wi.c revision 1.109 1 /* $NetBSD: wi.c,v 1.109 2003/01/09 08:52:19 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.109 2003/01/09 08:52:19 dyoung Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static int wi_init(struct ifnet *);
108 static void wi_stop(struct ifnet *, int);
109 static void wi_start(struct ifnet *);
110 static int wi_reset(struct wi_softc *);
111 static void wi_watchdog(struct ifnet *);
112 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
113 static int wi_media_change(struct ifnet *);
114 static void wi_media_status(struct ifnet *, struct ifmediareq *);
115
116 static void wi_rx_intr(struct wi_softc *);
117 static void wi_tx_intr(struct wi_softc *);
118 static void wi_info_intr(struct wi_softc *);
119
120 static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
121 static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
122 static int wi_write_txrate(struct wi_softc *);
123 static int wi_write_wep(struct wi_softc *);
124 static int wi_write_multi(struct wi_softc *);
125 static int wi_alloc_fid(struct wi_softc *, int, int *);
126 static void wi_read_nicid(struct wi_softc *);
127 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
128
129 static int wi_cmd(struct wi_softc *, int, int, int, int);
130 static int wi_seek_bap(struct wi_softc *, int, int);
131 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
132 static int wi_write_bap(struct wi_softc *, int, int, void *, int);
133 static int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
134 static int wi_read_rid(struct wi_softc *, int, void *, int *);
135 static int wi_write_rid(struct wi_softc *, int, void *, int);
136
137 static int wi_newstate(void *, enum ieee80211_state);
138
139 static int wi_scan_ap(struct wi_softc *);
140 static void wi_scan_result(struct wi_softc *, int, int);
141
142 static inline int
143 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
144 {
145
146 val = htole16(val);
147 return wi_write_rid(sc, rid, &val, sizeof(val));
148 }
149
150 #ifdef WI_DEBUG
151 int wi_debug = 0;
152
153 #define DPRINTF(X) if (wi_debug) printf X
154 #define DPRINTF2(X) if (wi_debug > 1) printf X
155 #else
156 #define DPRINTF(X)
157 #define DPRINTF2(X)
158 #endif
159
160 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
161
162 struct wi_card_ident
163 wi_card_ident[] = {
164 /* CARD_ID CARD_NAME FIRM_TYPE */
165 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
166 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
167 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
168 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
169 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
170 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
171 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
172 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
173 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
174 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
175 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
176 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
177 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
178 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
179 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
180 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
181 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
182 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
183 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
184 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
185 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
186 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
187 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
188 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
189 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
190 { 0, NULL, 0 },
191 };
192
193 int
194 wi_attach(struct wi_softc *sc)
195 {
196 struct ieee80211com *ic = &sc->sc_ic;
197 struct ifnet *ifp = &ic->ic_if;
198 int i, nrate, mword, buflen;
199 u_int8_t r;
200 u_int16_t val;
201 u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
202 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
203 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
204 };
205 int s;
206
207 s = splnet();
208
209 /* Make sure interrupts are disabled. */
210 CSR_WRITE_2(sc, WI_INT_EN, 0);
211 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
212
213 /* Reset the NIC. */
214 if (wi_reset(sc) != 0) {
215 splx(s);
216 return 1;
217 }
218
219 buflen = IEEE80211_ADDR_LEN;
220 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
221 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
222 printf(" could not get mac address, attach failed\n");
223 splx(s);
224 return 1;
225 }
226
227 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
228
229 /* Read NIC identification */
230 wi_read_nicid(sc);
231
232 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
233 ifp->if_softc = sc;
234 ifp->if_start = wi_start;
235 ifp->if_ioctl = wi_ioctl;
236 ifp->if_watchdog = wi_watchdog;
237 ifp->if_init = wi_init;
238 ifp->if_stop = wi_stop;
239 ifp->if_flags =
240 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
241 IFQ_SET_READY(&ifp->if_snd);
242
243 ic->ic_phytype = IEEE80211_T_DS;
244 ic->ic_opmode = IEEE80211_M_STA;
245 ic->ic_flags = IEEE80211_F_HASPMGT | IEEE80211_F_HASAHDEMO;
246 ic->ic_state = IEEE80211_S_INIT;
247 ic->ic_newstate = wi_newstate;
248
249 /* Find available channel */
250 buflen = sizeof(val);
251 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
252 val = htole16(0x1fff); /* assume 1-11 */
253 for (i = 0; i < 16; i++) {
254 if (isset((u_int8_t*)&val, i))
255 setbit(ic->ic_chan_avail, i + 1);
256 }
257
258 sc->sc_dbm_adjust = 100; /* default */
259
260 buflen = sizeof(val);
261 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
262 wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0) {
263 sc->sc_dbm_adjust = le16toh(val);
264 }
265
266 /* Find default IBSS channel */
267 buflen = sizeof(val);
268 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0)
269 ic->ic_ibss_chan = le16toh(val);
270 else {
271 /* use lowest available channel */
272 for (i = 0; i < 16; i++) {
273 if (isset(ic->ic_chan_avail, i))
274 break;
275 }
276 ic->ic_ibss_chan = i;
277 }
278
279 /*
280 * Set flags based on firmware version.
281 */
282 switch (sc->sc_firmware_type) {
283 case WI_LUCENT:
284 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
285 #ifdef WI_HERMES_AUTOINC_WAR
286 /* XXX: not confirmed, but never seen for recent firmware */
287 if (sc->sc_sta_firmware_ver < 40000) {
288 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
289 }
290 #endif
291 if (sc->sc_sta_firmware_ver >= 60000)
292 sc->sc_flags |= WI_FLAGS_HAS_MOR;
293 if (sc->sc_sta_firmware_ver >= 60006)
294 ic->ic_flags |= IEEE80211_F_HASIBSS;
295 sc->sc_ibss_port = 1;
296 break;
297
298 case WI_INTERSIL:
299 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
300 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
301 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
302 if (sc->sc_sta_firmware_ver > 10101)
303 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
304 if (sc->sc_sta_firmware_ver >= 800) {
305 ic->ic_flags |= IEEE80211_F_HASHOSTAP;
306 ic->ic_flags |= IEEE80211_F_HASIBSS;
307 }
308 sc->sc_ibss_port = 0;
309 break;
310
311 case WI_SYMBOL:
312 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
313 if (sc->sc_sta_firmware_ver >= 20000)
314 ic->ic_flags |= IEEE80211_F_HASIBSS;
315 sc->sc_ibss_port = 4;
316 break;
317 }
318
319 /*
320 * Find out if we support WEP on this card.
321 */
322 buflen = sizeof(val);
323 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
324 val != htole16(0))
325 ic->ic_flags |= IEEE80211_F_HASWEP;
326
327 /* Find supported rates. */
328 buflen = sizeof(ratebuf);
329 if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
330 nrate = le16toh(*(u_int16_t *)ratebuf);
331 if (nrate > IEEE80211_RATE_SIZE)
332 nrate = IEEE80211_RATE_SIZE;
333 memcpy(ic->ic_sup_rates, ratebuf + 2, nrate);
334 }
335 buflen = sizeof(val);
336
337 sc->sc_max_datalen = 2304;
338 sc->sc_rts_thresh = 2347;
339 sc->sc_frag_thresh = 2346;
340 sc->sc_system_scale = 1;
341 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
342 sc->sc_roaming_mode = 1;
343
344 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
345 printf("%s: supported rates: ", sc->sc_dev.dv_xname);
346 #define ADD(s, o) ifmedia_add(&sc->sc_media, \
347 IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL)
348 ADD(IFM_AUTO, 0);
349 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
350 ADD(IFM_AUTO, IFM_IEEE80211_HOSTAP);
351 if (ic->ic_flags & IEEE80211_F_HASIBSS)
352 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC);
353 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC | IFM_FLAG0);
354 for (i = 0; i < nrate; i++) {
355 r = ic->ic_sup_rates[i];
356 mword = ieee80211_rate2media(r, IEEE80211_T_DS);
357 if (mword == 0)
358 continue;
359 printf("%s%d%sMbps", (i != 0 ? " " : ""),
360 (r & IEEE80211_RATE_VAL) / 2, ((r & 0x1) != 0 ? ".5" : ""));
361 ADD(mword, 0);
362 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
363 ADD(mword, IFM_IEEE80211_HOSTAP);
364 if (ic->ic_flags & IEEE80211_F_HASIBSS)
365 ADD(mword, IFM_IEEE80211_ADHOC);
366 ADD(mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
367 }
368 printf("\n");
369 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
370 #undef ADD
371
372 /*
373 * Call MI attach routines.
