wi.c revision 1.113 1 /* $NetBSD: wi.c,v 1.113 2003/03/27 04:34:17 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.113 2003/03/27 04:34:17 dyoung Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static int wi_init(struct ifnet *);
108 static void wi_stop(struct ifnet *, int);
109 static void wi_start(struct ifnet *);
110 static int wi_reset(struct wi_softc *);
111 static void wi_watchdog(struct ifnet *);
112 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
113 static int wi_media_change(struct ifnet *);
114 static void wi_media_status(struct ifnet *, struct ifmediareq *);
115
116 static void wi_rx_intr(struct wi_softc *);
117 static void wi_tx_intr(struct wi_softc *);
118 static void wi_info_intr(struct wi_softc *);
119
120 static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
121 static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
122 static int wi_write_txrate(struct wi_softc *);
123 static int wi_write_wep(struct wi_softc *);
124 static int wi_write_multi(struct wi_softc *);
125 static int wi_alloc_fid(struct wi_softc *, int, int *);
126 static void wi_read_nicid(struct wi_softc *);
127 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
128
129 static int wi_cmd(struct wi_softc *, int, int, int, int);
130 static int wi_seek_bap(struct wi_softc *, int, int);
131 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
132 static int wi_write_bap(struct wi_softc *, int, int, void *, int);
133 static int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
134 static int wi_read_rid(struct wi_softc *, int, void *, int *);
135 static int wi_write_rid(struct wi_softc *, int, void *, int);
136
137 static int wi_newstate(void *, enum ieee80211_state);
138
139 static int wi_scan_ap(struct wi_softc *);
140 static void wi_scan_result(struct wi_softc *, int, int);
141
142 static inline int
143 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
144 {
145
146 val = htole16(val);
147 return wi_write_rid(sc, rid, &val, sizeof(val));
148 }
149
150 #ifdef WI_DEBUG
151 int wi_debug = 0;
152
153 #define DPRINTF(X) if (wi_debug) printf X
154 #define DPRINTF2(X) if (wi_debug > 1) printf X
155 #else
156 #define DPRINTF(X)
157 #define DPRINTF2(X)
158 #endif
159
160 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
161
162 struct wi_card_ident
163 wi_card_ident[] = {
164 /* CARD_ID CARD_NAME FIRM_TYPE */
165 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
166 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
167 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
168 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
169 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
170 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
171 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
172 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
173 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
174 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
175 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
176 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
177 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
178 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
179 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
180 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
181 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
182 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
183 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
184 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
185 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
186 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
187 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
188 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
189 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
190 { 0, NULL, 0 },
191 };
192
193 int
194 wi_attach(struct wi_softc *sc)
195 {
196 struct ieee80211com *ic = &sc->sc_ic;
197 struct ifnet *ifp = &ic->ic_if;
198 int i, nrate, mword, buflen;
199 u_int8_t r;
200 u_int16_t val;
201 u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
202 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
203 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
204 };
205 int s;
206
207 s = splnet();
208
209 /* Make sure interrupts are disabled. */
210 CSR_WRITE_2(sc, WI_INT_EN, 0);
211 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
212
213 /* Reset the NIC. */
214 if (wi_reset(sc) != 0) {
215 splx(s);
216 return 1;
217 }
218
219 buflen = IEEE80211_ADDR_LEN;
220 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
221 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
222 printf(" could not get mac address, attach failed\n");
223 splx(s);
224 return 1;
225 }
226
227 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
228
229 /* Read NIC identification */
230 wi_read_nicid(sc);
231
232 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
233 ifp->if_softc = sc;
234 ifp->if_start = wi_start;
235 ifp->if_ioctl = wi_ioctl;
236 ifp->if_watchdog = wi_watchdog;
237 ifp->if_init = wi_init;
238 ifp->if_stop = wi_stop;
239 ifp->if_flags =
240 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
241 IFQ_SET_READY(&ifp->if_snd);
242
243 ic->ic_phytype = IEEE80211_T_DS;
244 ic->ic_opmode = IEEE80211_M_STA;
245 ic->ic_flags = IEEE80211_F_HASPMGT | IEEE80211_F_HASAHDEMO;
246 ic->ic_state = IEEE80211_S_INIT;
247 ic->ic_newstate = wi_newstate;
248
249 /* Find available channel */
250 buflen = sizeof(val);
251 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
252 val = htole16(0x1fff); /* assume 1-11 */
253 for (i = 0; i < 16; i++) {
254 if (isset((u_int8_t*)&val, i))
255 setbit(ic->ic_chan_avail, i + 1);
256 }
257
258 sc->sc_dbm_adjust = 100; /* default */
259
260 buflen = sizeof(val);
261 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
262 wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0) {
263 sc->sc_dbm_adjust = le16toh(val);
264 }
265
266 /* Find default IBSS channel */
267 buflen = sizeof(val);
268 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0)
269 ic->ic_ibss_chan = le16toh(val);
270 else {
271 /* use lowest available channel */
272 for (i = 0; i < 16; i++) {
273 if (isset(ic->ic_chan_avail, i))
274 break;
275 }
276 ic->ic_ibss_chan = i;
277 }
278
279 /*
280 * Set flags based on firmware version.
281 */
282 switch (sc->sc_firmware_type) {
283 case WI_LUCENT:
284 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
285 #ifdef WI_HERMES_AUTOINC_WAR
286 /* XXX: not confirmed, but never seen for recent firmware */
287 if (sc->sc_sta_firmware_ver < 40000) {
288 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
289 }
290 #endif
291 if (sc->sc_sta_firmware_ver >= 60000)
292 sc->sc_flags |= WI_FLAGS_HAS_MOR;
293 if (sc->sc_sta_firmware_ver >= 60006)
294 ic->ic_flags |= IEEE80211_F_HASIBSS;
295 sc->sc_ibss_port = 1;
296 break;
297
298 case WI_INTERSIL:
299 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
300 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
301 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
302 if (sc->sc_sta_firmware_ver > 10101)
303 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
304 if (sc->sc_sta_firmware_ver >= 800) {
305 ic->ic_flags |= IEEE80211_F_HASHOSTAP;
306 ic->ic_flags |= IEEE80211_F_HASIBSS;
307 ic->ic_flags |= IEEE80211_F_HASMONITOR;
308 }
309 sc->sc_ibss_port = 0;
310 break;
311
312 case WI_SYMBOL:
313 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
314 if (sc->sc_sta_firmware_ver >= 20000)
315 ic->ic_flags |= IEEE80211_F_HASIBSS;
316 sc->sc_ibss_port = 4;
317 break;
318 }
319
320 /*
321 * Find out if we support WEP on this card.
