; i++) {
1984 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1985 break;
1986 if (i == WI_TIMEOUT) {
1987 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
1988 return ETIMEDOUT;
1989 }
1990 DELAY(1);
1991 }
1992 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
1993 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1994 return 0;
1995 }
1996
1997 static int
1998 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
1999 {
2000 int error, len;
2001 u_int16_t ltbuf[2];
2002
2003 /* Tell the NIC to enter record read mode. */
2004 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2005 if (error)
2006 return error;
2007
2008 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2009 if (error)
2010 return error;
2011
2012 if (le16toh(ltbuf[1]) != rid) {
2013 printf("%s: record read mismatch, rid=%x, got=%x\n",
2014 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
2015 return EIO;
2016 }
2017 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
2018 if (*buflenp < len) {
2019 printf("%s: record buffer is too small, "
2020 "rid=%x, size=%d, len=%d\n",
2021 sc->sc_dev.dv_xname, rid, *buflenp, len);
2022 return ENOSPC;
2023 }
2024 *buflenp = len;
2025 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2026 }
2027
2028 static int
2029 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2030 {
2031 int error;
2032 u_int16_t ltbuf[2];
2033
2034 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
2035 ltbuf[1] = htole16(rid);
2036
2037 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2038 if (error)
2039 return error;
2040 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2041 if (error)
2042 return error;
2043
2044 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2045 }
2046
2047 static int
2048 wi_newstate(void *arg, enum ieee80211_state nstate)
2049 {
2050 struct wi_softc *sc = arg;
2051 struct ieee80211com *ic = &sc->sc_ic;
2052 struct ieee80211_node *ni = &ic->ic_bss;
2053 int i, buflen;
2054 u_int16_t val;
2055 struct wi_ssid ssid;
2056 enum ieee80211_state ostate;
2057 #ifdef WI_DEBUG
2058 static const char *stname[] =
2059 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
2060 #endif /* WI_DEBUG */
2061
2062 ostate = ic->ic_state;
2063 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
2064
2065 ic->ic_state = nstate;
2066 switch (nstate) {
2067 case IEEE80211_S_INIT:
2068 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2069 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2070 return 0;
2071
2072 case IEEE80211_S_RUN:
2073 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2074 buflen = IEEE80211_ADDR_LEN;
2075 wi_read_rid(sc, WI_RID_CURRENT_BSSID, ni->ni_bssid, &buflen);
2076 IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
2077 buflen = sizeof(val);
2078 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
2079 ni->ni_chan = le16toh(val);
2080
2081 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2082 ni->ni_esslen = ic->ic_des_esslen;
2083 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2084 ni->ni_nrate = 0;
2085 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2086 if (ic->ic_sup_rates[i])
2087 ni->ni_rates[ni->ni_nrate++] =
2088 ic->ic_sup_rates[i];
2089 }
2090 ni->ni_intval = ic->ic_lintval;
2091 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2092 if (ic->ic_flags & IEEE80211_F_WEPON)
2093 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2094 } else {
2095 buflen = sizeof(ssid);
2096 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2097 ni->ni_esslen = le16toh(ssid.wi_len);
2098 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2099 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2100 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2101 }
2102 break;
2103
2104 case IEEE80211_S_SCAN:
2105 case IEEE80211_S_AUTH:
2106 case IEEE80211_S_ASSOC:
2107 break;
2108 }
2109
2110 /* skip standard ieee80211 handling */
2111 return EINPROGRESS;
2112 }
2113
2114 static int
2115 wi_scan_ap(struct wi_softc *sc)
2116 {
2117 int error = 0;
2118 u_int16_t val[2];
2119
2120 if (!sc->sc_enabled)
2121 return ENXIO;
2122 switch (sc->sc_firmware_type) {
2123 case WI_LUCENT:
2124 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2125 break;
2126 case WI_INTERSIL:
2127 val[0] = 0x3fff; /* channel */
2128 val[1] = 0x000f; /* tx rate */
2129 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2130 break;
2131 case WI_SYMBOL:
2132 /*
2133 * XXX only supported on 3.x ?
2134 */
2135 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2136 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2137 val, sizeof(val[0]));
2138 break;
2139 }
2140 if (error == 0) {
2141 sc->sc_scan_timer = WI_SCAN_WAIT;
2142 sc->sc_ic.ic_if.if_timer = 1;
2143 DPRINTF(("wi_scan_ap: start scanning\n"));
2144 }
2145 return error;
2146 }
2147
2148 static void
2149 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2150 {
2151 int i, naps, off, szbuf;
2152 struct wi_scan_header ws_hdr; /* Prism2 header */
2153 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2154 struct wi_apinfo *ap;
2155
2156 off = sizeof(u_int16_t) * 2;
2157 memset(&ws_hdr, 0, sizeof(ws_hdr));
2158 switch (sc->sc_firmware_type) {
2159 case WI_INTERSIL:
2160 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2161 off += sizeof(ws_hdr);
2162 szbuf = sizeof(struct wi_scan_data_p2);
2163 break;
2164 case WI_SYMBOL:
2165 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2166 break;
2167 case WI_LUCENT:
2168 szbuf = sizeof(struct wi_scan_data);
2169 break;
2170 }
2171 naps = (cnt * 2 + 2 - off) / szbuf;
2172 if (naps > MAXAPINFO)
2173 naps = MAXAPINFO;
2174 sc->sc_naps = naps;
2175 /* Read Data */
2176 ap = sc->sc_aps;
2177 memset(&ws_dat, 0, sizeof(ws_dat));
2178 for (i = 0; i < naps; i++, ap++) {
2179 wi_read_bap(sc, fid, off, &ws_dat,
2180 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2181 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
2182 ether_sprintf(ws_dat.wi_bssid)));
2183 off += szbuf;
2184 ap->scanreason = le16toh(ws_hdr.wi_reason);
2185 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2186 ap->channel = le16toh(ws_dat.wi_chid);
2187 ap->signal = le16toh(ws_dat.wi_signal);
2188 ap->noise = le16toh(ws_dat.wi_noise);
2189 ap->quality = ap->signal - ap->noise;
2190 ap->capinfo = le16toh(ws_dat.wi_capinfo);
2191 ap->interval = le16toh(ws_dat.wi_interval);
2192 ap->rate = le16toh(ws_dat.wi_rate);
2193 ap->namelen = le16toh(ws_dat.wi_namelen);
2194 if (ap->namelen > sizeof(ap->name))
2195 ap->namelen = sizeof(ap->name);
2196 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2197 }
2198 /* Done scanning */
2199 sc->sc_scan_timer = 0;
2200 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
2201 }
2202