374 */
375
376 if_attach(ifp);
377 ieee80211_ifattach(ifp);
378
379 /* Attach is successful. */
380 sc->sc_attached = 1;
381
382 splx(s);
383 return 0;
384 }
385
386 int
387 wi_detach(struct wi_softc *sc)
388 {
389 struct ifnet *ifp = &sc->sc_ic.ic_if;
390 int s;
391
392 if (!sc->sc_attached)
393 return 0;
394
395 s = splnet();
396
397 /* Delete all remaining media. */
398 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
399
400 ieee80211_ifdetach(ifp);
401 if_detach(ifp);
402 if (sc->sc_enabled) {
403 if (sc->sc_disable)
404 (*sc->sc_disable)(sc);
405 sc->sc_enabled = 0;
406 }
407 splx(s);
408 return 0;
409 }
410
411 int
412 wi_activate(struct device *self, enum devact act)
413 {
414 struct wi_softc *sc = (struct wi_softc *)self;
415 int rv = 0, s;
416
417 s = splnet();
418 switch (act) {
419 case DVACT_ACTIVATE:
420 rv = EOPNOTSUPP;
421 break;
422
423 case DVACT_DEACTIVATE:
424 if_deactivate(&sc->sc_ic.ic_if);
425 break;
426 }
427 splx(s);
428 return rv;
429 }
430
431 void
432 wi_power(struct wi_softc *sc, int why)
433 {
434 struct ifnet *ifp = &sc->sc_ic.ic_if;
435 int s;
436
437 s = splnet();
438 switch (why) {
439 case PWR_SUSPEND:
440 case PWR_STANDBY:
441 wi_stop(ifp, 1);
442 break;
443 case PWR_RESUME:
444 if (ifp->if_flags & IFF_UP) {
445 wi_init(ifp);
446 (void)wi_intr(sc);
447 }
448 break;
449 case PWR_SOFTSUSPEND:
450 case PWR_SOFTSTANDBY:
451 case PWR_SOFTRESUME:
452 break;
453 }
454 splx(s);
455 }
456
457 void
458 wi_shutdown(struct wi_softc *sc)
459 {
460 struct ifnet *ifp = &sc->sc_ic.ic_if;
461
462 if (sc->sc_attached)
463 wi_stop(ifp, 1);
464 }
465
466 int
467 wi_intr(void *arg)
468 {
469 int i;
470 struct wi_softc *sc = arg;
471 struct ifnet *ifp = &sc->sc_ic.ic_if;
472 u_int16_t status, raw_status, last_status;
473
474 if (sc->sc_enabled == 0 ||
475 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
476 (ifp->if_flags & IFF_RUNNING) == 0)
477 return 0;
478
479 if ((ifp->if_flags & IFF_UP) == 0) {
480 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
481 CSR_WRITE_2(sc, WI_INT_EN, 0);
482 return 1;
483 }
484
485 /* maximum 10 loops per interrupt */
486 last_status = 0;
487 for (i = 0; i < 10; i++) {
488 /*
489 * Only believe a status bit when we enter wi_intr, or when
490 * the bit was "off" the last time through the loop. This is
491 * my strategy to avoid racing the hardware/firmware if I
492 * can re-read the event status register more quickly than
493 * it is updated.
494 */
495 raw_status = CSR_READ_2(sc, WI_EVENT_STAT);
496 status = raw_status & ~last_status;
497 if ((status & WI_INTRS) == 0)
498 break;
499 last_status = raw_status;
500
501 if (status & WI_EV_RX)
502 wi_rx_intr(sc);
503
504 if (status & WI_EV_ALLOC)
505 wi_tx_intr(sc);
506
507 if (status & WI_EV_INFO)
508 wi_info_intr(sc);
509
510 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
511 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
512 !IFQ_IS_EMPTY(&ifp->if_snd))
513 wi_start(ifp);
514 }
515
516 return 1;
517 }
518
519 static int
520 wi_init(struct ifnet *ifp)
521 {
522 struct wi_softc *sc = ifp->if_softc;
523 struct ieee80211com *ic = &sc->sc_ic;
524 struct wi_joinreq join;
525 int i;
526 int error = 0, wasenabled;
527
528 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
529 wasenabled = sc->sc_enabled;
530 if (!sc->sc_enabled) {
531 if ((error = (*sc->sc_enable)(sc)) != 0)
532 goto out;
533 sc->sc_enabled = 1;
534 } else
535 wi_stop(ifp, 0);
536
537 /* Symbol firmware cannot be initialized more than once */
538 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
539 if ((error = wi_reset(sc)) != 0)
540 goto out;
541 }
542
543 /* common 802.11 configuration */
544 ic->ic_flags &= ~IEEE80211_F_IBSSON;
545 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
546 switch (ic->ic_opmode) {
547 case IEEE80211_M_STA:
548 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
549 break;
550 case IEEE80211_M_IBSS:
551 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
552 ic->ic_flags |= IEEE80211_F_IBSSON;
553 sc->sc_syn_timer = 5;
554 ifp->if_timer = 1;
555 break;
556 case IEEE80211_M_AHDEMO:
557 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
558 break;
559 case IEEE80211_M_HOSTAP:
560 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
561 break;
562 }
563
564 /* Intersil interprets this RID as joining ESS even in IBSS mode */
565 if (sc->sc_firmware_type == WI_LUCENT &&
566 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
567 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
568 else
569 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
570 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
571 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
572 ic->ic_des_esslen);
573 wi_write_val(sc, WI_RID_OWN_CHNL, ic->ic_ibss_chan);
574 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
575 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
576 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
577 wi_write_val(sc, WI_RID_PM_ENABLED,
578 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
579
580 /* not yet common 802.11 configuration */
581 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
582 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
583 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
584 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
585
586 /* driver specific 802.11 configuration */
587 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
588 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
589 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
590 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
591 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
592 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
593 wi_write_txrate(sc);
594 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
595
596 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
597 sc->sc_firmware_type == WI_INTERSIL) {
598 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
599 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
600 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
601 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
602 }
603
604 /*
605 * Initialize promisc mode.
606 * Being in the Host-AP mode causes a great
607 * deal of pain if primisc mode is set.
608 * Therefore we avoid confusing the firmware
609 * and always reset promisc mode in Host-AP
610 * mode. Host-AP sees all the packets anyway.