322 */
323 buflen = sizeof(val);
324 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
325 val != htole16(0))
326 ic->ic_flags |= IEEE80211_F_HASWEP;
327
328 /* Find supported rates. */
329 buflen = sizeof(ratebuf);
330 if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
331 nrate = le16toh(*(u_int16_t *)ratebuf);
332 if (nrate > IEEE80211_RATE_SIZE)
333 nrate = IEEE80211_RATE_SIZE;
334 memcpy(ic->ic_sup_rates, ratebuf + 2, nrate);
335 }
336 buflen = sizeof(val);
337
338 sc->sc_max_datalen = 2304;
339 sc->sc_rts_thresh = 2347;
340 sc->sc_frag_thresh = 2346;
341 sc->sc_system_scale = 1;
342 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
343 sc->sc_roaming_mode = 1;
344
345 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
346 printf("%s: supported rates: ", sc->sc_dev.dv_xname);
347 #define ADD(s, o) ifmedia_add(&sc->sc_media, \
348 IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL)
349 ADD(IFM_AUTO, 0);
350 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
351 ADD(IFM_AUTO, IFM_IEEE80211_HOSTAP);
352 if (ic->ic_flags & IEEE80211_F_HASIBSS)
353 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC);
354 if (ic->ic_flags & IEEE80211_F_HASMONITOR)
355 ADD(IFM_AUTO, IFM_IEEE80211_MONITOR);
356 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC | IFM_FLAG0);
357 for (i = 0; i < nrate; i++) {
358 r = ic->ic_sup_rates[i];
359 mword = ieee80211_rate2media(r, IEEE80211_T_DS);
360 if (mword == 0)
361 continue;
362 printf("%s%d%sMbps", (i != 0 ? " " : ""),
363 (r & IEEE80211_RATE_VAL) / 2, ((r & 0x1) != 0 ? ".5" : ""));
364 ADD(mword, 0);
365 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
366 ADD(mword, IFM_IEEE80211_HOSTAP);
367 if (ic->ic_flags & IEEE80211_F_HASIBSS)
368 ADD(mword, IFM_IEEE80211_ADHOC);
369 if (ic->ic_flags & IEEE80211_F_HASMONITOR)
370 ADD(mword, IFM_IEEE80211_MONITOR);
371 ADD(mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
372 }
373 printf("\n");
374 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
375 #undef ADD
376
377 /*
378 * Call MI attach routines.
379 */
380
381 if_attach(ifp);
382 ieee80211_ifattach(ifp);
383
384 /* Attach is successful. */
385 sc->sc_attached = 1;
386
387 splx(s);
388 return 0;
389 }
390
391 int
392 wi_detach(struct wi_softc *sc)
393 {
394 struct ifnet *ifp = &sc->sc_ic.ic_if;
395 int s;
396
397 if (!sc->sc_attached)
398 return 0;
399
400 s = splnet();
401
402 /* Delete all remaining media. */
403 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
404
405 ieee80211_ifdetach(ifp);
406 if_detach(ifp);
407 if (sc->sc_enabled) {
408 if (sc->sc_disable)
409 (*sc->sc_disable)(sc);
410 sc->sc_enabled = 0;
411 }
412 splx(s);
413 return 0;
414 }
415
416 int
417 wi_activate(struct device *self, enum devact act)
418 {
419 struct wi_softc *sc = (struct wi_softc *)self;
420 int rv = 0, s;
421
422 s = splnet();
423 switch (act) {
424 case DVACT_ACTIVATE:
425 rv = EOPNOTSUPP;
426 break;
427
428 case DVACT_DEACTIVATE:
429 if_deactivate(&sc->sc_ic.ic_if);
430 break;
431 }
432 splx(s);
433 return rv;
434 }
435
436 void
437 wi_power(struct wi_softc *sc, int why)
438 {
439 struct ifnet *ifp = &sc->sc_ic.ic_if;
440 int s;
441
442 s = splnet();
443 switch (why) {
444 case PWR_SUSPEND:
445 case PWR_STANDBY:
446 wi_stop(ifp, 1);
447 break;
448 case PWR_RESUME:
449 if (ifp->if_flags & IFF_UP) {
450 wi_init(ifp);
451 (void)wi_intr(sc);
452 }
453 break;
454 case PWR_SOFTSUSPEND:
455 case PWR_SOFTSTANDBY:
456 case PWR_SOFTRESUME:
457 break;
458 }
459 splx(s);
460 }
461
462 void
463 wi_shutdown(struct wi_softc *sc)
464 {
465 struct ifnet *ifp = &sc->sc_ic.ic_if;
466
467 if (sc->sc_attached)
468 wi_stop(ifp, 1);
469 }
470
471 int
472 wi_intr(void *arg)
473 {
474 int i;
475 struct wi_softc *sc = arg;
476 struct ifnet *ifp = &sc->sc_ic.ic_if;
477 u_int16_t status, raw_status, last_status;
478
479 if (sc->sc_enabled == 0 ||
480 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
481 (ifp->if_flags & IFF_RUNNING) == 0)
482 return 0;
483
484 if ((ifp->if_flags & IFF_UP) == 0) {
485 CSR_WRITE_2(sc, WI_INT_EN, 0);
486 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
487 return 1;
488 }
489
490 /* maximum 10 loops per interrupt */
491 last_status = 0;
492 for (i = 0; i < 10; i++) {
493 /*
494 * Only believe a status bit when we enter wi_intr, or when
495 * the bit was "off" the last time through the loop. This is
496 * my strategy to avoid racing the hardware/firmware if I
497 * can re-read the event status register more quickly than
498 * it is updated.
