wi.c revision 1.112 1 /* $NetBSD: wi.c,v 1.112 2003/02/25 01:57:35 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.112 2003/02/25 01:57:35 dyoung Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static int wi_init(struct ifnet *);
108 static void wi_stop(struct ifnet *, int);
109 static void wi_start(struct ifnet *);
110 static int wi_reset(struct wi_softc *);
111 static void wi_watchdog(struct ifnet *);
112 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
113 static int wi_media_change(struct ifnet *);
114 static void wi_media_status(struct ifnet *, struct ifmediareq *);
115
116 static void wi_rx_intr(struct wi_softc *);
117 static void wi_tx_intr(struct wi_softc *);
118 static void wi_info_intr(struct wi_softc *);
119
120 static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
121 static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
122 static int wi_write_txrate(struct wi_softc *);
123 static int wi_write_wep(struct wi_softc *);
124 static int wi_write_multi(struct wi_softc *);
125 static int wi_alloc_fid(struct wi_softc *, int, int *);
126 static void wi_read_nicid(struct wi_softc *);
127 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
128
129 static int wi_cmd(struct wi_softc *, int, int, int, int);
130 static int wi_seek_bap(struct wi_softc *, int, int);
131 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
132 static int wi_write_bap(struct wi_softc *, int, int, void *, int);
133 static int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
134 static int wi_read_rid(struct wi_softc *, int, void *, int *);
135 static int wi_write_rid(struct wi_softc *, int, void *, int);
136
137 static int wi_newstate(void *, enum ieee80211_state);
138
139 static int wi_scan_ap(struct wi_softc *);
140 static void wi_scan_result(struct wi_softc *, int, int);
141
142 static inline int
143 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
144 {
145
146 val = htole16(val);
147 return wi_write_rid(sc, rid, &val, sizeof(val));
148 }
149
150 #ifdef WI_DEBUG
151 int wi_debug = 0;
152
153 #define DPRINTF(X) if (wi_debug) printf X
154 #define DPRINTF2(X) if (wi_debug > 1) printf X
155 #else
156 #define DPRINTF(X)
157 #define DPRINTF2(X)
158 #endif
159
160 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
161
162 struct wi_card_ident
163 wi_card_ident[] = {
164 /* CARD_ID CARD_NAME FIRM_TYPE */
165 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
166 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
167 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
168 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
169 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
170 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
171 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
172 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
173 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
174 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
175 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
176 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
177 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
178 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
179 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
180 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
181 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
182 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
183 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
184 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
185 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
186 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
187 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
188 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
189 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
190 { 0, NULL, 0 },
191 };
192
193 int
194 wi_attach(struct wi_softc *sc)
195 {
196 struct ieee80211com *ic = &sc->sc_ic;
197 struct ifnet *ifp = &ic->ic_if;
198 int i, nrate, mword, buflen;
199 u_int8_t r;
200 u_int16_t val;
201 u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
202 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
203 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
204 };
205 int s;
206
207 s = splnet();
208
209 /* Make sure interrupts are disabled. */
210 CSR_WRITE_2(sc, WI_INT_EN, 0);
211 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
212
213 /* Reset the NIC. */
214 if (wi_reset(sc) != 0) {
215 splx(s);
216 return 1;
217 }
218
219 buflen = IEEE80211_ADDR_LEN;
220 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
221 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
222 printf(" could not get mac address, attach failed\n");
223 splx(s);
224 return 1;
225 }
226
227 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
228
229 /* Read NIC identification */
230 wi_read_nicid(sc);
231
232 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
233 ifp->if_softc = sc;
234 ifp->if_start = wi_start;
235 ifp->if_ioctl = wi_ioctl;
236 ifp->if_watchdog = wi_watchdog;
237 ifp->if_init = wi_init;
238 ifp->if_stop = wi_stop;
239 ifp->if_flags =
240 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
241 IFQ_SET_READY(&ifp->if_snd);
242
243 ic->ic_phytype = IEEE80211_T_DS;
244 ic->ic_opmode = IEEE80211_M_STA;
245 ic->ic_flags = IEEE80211_F_HASPMGT | IEEE80211_F_HASAHDEMO;
246 ic->ic_state = IEEE80211_S_INIT;
247 ic->ic_newstate = wi_newstate;
248
249 /* Find available channel */
250 buflen = sizeof(val);
251 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
252 val = htole16(0x1fff); /* assume 1-11 */
253 for (i = 0; i < 16; i++) {
254 if (isset((u_int8_t*)&val, i))
255 setbit(ic->ic_chan_avail, i + 1);
256 }
257
258 sc->sc_dbm_adjust = 100; /* default */
259
260 buflen = sizeof(val);
261 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
262 wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0) {
263 sc->sc_dbm_adjust = le16toh(val);
264 }
265
266 /* Find default IBSS channel */
267 buflen = sizeof(val);
268 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0)
269 ic->ic_ibss_chan = le16toh(val);
270 else {
271 /* use lowest available channel */
272 for (i = 0; i < 16; i++) {
273 if (isset(ic->ic_chan_avail, i))
274 break;
275 }
276 ic->ic_ibss_chan = i;
277 }
278
279 /*
280 * Set flags based on firmware version.
281 */
282 switch (sc->sc_firmware_type) {
283 case WI_LUCENT:
284 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
285 #ifdef WI_HERMES_AUTOINC_WAR
286 /* XXX: not confirmed, but never seen for recent firmware */
287 if (sc->sc_sta_firmware_ver < 40000) {
288 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
289 }
290 #endif
291 if (sc->sc_sta_firmware_ver >= 60000)
292 sc->sc_flags |= WI_FLAGS_HAS_MOR;
293 if (sc->sc_sta_firmware_ver >= 60006)
294 ic->ic_flags |= IEEE80211_F_HASIBSS;
295 sc->sc_ibss_port = 1;
296 break;
297
298 case WI_INTERSIL:
299 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
300 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
301 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
302 if (sc->sc_sta_firmware_ver > 10101)
303 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
304 if (sc->sc_sta_firmware_ver >= 800) {
305 ic->ic_flags |= IEEE80211_F_HASHOSTAP;
306 ic->ic_flags |= IEEE80211_F_HASIBSS;
307 ic->ic_flags |= IEEE80211_F_HASMONITOR;
308 }
309 sc->sc_ibss_port = 0;
310 break;
311
312 case WI_SYMBOL:
313 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
314 if (sc->sc_sta_firmware_ver >= 20000)
315 ic->ic_flags |= IEEE80211_F_HASIBSS;
316 sc->sc_ibss_port = 4;
317 break;
318 }
319
320 /*
321 * Find out if we support WEP on this card.
322 */
323 buflen = sizeof(val);
324 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
325 val != htole16(0))
326 ic->ic_flags |= IEEE80211_F_HASWEP;
327
328 /* Find supported rates. */
329 buflen = sizeof(ratebuf);
330 if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
331 nrate = le16toh(*(u_int16_t *)ratebuf);
332 if (nrate > IEEE80211_RATE_SIZE)
333 nrate = IEEE80211_RATE_SIZE;
334 memcpy(ic->ic_sup_rates, ratebuf + 2, nrate);
335 }
336 buflen = sizeof(val);
337
338 sc->sc_max_datalen = 2304;
339 sc->sc_rts_thresh = 2347;
340 sc->sc_frag_thresh = 2346;
341 sc->sc_system_scale = 1;
342 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
343 sc->sc_roaming_mode = 1;
344
345 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
346 printf("%s: supported rates: ", sc->sc_dev.dv_xname);
347 #define ADD(s, o) ifmedia_add(&sc->sc_media, \
348 IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL)
349 ADD(IFM_AUTO, 0);
350 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
351 ADD(IFM_AUTO, IFM_IEEE80211_HOSTAP);
352 if (ic->ic_flags & IEEE80211_F_HASIBSS)
353 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC);
354 if (ic->ic_flags & IEEE80211_F_HASMONITOR)
355 ADD(IFM_AUTO, IFM_IEEE80211_MONITOR);
356 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC | IFM_FLAG0);
357 for (i = 0; i < nrate; i++) {
358 r = ic->ic_sup_rates[i];
359 mword = ieee80211_rate2media(r, IEEE80211_T_DS);
360 if (mword == 0)
361 continue;
362 printf("%s%d%sMbps", (i != 0 ? " " : ""),
363 (r & IEEE80211_RATE_VAL) / 2, ((r & 0x1) != 0 ? ".5" : ""));
364 ADD(mword, 0);
365 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
366 ADD(mword, IFM_IEEE80211_HOSTAP);
367 if (ic->ic_flags & IEEE80211_F_HASIBSS)
368 ADD(mword, IFM_IEEE80211_ADHOC);
369 if (ic->ic_flags & IEEE80211_F_HASMONITOR)
370 ADD(mword, IFM_IEEE80211_MONITOR);
371 ADD(mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
372 }
373 printf("\n");
374 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
375 #undef ADD
376
377 /*
378 * Call MI attach routines.