611 */
612 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
613 (ifp->if_flags & IFF_PROMISC) != 0) {
614 wi_write_val(sc, WI_RID_PROMISC, 1);
615 } else {
616 wi_write_val(sc, WI_RID_PROMISC, 0);
617 }
618
619 /* Configure WEP. */
620 if (ic->ic_flags & IEEE80211_F_HASWEP)
621 wi_write_wep(sc);
622
623 /* Set multicast filter. */
624 wi_write_multi(sc);
625
626 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
627 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
628 if (sc->sc_firmware_type == WI_SYMBOL)
629 sc->sc_buflen = 1585; /* XXX */
630 for (i = 0; i < WI_NTXBUF; i++) {
631 error = wi_alloc_fid(sc, sc->sc_buflen,
632 &sc->sc_txd[i].d_fid);
633 if (error) {
634 printf("%s: tx buffer allocation failed\n",
635 sc->sc_dev.dv_xname);
636 goto out;
637 }
638 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
639 sc->sc_txd[i].d_fid));
640 sc->sc_txd[i].d_len = 0;
641 }
642 }
643 sc->sc_txcur = sc->sc_txnext = 0;
644
645 /* Enable port 0 */
646 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
647 ifp->if_flags |= IFF_RUNNING;
648 ifp->if_flags &= ~IFF_OACTIVE;
649 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
650 ic->ic_opmode == IEEE80211_M_HOSTAP)
651 wi_newstate(sc, IEEE80211_S_RUN);
652
653 /* Enable interrupts */
654 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
655
656 if (!wasenabled &&
657 ic->ic_opmode == IEEE80211_M_HOSTAP &&
658 sc->sc_firmware_type == WI_INTERSIL) {
659 /* XXX: some card need to be re-enabled for hostap */
660 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
661 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
662 }
663
664 if (ic->ic_opmode == IEEE80211_M_STA &&
665 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
666 ic->ic_des_chan != IEEE80211_CHAN_ANY)) {
667 memset(&join, 0, sizeof(join));
668 if (ic->ic_flags & IEEE80211_F_DESBSSID)
669 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
670 if (ic->ic_des_chan != IEEE80211_CHAN_ANY)
671 join.wi_chan = htole16(ic->ic_des_chan);
672 /* Lucent firmware does not support the JOIN RID. */
673 if (sc->sc_firmware_type != WI_LUCENT)
674 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
675 }
676
677 out:
678 if (error) {
679 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
680 wi_stop(ifp, 0);
681 }
682 DPRINTF(("wi_init: return %d\n", error));
683 return error;
684 }
685
686 static void
687 wi_stop(struct ifnet *ifp, int disable)
688 {
689 struct wi_softc *sc = ifp->if_softc;
690
691 DPRINTF(("wi_stop: disable %d\n", disable));
692 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
693 if (sc->sc_enabled) {
694 CSR_WRITE_2(sc, WI_INT_EN, 0);
695 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
696 if (disable) {
697 if (sc->sc_disable)
698 (*sc->sc_disable)(sc);
699 sc->sc_enabled = 0;
700 }
701 }
702
703 sc->sc_tx_timer = 0;
704 sc->sc_scan_timer = 0;
705 sc->sc_syn_timer = 0;
706 sc->sc_false_syns = 0;
707 sc->sc_naps = 0;
708 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
709 ifp->if_timer = 0;
710 }
711
712 static void
713 wi_start(struct ifnet *ifp)
714 {
715 struct wi_softc *sc = ifp->if_softc;
716 struct ieee80211com *ic = &sc->sc_ic;
717 struct ieee80211_node *ni;
718 struct ieee80211_frame *wh;
719 struct mbuf *m0;
720 struct wi_frame frmhdr;
721 int cur, fid, off;
722
723 if (ifp->if_flags & IFF_OACTIVE)
724 return;
725 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
726 return;
727
728 memset(&frmhdr, 0, sizeof(frmhdr));
729 cur = sc->sc_txnext;
730 for (;;) {
731 IF_POLL(&ic->ic_mgtq, m0);
732 if (m0 != NULL) {
733 if (sc->sc_txd[cur].d_len != 0) {
734 ifp->if_flags |= IFF_OACTIVE;
735 break;
736 }
737 IF_DEQUEUE(&ic->ic_mgtq, m0);
738 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
739 (caddr_t)&frmhdr.wi_ehdr);
740 frmhdr.wi_ehdr.ether_type = 0;
741 wh = mtod(m0, struct ieee80211_frame *);
742 } else {
743 if (ic->ic_state != IEEE80211_S_RUN)
744 break;
745 IFQ_POLL(&ifp->if_snd, m0);
746 if (m0 == NULL)
747 break;
748 if (sc->sc_txd[cur].d_len != 0) {
749 ifp->if_flags |= IFF_OACTIVE;
750 break;
751 }
752 IFQ_DEQUEUE(&ifp->if_snd, m0);
753 ifp->if_opackets++;
754 m_copydata(m0, 0, ETHER_HDR_LEN,
755 (caddr_t)&frmhdr.wi_ehdr);
756 #if NBPFILTER > 0
757 if (ifp->if_bpf)
758 bpf_mtap(ifp->if_bpf, m0);
759 #endif
760
761 if ((m0 = ieee80211_encap(ifp, m0)) == NULL) {
762 ifp->if_oerrors++;
763 continue;
764 }
765 wh = mtod(m0, struct ieee80211_frame *);
766 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
767 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
768 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
769 IEEE80211_FC0_TYPE_DATA &&
770 ((ni = ieee80211_find_node(ic, wh->i_addr1)) ==
771 NULL || ni->ni_associd == 0)) {
772 m_freem(m0);
773 ifp->if_oerrors++;
774 continue;
775 }
776 if (ic->ic_flags & IEEE80211_F_WEPON)
777 wh->i_fc[1] |= IEEE80211_FC1_WEP;
778
779 }
780 #if NBPFILTER > 0
781 if (ic->ic_rawbpf)
782 bpf_mtap(ic->ic_rawbpf, m0);
783 #endif
784 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11);
785 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
786 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
787 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
788 ifp->if_oerrors++;
789 continue;
790 }
791 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
792 }
793 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
794 (caddr_t)&frmhdr.wi_whdr);
795 m_adj(m0, sizeof(struct ieee80211_frame));
796 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
797 #if NBPFILTER > 0
798 if (sc->sc_drvbpf) {
799 struct mbuf mb;
800
801 M_COPY_PKTHDR(&mb, m0);
802 mb.m_data = (caddr_t)&frmhdr;
803 mb.m_len = sizeof(frmhdr);
804 mb.m_next = m0;
805 mb.m_pkthdr.len += mb.m_len;
806 bpf_mtap(sc->sc_drvbpf, &mb);
807 }
808 #endif
809 fid = sc->sc_txd[cur].d_fid;
810 off = sizeof(frmhdr);
811 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
812 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
813 ifp->if_oerrors++;
814 m_freem(m0);
815 continue;
816 }
817 m_freem(m0);
818 sc->sc_txd[cur].d_len = off;
819 if (sc->sc_txcur == cur) {
820 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
821 printf("%s: xmit failed\n",
822 sc->sc_dev.dv_xname);
823 sc->sc_txd[cur].d_len = 0;
824 continue;
825 }
826 sc->sc_tx_timer = 5;
827 ifp->if_timer = 1;
828 }
829 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF;
830 }
831 }
832
833
834 static int
835 wi_reset(struct wi_softc *sc)
836 {
837 int i, error;
838
839 DPRINTF(("wi_reset\n"));
840 error = 0;
841 for (i = 0; i < 5; i++) {
842 DELAY(20*1000); /* XXX: way too long! */
843 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
844 break;
845 }
846 if (error) {
847 printf("%s: init failed\n", sc->sc_dev.dv_xname);
848 return error;
849 }
850 CSR_WRITE_2(sc, WI_INT_EN, 0);
851 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
852
853 /* Calibrate timer. */
854 wi_write_val(sc, WI_RID_TICK_TIME, 0);
855 return 0;
856 }
857
858 static void
859 wi_watchdog(struct ifnet *ifp)
860 {
861 struct wi_softc *sc = ifp->if_softc;
862
863 ifp->if_timer = 0;
864 if (!sc->sc_enabled)
865 return;
866
867 if (sc->sc_tx_timer) {
868 if (--sc->sc_tx_timer == 0) {
869 printf("%s: device timeout\n", ifp->if_xname);
870 ifp->if_oerrors++;
871 wi_init(ifp);
872 return;
873 }
874 ifp->if_timer = 1;
875 }
876
877 if (sc->sc_scan_timer) {
878 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
879 sc->sc_firmware_type == WI_INTERSIL) {
880 DPRINTF(("wi_watchdog: inquire scan\n"));
881 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
882 }
883 if (sc->sc_scan_timer)
884 ifp->if_timer = 1;
885 }
886
887 if (sc->sc_syn_timer) {
888 if (--sc->sc_syn_timer == 0) {
889 DPRINTF2(("%s: %d false syns\n",
890 sc->sc_dev.dv_xname, sc->sc_false_syns));
891 sc->sc_false_syns = 0;
892 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
893 sc->sc_syn_timer = 5;
894 }
895 ifp->if_timer = 1;
896 }
897
898 /* TODO: rate control */
899 ieee80211_watchdog(ifp);
900 }
901
902 static int
903 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
904 {
905 struct wi_softc *sc = ifp->if_softc;
906 struct ieee80211com *ic = &sc->sc_ic;
907 struct ifreq *ifr = (struct ifreq *)data;
908 int s, error = 0;
909
910 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
911 return ENXIO;
912
913 s = splnet();
914
915 switch (cmd) {
916 case SIOCSIFFLAGS:
917 if (ifp->if_flags & IFF_UP) {
918 if (sc->sc_enabled) {
919 /*
920 * To avoid rescanning another access point,
921 * do not call wi_init() here. Instead,
922 * only reflect promisc mode settings.