499 */
500 raw_status = CSR_READ_2(sc, WI_EVENT_STAT);
501 status = raw_status & ~last_status;
502 if ((status & WI_INTRS) == 0)
503 break;
504 last_status = raw_status;
505
506 if (status & WI_EV_RX)
507 wi_rx_intr(sc);
508
509 if (status & WI_EV_ALLOC)
510 wi_tx_intr(sc);
511
512 if (status & WI_EV_INFO)
513 wi_info_intr(sc);
514
515 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
516 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
517 !IFQ_IS_EMPTY(&ifp->if_snd))
518 wi_start(ifp);
519 }
520
521 return 1;
522 }
523
524 static int
525 wi_init(struct ifnet *ifp)
526 {
527 struct wi_softc *sc = ifp->if_softc;
528 struct ieee80211com *ic = &sc->sc_ic;
529 struct wi_joinreq join;
530 int i;
531 int error = 0, wasenabled;
532
533 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
534 wasenabled = sc->sc_enabled;
535 if (!sc->sc_enabled) {
536 if ((error = (*sc->sc_enable)(sc)) != 0)
537 goto out;
538 sc->sc_enabled = 1;
539 } else
540 wi_stop(ifp, 0);
541
542 /* Symbol firmware cannot be initialized more than once */
543 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
544 if ((error = wi_reset(sc)) != 0)
545 goto out;
546 }
547
548 /* common 802.11 configuration */
549 ic->ic_flags &= ~IEEE80211_F_IBSSON;
550 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
551 switch (ic->ic_opmode) {
552 case IEEE80211_M_STA:
553 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
554 break;
555 case IEEE80211_M_IBSS:
556 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
557 ic->ic_flags |= IEEE80211_F_IBSSON;
558 sc->sc_syn_timer = 5;
559 ifp->if_timer = 1;
560 break;
561 case IEEE80211_M_AHDEMO:
562 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
563 break;
564 case IEEE80211_M_HOSTAP:
565 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
566 break;
567 case IEEE80211_M_MONITOR:
568 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
569 break;
570 }
571
572 /* Intersil interprets this RID as joining ESS even in IBSS mode */
573 if (sc->sc_firmware_type == WI_LUCENT &&
574 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
575 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
576 else
577 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
578 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
579 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
580 ic->ic_des_esslen);
581 wi_write_val(sc, WI_RID_OWN_CHNL, ic->ic_ibss_chan);
582 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
583 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
584 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
585 wi_write_val(sc, WI_RID_PM_ENABLED,
586 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
587
588 /* not yet common 802.11 configuration */
589 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
590 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
591 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
592 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
593
594 /* driver specific 802.11 configuration */
595 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
596 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
597 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
598 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
599 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
600 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
601 wi_write_txrate(sc);
602 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
603
604 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
605 sc->sc_firmware_type == WI_INTERSIL) {
606 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
607 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
608 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
609 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
610 }
611
612 /*
613 * Initialize promisc mode.
614 * Being in the Host-AP mode causes a great
615 * deal of pain if primisc mode is set.
616 * Therefore we avoid confusing the firmware
617 * and always reset promisc mode in Host-AP
618 * mode. Host-AP sees all the packets anyway.
619 */
620 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
621 (ifp->if_flags & IFF_PROMISC) != 0) {
622 wi_write_val(sc, WI_RID_PROMISC, 1);
623 } else {
624 wi_write_val(sc, WI_RID_PROMISC, 0);
625 }
626
627 /* Configure WEP. */
628 if (ic->ic_flags & IEEE80211_F_HASWEP)
629 wi_write_wep(sc);
630
631 /* Set multicast filter. */
632 wi_write_multi(sc);
633
634 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
635 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
636 if (sc->sc_firmware_type == WI_SYMBOL)
637 sc->sc_buflen = 1585; /* XXX */
638 for (i = 0; i < WI_NTXBUF; i++) {
639 error = wi_alloc_fid(sc, sc->sc_buflen,
640 &sc->sc_txd[i].d_fid);
641 if (error) {
642 printf("%s: tx buffer allocation failed\n",
643 sc->sc_dev.dv_xname);
644 goto out;
645 }
646 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
647 sc->sc_txd[i].d_fid));
648 sc->sc_txd[i].d_len = 0;
649 }
650 }
651 sc->sc_txcur = sc->sc_txnext = 0;
652
653 /* Enable port 0 */
654 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
655 ifp->if_flags |= IFF_RUNNING;
656 ifp->if_flags &= ~IFF_OACTIVE;
657 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
658 ic->ic_opmode == IEEE80211_M_MONITOR ||
659 ic->ic_opmode == IEEE80211_M_HOSTAP)
660 wi_newstate(sc, IEEE80211_S_RUN);
661
662 /* Enable interrupts */
663 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
664
665 if (!wasenabled &&
666 ic->ic_opmode == IEEE80211_M_HOSTAP &&
667 sc->sc_firmware_type == WI_INTERSIL) {
668 /* XXX: some card need to be re-enabled for hostap */
669 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
670 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
671 }
672
673 if (ic->ic_opmode == IEEE80211_M_STA &&
674 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
675 ic->ic_des_chan != IEEE80211_CHAN_ANY)) {
676 memset(&join, 0, sizeof(join));
677 if (ic->ic_flags & IEEE80211_F_DESBSSID)
678 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
679 if (ic->ic_des_chan != IEEE80211_CHAN_ANY)
680 join.wi_chan = htole16(ic->ic_des_chan);
681 /* Lucent firmware does not support the JOIN RID. */
682 if (sc->sc_firmware_type != WI_LUCENT)
683 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
684 }
685
686 out:
687 if (error) {
688 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
689 wi_stop(ifp, 0);
690 }
691 DPRINTF(("wi_init: return %d\n", error));
692 return error;
693 }
694
695 static void
696 wi_stop(struct ifnet *ifp, int disable)
697 {
698 struct wi_softc *sc = ifp->if_softc;
699