379 */
380
381 if_attach(ifp);
382 ieee80211_ifattach(ifp);
383
384 /* Attach is successful. */
385 sc->sc_attached = 1;
386
387 splx(s);
388 return 0;
389 }
390
391 int
392 wi_detach(struct wi_softc *sc)
393 {
394 struct ifnet *ifp = &sc->sc_ic.ic_if;
395 int s;
396
397 if (!sc->sc_attached)
398 return 0;
399
400 s = splnet();
401
402 /* Delete all remaining media. */
403 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
404
405 ieee80211_ifdetach(ifp);
406 if_detach(ifp);
407 if (sc->sc_enabled) {
408 if (sc->sc_disable)
409 (*sc->sc_disable)(sc);
410 sc->sc_enabled = 0;
411 }
412 splx(s);
413 return 0;
414 }
415
416 int
417 wi_activate(struct device *self, enum devact act)
418 {
419 struct wi_softc *sc = (struct wi_softc *)self;
420 int rv = 0, s;
421
422 s = splnet();
423 switch (act) {
424 case DVACT_ACTIVATE:
425 rv = EOPNOTSUPP;
426 break;
427
428 case DVACT_DEACTIVATE:
429 if_deactivate(&sc->sc_ic.ic_if);
430 break;
431 }
432 splx(s);
433 return rv;
434 }
435
436 void
437 wi_power(struct wi_softc *sc, int why)
438 {
439 struct ifnet *ifp = &sc->sc_ic.ic_if;
440 int s;
441
442 s = splnet();
443 switch (why) {
444 case PWR_SUSPEND:
445 case PWR_STANDBY:
446 wi_stop(ifp, 1);
447 break;
448 case PWR_RESUME:
449 if (ifp->if_flags & IFF_UP) {
450 wi_init(ifp);
451 (void)wi_intr(sc);
452 }
453 break;
454 case PWR_SOFTSUSPEND:
455 case PWR_SOFTSTANDBY:
456 case PWR_SOFTRESUME:
457 break;
458 }
459 splx(s);
460 }
461
462 void
463 wi_shutdown(struct wi_softc *sc)
464 {
465 struct ifnet *ifp = &sc->sc_ic.ic_if;
466
467 if (sc->sc_attached)
468 wi_stop(ifp, 1);
469 }
470
471 int
472 wi_intr(void *arg)
473 {
474 int i;
475 struct wi_softc *sc = arg;
476 struct ifnet *ifp = &sc->sc_ic.ic_if;
477 u_int16_t status, raw_status, last_status;
478
479 if (sc->sc_enabled == 0 ||
480 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
481 (ifp->if_flags & IFF_RUNNING) == 0)
482 return 0;
483
484 if ((ifp->if_flags & IFF_UP) == 0) {
485 CSR_WRITE_2(sc, WI_INT_EN, 0);
486 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
487 return 1;
488 }
489
490 /* maximum 10 loops per interrupt */
491 last_status = 0;
492 for (i = 0; i < 10; i++) {
493 /*
494 * Only believe a status bit when we enter wi_intr, or when
495 * the bit was "off" the last time through the loop. This is
496 * my strategy to avoid racing the hardware/firmware if I
497 * can re-read the event status register more quickly than
498 * it is updated.
499 */
500 raw_status = CSR_READ_2(sc, WI_EVENT_STAT);
501 status = raw_status & ~last_status;
502 if ((status & WI_INTRS) == 0)
503 break;
504 last_status = raw_status;
505
506 if (status & WI_EV_RX)
507 wi_rx_intr(sc);
508
509 if (status & WI_EV_ALLOC)
510 wi_tx_intr(sc);
511
512 if (status & WI_EV_INFO)
513 wi_info_intr(sc);
514
515 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
516 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
517 !IFQ_IS_EMPTY(&ifp->if_snd))
518 wi_start(ifp);
519 }
520
521 return 1;
522 }
523
524 static int
525 wi_init(struct ifnet *ifp)
526 {
527 struct wi_softc *sc = ifp->if_softc;
528 struct ieee80211com *ic = &sc->sc_ic;
529 struct wi_joinreq join;
530 int i;
531 int error = 0, wasenabled;
532
533 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
534 wasenabled = sc->sc_enabled;
535 if (!sc->sc_enabled) {
536 if ((error = (*sc->sc_enable)(sc)) != 0)
537 goto out;
538 sc->sc_enabled = 1;
539 } else
540 wi_stop(ifp, 0);
541
542 /* Symbol firmware cannot be initialized more than once */
543 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
544 if ((error = wi_reset(sc)) != 0)
545 goto out;
546 }
547
548 /* common 802.11 configuration */
549 ic->ic_flags &= ~IEEE80211_F_IBSSON;
550 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
551 switch (ic->ic_opmode) {
552 case IEEE80211_M_STA:
553 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
554 break;
555 case IEEE80211_M_IBSS:
556 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
557 ic->ic_flags |= IEEE80211_F_IBSSON;
558 sc->sc_syn_timer = 5;
559 ifp->if_timer = 1;
560 break;
561 case IEEE80211_M_AHDEMO:
562 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
563 break;
564 case IEEE80211_M_HOSTAP:
565 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
566 break;
567 case IEEE80211_M_MONITOR:
568 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
569 break;
570 }
571
572 /* Intersil interprets this RID as joining ESS even in IBSS mode */
573 if (sc->sc_firmware_type == WI_LUCENT &&
574 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
575 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
576 else
577 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
578 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
579 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
580 ic->ic_des_esslen);
581 wi_write_val(sc, WI_RID_OWN_CHNL, ic->ic_ibss_chan);
582 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
583 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
584 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
585 wi_write_val(sc, WI_RID_PM_ENABLED,
586 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
587
588 /* not yet common 802.11 configuration */
589 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
590 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
591 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
592 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
593
594 /* driver specific 802.11 configuration */
595 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
596 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
597 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
598 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
599 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
600 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
601 wi_write_txrate(sc);
602 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
603
604 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
605 sc->sc_firmware_type == WI_INTERSIL) {
606 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
607 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
608 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
609 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
610 }
611
612 /*
613 * Initialize promisc mode.
614 * Being in the Host-AP mode causes a great
615 * deal of pain if primisc mode is set.
616 * Therefore we avoid confusing the firmware
617 * and always reset promisc mode in Host-AP
618 * mode. Host-AP sees all the packets anyway.