923 */
924 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
925 (ifp->if_flags & IFF_PROMISC) != 0)
926 wi_write_val(sc, WI_RID_PROMISC, 1);
927 else
928 wi_write_val(sc, WI_RID_PROMISC, 0);
929 } else
930 error = wi_init(ifp);
931 } else if (sc->sc_enabled)
932 wi_stop(ifp, 1);
933 break;
934 case SIOCSIFMEDIA:
935 case SIOCGIFMEDIA:
936 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
937 break;
938 case SIOCADDMULTI:
939 case SIOCDELMULTI:
940 error = (cmd == SIOCADDMULTI) ?
941 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
942 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
943 if (error == ENETRESET) {
944 if (sc->sc_enabled) {
945 /* do not rescan */
946 error = wi_write_multi(sc);
947 } else
948 error = 0;
949 }
950 break;
951 case SIOCGIFGENERIC:
952 error = wi_get_cfg(ifp, cmd, data);
953 break;
954 case SIOCSIFGENERIC:
955 error = suser(curproc->p_ucred, &curproc->p_acflag);
956 if (error)
957 break;
958 error = wi_set_cfg(ifp, cmd, data);
959 if (error == ENETRESET) {
960 if (sc->sc_enabled)
961 error = wi_init(ifp);
962 else
963 error = 0;
964 }
965 break;
966 case SIOCS80211BSSID:
967 /* No use pretending that Lucent firmware supports
968 * 802.11 MLME-JOIN.request.
969 */
970 if (sc->sc_firmware_type == WI_LUCENT) {
971 error = ENODEV;
972 break;
973 }
974 /* fall through */
975 default:
976 error = ieee80211_ioctl(ifp, cmd, data);
977 if (error == ENETRESET) {
978 if (sc->sc_enabled)
979 error = wi_init(ifp);
980 else
981 error = 0;
982 }
983 break;
984 }
985 splx(s);
986 return error;
987 }
988
989 static int
990 wi_media_change(struct ifnet *ifp)
991 {
992 struct wi_softc *sc = ifp->if_softc;
993 struct ieee80211com *ic = &sc->sc_ic;
994 struct ifmedia_entry *ime;
995 enum ieee80211_opmode newmode;
996 int i, rate, error = 0;
997
998 ime = sc->sc_media.ifm_cur;
999 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
1000 i = -1;
1001 } else {
1002 rate = ieee80211_media2rate(ime->ifm_media, IEEE80211_T_DS);
1003 if (rate == 0)
1004 return EINVAL;
1005 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1006 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL) == rate)
1007 break;
1008 }
1009 if (i == IEEE80211_RATE_SIZE)
1010 return EINVAL;
1011 }
1012 if (ic->ic_fixed_rate != i) {
1013 ic->ic_fixed_rate = i;
1014 error = ENETRESET;
1015 }
1016
1017 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
1018 (ime->ifm_media & IFM_FLAG0))
1019 newmode = IEEE80211_M_AHDEMO;
1020 else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
1021 newmode = IEEE80211_M_IBSS;
1022 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
1023 newmode = IEEE80211_M_HOSTAP;
1024 else
1025 newmode = IEEE80211_M_STA;
1026 if (ic->ic_opmode != newmode) {
1027 ic->ic_opmode = newmode;
1028 error = ENETRESET;
1029 }
1030 if (error == ENETRESET) {
1031 if (sc->sc_enabled)
1032 error = wi_init(ifp);
1033 else
1034 error = 0;
1035 }
1036 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
1037
1038 return error;
1039 }
1040
1041 static void
1042 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1043 {
1044 struct wi_softc *sc = ifp->if_softc;
1045 struct ieee80211com *ic = &sc->sc_ic;
1046 u_int16_t val;
1047 int rate, len;
1048
1049 if (sc->sc_enabled == 0) {
1050 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1051 imr->ifm_status = 0;
1052 return;
1053 }
1054
1055 imr->ifm_status = IFM_AVALID;
1056 imr->ifm_active = IFM_IEEE80211;
1057 if (ic->ic_state == IEEE80211_S_RUN &&
1058 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1059 imr->ifm_status |= IFM_ACTIVE;
1060 len = sizeof(val);
1061 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1062 rate = 0;
1063 else {
1064 /* convert to 802.11 rate */
1065 rate = val * 2;
1066 if (sc->sc_firmware_type == WI_LUCENT) {
1067 if (rate == 10)
1068 rate = 11; /* 5.5Mbps */
1069 } else {
1070 if (rate == 4*2)
1071 rate = 11; /* 5.5Mbps */
1072 else if (rate == 8*2)
1073 rate = 22; /* 11Mbps */
1074 }
1075 }
1076 imr->ifm_active |= ieee80211_rate2media(rate, IEEE80211_T_DS);
1077 switch (ic->ic_opmode) {
1078 case IEEE80211_M_STA:
1079 break;
1080 case IEEE80211_M_IBSS:
1081 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1082 break;
1083 case IEEE80211_M_AHDEMO:
1084 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1085 break;
1086 case IEEE80211_M_HOSTAP:
1087 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1088 break;
1089 }
1090 }
1091
1092 static void
1093 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1094 {
1095 struct ieee80211com *ic = &sc->sc_ic;
1096 struct ieee80211_node *ni = &ic->ic_bss;
1097 struct ifnet *ifp = &ic->ic_if;
1098
1099 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1100 return;
1101
1102 DPRINTF(("%s: bssid %s -> ", sc->sc_dev.dv_xname,
1103 ether_sprintf(ni->ni_bssid)));
1104 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1105
1106 /* In promiscuous mode, the BSSID field is not a reliable
1107 * indicator of the firmware's BSSID. Damp spurious
1108 * change-of-BSSID indications.
1109 */
1110 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1111 sc->sc_false_syns >= WI_MAX_FALSE_SYNS)
1112 return;
1113
1114 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
1115 }
1116
1117 static void
1118 wi_rx_intr(struct wi_softc *sc)
1119 {
1120 struct ieee80211com *ic = &sc->sc_ic;
1121 struct ifnet *ifp = &ic->ic_if;
1122 struct wi_frame frmhdr;
1123 struct mbuf *m;
1124 struct ieee80211_frame *wh;
1125 int fid, len, off, rssi;
1126 u_int8_t dir;
1127 u_int16_t status;
1128 u_int32_t rstamp;
1129
1130 fid = CSR_READ_2(sc, WI_RX_FID);
1131
1132 /* First read in the frame header */
1133 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1134 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1135 ifp->if_ierrors++;
1136 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1137 return;
1138 }
1139
1140 /*
1141 * Drop undecryptable or packets with receive errors here
1142 */
1143 status = le16toh(frmhdr.wi_status);
1144 if (status & WI_STAT_ERRSTAT) {
1145 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1146 ifp->if_ierrors++;
1147 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1148 return;
1149 }
1150 rssi = frmhdr.wi_rx_signal;
1151 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1152 le16toh(frmhdr.wi_rx_tstamp1);
1153
1154 len = le16toh(frmhdr.wi_dat_len);
1155 off = ALIGN(sizeof(struct ieee80211_frame));
1156
1157 if (off + len > MCLBYTES) {
1158 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1159 ifp->if_ierrors++;
1160 DPRINTF(("wi_rx_intr: oversized packet\n"));
1161 return;
1162 }
1163
1164 MGETHDR(m, M_DONTWAIT, MT_DATA);
1165 if (m == NULL) {
1166 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1167 ifp->if_ierrors++;
1168 DPRINTF(("wi_rx_intr: MGET failed\n"));
1169 return;
1170 }
1171 if (off + len > MHLEN) {
1172 MCLGET(m, M_DONTWAIT);
1173 if ((m->m_flags & M_EXT) == 0) {
1174 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1175 m_freem(m);
1176 ifp->if_ierrors++;
1177 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1178 return;
1179 }
1180 }
1181
1182 m->m_data += off - sizeof(struct ieee80211_frame);
1183 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1184 wi_read_bap(sc, fid, sizeof(frmhdr),
1185 m->m_data + sizeof(struct ieee80211_frame), len);
1186 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1187 m->m_pkthdr.rcvif = ifp;
1188
1189 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1190
1191 #if NBPFILTER > 0
1192 if (sc->sc_drvbpf) {
1193 struct mbuf mb;
1194
1195 M_COPY_PKTHDR(&mb, m);
1196 mb.m_data = (caddr_t)&frmhdr;
1197 mb.m_len = sizeof(frmhdr);
1198 mb.m_next = m;
1199 mb.m_pkthdr.len += mb.m_len;
1200 bpf_mtap(sc->sc_drvbpf, &mb);
1201 }
1202 #endif
1203 wh = mtod(m, struct ieee80211_frame *);
1204 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1205 /*
1206 * WEP is decrypted by hardware. Clear WEP bit
1207 * header for ieee80211_input().