700 DPRINTF(("wi_stop: disable %d\n", disable));
701 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
702 if (sc->sc_enabled) {
703 CSR_WRITE_2(sc, WI_INT_EN, 0);
704 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
705 if (disable) {
706 if (sc->sc_disable)
707 (*sc->sc_disable)(sc);
708 sc->sc_enabled = 0;
709 }
710 }
711
712 sc->sc_tx_timer = 0;
713 sc->sc_scan_timer = 0;
714 sc->sc_syn_timer = 0;
715 sc->sc_false_syns = 0;
716 sc->sc_naps = 0;
717 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
718 ifp->if_timer = 0;
719 }
720
721 static void
722 wi_start(struct ifnet *ifp)
723 {
724 struct wi_softc *sc = ifp->if_softc;
725 struct ieee80211com *ic = &sc->sc_ic;
726 struct ieee80211_node *ni;
727 struct ieee80211_frame *wh;
728 struct mbuf *m0;
729 struct wi_frame frmhdr;
730 int cur, fid, off;
731
732 if (ifp->if_flags & IFF_OACTIVE)
733 return;
734 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
735 return;
736
737 memset(&frmhdr, 0, sizeof(frmhdr));
738 cur = sc->sc_txnext;
739 for (;;) {
740 IF_POLL(&ic->ic_mgtq, m0);
741 if (m0 != NULL) {
742 if (sc->sc_txd[cur].d_len != 0) {
743 ifp->if_flags |= IFF_OACTIVE;
744 break;
745 }
746 IF_DEQUEUE(&ic->ic_mgtq, m0);
747 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
748 (caddr_t)&frmhdr.wi_ehdr);
749 frmhdr.wi_ehdr.ether_type = 0;
750 wh = mtod(m0, struct ieee80211_frame *);
751 } else {
752 if (ic->ic_state != IEEE80211_S_RUN)
753 break;
754 IFQ_POLL(&ifp->if_snd, m0);
755 if (m0 == NULL)
756 break;
757 if (sc->sc_txd[cur].d_len != 0) {
758 ifp->if_flags |= IFF_OACTIVE;
759 break;
760 }
761 IFQ_DEQUEUE(&ifp->if_snd, m0);
762 ifp->if_opackets++;
763 m_copydata(m0, 0, ETHER_HDR_LEN,
764 (caddr_t)&frmhdr.wi_ehdr);
765 #if NBPFILTER > 0
766 if (ifp->if_bpf)
767 bpf_mtap(ifp->if_bpf, m0);
768 #endif
769
770 if ((m0 = ieee80211_encap(ifp, m0)) == NULL) {
771 ifp->if_oerrors++;
772 continue;
773 }
774 wh = mtod(m0, struct ieee80211_frame *);
775 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
776 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
777 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
778 IEEE80211_FC0_TYPE_DATA &&
779 ((ni = ieee80211_find_node(ic, wh->i_addr1)) ==
780 NULL || ni->ni_associd == 0)) {
781 m_freem(m0);
782 ifp->if_oerrors++;
783 continue;
784 }
785 if (ic->ic_flags & IEEE80211_F_WEPON)
786 wh->i_fc[1] |= IEEE80211_FC1_WEP;
787
788 }
789 #if NBPFILTER > 0
790 if (ic->ic_rawbpf)
791 bpf_mtap(ic->ic_rawbpf, m0);
792 #endif
793 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11);
794 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
795 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
796 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
797 ifp->if_oerrors++;
798 continue;
799 }
800 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
801 }
802 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
803 (caddr_t)&frmhdr.wi_whdr);
804 m_adj(m0, sizeof(struct ieee80211_frame));
805 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
806 #if NBPFILTER > 0
807 if (sc->sc_drvbpf) {
808 struct mbuf mb;
809
810 M_COPY_PKTHDR(&mb, m0);
811 mb.m_data = (caddr_t)&frmhdr;
812 mb.m_len = sizeof(frmhdr);
813 mb.m_next = m0;
814 mb.m_pkthdr.len += mb.m_len;
815 bpf_mtap(sc->sc_drvbpf, &mb);
816 }
817 #endif
818 fid = sc->sc_txd[cur].d_fid;
819 off = sizeof(frmhdr);
820 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
821 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
822 ifp->if_oerrors++;
823 m_freem(m0);
824 continue;
825 }
826 m_freem(m0);
827 sc->sc_txd[cur].d_len = off;
828 if (sc->sc_txcur == cur) {
829 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
830 printf("%s: xmit failed\n",
831 sc->sc_dev.dv_xname);
832 sc->sc_txd[cur].d_len = 0;
833 continue;
834 }
835 sc->sc_tx_timer = 5;
836 ifp->if_timer = 1;
837 }
838 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF;
839 }
840 }
841
842
843 static int
844 wi_reset(struct wi_softc *sc)
845 {
846 int i, error;
847
848 DPRINTF(("wi_reset\n"));
849
850 if (sc->sc_reset)
851 (*sc->sc_reset)(sc);
852
853 error = 0;
854 for (i = 0; i < 5; i++) {
855 DELAY(20*1000); /* XXX: way too long! */
856 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
857 break;
858 }
859 if (error) {
860 printf("%s: init failed\n", sc->sc_dev.dv_xname);
861 return error;
862 }
863 CSR_WRITE_2(sc, WI_INT_EN, 0);
864 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
865
866 /* Calibrate timer. */
867 wi_write_val(sc, WI_RID_TICK_TIME, 0);
868 return 0;
869 }
870
871 static void
872 wi_watchdog(struct ifnet *ifp)
873 {
874 struct wi_softc *sc = ifp->if_softc;
875
876 ifp->if_timer = 0;
877 if (!sc->sc_enabled)
878 return;
879
880 if (sc->sc_tx_timer) {
881 if (--sc->sc_tx_timer == 0) {
882 printf("%s: device timeout\n", ifp->if_xname);
883 ifp->if_oerrors++;
884 wi_init(ifp);
885 return;
886 }
887 ifp->if_timer = 1;
888 }
889
890 if (sc->sc_scan_timer) {
891 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
892 sc->sc_firmware_type == WI_INTERSIL) {
893 DPRINTF(("wi_watchdog: inquire scan\n"));
894 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
895 }
896 if (sc->sc_scan_timer)
897 ifp->if_timer = 1;
898 }
899
900 if (sc->sc_syn_timer) {
901 if (--sc->sc_syn_timer == 0) {
902 DPRINTF2(("%s: %d false syns\n",
903 sc->sc_dev.dv_xname, sc->sc_false_syns));
904 sc->sc_false_syns = 0;
905 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
906 sc->sc_syn_timer = 5;
907 }
908 ifp->if_timer = 1;
909 }
910
911 /* TODO: rate control */
912 ieee80211_watchdog(ifp);
913 }
914
915 static int
916 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
917 {
918 struct wi_softc *sc = ifp->if_softc;
919 struct ieee80211com *ic = &sc->sc_ic;
920 struct ifreq *ifr = (struct ifreq *)data;
921 int s, error = 0;
922
923 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
924 return ENXIO;
925
926 s = splnet();
927
928 switch (cmd) {
929 case SIOCSIFFLAGS:
930 if (ifp->if_flags & IFF_UP) {
931 if (sc->sc_enabled) {
932 /*
933 * To avoid rescanning another access point,
934 * do not call wi_init() here. Instead,
935 * only reflect promisc mode settings.
936 */
937 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
938 (ifp->if_flags & IFF_PROMISC) != 0)
939 wi_write_val(sc, WI_RID_PROMISC, 1);
940 else
941 wi_write_val(sc, WI_RID_PROMISC, 0);
942 } else
943 error = wi_init(ifp);
944 } else if (sc->sc_enabled)
945 wi_stop(ifp, 1);
946 break;
947 case SIOCSIFMEDIA:
948 case SIOCGIFMEDIA:
949 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
950 break;
951 case SIOCADDMULTI:
952 case SIOCDELMULTI:
953 error = (cmd == SIOCADDMULTI) ?