619 */
620 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
621 (ifp->if_flags & IFF_PROMISC) != 0) {
622 wi_write_val(sc, WI_RID_PROMISC, 1);
623 } else {
624 wi_write_val(sc, WI_RID_PROMISC, 0);
625 }
626
627 /* Configure WEP. */
628 if (ic->ic_flags & IEEE80211_F_HASWEP)
629 wi_write_wep(sc);
630
631 /* Set multicast filter. */
632 wi_write_multi(sc);
633
634 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
635 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
636 if (sc->sc_firmware_type == WI_SYMBOL)
637 sc->sc_buflen = 1585; /* XXX */
638 for (i = 0; i < WI_NTXBUF; i++) {
639 error = wi_alloc_fid(sc, sc->sc_buflen,
640 &sc->sc_txd[i].d_fid);
641 if (error) {
642 printf("%s: tx buffer allocation failed\n",
643 sc->sc_dev.dv_xname);
644 goto out;
645 }
646 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
647 sc->sc_txd[i].d_fid));
648 sc->sc_txd[i].d_len = 0;
649 }
650 }
651 sc->sc_txcur = sc->sc_txnext = 0;
652
653 /* Enable port 0 */
654 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
655 ifp->if_flags |= IFF_RUNNING;
656 ifp->if_flags &= ~IFF_OACTIVE;
657 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
658 ic->ic_opmode == IEEE80211_M_MONITOR ||
659 ic->ic_opmode == IEEE80211_M_HOSTAP)
660 wi_newstate(sc, IEEE80211_S_RUN);
661
662 /* Enable interrupts */
663 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
664
665 if (!wasenabled &&
666 ic->ic_opmode == IEEE80211_M_HOSTAP &&
667 sc->sc_firmware_type == WI_INTERSIL) {
668 /* XXX: some card need to be re-enabled for hostap */
669 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
670 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
671 }
672
673 if (ic->ic_opmode == IEEE80211_M_STA &&
674 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
675 ic->ic_des_chan != IEEE80211_CHAN_ANY)) {
676 memset(&join, 0, sizeof(join));
677 if (ic->ic_flags & IEEE80211_F_DESBSSID)
678 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
679 if (ic->ic_des_chan != IEEE80211_CHAN_ANY)
680 join.wi_chan = htole16(ic->ic_des_chan);
681 /* Lucent firmware does not support the JOIN RID. */
682 if (sc->sc_firmware_type != WI_LUCENT)
683 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
684 }
685
686 out:
687 if (error) {
688 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
689 wi_stop(ifp, 0);
690 }
691 DPRINTF(("wi_init: return %d\n", error));
692 return error;
693 }
694
695 static void
696 wi_stop(struct ifnet *ifp, int disable)
697 {
698 struct wi_softc *sc = ifp->if_softc;
699
700 DPRINTF(("wi_stop: disable %d\n", disable));
701 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
702 if (sc->sc_enabled) {
703 CSR_WRITE_2(sc, WI_INT_EN, 0);
704 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
705 if (disable) {
706 if (sc->sc_disable)
707 (*sc->sc_disable)(sc);
708 sc->sc_enabled = 0;
709 }
710 }
711
712 sc->sc_tx_timer = 0;
713 sc->sc_scan_timer = 0;
714 sc->sc_syn_timer = 0;
715 sc->sc_false_syns = 0;
716 sc->sc_naps = 0;
717 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
718 ifp->if_timer = 0;
719 }
720
721 static void
722 wi_start(struct ifnet *ifp)
723 {
724 struct wi_softc *sc = ifp->if_softc;
725 struct ieee80211com *ic = &sc->sc_ic;
726 struct ieee80211_node *ni;
727 struct ieee80211_frame *wh;
728 struct mbuf *m0;
729 struct wi_frame frmhdr;
730 int cur, fid, off;
731
732 if (ifp->if_flags & IFF_OACTIVE)
733 return;
734 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
735 return;
736
737 memset(&frmhdr, 0, sizeof(frmhdr));
738 cur = sc->sc_txnext;
739 for (;;) {
740 IF_POLL(&ic->ic_mgtq, m0);
741 if (m0 != NULL) {
742 if (sc->sc_txd[cur].d_len != 0) {
743 ifp->if_flags |= IFF_OACTIVE;
744 break;
745 }
746 IF_DEQUEUE(&ic->ic_mgtq, m0);
747 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
748 (caddr_t)&frmhdr.wi_ehdr);
749 frmhdr.wi_ehdr.ether_type = 0;
750 wh = mtod(m0, struct ieee80211_frame *);
751 } else {
752 if (ic->ic_state != IEEE80211_S_RUN)
753 break;
754 IFQ_POLL(&ifp->if_snd, m0);
755 if (m0 == NULL)
756 break;
757 if (sc->sc_txd[cur].d_len != 0) {
758 ifp->if_flags |= IFF_OACTIVE;
759 break;
760 }
761 IFQ_DEQUEUE(&ifp->if_snd, m0);
762 ifp->if_opackets++;
763 m_copydata(m0, 0, ETHER_HDR_LEN,
764 (caddr_t)&frmhdr.wi_ehdr);
765 #if NBPFILTER > 0
766 if (ifp->if_bpf)
767 bpf_mtap(ifp->if_bpf, m0);
768 #endif
769
770 if ((m0 = ieee80211_encap(ifp, m0)) == NULL) {
771 ifp->if_oerrors++;
772 continue;
773 }
774 wh = mtod(m0, struct ieee80211_frame *);
775 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
776 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
777 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
778 IEEE80211_FC0_TYPE_DATA &&
779 ((ni = ieee80211_find_node(ic, wh->i_addr1)) ==
780 NULL || ni->ni_associd == 0)) {
781 m_freem(m0);
782 ifp->if_oerrors++;
783 continue;
784 }
785 if (ic->ic_flags & IEEE80211_F_WEPON)
786 wh->i_fc[1] |= IEEE80211_FC1_WEP;
787
788 }
789 #if NBPFILTER > 0
790 if (ic->ic_rawbpf)
791 bpf_mtap(ic->ic_rawbpf, m0);
792 #endif
793 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11);
794 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
795 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
796 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
797 ifp->if_oerrors++;
798 continue;
799 }
800 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
801 }
802 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
803 (caddr_t)&frmhdr.wi_whdr);
804 m_adj(m0, sizeof(struct ieee80211_frame));
805 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
806 #if NBPFILTER > 0
807 if (sc->sc_drvbpf) {
808 struct mbuf mb;
809
810 M_COPY_PKTHDR(&mb, m0);
811 mb.m_data = (caddr_t)&frmhdr;
812 mb.m_len = sizeof(frmhdr);
813 mb.m_next = m0;
814 mb.m_pkthdr.len += mb.m_len;
815 bpf_mtap(sc->sc_drvbpf, &mb);
816 }
817 #endif
818 fid = sc->sc_txd[cur].d_fid;
819 off = sizeof(frmhdr);
820 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
821 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
822 ifp->if_oerrors++;
823 m_freem(m0);
824 continue;
825 }
826 m_freem(m0);
827 sc->sc_txd[cur].d_len = off;
828 if (sc->sc_txcur == cur) {
829 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
830 printf("%s: xmit failed\n",
831 sc->sc_dev.dv_xname);
832 sc->sc_txd[cur].d_len = 0;
833 continue;
834 }
835 sc->sc_tx_timer = 5;
836 ifp->if_timer = 1;
837 }
838 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF;
839 }
840 }
841
842
843 static int
844 wi_reset(struct wi_softc *sc)
845 {
846 int i, error;
847
848 DPRINTF(("wi_reset\n"));
849 error = 0;
850 for (i = 0; i < 5; i++) {
851 DELAY(20*1000); /* XXX: way too long! */
852 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
853 break;
854 }
855 if (error) {
856 printf("%s: init failed\n", sc->sc_dev.dv_xname);
857 return error;
858 }
859 CSR_WRITE_2(sc, WI_INT_EN, 0);
860 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
861
862 /* Calibrate timer. */
863 wi_write_val(sc, WI_RID_TICK_TIME, 0);
864 return 0;
865 }
866
867 static void
868 wi_watchdog(struct ifnet *ifp)
869 {
870 struct wi_softc *sc = ifp->if_softc;
871
872 ifp->if_timer = 0;
873 if (!sc->sc_enabled)
874 return;
875
876 if (sc->sc_tx_timer) {
877 if (--sc->sc_tx_timer == 0) {
878 printf("%s: device timeout\n", ifp->if_xname);
879 ifp->if_oerrors++;
880 wi_init(ifp);
881 return;
882 }
883 ifp->if_timer = 1;
884 }
885
886 if (sc->sc_scan_timer) {
887 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
888 sc->sc_firmware_type == WI_INTERSIL) {
889 DPRINTF(("wi_watchdog: inquire scan\n"));
890 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
891 }
892 if (sc->sc_scan_timer)
893 ifp->if_timer = 1;
894 }
895
896 if (sc->sc_syn_timer) {
897 if (--sc->sc_syn_timer == 0) {
898 DPRINTF2(("%s: %d false syns\n",
899 sc->sc_dev.dv_xname, sc->sc_false_syns));
900 sc->sc_false_syns = 0;
901 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
902 sc->sc_syn_timer = 5;
903 }
904 ifp->if_timer = 1;
905 }
906
907 /* TODO: rate control */
908 ieee80211_watchdog(ifp);
909 }
910
911 static int
912 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
913 {
914 struct wi_softc *sc = ifp->if_softc;
915 struct ieee80211com *ic = &sc->sc_ic;
916 struct ifreq *ifr = (struct ifreq *)data;
917 int s, error = 0;
918
919 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
920 return ENXIO;
921
922 s = splnet();
923
924 switch (cmd) {
925 case SIOCSIFFLAGS:
926 if (ifp->if_flags & IFF_UP) {
927 if (sc->sc_enabled) {
928 /*
929 * To avoid rescanning another access point,
930 * do not call wi_init() here. Instead,
931 * only reflect promisc mode settings.