1208 */
1209 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1210 }
1211
1212 /* synchronize driver's BSSID with firmware's BSSID */
1213 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1214 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1215 wi_sync_bssid(sc, wh->i_addr3);
1216
1217 ieee80211_input(ifp, m, rssi, rstamp);
1218 }
1219
1220 static void
1221 wi_tx_intr(struct wi_softc *sc)
1222 {
1223 struct ieee80211com *ic = &sc->sc_ic;
1224 struct ifnet *ifp = &ic->ic_if;
1225 int fid, cur;
1226
1227 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1228 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1229
1230 cur = sc->sc_txcur;
1231 if (sc->sc_txd[cur].d_fid != fid) {
1232 printf("%s: bad alloc %x != %x, cur %d nxt %d\n",
1233 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1234 sc->sc_txnext);
1235 return;
1236 }
1237 sc->sc_tx_timer = 0;
1238 sc->sc_txd[cur].d_len = 0;
1239 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF;
1240 if (sc->sc_txd[cur].d_len == 0)
1241 ifp->if_flags &= ~IFF_OACTIVE;
1242 else {
1243 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1244 0, 0)) {
1245 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1246 sc->sc_txd[cur].d_len = 0;
1247 } else {
1248 sc->sc_tx_timer = 5;
1249 ifp->if_timer = 1;
1250 }
1251 }
1252 }
1253
1254 static void
1255 wi_info_intr(struct wi_softc *sc)
1256 {
1257 struct ieee80211com *ic = &sc->sc_ic;
1258 struct ifnet *ifp = &ic->ic_if;
1259 int i, fid, len, off;
1260 u_int16_t ltbuf[2];
1261 u_int16_t stat;
1262 u_int32_t *ptr;
1263
1264 fid = CSR_READ_2(sc, WI_INFO_FID);
1265 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1266
1267 switch (le16toh(ltbuf[1])) {
1268
1269 case WI_INFO_LINK_STAT:
1270 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1271 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1272 switch (le16toh(stat)) {
1273 case CONNECTED:
1274 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1275 if (ic->ic_state == IEEE80211_S_RUN &&
1276 ic->ic_opmode != IEEE80211_M_IBSS)
1277 break;
1278 /* FALLTHROUGH */
1279 case AP_CHANGE:
1280 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
1281 break;
1282 case AP_IN_RANGE:
1283 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1284 break;
1285 case AP_OUT_OF_RANGE:
1286 if (sc->sc_firmware_type == WI_SYMBOL &&
1287 sc->sc_scan_timer > 0) {
1288 if (wi_cmd(sc, WI_CMD_INQUIRE,
1289 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1290 sc->sc_scan_timer = 0;
1291 break;
1292 }
1293 if (ic->ic_opmode == IEEE80211_M_STA)
1294 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1295 break;
1296 case DISCONNECTED:
1297 case ASSOC_FAILED:
1298 if (ic->ic_opmode == IEEE80211_M_STA)
1299 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
1300 break;
1301 }
1302 break;
1303
1304 case WI_INFO_COUNTERS:
1305 /* some card versions have a larger stats structure */
1306 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1307 ptr = (u_int32_t *)&sc->sc_stats;
1308 off = sizeof(ltbuf);
1309 for (i = 0; i < len; i++, off += 2, ptr++) {
1310 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1311 #ifdef WI_HERMES_STATS_WAR
1312 if (stat & 0xf000)
1313 stat = ~stat;
1314 #endif
1315 *ptr += stat;
1316 }
1317 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1318 sc->sc_stats.wi_tx_multi_retries +
1319 sc->sc_stats.wi_tx_retry_limit;
1320 break;
1321
1322 case WI_INFO_SCAN_RESULTS:
1323 case WI_INFO_HOST_SCAN_RESULTS:
1324 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1325 break;
1326
1327 default:
1328 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1329 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1330 break;
1331 }
1332 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1333 }
1334
1335 /*
1336 * Allocate a region of memory inside the NIC and zero
1337 * it out.
1338 */
1339 static int
1340 wi_write_multi(struct wi_softc *sc)
1341 {
1342 struct ifnet *ifp = &sc->sc_ic.ic_if;
1343 int n = 0;
1344 struct wi_mcast mlist;
1345 struct ether_multi *enm;
1346 struct ether_multistep estep;
1347
1348 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1349 allmulti:
1350 ifp->if_flags |= IFF_ALLMULTI;
1351 memset(&mlist, 0, sizeof(mlist));
1352 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1353 sizeof(mlist));
1354 }
1355
1356 n = 0;
1357 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1358 while (enm != NULL) {
1359 /* Punt on ranges or too many multicast addresses. */
1360 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1361 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1362 goto allmulti;
1363
1364 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1365 n++;
1366 ETHER_NEXT_MULTI(estep, enm);
1367 }
1368 ifp->if_flags &= ~IFF_ALLMULTI;
1369 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1370 IEEE80211_ADDR_LEN * n);
1371 }
1372
1373
1374 static void
1375 wi_read_nicid(sc)
1376 struct wi_softc *sc;
1377 {
1378 struct wi_card_ident *id;
1379 char *p;
1380 int len;
1381 u_int16_t ver[4];
1382
1383 /* getting chip identity */
1384 memset(ver, 0, sizeof(ver));
1385 len = sizeof(ver);
1386 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1387 printf("%s: using ", sc->sc_dev.dv_xname);
1388 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1389
1390 sc->sc_firmware_type = WI_NOTYPE;
1391 for (id = wi_card_ident; id->card_name != NULL; id++) {
1392 if (le16toh(ver[0]) == id->card_id) {
1393 printf("%s", id->card_name);
1394 sc->sc_firmware_type = id->firm_type;
1395 break;
1396 }
1397 }
1398 if (sc->sc_firmware_type == WI_NOTYPE) {
1399 if (le16toh(ver[0]) & 0x8000) {
1400 printf("Unknown PRISM2 chip");
1401 sc->sc_firmware_type = WI_INTERSIL;
1402 } else {
1403 printf("Unknown Lucent chip");
1404 sc->sc_firmware_type = WI_LUCENT;
1405 }
1406 }
1407
1408 /* get primary firmware version (Only Prism chips) */
1409 if (sc->sc_firmware_type != WI_LUCENT) {
1410 memset(ver, 0, sizeof(ver));
1411 len = sizeof(ver);
1412 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1413 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1414 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1415 DPRINTF2(("wi_read_nicid: PRI_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1416 }
1417
1418 /* get station firmware version */
1419 memset(ver, 0, sizeof(ver));
1420 len = sizeof(ver);
1421 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1422 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1423 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1424 DPRINTF2(("wi_read_nicid: STA_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1425 if (sc->sc_firmware_type == WI_INTERSIL &&
1426 (sc->sc_sta_firmware_ver == 10102 ||
1427 sc->sc_sta_firmware_ver == 20102)) {
1428 char ident[12];
1429 memset(ident, 0, sizeof(ident));
1430 len = sizeof(ident);
1431 /* value should be the format like "V2.00-11" */
1432 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1433 *(p = (char *)ident) >= 'A' &&
1434 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1435 sc->sc_firmware_type = WI_SYMBOL;
1436 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1437 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1438 (p[6] - '0') * 10 + (p[7] - '0');
1439 }
1440 DPRINTF2(("wi_read_nicid: SYMBOL_ID: %x %x %x %x\n", le16toh(ident[0]), le16toh(ident[1]), le16toh(ident[2]), le16toh(ident[3])));
1441 }
1442
1443 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1444 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1445 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1446 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1447 printf("Primary (%u.%u.%u), ",
1448 sc->sc_pri_firmware_ver / 10000,
1449 (sc->sc_pri_firmware_ver % 10000) / 100,
1450 sc->sc_pri_firmware_ver % 100);
1451 printf("Station (%u.%u.%u)\n",
1452 sc->sc_sta_firmware_ver / 10000,
1453 (sc->sc_sta_firmware_ver % 10000) / 100,
1454 sc->sc_sta_firmware_ver % 100);
1455 }
1456
1457 static int
1458 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1459 {
1460 struct wi_ssid ssid;
1461
1462 if (buflen > IEEE80211_NWID_LEN)
1463 return ENOBUFS;
1464 memset(&ssid, 0, sizeof(ssid));
1465 ssid.wi_len = htole16(buflen);
1466 memcpy(ssid.wi_ssid, buf, buflen);
1467 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
1468 }
1469
1470 static int
1471 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1472 {