954 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
955 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
956 if (error == ENETRESET) {
957 if (sc->sc_enabled) {
958 /* do not rescan */
959 error = wi_write_multi(sc);
960 } else
961 error = 0;
962 }
963 break;
964 case SIOCGIFGENERIC:
965 error = wi_get_cfg(ifp, cmd, data);
966 break;
967 case SIOCSIFGENERIC:
968 error = suser(curproc->p_ucred, &curproc->p_acflag);
969 if (error)
970 break;
971 error = wi_set_cfg(ifp, cmd, data);
972 if (error == ENETRESET) {
973 if (sc->sc_enabled)
974 error = wi_init(ifp);
975 else
976 error = 0;
977 }
978 break;
979 case SIOCS80211BSSID:
980 /* No use pretending that Lucent firmware supports
981 * 802.11 MLME-JOIN.request.
982 */
983 if (sc->sc_firmware_type == WI_LUCENT) {
984 error = ENODEV;
985 break;
986 }
987 /* fall through */
988 default:
989 error = ieee80211_ioctl(ifp, cmd, data);
990 if (error == ENETRESET) {
991 if (sc->sc_enabled)
992 error = wi_init(ifp);
993 else
994 error = 0;
995 }
996 break;
997 }
998 splx(s);
999 return error;
1000 }
1001
1002 static int
1003 wi_media_change(struct ifnet *ifp)
1004 {
1005 struct wi_softc *sc = ifp->if_softc;
1006 struct ieee80211com *ic = &sc->sc_ic;
1007 struct ifmedia_entry *ime;
1008 enum ieee80211_opmode newmode;
1009 int i, rate, error = 0;
1010
1011 ime = sc->sc_media.ifm_cur;
1012 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
1013 i = -1;
1014 } else {
1015 rate = ieee80211_media2rate(ime->ifm_media, IEEE80211_T_DS);
1016 if (rate == 0)
1017 return EINVAL;
1018 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1019 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL) == rate)
1020 break;
1021 }
1022 if (i == IEEE80211_RATE_SIZE)
1023 return EINVAL;
1024 }
1025 if (ic->ic_fixed_rate != i) {
1026 ic->ic_fixed_rate = i;
1027 error = ENETRESET;
1028 }
1029
1030 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
1031 (ime->ifm_media & IFM_FLAG0))
1032 newmode = IEEE80211_M_AHDEMO;
1033 else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
1034 newmode = IEEE80211_M_IBSS;
1035 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
1036 newmode = IEEE80211_M_HOSTAP;
1037 else if (ime->ifm_media & IFM_IEEE80211_MONITOR)
1038 newmode = IEEE80211_M_MONITOR;
1039 else
1040 newmode = IEEE80211_M_STA;
1041 if (ic->ic_opmode != newmode) {
1042 ic->ic_opmode = newmode;
1043 error = ENETRESET;
1044 }
1045 if (error == ENETRESET) {
1046 if (sc->sc_enabled)
1047 error = wi_init(ifp);
1048 else
1049 error = 0;
1050 }
1051 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
1052
1053 return error;
1054 }
1055
1056 static void
1057 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1058 {
1059 struct wi_softc *sc = ifp->if_softc;
1060 struct ieee80211com *ic = &sc->sc_ic;
1061 u_int16_t val;
1062 int rate, len;
1063
1064 if (sc->sc_enabled == 0) {
1065 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1066 imr->ifm_status = 0;
1067 return;
1068 }
1069
1070 imr->ifm_status = IFM_AVALID;
1071 imr->ifm_active = IFM_IEEE80211;
1072 if (ic->ic_state == IEEE80211_S_RUN &&
1073 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1074 imr->ifm_status |= IFM_ACTIVE;
1075 len = sizeof(val);
1076 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1077 rate = 0;
1078 else {
1079 /* convert to 802.11 rate */
1080 rate = val * 2;
1081 if (sc->sc_firmware_type == WI_LUCENT) {
1082 if (rate == 10)
1083 rate = 11; /* 5.5Mbps */
1084 } else {
1085 if (rate == 4*2)
1086 rate = 11; /* 5.5Mbps */
1087 else if (rate == 8*2)
1088 rate = 22; /* 11Mbps */
1089 }
1090 }
1091 imr->ifm_active |= ieee80211_rate2media(rate, IEEE80211_T_DS);
1092 switch (ic->ic_opmode) {
1093 case IEEE80211_M_STA:
1094 break;
1095 case IEEE80211_M_IBSS:
1096 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1097 break;
1098 case IEEE80211_M_AHDEMO:
1099 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1100 break;
1101 case IEEE80211_M_HOSTAP:
1102 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1103 break;
1104 case IEEE80211_M_MONITOR:
1105 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1106 break;
1107 }
1108 }
1109
1110 static void
1111 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1112 {
1113 struct ieee80211com *ic = &sc->sc_ic;
1114 struct ieee80211_node *ni = &ic->ic_bss;
1115 struct ifnet *ifp = &ic->ic_if;
1116
1117 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1118 return;
1119
1120 DPRINTF(("%s: bssid %s -> ", sc->sc_dev.dv_xname,
1121 ether_sprintf(ni->ni_bssid)));
1122 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1123
1124 /* In promiscuous mode, the BSSID field is not a reliable
1125 * indicator of the firmware's BSSID. Damp spurious
1126 * change-of-BSSID indications.
1127 */
1128 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1129 sc->sc_false_syns >= WI_MAX_FALSE_SYNS)
1130 return;
1131
1132 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
1133 }
1134
1135 static void
1136 wi_rx_intr(struct wi_softc *sc)
1137 {
1138 struct ieee80211com *ic = &sc->sc_ic;
1139 struct ifnet *ifp = &ic->ic_if;
1140 struct wi_frame frmhdr;
1141 struct mbuf *m;
1142 struct ieee80211_frame *wh;
1143 int fid, len, off, rssi;
1144 u_int8_t dir;
1145 u_int16_t status;
1146 u_int32_t rstamp;
1147
1148 fid = CSR_READ_2(sc, WI_RX_FID);
1149
1150 /* First read in the frame header */
1151 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1152 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1153 ifp->if_ierrors++;
1154 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1155 return;
1156 }
1157
1158 /*
1159 * Drop undecryptable or packets with receive errors here
1160 */
1161 status = le16toh(frmhdr.wi_status);
1162 if (status & WI_STAT_ERRSTAT) {
1163 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1164 ifp->if_ierrors++;
1165 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1166 return;
1167 }
1168 rssi = frmhdr.wi_rx_signal;
1169 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1170 le16toh(frmhdr.wi_rx_tstamp1);
1171
1172 len = le16toh(frmhdr.wi_dat_len);
1173 off = ALIGN(sizeof(struct ieee80211_frame));
1174
1175 /* Sometimes the PRISM2.x returns bogusly large frames. Except
1176 * in monitor mode, just throw them away.