932 */
933 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
934 (ifp->if_flags & IFF_PROMISC) != 0)
935 wi_write_val(sc, WI_RID_PROMISC, 1);
936 else
937 wi_write_val(sc, WI_RID_PROMISC, 0);
938 } else
939 error = wi_init(ifp);
940 } else if (sc->sc_enabled)
941 wi_stop(ifp, 1);
942 break;
943 case SIOCSIFMEDIA:
944 case SIOCGIFMEDIA:
945 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
946 break;
947 case SIOCADDMULTI:
948 case SIOCDELMULTI:
949 error = (cmd == SIOCADDMULTI) ?
950 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
951 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
952 if (error == ENETRESET) {
953 if (sc->sc_enabled) {
954 /* do not rescan */
955 error = wi_write_multi(sc);
956 } else
957 error = 0;
958 }
959 break;
960 case SIOCGIFGENERIC:
961 error = wi_get_cfg(ifp, cmd, data);
962 break;
963 case SIOCSIFGENERIC:
964 error = suser(curproc->p_ucred, &curproc->p_acflag);
965 if (error)
966 break;
967 error = wi_set_cfg(ifp, cmd, data);
968 if (error == ENETRESET) {
969 if (sc->sc_enabled)
970 error = wi_init(ifp);
971 else
972 error = 0;
973 }
974 break;
975 case SIOCS80211BSSID:
976 /* No use pretending that Lucent firmware supports
977 * 802.11 MLME-JOIN.request.
978 */
979 if (sc->sc_firmware_type == WI_LUCENT) {
980 error = ENODEV;
981 break;
982 }
983 /* fall through */
984 default:
985 error = ieee80211_ioctl(ifp, cmd, data);
986 if (error == ENETRESET) {
987 if (sc->sc_enabled)
988 error = wi_init(ifp);
989 else
990 error = 0;
991 }
992 break;
993 }
994 splx(s);
995 return error;
996 }
997
998 static int
999 wi_media_change(struct ifnet *ifp)
1000 {
1001 struct wi_softc *sc = ifp->if_softc;
1002 struct ieee80211com *ic = &sc->sc_ic;
1003 struct ifmedia_entry *ime;
1004 enum ieee80211_opmode newmode;
1005 int i, rate, error = 0;
1006
1007 ime = sc->sc_media.ifm_cur;
1008 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
1009 i = -1;
1010 } else {
1011 rate = ieee80211_media2rate(ime->ifm_media, IEEE80211_T_DS);
1012 if (rate == 0)
1013 return EINVAL;
1014 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1015 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL) == rate)
1016 break;
1017 }
1018 if (i == IEEE80211_RATE_SIZE)
1019 return EINVAL;
1020 }
1021 if (ic->ic_fixed_rate != i) {
1022 ic->ic_fixed_rate = i;
1023 error = ENETRESET;
1024 }
1025
1026 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
1027 (ime->ifm_media & IFM_FLAG0))
1028 newmode = IEEE80211_M_AHDEMO;
1029 else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
1030 newmode = IEEE80211_M_IBSS;
1031 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
1032 newmode = IEEE80211_M_HOSTAP;
1033 else if (ime->ifm_media & IFM_IEEE80211_MONITOR)
1034 newmode = IEEE80211_M_MONITOR;
1035 else
1036 newmode = IEEE80211_M_STA;
1037 if (ic->ic_opmode != newmode) {
1038 ic->ic_opmode = newmode;
1039 error = ENETRESET;
1040 }
1041 if (error == ENETRESET) {
1042 if (sc->sc_enabled)
1043 error = wi_init(ifp);
1044 else
1045 error = 0;
1046 }
1047 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
1048
1049 return error;
1050 }
1051
1052 static void
1053 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1054 {
1055 struct wi_softc *sc = ifp->if_softc;
1056 struct ieee80211com *ic = &sc->sc_ic;
1057 u_int16_t val;
1058 int rate, len;
1059
1060 if (sc->sc_enabled == 0) {
1061 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1062 imr->ifm_status = 0;
1063 return;
1064 }
1065
1066 imr->ifm_status = IFM_AVALID;
1067 imr->ifm_active = IFM_IEEE80211;
1068 if (ic->ic_state == IEEE80211_S_RUN &&
1069 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1070 imr->ifm_status |= IFM_ACTIVE;
1071 len = sizeof(val);
1072 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1073 rate = 0;
1074 else {
1075 /* convert to 802.11 rate */
1076 rate = val * 2;
1077 if (sc->sc_firmware_type == WI_LUCENT) {
1078 if (rate == 10)
1079 rate = 11; /* 5.5Mbps */
1080 } else {
1081 if (rate == 4*2)
1082 rate = 11; /* 5.5Mbps */
1083 else if (rate == 8*2)
1084 rate = 22; /* 11Mbps */
1085 }
1086 }
1087 imr->ifm_active |= ieee80211_rate2media(rate, IEEE80211_T_DS);
1088 switch (ic->ic_opmode) {
1089 case IEEE80211_M_STA:
1090 break;
1091 case IEEE80211_M_IBSS:
1092 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1093 break;
1094 case IEEE80211_M_AHDEMO:
1095 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1096 break;
1097 case IEEE80211_M_HOSTAP:
1098 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1099 break;
1100 case IEEE80211_M_MONITOR:
1101 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1102 break;
1103 }
1104 }
1105
1106 static void
1107 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1108 {
1109 struct ieee80211com *ic = &sc->sc_ic;
1110 struct ieee80211_node *ni = &ic->ic_bss;
1111 struct ifnet *ifp = &ic->ic_if;
1112
1113 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1114 return;
1115
1116 DPRINTF(("%s: bssid %s -> ", sc->sc_dev.dv_xname,
1117 ether_sprintf(ni->ni_bssid)));
1118 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1119
1120 /* In promiscuous mode, the BSSID field is not a reliable
1121 * indicator of the firmware's BSSID. Damp spurious
1122 * change-of-BSSID indications.
1123 */
1124 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1125 sc->sc_false_syns >= WI_MAX_FALSE_SYNS)
1126 return;
1127
1128 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
1129 }
1130
1131 static void
1132 wi_rx_intr(struct wi_softc *sc)
1133 {
1134 struct ieee80211com *ic = &sc->sc_ic;
1135 struct ifnet *ifp = &ic->ic_if;
1136 struct wi_frame frmhdr;
1137 struct mbuf *m;
1138 struct ieee80211_frame *wh;
1139 int fid, len, off, rssi;
1140 u_int8_t dir;
1141 u_int16_t status;
1142 u_int32_t rstamp;
1143
1144 fid = CSR_READ_2(sc, WI_RX_FID);
1145
1146 /* First read in the frame header */
1147 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1148 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1149 ifp->if_ierrors++;
1150 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1151 return;
1152 }
1153
1154 /*
1155 * Drop undecryptable or packets with receive errors here
1156 */
1157 status = le16toh(frmhdr.wi_status);
1158 if (status & WI_STAT_ERRSTAT) {
1159 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1160 ifp->if_ierrors++;
1161 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1162 return;
1163 }
1164 rssi = frmhdr.wi_rx_signal;
1165 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1166 le16toh(frmhdr.wi_rx_tstamp1);
1167
1168 len = le16toh(frmhdr.wi_dat_len);
1169 off = ALIGN(sizeof(struct ieee80211_frame));
1170
1171 /* Sometimes the PRISM2.x returns bogusly large frames. Except
1172 * in monitor mode, just throw them away.
1173 */
1174 if (off + len > MCLBYTES) {
1175 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1176 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1177 ifp->if_ierrors++;
1178 DPRINTF(("wi_rx_intr: oversized packet\n"));
1179 return;
1180 } else
1181 len = 0;
1182 }
1183
1184 MGETHDR(m, M_DONTWAIT, MT_DATA);
1185 if (m == NULL) {
1186 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1187 ifp->if_ierrors++;
1188 DPRINTF(("wi_rx_intr: MGET failed\n"));
1189 return;
1190 }
1191 if (off + len > MHLEN) {
1192 MCLGET(m, M_DONTWAIT);
1193 if ((m->m_flags & M_EXT) == 0) {
1194 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1195 m_freem(m);
1196 ifp->if_ierrors++;
1197 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1198 return;
1199 }
1200 }
1201
1202 m->m_data += off - sizeof(struct ieee80211_frame);
1203 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1204 wi_read_bap(sc, fid, sizeof(frmhdr),
1205 m->m_data + sizeof(struct ieee80211_frame), len);
1206 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1207 m->m_pkthdr.rcvif = ifp;
1208
1209 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1210
1211 #if NBPFILTER > 0
1212 if (sc->sc_drvbpf) {
1213 struct mbuf mb;
1214
1215 M_COPY_PKTHDR(&mb, m);
1216 mb.m_data = (caddr_t)&frmhdr;
1217 mb.m_len = sizeof(frmhdr);
1218 mb.m_next = m;
1219 mb.m_pkthdr.len += mb.m_len;
1220 bpf_mtap(sc->sc_drvbpf, &mb);
1221 }
1222 #endif
1223 wh = mtod(m, struct ieee80211_frame *);
1224 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1225 /*
1226 * WEP is decrypted by hardware. Clear WEP bit
1227 * header for ieee80211_input().