1473 struct wi_softc *sc = ifp->if_softc;
1474 struct ieee80211com *ic = &sc->sc_ic;
1475 struct ifreq *ifr = (struct ifreq *)data;
1476 struct wi_req wreq;
1477 int len, n, error;
1478
1479 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1480 if (error)
1481 return error;
1482 len = (wreq.wi_len - 1) * 2;
1483 if (len < sizeof(u_int16_t))
1484 return ENOSPC;
1485 if (len > sizeof(wreq.wi_val))
1486 len = sizeof(wreq.wi_val);
1487
1488 switch (wreq.wi_type) {
1489
1490 case WI_RID_IFACE_STATS:
1491 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1492 if (len < sizeof(sc->sc_stats))
1493 error = ENOSPC;
1494 else
1495 len = sizeof(sc->sc_stats);
1496 break;
1497
1498 case WI_RID_ENCRYPTION:
1499 case WI_RID_TX_CRYPT_KEY:
1500 case WI_RID_DEFLT_CRYPT_KEYS:
1501 case WI_RID_TX_RATE:
1502 return ieee80211_cfgget(ifp, cmd, data);
1503
1504 case WI_RID_MICROWAVE_OVEN:
1505 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1506 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1507 &len);
1508 break;
1509 }
1510 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1511 len = sizeof(u_int16_t);
1512 break;
1513
1514 case WI_RID_DBM_ADJUST:
1515 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
1516 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1517 &len);
1518 break;
1519 }
1520 wreq.wi_val[0] = htole16(sc->sc_dbm_adjust);
1521 len = sizeof(u_int16_t);
1522 break;
1523
1524 case WI_RID_ROAMING_MODE:
1525 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
1526 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1527 &len);
1528 break;
1529 }
1530 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
1531 len = sizeof(u_int16_t);
1532 break;
1533
1534 case WI_RID_SYSTEM_SCALE:
1535 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
1536 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1537 &len);
1538 break;
1539 }
1540 wreq.wi_val[0] = htole16(sc->sc_system_scale);
1541 len = sizeof(u_int16_t);
1542 break;
1543
1544 case WI_RID_FRAG_THRESH:
1545 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
1546 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1547 &len);
1548 break;
1549 }
1550 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
1551 len = sizeof(u_int16_t);
1552 break;
1553
1554 case WI_RID_READ_APS:
1555 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1556 return ieee80211_cfgget(ifp, cmd, data);
1557 if (sc->sc_scan_timer > 0) {
1558 error = EINPROGRESS;
1559 break;
1560 }
1561 n = sc->sc_naps;
1562 if (len < sizeof(n)) {
1563 error = ENOSPC;
1564 break;
1565 }
1566 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
1567 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
1568 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
1569 memcpy(wreq.wi_val, &n, sizeof(n));
1570 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
1571 sizeof(struct wi_apinfo) * n);
1572 break;
1573
1574 default:
1575 if (sc->sc_enabled) {
1576 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1577 &len);
1578 break;
1579 }
1580 switch (wreq.wi_type) {
1581 case WI_RID_MAX_DATALEN:
1582 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
1583 len = sizeof(u_int16_t);
1584 break;
1585 case WI_RID_RTS_THRESH:
1586 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
1587 len = sizeof(u_int16_t);
1588 break;
1589 case WI_RID_CNFAUTHMODE:
1590 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
1591 len = sizeof(u_int16_t);
1592 break;
1593 case WI_RID_NODENAME:
1594 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
1595 error = ENOSPC;
1596 break;
1597 }
1598 len = sc->sc_nodelen + sizeof(u_int16_t);
1599 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
1600 memcpy(&wreq.wi_val[1], sc->sc_nodename,
1601 sc->sc_nodelen);
1602 break;
1603 default:
1604 return ieee80211_cfgget(ifp, cmd, data);
1605 }
1606 break;
1607 }
1608 if (error)
1609 return error;
1610 wreq.wi_len = (len + 1) / 2 + 1;
1611 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
1612 }
1613
1614 static int
1615 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1616 {
1617 struct wi_softc *sc = ifp->if_softc;
1618 struct ieee80211com *ic = &sc->sc_ic;
1619 struct ifreq *ifr = (struct ifreq *)data;
1620 struct wi_req wreq;
1621 struct mbuf *m;
1622 int i, len, error;
1623
1624 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1625 if (error)
1626 return error;
1627 len = (wreq.wi_len - 1) * 2;
1628 switch (wreq.wi_type) {
1629 case WI_RID_DBM_ADJUST:
1630 return ENODEV;
1631
1632 case WI_RID_NODENAME:
1633 if (le16toh(wreq.wi_val[0]) * 2 > len ||
1634 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
1635 error = ENOSPC;
1636 break;
1637 }
1638 if (sc->sc_enabled) {
1639 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1640 len);
1641 if (error)
1642 break;
1643 }
1644 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
1645 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
1646 break;
1647
1648 case WI_RID_MICROWAVE_OVEN:
1649 case WI_RID_ROAMING_MODE:
1650 case WI_RID_SYSTEM_SCALE:
1651 case WI_RID_FRAG_THRESH:
1652 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
1653 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
1654 break;
1655 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
1656 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
1657 break;
1658 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
1659 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
1660 break;
1661 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
1662 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
1663 break;
1664 /* FALLTHROUGH */
1665 case WI_RID_RTS_THRESH:
1666 case WI_RID_CNFAUTHMODE:
1667 case WI_RID_MAX_DATALEN:
1668 if (sc->sc_enabled) {
1669 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1670 sizeof(u_int16_t));
1671 if (error)
1672 break;
1673 }
1674 switch (wreq.wi_type) {
1675 case WI_RID_FRAG_THRESH:
1676 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
1677 break;
1678 case WI_RID_RTS_THRESH:
1679 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
1680 break;
1681 case WI_RID_MICROWAVE_OVEN:
1682 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
1683 break;
1684 case WI_RID_ROAMING_MODE:
1685 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
1686 break;
1687 case WI_RID_SYSTEM_SCALE:
1688 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
1689 break;
1690 case WI_RID_CNFAUTHMODE:
1691 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
1692 break;
1693 case WI_RID_MAX_DATALEN:
1694 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
1695 break;
1696 }
1697 break;
1698
1699 case WI_RID_TX_RATE:
1700 switch (le16toh(wreq.wi_val[0])) {
1701 case 3:
1702 ic->ic_fixed_rate = -1;
1703 break;
1704 default:
1705 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1706 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL)
1707 / 2 == le16toh(wreq.wi_val[0]))
1708 break;
1709 }
1710 if (i == IEEE80211_RATE_SIZE)
1711 return EINVAL;
1712 ic->ic_fixed_rate = i;
1713 }
1714 if (sc->sc_enabled)
1715 error = wi_write_txrate(sc);
1716 break;
1717
1718 case WI_RID_SCAN_APS:
1719 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
1720 error = wi_scan_ap(sc);
1721 break;
1722
1723 case WI_RID_MGMT_XMIT:
1724 if (!sc->sc_enabled) {
1725 error = ENETDOWN;
1726 break;
1727 }
1728 if (ic->ic_mgtq.ifq_len > 5) {
1729 error = EAGAIN;
1730 break;
1731 }
1732 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
1733 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
1734 if (m == NULL) {
1735 error = ENOMEM;
1736 break;
1737 }
1738 IF_ENQUEUE(&ic->ic_mgtq, m);
1739 break;
1740
1741 default:
1742 if (sc->sc_enabled) {
1743 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1744 len);
1745 if (error)
1746 break;
1747 }
1748 error = ieee80211_cfgset(ifp, cmd, data);
1749 break;
1750 }
1751 return error;
1752 }
1753
1754 static int
1755 wi_write_txrate(struct wi_softc *sc)
1756 {
1757 struct ieee80211com *ic = &sc->sc_ic;
1758 int i;
1759 u_int16_t rate;
1760
1761 if (ic->ic_fixed_rate < 0)
1762 rate = 0; /* auto */
1763 else
1764 rate = (ic->ic_sup_rates[ic->ic_fixed_rate] &
1765 IEEE80211_RATE_VAL) / 2;
1766
1767 /* rate: 0, 1, 2, 5, 11 */
1768
1769 switch (sc->sc_firmware_type) {
1770 case WI_LUCENT:
1771 if (rate == 0)
1772 rate = 3; /* auto */
1773 break;
1774 default:
1775 /* Choose a bit according to this table.