1177 */
1178 if (off + len > MCLBYTES) {
1179 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1180 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1181 ifp->if_ierrors++;
1182 DPRINTF(("wi_rx_intr: oversized packet\n"));
1183 return;
1184 } else
1185 len = 0;
1186 }
1187
1188 MGETHDR(m, M_DONTWAIT, MT_DATA);
1189 if (m == NULL) {
1190 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1191 ifp->if_ierrors++;
1192 DPRINTF(("wi_rx_intr: MGET failed\n"));
1193 return;
1194 }
1195 if (off + len > MHLEN) {
1196 MCLGET(m, M_DONTWAIT);
1197 if ((m->m_flags & M_EXT) == 0) {
1198 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1199 m_freem(m);
1200 ifp->if_ierrors++;
1201 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1202 return;
1203 }
1204 }
1205
1206 m->m_data += off - sizeof(struct ieee80211_frame);
1207 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1208 wi_read_bap(sc, fid, sizeof(frmhdr),
1209 m->m_data + sizeof(struct ieee80211_frame), len);
1210 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1211 m->m_pkthdr.rcvif = ifp;
1212
1213 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1214
1215 #if NBPFILTER > 0
1216 if (sc->sc_drvbpf) {
1217 struct mbuf mb;
1218
1219 M_COPY_PKTHDR(&mb, m);
1220 mb.m_data = (caddr_t)&frmhdr;
1221 mb.m_len = sizeof(frmhdr);
1222 mb.m_next = m;
1223 mb.m_pkthdr.len += mb.m_len;
1224 bpf_mtap(sc->sc_drvbpf, &mb);
1225 }
1226 #endif
1227 wh = mtod(m, struct ieee80211_frame *);
1228 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1229 /*
1230 * WEP is decrypted by hardware. Clear WEP bit
1231 * header for ieee80211_input().
1232 */
1233 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1234 }
1235
1236 /* synchronize driver's BSSID with firmware's BSSID */
1237 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1238 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1239 wi_sync_bssid(sc, wh->i_addr3);
1240
1241 ieee80211_input(ifp, m, rssi, rstamp);
1242 }
1243
1244 static void
1245 wi_tx_intr(struct wi_softc *sc)
1246 {
1247 struct ieee80211com *ic = &sc->sc_ic;
1248 struct ifnet *ifp = &ic->ic_if;
1249 int fid, cur;
1250
1251 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1252 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1253
1254 cur = sc->sc_txcur;
1255 if (sc->sc_txd[cur].d_fid != fid) {
1256 printf("%s: bad alloc %x != %x, cur %d nxt %d\n",
1257 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1258 sc->sc_txnext);
1259 return;
1260 }
1261 sc->sc_tx_timer = 0;
1262 sc->sc_txd[cur].d_len = 0;
1263 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF;
1264 if (sc->sc_txd[cur].d_len == 0)
1265 ifp->if_flags &= ~IFF_OACTIVE;
1266 else {
1267 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1268 0, 0)) {
1269 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1270 sc->sc_txd[cur].d_len = 0;
1271 } else {
1272 sc->sc_tx_timer = 5;
1273 ifp->if_timer = 1;
1274 }
1275 }
1276 }
1277
1278 static void
1279 wi_info_intr(struct wi_softc *sc)
1280 {
1281 struct ieee80211com *ic = &sc->sc_ic;
1282 struct ifnet *ifp = &ic->ic_if;
1283 int i, fid, len, off;
1284 u_int16_t ltbuf[2];
1285 u_int16_t stat;
1286 u_int32_t *ptr;
1287
1288 fid = CSR_READ_2(sc, WI_INFO_FID);
1289 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1290
1291 switch (le16toh(ltbuf[1])) {
1292
1293 case WI_INFO_LINK_STAT:
1294 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1295 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1296 switch (le16toh(stat)) {
1297 case CONNECTED:
1298 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1299 if (ic->ic_state == IEEE80211_S_RUN &&
1300 ic->ic_opmode != IEEE80211_M_IBSS)
1301 break;
1302 /* FALLTHROUGH */
1303 case AP_CHANGE:
1304 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
1305 break;
1306 case AP_IN_RANGE:
1307 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1308 break;
1309 case AP_OUT_OF_RANGE:
1310 if (sc->sc_firmware_type == WI_SYMBOL &&
1311 sc->sc_scan_timer > 0) {
1312 if (wi_cmd(sc, WI_CMD_INQUIRE,
1313 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1314 sc->sc_scan_timer = 0;
1315 break;
1316 }
1317 if (ic->ic_opmode == IEEE80211_M_STA)
1318 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1319 break;
1320 case DISCONNECTED:
1321 case ASSOC_FAILED:
1322 if (ic->ic_opmode == IEEE80211_M_STA)
1323 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
1324 break;
1325 }
1326 break;
1327
1328 case WI_INFO_COUNTERS:
1329 /* some card versions have a larger stats structure */
1330 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1331 ptr = (u_int32_t *)&sc->sc_stats;
1332 off = sizeof(ltbuf);
1333 for (i = 0; i < len; i++, off += 2, ptr++) {
1334 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1335 #ifdef WI_HERMES_STATS_WAR
1336 if (stat & 0xf000)
1337 stat = ~stat;
1338 #endif
1339 *ptr += stat;
1340 }
1341 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1342 sc->sc_stats.wi_tx_multi_retries +
1343 sc->sc_stats.wi_tx_retry_limit;
1344 break;
1345
1346 case WI_INFO_SCAN_RESULTS:
1347 case WI_INFO_HOST_SCAN_RESULTS:
1348 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1349 break;
1350
1351 default:
1352 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1353 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1354 break;
1355 }
1356 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1357 }
1358
1359 /*
1360 * Allocate a region of memory inside the NIC and zero
1361 * it out.