1228 */
1229 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1230 }
1231
1232 /* synchronize driver's BSSID with firmware's BSSID */
1233 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1234 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1235 wi_sync_bssid(sc, wh->i_addr3);
1236
1237 ieee80211_input(ifp, m, rssi, rstamp);
1238 }
1239
1240 static void
1241 wi_tx_intr(struct wi_softc *sc)
1242 {
1243 struct ieee80211com *ic = &sc->sc_ic;
1244 struct ifnet *ifp = &ic->ic_if;
1245 int fid, cur;
1246
1247 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1248 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1249
1250 cur = sc->sc_txcur;
1251 if (sc->sc_txd[cur].d_fid != fid) {
1252 printf("%s: bad alloc %x != %x, cur %d nxt %d\n",
1253 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1254 sc->sc_txnext);
1255 return;
1256 }
1257 sc->sc_tx_timer = 0;
1258 sc->sc_txd[cur].d_len = 0;
1259 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF;
1260 if (sc->sc_txd[cur].d_len == 0)
1261 ifp->if_flags &= ~IFF_OACTIVE;
1262 else {
1263 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1264 0, 0)) {
1265 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1266 sc->sc_txd[cur].d_len = 0;
1267 } else {
1268 sc->sc_tx_timer = 5;
1269 ifp->if_timer = 1;
1270 }
1271 }
1272 }
1273
1274 static void
1275 wi_info_intr(struct wi_softc *sc)
1276 {
1277 struct ieee80211com *ic = &sc->sc_ic;
1278 struct ifnet *ifp = &ic->ic_if;
1279 int i, fid, len, off;
1280 u_int16_t ltbuf[2];
1281 u_int16_t stat;
1282 u_int32_t *ptr;
1283
1284 fid = CSR_READ_2(sc, WI_INFO_FID);
1285 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1286
1287 switch (le16toh(ltbuf[1])) {
1288
1289 case WI_INFO_LINK_STAT:
1290 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1291 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1292 switch (le16toh(stat)) {
1293 case CONNECTED:
1294 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1295 if (ic->ic_state == IEEE80211_S_RUN &&
1296 ic->ic_opmode != IEEE80211_M_IBSS)
1297 break;
1298 /* FALLTHROUGH */
1299 case AP_CHANGE:
1300 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
1301 break;
1302 case AP_IN_RANGE:
1303 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1304 break;
1305 case AP_OUT_OF_RANGE:
1306 if (sc->sc_firmware_type == WI_SYMBOL &&
1307 sc->sc_scan_timer > 0) {
1308 if (wi_cmd(sc, WI_CMD_INQUIRE,
1309 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1310 sc->sc_scan_timer = 0;
1311 break;
1312 }
1313 if (ic->ic_opmode == IEEE80211_M_STA)
1314 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1315 break;
1316 case DISCONNECTED:
1317 case ASSOC_FAILED:
1318 if (ic->ic_opmode == IEEE80211_M_STA)
1319 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
1320 break;
1321 }
1322 break;
1323
1324 case WI_INFO_COUNTERS:
1325 /* some card versions have a larger stats structure */
1326 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1327 ptr = (u_int32_t *)&sc->sc_stats;
1328 off = sizeof(ltbuf);
1329 for (i = 0; i < len; i++, off += 2, ptr++) {
1330 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1331 #ifdef WI_HERMES_STATS_WAR
1332 if (stat & 0xf000)
1333 stat = ~stat;
1334 #endif
1335 *ptr += stat;
1336 }
1337 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1338 sc->sc_stats.wi_tx_multi_retries +
1339 sc->sc_stats.wi_tx_retry_limit;
1340 break;
1341
1342 case WI_INFO_SCAN_RESULTS:
1343 case WI_INFO_HOST_SCAN_RESULTS:
1344 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1345 break;
1346
1347 default:
1348 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1349 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1350 break;
1351 }
1352 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1353 }
1354
1355 /*
1356 * Allocate a region of memory inside the NIC and zero
1357 * it out.
1358 */
1359 static int
1360 wi_write_multi(struct wi_softc *sc)
1361 {
1362 struct ifnet *ifp = &sc->sc_ic.ic_if;
1363 int n = 0;
1364 struct wi_mcast mlist;
1365 struct ether_multi *enm;
1366 struct ether_multistep estep;
1367
1368 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1369 allmulti:
1370 ifp->if_flags |= IFF_ALLMULTI;
1371 memset(&mlist, 0, sizeof(mlist));
1372 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1373 sizeof(mlist));
1374 }
1375
1376 n = 0;
1377 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1378 while (enm != NULL) {
1379 /* Punt on ranges or too many multicast addresses. */
1380 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1381 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1382 goto allmulti;
1383
1384 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1385 n++;
1386 ETHER_NEXT_MULTI(estep, enm);
1387 }
1388 ifp->if_flags &= ~IFF_ALLMULTI;
1389 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1390 IEEE80211_ADDR_LEN * n);
1391 }
1392
1393
1394 static void
1395 wi_read_nicid(sc)
1396 struct wi_softc *sc;
1397 {
1398 struct wi_card_ident *id;
1399 char *p;
1400 int len;
1401 u_int16_t ver[4];
1402
1403 /* getting chip identity */
1404 memset(ver, 0, sizeof(ver));
1405 len = sizeof(ver);
1406 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1407 printf("%s: using ", sc->sc_dev.dv_xname);
1408 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1409
1410 sc->sc_firmware_type = WI_NOTYPE;
1411 for (id = wi_card_ident; id->card_name != NULL; id++) {
1412 if (le16toh(ver[0]) == id->card_id) {
1413 printf("%s", id->card_name);
1414 sc->sc_firmware_type = id->firm_type;
1415 break;
1416 }
1417 }
1418 if (sc->sc_firmware_type == WI_NOTYPE) {
1419 if (le16toh(ver[0]) & 0x8000) {
1420 printf("Unknown PRISM2 chip");
1421 sc->sc_firmware_type = WI_INTERSIL;
1422 } else {
1423 printf("Unknown Lucent chip");
1424 sc->sc_firmware_type = WI_LUCENT;
1425 }
1426 }
1427
1428 /* get primary firmware version (Only Prism chips) */
1429 if (sc->sc_firmware_type != WI_LUCENT) {
1430 memset(ver, 0, sizeof(ver));
1431 len = sizeof(ver);
1432 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1433 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1434 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1435 DPRINTF2(("wi_read_nicid: PRI_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1436 }
1437
1438 /* get station firmware version */
1439 memset(ver, 0, sizeof(ver));
1440 len = sizeof(ver);
1441 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1442 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1443 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1444 DPRINTF2(("wi_read_nicid: STA_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1445 if (sc->sc_firmware_type == WI_INTERSIL &&
1446 (sc->sc_sta_firmware_ver == 10102 ||
1447 sc->sc_sta_firmware_ver == 20102)) {
1448 char ident[12];
1449 memset(ident, 0, sizeof(ident));
1450 len = sizeof(ident);
1451 /* value should be the format like "V2.00-11" */
1452 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1453 *(p = (char *)ident) >= 'A' &&
1454 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1455 sc->sc_firmware_type = WI_SYMBOL;
1456 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1457 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1458 (p[6] - '0') * 10 + (p[7] - '0');
1459 }
1460 DPRINTF2(("wi_read_nicid: SYMBOL_ID: %x %x %x %x\n", le16toh(ident[0]), le16toh(ident[1]), le16toh(ident[2]), le16toh(ident[3])));
1461 }
1462
1463 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1464 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1465 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1466 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1467 printf("Primary (%u.%u.%u), ",
1468 sc->sc_pri_firmware_ver / 10000,
1469 (sc->sc_pri_firmware_ver % 10000) / 100,
1470 sc->sc_pri_firmware_ver % 100);
1471 printf("Station (%u.%u.%u)\n",
1472 sc->sc_sta_firmware_ver / 10000,
1473 (sc->sc_sta_firmware_ver % 10000) / 100,
1474 sc->sc_sta_firmware_ver % 100);
1475 }
1476
1477 static int
1478 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1479 {
1480 struct wi_ssid ssid;
1481
1482 if (buflen > IEEE80211_NWID_LEN)
1483 return ENOBUFS;
1484 memset(&ssid, 0, sizeof(ssid));
1485 ssid.wi_len = htole16(buflen);
1486 memcpy(ssid.wi_ssid, buf, buflen);
1487 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
1488 }
1489
1490 static int
1491 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1492 {
1493 struct wi_softc *sc = ifp->if_softc;
1494 struct ieee80211com *ic = &sc->sc_ic;