1776 *
1777 * bit | data rate
1778 * ----+-------------------
1779 * 0 | 1Mbps
1780 * 1 | 2Mbps
1781 * 2 | 5.5Mbps
1782 * 3 | 11Mbps
1783 */
1784 for (i = 8; i > 0; i >>= 1) {
1785 if (rate >= i)
1786 break;
1787 }
1788 if (i == 0)
1789 rate = 0xf; /* auto */
1790 else
1791 rate = i;
1792 break;
1793 }
1794 return wi_write_val(sc, WI_RID_TX_RATE, rate);
1795 }
1796
1797 static int
1798 wi_write_wep(struct wi_softc *sc)
1799 {
1800 struct ieee80211com *ic = &sc->sc_ic;
1801 int error = 0;
1802 int i, keylen;
1803 u_int16_t val;
1804 struct wi_key wkey[IEEE80211_WEP_NKID];
1805
1806 switch (sc->sc_firmware_type) {
1807 case WI_LUCENT:
1808 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
1809 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
1810 if (error)
1811 break;
1812 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
1813 if (error)
1814 break;
1815 memset(wkey, 0, sizeof(wkey));
1816 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1817 keylen = ic->ic_nw_keys[i].wk_len;
1818 wkey[i].wi_keylen = htole16(keylen);
1819 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
1820 keylen);
1821 }
1822 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
1823 wkey, sizeof(wkey));
1824 break;
1825
1826 case WI_INTERSIL:
1827 case WI_SYMBOL:
1828 if (ic->ic_flags & IEEE80211_F_WEPON) {
1829 /*
1830 * ONLY HWB3163 EVAL-CARD Firmware version
1831 * less than 0.8 variant2
1832 *
1833 * If promiscuous mode disable, Prism2 chip
1834 * does not work with WEP .
1835 * It is under investigation for details.
1836 * (ichiro (at) netbsd.org)
1837 */
1838 if (sc->sc_firmware_type == WI_INTERSIL &&
1839 sc->sc_sta_firmware_ver < 802 ) {
1840 /* firm ver < 0.8 variant 2 */
1841 wi_write_val(sc, WI_RID_PROMISC, 1);
1842 }
1843 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1844 sc->sc_cnfauthmode);
1845 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
1846 /*
1847 * Encryption firmware has a bug for HostAP mode.
1848 */
1849 if (sc->sc_firmware_type == WI_INTERSIL &&
1850 ic->ic_opmode == IEEE80211_M_HOSTAP)
1851 val |= HOST_ENCRYPT;
1852 } else {
1853 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1854 IEEE80211_AUTH_OPEN);
1855 val = HOST_ENCRYPT | HOST_DECRYPT;
1856 }
1857 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
1858 if (error)
1859 break;
1860 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
1861 ic->ic_wep_txkey);
1862 if (error)
1863 break;
1864 /*
1865 * It seems that the firmware accept 104bit key only if
1866 * all the keys have 104bit length. We get the length of
1867 * the transmit key and use it for all other keys.
1868 * Perhaps we should use software WEP for such situation.
1869 */
1870 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
1871 if (keylen > IEEE80211_WEP_KEYLEN)
1872 keylen = 13; /* 104bit keys */
1873 else
1874 keylen = IEEE80211_WEP_KEYLEN;
1875 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1876 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
1877 ic->ic_nw_keys[i].wk_key, keylen);
1878 if (error)
1879 break;
1880 }
1881 break;
1882 }
1883 return error;
1884 }
1885
1886 /* Must be called at proper protection level! */
1887 static int
1888 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
1889 {
1890 int i, status;
1891
1892 /* wait for the busy bit to clear */
1893 for (i = 0; ; i++) {
1894 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
1895 break;
1896 if (i == WI_TIMEOUT) {
1897 printf("%s: wi_cmd: BUSY did not clear, "
1898 "cmd=0x%x, prev=0x%x\n", sc->sc_dev.dv_xname,
1899 cmd, CSR_READ_2(sc, WI_COMMAND));
1900 return EIO;
1901 }
1902 DELAY(1);
1903 }
1904
1905 CSR_WRITE_2(sc, WI_PARAM0, val0);
1906 CSR_WRITE_2(sc, WI_PARAM1, val1);
1907 CSR_WRITE_2(sc, WI_PARAM2, val2);
1908 CSR_WRITE_2(sc, WI_COMMAND, cmd);
1909
1910 if (cmd == WI_CMD_INI) {
1911 /* XXX: should sleep here. */
1912 DELAY(100*1000);
1913 }
1914 /* wait for the cmd completed bit */
1915 for (i = 0; i < WI_TIMEOUT; i++) {
1916 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
1917 break;
1918 DELAY(1);
1919 }
1920
1921 status = CSR_READ_2(sc, WI_STATUS);
1922
1923 /* Ack the command */
1924 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1925
1926 if (i == WI_TIMEOUT) {
1927 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
1928 sc->sc_dev.dv_xname, cmd, val0);
1929 return ETIMEDOUT;
1930 }
1931
1932 if (status & WI_STAT_CMD_RESULT) {
1933 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
1934 sc->sc_dev.dv_xname, cmd, val0);
1935 return EIO;
1936 }
1937 return 0;
1938 }
1939
1940 static int
1941 wi_seek_bap(struct wi_softc *sc, int id, int off)
1942 {
1943 int i, status;
1944
1945 CSR_WRITE_2(sc, WI_SEL0, id);
1946 CSR_WRITE_2(sc, WI_OFF0, off);
1947
1948 for (i = 0; ; i++) {
1949 status = CSR_READ_2(sc, WI_OFF0);
1950 if ((status & WI_OFF_BUSY) == 0)
1951 break;
1952 if (i == WI_TIMEOUT) {
1953 printf("%s: timeout in wi_seek to %x/%x\n",
1954 sc->sc_dev.dv_xname, id, off);
1955 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1956 return ETIMEDOUT;
1957 }
1958 DELAY(1);
1959 }
1960 if (status & WI_OFF_ERR) {
1961 printf("%s: failed in wi_seek to %x/%x\n",
1962 sc->sc_dev.dv_xname, id, off);
1963 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1964 return EIO;
1965 }
1966 sc->sc_bap_id = id;
1967 sc->sc_bap_off = off;
1968 return 0;
1969 }
1970
1971 static int
1972 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1973 {
1974 int error, cnt;
1975
1976 if (buflen == 0)
1977 return 0;
1978 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1979 if ((error = wi_seek_bap(sc, id, off)) != 0)
1980 return error;
1981 }
1982 cnt = (buflen + 1) / 2;
1983 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1984 sc->sc_bap_off += cnt * 2;
1985 return 0;
1986 }
1987
1988 static int
1989 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1990 {
1991 int error, cnt;
1992
1993 if (buflen == 0)
1994 return 0;
1995
1996 #ifdef WI_HERMES_AUTOINC_WAR
1997 again:
1998 #endif
1999 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2000 if ((error = wi_seek_bap(sc, id, off)) != 0)
2001 return error;
2002 }
2003 cnt = (buflen + 1) / 2;
2004 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2005 sc->sc_bap_off += cnt * 2;
2006
2007 #ifdef WI_HERMES_AUTOINC_WAR
2008 /*
2009 * According to the comments in the HCF Light code, there is a bug
2010 * in the Hermes (or possibly in certain Hermes firmware revisions)
2011 * where the chip's internal autoincrement counter gets thrown off
2012 * during data writes: the autoincrement is missed, causing one
2013 * data word to be overwritten and subsequent words to be written to
2014 * the wrong memory locations. The end result is that we could end
2015 * up transmitting bogus frames without realizing it. The workaround
2016 * for this is to write a couple of extra guard words after the end
2017 * of the transfer, then attempt to read then back. If we fail to
2018 * locate the guard words where we expect them, we preform the
2019 * transfer over again.