1362 */
1363 static int
1364 wi_write_multi(struct wi_softc *sc)
1365 {
1366 struct ifnet *ifp = &sc->sc_ic.ic_if;
1367 int n = 0;
1368 struct wi_mcast mlist;
1369 struct ether_multi *enm;
1370 struct ether_multistep estep;
1371
1372 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1373 allmulti:
1374 ifp->if_flags |= IFF_ALLMULTI;
1375 memset(&mlist, 0, sizeof(mlist));
1376 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1377 sizeof(mlist));
1378 }
1379
1380 n = 0;
1381 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1382 while (enm != NULL) {
1383 /* Punt on ranges or too many multicast addresses. */
1384 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1385 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1386 goto allmulti;
1387
1388 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1389 n++;
1390 ETHER_NEXT_MULTI(estep, enm);
1391 }
1392 ifp->if_flags &= ~IFF_ALLMULTI;
1393 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1394 IEEE80211_ADDR_LEN * n);
1395 }
1396
1397
1398 static void
1399 wi_read_nicid(sc)
1400 struct wi_softc *sc;
1401 {
1402 struct wi_card_ident *id;
1403 char *p;
1404 int len;
1405 u_int16_t ver[4];
1406
1407 /* getting chip identity */
1408 memset(ver, 0, sizeof(ver));
1409 len = sizeof(ver);
1410 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1411 printf("%s: using ", sc->sc_dev.dv_xname);
1412 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1413
1414 sc->sc_firmware_type = WI_NOTYPE;
1415 for (id = wi_card_ident; id->card_name != NULL; id++) {
1416 if (le16toh(ver[0]) == id->card_id) {
1417 printf("%s", id->card_name);
1418 sc->sc_firmware_type = id->firm_type;
1419 break;
1420 }
1421 }
1422 if (sc->sc_firmware_type == WI_NOTYPE) {
1423 if (le16toh(ver[0]) & 0x8000) {
1424 printf("Unknown PRISM2 chip");
1425 sc->sc_firmware_type = WI_INTERSIL;
1426 } else {
1427 printf("Unknown Lucent chip");
1428 sc->sc_firmware_type = WI_LUCENT;
1429 }
1430 }
1431
1432 /* get primary firmware version (Only Prism chips) */
1433 if (sc->sc_firmware_type != WI_LUCENT) {
1434 memset(ver, 0, sizeof(ver));
1435 len = sizeof(ver);
1436 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1437 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1438 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1439 DPRINTF2(("wi_read_nicid: PRI_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1440 }
1441
1442 /* get station firmware version */
1443 memset(ver, 0, sizeof(ver));
1444 len = sizeof(ver);
1445 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1446 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1447 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1448 DPRINTF2(("wi_read_nicid: STA_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1449 if (sc->sc_firmware_type == WI_INTERSIL &&
1450 (sc->sc_sta_firmware_ver == 10102 ||
1451 sc->sc_sta_firmware_ver == 20102)) {
1452 char ident[12];
1453 memset(ident, 0, sizeof(ident));
1454 len = sizeof(ident);
1455 /* value should be the format like "V2.00-11" */
1456 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1457 *(p = (char *)ident) >= 'A' &&
1458 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1459 sc->sc_firmware_type = WI_SYMBOL;
1460 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1461 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1462 (p[6] - '0') * 10 + (p[7] - '0');
1463 }
1464 DPRINTF2(("wi_read_nicid: SYMBOL_ID: %x %x %x %x\n", le16toh(ident[0]), le16toh(ident[1]), le16toh(ident[2]), le16toh(ident[3])));
1465 }
1466
1467 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1468 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1469 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1470 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1471 printf("Primary (%u.%u.%u), ",
1472 sc->sc_pri_firmware_ver / 10000,
1473 (sc->sc_pri_firmware_ver % 10000) / 100,
1474 sc->sc_pri_firmware_ver % 100);
1475 printf("Station (%u.%u.%u)\n",
1476 sc->sc_sta_firmware_ver / 10000,
1477 (sc->sc_sta_firmware_ver % 10000) / 100,
1478 sc->sc_sta_firmware_ver % 100);
1479 }
1480
1481 static int
1482 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1483 {
1484 struct wi_ssid ssid;
1485
1486 if (buflen > IEEE80211_NWID_LEN)
1487 return ENOBUFS;
1488 memset(&ssid, 0, sizeof(ssid));
1489 ssid.wi_len = htole16(buflen);
1490 memcpy(ssid.wi_ssid, buf, buflen);
1491 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
1492 }
1493
1494 static int
1495 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1496 {
1497 struct wi_softc *sc = ifp->if_softc;
1498 struct ieee80211com *ic = &sc->sc_ic;
1499 struct ifreq *ifr = (struct ifreq *)data;
1500 struct wi_req wreq;
1501 int len, n, error;
1502
1503 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1504 if (error)
1505 return error;
1506 len = (wreq.wi_len - 1) * 2;
1507 if (len < sizeof(u_int16_t))
1508 return ENOSPC;
1509 if (len > sizeof(wreq.wi_val))
1510 len = sizeof(wreq.wi_val);
1511
1512 switch (wreq.wi_type) {
1513
1514 case WI_RID_IFACE_STATS:
1515 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1516 if (len < sizeof(sc->sc_stats))
1517 error = ENOSPC;
1518 else
1519 len = sizeof(sc->sc_stats);
1520 break;
1521
1522 case WI_RID_ENCRYPTION:
1523 case WI_RID_TX_CRYPT_KEY:
1524 case WI_RID_DEFLT_CRYPT_KEYS:
1525 case WI_RID_TX_RATE:
1526 return ieee80211_cfgget(ifp, cmd, data);
1527
1528 case WI_RID_MICROWAVE_OVEN:
1529 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1530 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1531 &len);
1532 break;
1533 }
1534 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1535 len = sizeof(u_int16_t);
1536 break;
1537
1538 case WI_RID_DBM_ADJUST:
1539 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
1540 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1541 &len);
1542 break;
1543 }
1544 wreq.wi_val[0] = htole16(sc->sc_dbm_adjust);
1545 len = sizeof(u_int16_t);
1546 break;
1547
1548 case WI_RID_ROAMING_MODE:
1549 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
1550 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1551 &len);
1552 break;
1553 }
1554 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
1555 len = sizeof(u_int16_t);
1556 break;
1557
1558 case WI_RID_SYSTEM_SCALE:
1559 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
1560 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1561 &len);
1562 break;
1563 }
1564 wreq.wi_val[0] = htole16(sc->sc_system_scale);