1495 struct ifreq *ifr = (struct ifreq *)data;
1496 struct wi_req wreq;
1497 int len, n, error;
1498
1499 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1500 if (error)
1501 return error;
1502 len = (wreq.wi_len - 1) * 2;
1503 if (len < sizeof(u_int16_t))
1504 return ENOSPC;
1505 if (len > sizeof(wreq.wi_val))
1506 len = sizeof(wreq.wi_val);
1507
1508 switch (wreq.wi_type) {
1509
1510 case WI_RID_IFACE_STATS:
1511 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1512 if (len < sizeof(sc->sc_stats))
1513 error = ENOSPC;
1514 else
1515 len = sizeof(sc->sc_stats);
1516 break;
1517
1518 case WI_RID_ENCRYPTION:
1519 case WI_RID_TX_CRYPT_KEY:
1520 case WI_RID_DEFLT_CRYPT_KEYS:
1521 case WI_RID_TX_RATE:
1522 return ieee80211_cfgget(ifp, cmd, data);
1523
1524 case WI_RID_MICROWAVE_OVEN:
1525 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1526 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1527 &len);
1528 break;
1529 }
1530 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1531 len = sizeof(u_int16_t);
1532 break;
1533
1534 case WI_RID_DBM_ADJUST:
1535 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
1536 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1537 &len);
1538 break;
1539 }
1540 wreq.wi_val[0] = htole16(sc->sc_dbm_adjust);
1541 len = sizeof(u_int16_t);
1542 break;
1543
1544 case WI_RID_ROAMING_MODE:
1545 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
1546 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1547 &len);
1548 break;
1549 }
1550 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
1551 len = sizeof(u_int16_t);
1552 break;
1553
1554 case WI_RID_SYSTEM_SCALE:
1555 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
1556 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1557 &len);
1558 break;
1559 }
1560 wreq.wi_val[0] = htole16(sc->sc_system_scale);
1561 len = sizeof(u_int16_t);
1562 break;
1563
1564 case WI_RID_FRAG_THRESH:
1565 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
1566 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1567 &len);
1568 break;
1569 }
1570 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
1571 len = sizeof(u_int16_t);
1572 break;
1573
1574 case WI_RID_READ_APS:
1575 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1576 return ieee80211_cfgget(ifp, cmd, data);
1577 if (sc->sc_scan_timer > 0) {
1578 error = EINPROGRESS;
1579 break;
1580 }
1581 n = sc->sc_naps;
1582 if (len < sizeof(n)) {
1583 error = ENOSPC;
1584 break;
1585 }
1586 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
1587 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
1588 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
1589 memcpy(wreq.wi_val, &n, sizeof(n));
1590 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
1591 sizeof(struct wi_apinfo) * n);
1592 break;
1593
1594 default:
1595 if (sc->sc_enabled) {
1596 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1597 &len);
1598 break;
1599 }
1600 switch (wreq.wi_type) {
1601 case WI_RID_MAX_DATALEN:
1602 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
1603 len = sizeof(u_int16_t);
1604 break;
1605 case WI_RID_FRAG_THRESH:
1606 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
1607 len = sizeof(u_int16_t);
1608 break;
1609 case WI_RID_RTS_THRESH:
1610 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
1611 len = sizeof(u_int16_t);
1612 break;
1613 case WI_RID_CNFAUTHMODE:
1614 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
1615 len = sizeof(u_int16_t);
1616 break;
1617 case WI_RID_NODENAME:
1618 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
1619 error = ENOSPC;
1620 break;
1621 }
1622 len = sc->sc_nodelen + sizeof(u_int16_t);
1623 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
1624 memcpy(&wreq.wi_val[1], sc->sc_nodename,
1625 sc->sc_nodelen);
1626 break;
1627 default:
1628 return ieee80211_cfgget(ifp, cmd, data);
1629 }
1630 break;
1631 }
1632 if (error)
1633 return error;
1634 wreq.wi_len = (len + 1) / 2 + 1;
1635 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
1636 }
1637
1638 static int
1639 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1640 {
1641 struct wi_softc *sc = ifp->if_softc;
1642 struct ieee80211com *ic = &sc->sc_ic;
1643 struct ifreq *ifr = (struct ifreq *)data;
1644 struct wi_req wreq;
1645 struct mbuf *m;
1646 int i, len, error;
1647
1648 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1649 if (error)
1650 return error;
1651 len = (wreq.wi_len - 1) * 2;
1652 switch (wreq.wi_type) {
1653 case WI_RID_DBM_ADJUST:
1654 return ENODEV;
1655
1656 case WI_RID_NODENAME:
1657 if (le16toh(wreq.wi_val[0]) * 2 > len ||
1658 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
1659 error = ENOSPC;
1660 break;
1661 }
1662 if (sc->sc_enabled) {
1663 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1664 len);
1665 if (error)
1666 break;
1667 }
1668 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
1669 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
1670 break;
1671
1672 case WI_RID_MICROWAVE_OVEN:
1673 case WI_RID_ROAMING_MODE:
1674 case WI_RID_SYSTEM_SCALE:
1675 case WI_RID_FRAG_THRESH:
1676 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
1677 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
1678 break;
1679 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
1680 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
1681 break;
1682 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
1683 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
1684 break;
1685 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
1686 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
1687 break;
1688 /* FALLTHROUGH */
1689 case WI_RID_RTS_THRESH:
1690 case WI_RID_CNFAUTHMODE:
1691 case WI_RID_MAX_DATALEN:
1692 if (sc->sc_enabled) {
1693 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1694 sizeof(u_int16_t));
1695 if (error)
1696 break;
1697 }
1698 switch (wreq.wi_type) {
1699 case WI_RID_FRAG_THRESH:
1700 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
1701 break;
1702 case WI_RID_RTS_THRESH:
1703 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
1704 break;
1705 case WI_RID_MICROWAVE_OVEN:
1706 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
1707 break;
1708 case WI_RID_ROAMING_MODE:
1709 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
1710 break;
1711 case WI_RID_SYSTEM_SCALE:
1712 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
1713 break;
1714 case WI_RID_CNFAUTHMODE:
1715 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
1716 break;
1717 case WI_RID_MAX_DATALEN:
1718 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
1719 break;
1720 }
1721 break;
1722
1723 case WI_RID_TX_RATE:
1724 switch (le16toh(wreq.wi_val[0])) {
1725 case 3:
1726 ic->ic_fixed_rate = -1;
1727 break;
1728 default:
1729 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1730 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL)
1731 / 2 == le16toh(wreq.wi_val[0]))
1732 break;
1733 }
1734 if (i == IEEE80211_RATE_SIZE)
1735 return EINVAL;
1736 ic->ic_fixed_rate = i;
1737 }
1738 if (sc->sc_enabled)
1739 error = wi_write_txrate(sc);
1740 break;
1741
1742 case WI_RID_SCAN_APS:
1743 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
1744 error = wi_scan_ap(sc);
1745 break;
1746
1747 case WI_RID_MGMT_XMIT:
1748 if (!sc->sc_enabled) {
1749 error = ENETDOWN;
1750 break;
1751 }
1752 if (ic->ic_mgtq.ifq_len > 5) {
1753 error = EAGAIN;
1754 break;
1755 }
1756 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
1757 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
1758 if (m == NULL) {
1759 error = ENOMEM;
1760 break;
1761 }
1762 IF_ENQUEUE(&ic->ic_mgtq, m);
1763 break;
1764
1765 default:
1766 if (sc->sc_enabled) {
1767 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1768 len);
1769 if (error)
1770 break;
1771 }
1772 error = ieee80211_cfgset(ifp, cmd, data);
1773 break;
1774 }
1775 return error;
1776 }
1777
1778 static int
1779 wi_write_txrate(struct wi_softc *sc)
1780 {
1781 struct ieee80211com *ic = &sc->sc_ic;
1782 int i;
1783 u_int16_t rate;
1784
1785 if (ic->ic_fixed_rate < 0)
1786 rate = 0; /* auto */
1787 else
1788 rate = (ic->ic_sup_rates[ic->ic_fixed_rate] &
1789 IEEE80211_RATE_VAL) / 2;
1790
1791 /* rate: 0, 1, 2, 5, 11 */
1792
1793 switch (sc->sc_firmware_type) {
1794 case WI_LUCENT:
1795 if (rate == 0)
1796 rate = 3; /* auto */
1797 break;
1798 default:
1799 /* Choose a bit according to this table.