2020 */
2021 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2022 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2023 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2024 wi_seek_bap(sc, id, sc->sc_bap_off);
2025 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2026 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2027 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2028 printf("%s: detect auto increment bug, try again\n",
2029 sc->sc_dev.dv_xname);
2030 goto again;
2031 }
2032 }
2033 #endif
2034 return 0;
2035 }
2036
2037 static int
2038 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2039 {
2040 int error, len;
2041 struct mbuf *m;
2042
2043 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2044 if (m->m_len == 0)
2045 continue;
2046
2047 len = min(m->m_len, totlen);
2048
2049 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2050 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2051 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2052 totlen);
2053 }
2054
2055 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2056 return error;
2057
2058 off += m->m_len;
2059 totlen -= len;
2060 }
2061 return 0;
2062 }
2063
2064 static int
2065 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2066 {
2067 int i;
2068
2069 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2070 printf("%s: failed to allocate %d bytes on NIC\n",
2071 sc->sc_dev.dv_xname, len);
2072 return ENOMEM;
2073 }
2074
2075 for (i = 0; i < WI_TIMEOUT; i++) {
2076 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2077 break;
2078 if (i == WI_TIMEOUT) {
2079 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
2080 return ETIMEDOUT;
2081 }
2082 DELAY(1);
2083 }
2084 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
2085 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2086 return 0;
2087 }
2088
2089 static int
2090 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2091 {
2092 int error, len;
2093 u_int16_t ltbuf[2];
2094
2095 /* Tell the NIC to enter record read mode. */
2096 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2097 if (error)
2098 return error;
2099
2100 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2101 if (error)
2102 return error;
2103
2104 if (le16toh(ltbuf[1]) != rid) {
2105 printf("%s: record read mismatch, rid=%x, got=%x\n",
2106 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
2107 return EIO;
2108 }
2109 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
2110 if (*buflenp < len) {
2111 printf("%s: record buffer is too small, "
2112 "rid=%x, size=%d, len=%d\n",
2113 sc->sc_dev.dv_xname, rid, *buflenp, len);
2114 return ENOSPC;
2115 }
2116 *buflenp = len;
2117 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2118 }
2119
2120 static int
2121 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2122 {
2123 int error;
2124 u_int16_t ltbuf[2];
2125
2126 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
2127 ltbuf[1] = htole16(rid);
2128
2129 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2130 if (error)
2131 return error;
2132 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2133 if (error)
2134 return error;
2135
2136 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2137 }
2138
2139 static int
2140 wi_newstate(void *arg, enum ieee80211_state nstate)
2141 {
2142 struct wi_softc *sc = arg;
2143 struct ieee80211com *ic = &sc->sc_ic;
2144 struct ieee80211_node *ni = &ic->ic_bss;
2145 int i, buflen;
2146 u_int16_t val;
2147 struct wi_ssid ssid;
2148 u_int8_t old_bssid[IEEE80211_ADDR_LEN];
2149 enum ieee80211_state ostate;
2150 #ifdef WI_DEBUG
2151 static const char *stname[] =
2152 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
2153 #endif /* WI_DEBUG */
2154
2155 ostate = ic->ic_state;
2156 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
2157
2158 ic->ic_state = nstate;
2159 switch (nstate) {
2160 case IEEE80211_S_INIT:
2161 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2162 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2163 return 0;
2164
2165 case IEEE80211_S_RUN:
2166 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2167 buflen = IEEE80211_ADDR_LEN;
2168 IEEE80211_ADDR_COPY(old_bssid, ni->ni_bssid);
2169 wi_read_rid(sc, WI_RID_CURRENT_BSSID, ni->ni_bssid, &buflen);
2170 IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
2171 buflen = sizeof(val);
2172 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
2173 ni->ni_chan = le16toh(val);
2174
2175 if (IEEE80211_ADDR_EQ(old_bssid, ni->ni_bssid))
2176 sc->sc_false_syns++;
2177 else
2178 sc->sc_false_syns = 0;
2179
2180 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2181 ni->ni_esslen = ic->ic_des_esslen;
2182 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2183 ni->ni_nrate = 0;
2184 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2185 if (ic->ic_sup_rates[i])
2186 ni->ni_rates[ni->ni_nrate++] =
2187 ic->ic_sup_rates[i];
2188 }
2189 ni->ni_intval = ic->ic_lintval;
2190 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2191 if (ic->ic_flags & IEEE80211_F_WEPON)
2192 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2193 } else {
2194 buflen = sizeof(ssid);
2195 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2196 ni->ni_esslen = le16toh(ssid.wi_len);
2197 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2198 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2199 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2200 }
2201 break;
2202
2203 case IEEE80211_S_SCAN:
2204 case IEEE80211_S_AUTH:
2205 case IEEE80211_S_ASSOC:
2206 break;
2207 }
2208
2209 /* skip standard ieee80211 handling */
2210 return EINPROGRESS;
2211 }
2212
2213 static int
2214 wi_scan_ap(struct wi_softc *sc)
2215 {
2216 int error = 0;
2217 u_int16_t val[2];
2218
2219 if (!sc->sc_enabled)
2220 return ENXIO;
2221 switch (sc->sc_firmware_type) {
2222 case WI_LUCENT:
2223 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2224 break;
2225 case WI_INTERSIL:
2226 val[0] = 0x3fff; /* channel */
2227 val[1] = 0x000f; /* tx rate */
2228 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2229 break;
2230 case WI_SYMBOL:
2231 /*
2232 * XXX only supported on 3.x ?
2233 */
2234 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2235 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2236 val, sizeof(val[0]));
2237 break;
2238 }
2239 if (error == 0) {
2240 sc->sc_scan_timer = WI_SCAN_WAIT;
2241 sc->sc_ic.ic_if.if_timer = 1;
2242 DPRINTF(("wi_scan_ap: start scanning\n"));
2243 }
2244 return error;
2245 }
2246
2247 static void
2248 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2249 {
2250 int i, naps, off, szbuf;
2251 struct wi_scan_header ws_hdr; /* Prism2 header */
2252 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2253 struct wi_apinfo *ap;
2254
2255 off = sizeof(u_int16_t) * 2;
2256 memset(&ws_hdr, 0, sizeof(ws_hdr));
2257 switch (sc->sc_firmware_type) {
2258 case WI_INTERSIL:
2259 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2260 off += sizeof(ws_hdr);
2261 szbuf = sizeof(struct wi_scan_data_p2);
2262 break;
2263 case WI_SYMBOL:
2264 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2265 break;
2266 case WI_LUCENT:
2267 szbuf = sizeof(struct wi_scan_data);
2268 break;
2269 }
2270 naps = (cnt * 2 + 2 - off) / szbuf;
2271 if (naps > MAXAPINFO)
2272 naps = MAXAPINFO;
2273 sc->sc_naps = naps;
2274 /* Read Data */
2275 ap = sc->sc_aps;
2276 memset(&ws_dat, 0, sizeof(ws_dat));
2277 for (i = 0; i < naps; i++, ap++) {
2278 wi_read_bap(sc, fid, off, &ws_dat,
2279 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2280 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
2281 ether_sprintf(ws_dat.wi_bssid)));
2282 off += szbuf;
2283 ap->scanreason = le16toh(ws_hdr.wi_reason);
2284 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2285 ap->channel = le16toh(ws_dat.wi_chid);
2286 ap->signal = le16toh(ws_dat.wi_signal);
2287 ap->noise = le16toh(ws_dat.wi_noise);
2288 ap->quality = ap->signal - ap->noise;
2289 ap->capinfo = le16toh(ws_dat.wi_capinfo);
2290 ap->interval = le16toh(ws_dat.wi_interval);
2291 ap->rate = le16toh(ws_dat.wi_rate);
2292 ap->namelen = le16toh(ws_dat.wi_namelen);
2293 if (ap->namelen > sizeof(ap->name))
2294 ap->namelen = sizeof(ap->name);
2295 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2296 }
2297 /* Done scanning */
2298 sc->sc_scan_timer = 0;
2299 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
2300 }
2301