1800 *
1801 * bit | data rate
1802 * ----+-------------------
1803 * 0 | 1Mbps
1804 * 1 | 2Mbps
1805 * 2 | 5.5Mbps
1806 * 3 | 11Mbps
1807 */
1808 for (i = 8; i > 0; i >>= 1) {
1809 if (rate >= i)
1810 break;
1811 }
1812 if (i == 0)
1813 rate = 0xf; /* auto */
1814 else
1815 rate = i;
1816 break;
1817 }
1818 return wi_write_val(sc, WI_RID_TX_RATE, rate);
1819 }
1820
1821 static int
1822 wi_write_wep(struct wi_softc *sc)
1823 {
1824 struct ieee80211com *ic = &sc->sc_ic;
1825 int error = 0;
1826 int i, keylen;
1827 u_int16_t val;
1828 struct wi_key wkey[IEEE80211_WEP_NKID];
1829
1830 switch (sc->sc_firmware_type) {
1831 case WI_LUCENT:
1832 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
1833 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
1834 if (error)
1835 break;
1836 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
1837 if (error)
1838 break;
1839 memset(wkey, 0, sizeof(wkey));
1840 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1841 keylen = ic->ic_nw_keys[i].wk_len;
1842 wkey[i].wi_keylen = htole16(keylen);
1843 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
1844 keylen);
1845 }
1846 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
1847 wkey, sizeof(wkey));
1848 break;
1849
1850 case WI_INTERSIL:
1851 case WI_SYMBOL:
1852 if (ic->ic_flags & IEEE80211_F_WEPON) {
1853 /*
1854 * ONLY HWB3163 EVAL-CARD Firmware version
1855 * less than 0.8 variant2
1856 *
1857 * If promiscuous mode disable, Prism2 chip
1858 * does not work with WEP .
1859 * It is under investigation for details.
1860 * (ichiro (at) netbsd.org)
1861 */
1862 if (sc->sc_firmware_type == WI_INTERSIL &&
1863 sc->sc_sta_firmware_ver < 802 ) {
1864 /* firm ver < 0.8 variant 2 */
1865 wi_write_val(sc, WI_RID_PROMISC, 1);
1866 }
1867 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1868 sc->sc_cnfauthmode);
1869 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
1870 /*
1871 * Encryption firmware has a bug for HostAP mode.
1872 */
1873 if (sc->sc_firmware_type == WI_INTERSIL &&
1874 ic->ic_opmode == IEEE80211_M_HOSTAP)
1875 val |= HOST_ENCRYPT;
1876 } else {
1877 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1878 IEEE80211_AUTH_OPEN);
1879 val = HOST_ENCRYPT | HOST_DECRYPT;
1880 }
1881 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
1882 if (error)
1883 break;
1884 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
1885 ic->ic_wep_txkey);
1886 if (error)
1887 break;
1888 /*
1889 * It seems that the firmware accept 104bit key only if
1890 * all the keys have 104bit length. We get the length of
1891 * the transmit key and use it for all other keys.
1892 * Perhaps we should use software WEP for such situation.
1893 */
1894 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
1895 if (keylen > IEEE80211_WEP_KEYLEN)
1896 keylen = 13; /* 104bit keys */
1897 else
1898 keylen = IEEE80211_WEP_KEYLEN;
1899 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1900 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
1901 ic->ic_nw_keys[i].wk_key, keylen);
1902 if (error)
1903 break;
1904 }
1905 break;
1906 }
1907 return error;
1908 }
1909
1910 /* Must be called at proper protection level! */
1911 static int
1912 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
1913 {
1914 int i, status;
1915
1916 /* wait for the busy bit to clear */
1917 for (i = 0; ; i++) {
1918 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
1919 break;
1920 if (i == WI_TIMEOUT) {
1921 printf("%s: wi_cmd: BUSY did not clear, "
1922 "cmd=0x%x, prev=0x%x\n", sc->sc_dev.dv_xname,
1923 cmd, CSR_READ_2(sc, WI_COMMAND));
1924 return EIO;
1925 }
1926 DELAY(1);
1927 }
1928
1929 CSR_WRITE_2(sc, WI_PARAM0, val0);
1930 CSR_WRITE_2(sc, WI_PARAM1, val1);
1931 CSR_WRITE_2(sc, WI_PARAM2, val2);
1932 CSR_WRITE_2(sc, WI_COMMAND, cmd);
1933
1934 if (cmd == WI_CMD_INI) {
1935 /* XXX: should sleep here. */
1936 DELAY(100*1000);
1937 }
1938 /* wait for the cmd completed bit */
1939 for (i = 0; i < WI_TIMEOUT; i++) {
1940 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
1941 break;
1942 DELAY(1);
1943 }
1944
1945 status = CSR_READ_2(sc, WI_STATUS);
1946
1947 /* Ack the command */
1948 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1949
1950 if (i == WI_TIMEOUT) {
1951 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
1952 sc->sc_dev.dv_xname, cmd, val0);
1953 return ETIMEDOUT;
1954 }
1955
1956 if (status & WI_STAT_CMD_RESULT) {
1957 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
1958 sc->sc_dev.dv_xname, cmd, val0);
1959 return EIO;
1960 }
1961 return 0;
1962 }
1963
1964 static int
1965 wi_seek_bap(struct wi_softc *sc, int id, int off)
1966 {
1967 int i, status;
1968
1969 CSR_WRITE_2(sc, WI_SEL0, id);
1970 CSR_WRITE_2(sc, WI_OFF0, off);
1971
1972 for (i = 0; ; i++) {
1973 status = CSR_READ_2(sc, WI_OFF0);
1974 if ((status & WI_OFF_BUSY) == 0)
1975 break;
1976 if (i == WI_TIMEOUT) {
1977 printf("%s: timeout in wi_seek to %x/%x\n",
1978 sc->sc_dev.dv_xname, id, off);
1979 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1980 return ETIMEDOUT;
1981 }
1982 DELAY(1);
1983 }
1984 if (status & WI_OFF_ERR) {
1985 printf("%s: failed in wi_seek to %x/%x\n",
1986 sc->sc_dev.dv_xname, id, off);
1987 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1988 return EIO;
1989 }
1990 sc->sc_bap_id = id;
1991 sc->sc_bap_off = off;
1992 return 0;
1993 }
1994
1995 static int
1996 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1997 {
1998 int error, cnt;
1999
2000 if (buflen == 0)
2001 return 0;
2002 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2003 if ((error = wi_seek_bap(sc, id, off)) != 0)
2004 return error;
2005 }
2006 cnt = (buflen + 1) / 2;
2007 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2008 sc->sc_bap_off += cnt * 2;
2009 return 0;
2010 }
2011
2012 static int
2013 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2014 {
2015 int error, cnt;
2016
2017 if (buflen == 0)
2018 return 0;
2019
2020 #ifdef WI_HERMES_AUTOINC_WAR
2021 again:
2022 #endif
2023 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2024 if ((error = wi_seek_bap(sc, id, off)) != 0)
2025 return error;
2026 }
2027 cnt = (buflen + 1) / 2;
2028 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2029 sc->sc_bap_off += cnt * 2;
2030
2031 #ifdef WI_HERMES_AUTOINC_WAR
2032 /*
2033 * According to the comments in the HCF Light code, there is a bug
2034 * in the Hermes (or possibly in certain Hermes firmware revisions)
2035 * where the chip's internal autoincrement counter gets thrown off
2036 * during data writes: the autoincrement is missed, causing one
2037 * data word to be overwritten and subsequent words to be written to
2038 * the wrong memory locations. The end result is that we could end
2039 * up transmitting bogus frames without realizing it. The workaround
2040 * for this is to write a couple of extra guard words after the end
2041 * of the transfer, then attempt to read then back. If we fail to
2042 * locate the guard words where we expect them, we preform the
2043 * transfer over again.
2044 */
2045 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2046 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2047 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2048 wi_seek_bap(sc, id, sc->sc_bap_off);
2049 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2050 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2051 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2052 printf("%s: detect auto increment bug, try again\n",
2053 sc->sc_dev.dv_xname);
2054 goto again;
2055 }
2056 }
2057 #endif
2058 return 0;
2059 }
2060
2061 static int
2062 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2063 {
2064 int error, len;
2065 struct mbuf *m;
2066
2067 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2068 if (m->m_len == 0)
2069 continue;
2070
2071 len = min(m->m_len, totlen);
2072
2073 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2074 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2075 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2076 totlen);
2077 }
2078
2079 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2080 return error;
2081
2082 off += m->m_len;
2083 totlen -= len;
2084 }
2085 return 0;
2086 }
2087
2088 static int
2089 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2090 {
2091 int i;
2092
2093 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2094 printf("%s: failed to allocate %d bytes on NIC\n",
2095 sc->sc_dev.dv_xname, len);
2096 return ENOMEM;
2097 }
2098
2099 for (i = 0; i < WI_TIMEOUT; i++) {
2100 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2101 break;
2102 if (i == WI_TIMEOUT) {
2103 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
2104 return ETIMEDOUT;
2105 }
2106 DELAY(1);
2107 }
2108 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
2109 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2110 return 0;
2111 }
2112
2113 static int
2114 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2115 {
2116 int error, len;
2117 u_int16_t ltbuf[2];
2118
2119 /* Tell the NIC to enter record read mode. */
2120 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2121 if (error)
2122 return error;
2123
2124 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2125 if (error)
2126 return error;
2127
2128 if (le16toh(ltbuf[1]) != rid) {
2129 printf("%s: record read mismatch, rid=%x, got=%x\n",
2130 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
2131 return EIO;
2132 }
2133 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
2134 if (*buflenp < len) {
2135 printf("%s: record buffer is too small, "
2136 "rid=%x, size=%d, len=%d\n",
2137 sc->sc_dev.dv_xname, rid, *buflenp, len);
2138 return ENOSPC;
2139 }
2140 *buflenp = len;
2141 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2142 }
2143
2144 static int
2145 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2146 {
2147 int error;
2148 u_int16_t ltbuf[2];
2149
2150 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
2151 ltbuf[1] = htole16(rid);
2152
2153 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2154 if (error)
2155 return error;
2156 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2157 if (error)
2158 return error;
2159
2160 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2161 }
2162
2163 static int
2164 wi_newstate(void *arg, enum ieee80211_state nstate)
2165 {
2166 struct wi_softc *sc = arg;
2167 struct ieee80211com *ic = &sc->sc_ic;
2168 struct ieee80211_node *ni = &ic->ic_bss;
2169 int i, buflen;
2170 u_int16_t val;
2171 struct wi_ssid ssid;
2172 u_int8_t old_bssid[IEEE80211_ADDR_LEN];
2173 enum ieee80211_state ostate;
2174 #ifdef WI_DEBUG
2175 static const char *stname[] =
2176 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
2177 #endif /* WI_DEBUG */
2178
2179 ostate = ic->ic_state;
2180 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
2181
2182 ic->ic_state = nstate;
2183 switch (nstate) {
2184 case IEEE80211_S_INIT:
2185 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2186 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2187 return 0;
2188
2189 case IEEE80211_S_RUN:
2190 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2191 buflen = IEEE80211_ADDR_LEN;
2192 IEEE80211_ADDR_COPY(old_bssid, ni->ni_bssid);
2193 wi_read_rid(sc, WI_RID_CURRENT_BSSID, ni->ni_bssid, &buflen);
2194 IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
2195 buflen = sizeof(val);
2196 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
2197 ni->ni_chan = le16toh(val);
2198
2199 if (IEEE80211_ADDR_EQ(old_bssid, ni->ni_bssid))
2200 sc->sc_false_syns++;
2201 else
2202 sc->sc_false_syns = 0;
2203
2204 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2205 ni->ni_esslen = ic->ic_des_esslen;
2206 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2207 ni->ni_nrate = 0;
2208 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2209 if (ic->ic_sup_rates[i])
2210 ni->ni_rates[ni->ni_nrate++] =
2211 ic->ic_sup_rates[i];
2212 }
2213 ni->ni_intval = ic->ic_lintval;
2214 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2215 if (ic->ic_flags & IEEE80211_F_WEPON)
2216 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2217 } else {
2218 buflen = sizeof(ssid);
2219 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2220 ni->ni_esslen = le16toh(ssid.wi_len);
2221 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2222 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2223 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2224 }
2225 break;
2226
2227 case IEEE80211_S_SCAN:
2228 case IEEE80211_S_AUTH:
2229 case IEEE80211_S_ASSOC:
2230 break;
2231 }
2232
2233 /* skip standard ieee80211 handling */
2234 return EINPROGRESS;
2235 }
2236
2237 static int
2238 wi_scan_ap(struct wi_softc *sc)
2239 {
2240 int error = 0;
2241 u_int16_t val[2];
2242
2243 if (!sc->sc_enabled)
2244 return ENXIO;
2245 switch (sc->sc_firmware_type) {
2246 case WI_LUCENT:
2247 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2248 break;
2249 case WI_INTERSIL:
2250 val[0] = 0x3fff; /* channel */
2251 val[1] = 0x000f; /* tx rate */
2252 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2253 break;
2254 case WI_SYMBOL:
2255 /*
2256 * XXX only supported on 3.x ?
2257 */
2258 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2259 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2260 val, sizeof(val[0]));
2261 break;
2262 }
2263 if (error == 0) {
2264 sc->sc_scan_timer = WI_SCAN_WAIT;
2265 sc->sc_ic.ic_if.if_timer = 1;
2266 DPRINTF(("wi_scan_ap: start scanning\n"));
2267 }
2268 return error;
2269 }
2270
2271 static void
2272 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2273 {
2274 int i, naps, off, szbuf;
2275 struct wi_scan_header ws_hdr; /* Prism2 header */
2276 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2277 struct wi_apinfo *ap;
2278
2279 off = sizeof(u_int16_t) * 2;
2280 memset(&ws_hdr, 0, sizeof(ws_hdr));
2281 switch (sc->sc_firmware_type) {
2282 case WI_INTERSIL:
2283 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2284 off += sizeof(ws_hdr);
2285 szbuf = sizeof(struct wi_scan_data_p2);
2286 break;
2287 case WI_SYMBOL:
2288 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2289 break;
2290 case WI_LUCENT:
2291 szbuf = sizeof(struct wi_scan_data);
2292 break;
2293 }
2294 naps = (cnt * 2 + 2 - off) / szbuf;
2295 if (naps > MAXAPINFO)
2296 naps = MAXAPINFO;
2297 sc->sc_naps = naps;
2298 /* Read Data */
2299 ap = sc->sc_aps;
2300 memset(&ws_dat, 0, sizeof(ws_dat));
2301 for (i = 0; i < naps; i++, ap++) {
2302 wi_read_bap(sc, fid, off, &ws_dat,
2303 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2304 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
2305 ether_sprintf(ws_dat.wi_bssid)));
2306 off += szbuf;
2307 ap->scanreason = le16toh(ws_hdr.wi_reason);
2308 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2309 ap->channel = le16toh(ws_dat.wi_chid);
2310 ap->signal = le16toh(ws_dat.wi_signal);
2311 ap->noise = le16toh(ws_dat.wi_noise);
2312 ap->quality = ap->signal - ap->noise;
2313 ap->capinfo = le16toh(ws_dat.wi_capinfo);
2314 ap->interval = le16toh(ws_dat.wi_interval);
2315 ap->rate = le16toh(ws_dat.wi_rate);
2316 ap->namelen = le16toh(ws_dat.wi_namelen);
2317 if (ap->namelen > sizeof(ap->name))
2318 ap->namelen = sizeof(ap->name);
2319 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2320 }
2321 /* Done scanning */
2322 sc->sc_scan_timer = 0;
2323 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
2324 }
2325