1565 len = sizeof(u_int16_t);
1566 break;
1567
1568 case WI_RID_FRAG_THRESH:
1569 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
1570 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1571 &len);
1572 break;
1573 }
1574 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
1575 len = sizeof(u_int16_t);
1576 break;
1577
1578 case WI_RID_READ_APS:
1579 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1580 return ieee80211_cfgget(ifp, cmd, data);
1581 if (sc->sc_scan_timer > 0) {
1582 error = EINPROGRESS;
1583 break;
1584 }
1585 n = sc->sc_naps;
1586 if (len < sizeof(n)) {
1587 error = ENOSPC;
1588 break;
1589 }
1590 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
1591 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
1592 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
1593 memcpy(wreq.wi_val, &n, sizeof(n));
1594 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
1595 sizeof(struct wi_apinfo) * n);
1596 break;
1597
1598 default:
1599 if (sc->sc_enabled) {
1600 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1601 &len);
1602 break;
1603 }
1604 switch (wreq.wi_type) {
1605 case WI_RID_MAX_DATALEN:
1606 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
1607 len = sizeof(u_int16_t);
1608 break;
1609 case WI_RID_FRAG_THRESH:
1610 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
1611 len = sizeof(u_int16_t);
1612 break;
1613 case WI_RID_RTS_THRESH:
1614 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
1615 len = sizeof(u_int16_t);
1616 break;
1617 case WI_RID_CNFAUTHMODE:
1618 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
1619 len = sizeof(u_int16_t);
1620 break;
1621 case WI_RID_NODENAME:
1622 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
1623 error = ENOSPC;
1624 break;
1625 }
1626 len = sc->sc_nodelen + sizeof(u_int16_t);
1627 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
1628 memcpy(&wreq.wi_val[1], sc->sc_nodename,
1629 sc->sc_nodelen);
1630 break;
1631 default:
1632 return ieee80211_cfgget(ifp, cmd, data);
1633 }
1634 break;
1635 }
1636 if (error)
1637 return error;
1638 wreq.wi_len = (len + 1) / 2 + 1;
1639 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
1640 }
1641
1642 static int
1643 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1644 {
1645 struct wi_softc *sc = ifp->if_softc;
1646 struct ieee80211com *ic = &sc->sc_ic;
1647 struct ifreq *ifr = (struct ifreq *)data;
1648 struct wi_req wreq;
1649 struct mbuf *m;
1650 int i, len, error;
1651
1652 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1653 if (error)
1654 return error;
1655 len = (wreq.wi_len - 1) * 2;
1656 switch (wreq.wi_type) {
1657 case WI_RID_DBM_ADJUST:
1658 return ENODEV;
1659
1660 case WI_RID_NODENAME:
1661 if (le16toh(wreq.wi_val[0]) * 2 > len ||
1662 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
1663 error = ENOSPC;
1664 break;
1665 }
1666 if (sc->sc_enabled) {
1667 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1668 len);
1669 if (error)
1670 break;
1671 }
1672 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
1673 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
1674 break;
1675
1676 case WI_RID_MICROWAVE_OVEN:
1677 case WI_RID_ROAMING_MODE:
1678 case WI_RID_SYSTEM_SCALE:
1679 case WI_RID_FRAG_THRESH:
1680 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
1681 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
1682 break;
1683 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
1684 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
1685 break;
1686 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
1687 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
1688 break;
1689 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
1690 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
1691 break;
1692 /* FALLTHROUGH */
1693 case WI_RID_RTS_THRESH:
1694 case WI_RID_CNFAUTHMODE:
1695 case WI_RID_MAX_DATALEN:
1696 if (sc->sc_enabled) {
1697 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1698 sizeof(u_int16_t));
1699 if (error)
1700 break;
1701 }
1702 switch (wreq.wi_type) {
1703 case WI_RID_FRAG_THRESH:
1704 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
1705 break;
1706 case WI_RID_RTS_THRESH:
1707 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
1708 break;
1709 case WI_RID_MICROWAVE_OVEN:
1710 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
1711 break;
1712 case WI_RID_ROAMING_MODE:
1713 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
1714 break;
1715 case WI_RID_SYSTEM_SCALE:
1716 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
1717 break;
1718 case WI_RID_CNFAUTHMODE:
1719 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
1720 break;
1721 case WI_RID_MAX_DATALEN:
1722 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
1723 break;
1724 }
1725 break;
1726
1727 case WI_RID_TX_RATE:
1728 switch (le16toh(wreq.wi_val[0])) {
1729 case 3:
1730 ic->ic_fixed_rate = -1;
1731 break;
1732 default:
1733 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1734 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL)
1735 / 2 == le16toh(wreq.wi_val[0]))
1736 break;
1737 }
1738 if (i == IEEE80211_RATE_SIZE)
1739 return EINVAL;
1740 ic->ic_fixed_rate = i;
1741 }
1742 if (sc->sc_enabled)
1743 error = wi_write_txrate(sc);
1744 break;
1745
1746 case WI_RID_SCAN_APS:
1747 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
1748 error = wi_scan_ap(sc);
1749 break;
1750
1751 case WI_RID_MGMT_XMIT:
1752 if (!sc->sc_enabled) {
1753 error = ENETDOWN;
1754 break;
1755 }
1756 if (ic->ic_mgtq.ifq_len > 5) {
1757 error = EAGAIN;
1758 break;
1759 }
1760 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
1761 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
1762 if (m == NULL) {
1763 error = ENOMEM;
1764 break;
1765 }
1766 IF_ENQUEUE(&ic->ic_mgtq, m);
1767 break;
1768
1769 default:
1770 if (sc->sc_enabled) {
1771 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1772 len);
1773 if (error)
1774 break;
1775 }
1776 error = ieee80211_cfgset(ifp, cmd, data);
1777 break;
1778 }
1779 return error;
1780 }
1781
1782 static int
1783 wi_write_txrate(struct wi_softc *sc)
1784 {
1785 struct ieee80211com *ic = &sc->sc_ic;
1786 int i;
1787 u_int16_t rate;
1788
1789 if (ic->ic_fixed_rate < 0)
1790 rate = 0; /* auto */
1791 else
1792 rate = (ic->ic_sup_rates[ic->ic_fixed_rate] &
1793 IEEE80211_RATE_VAL) / 2;
1794
1795 /* rate: 0, 1, 2, 5, 11 */
1796
1797 switch (sc->sc_firmware_type) {
1798 case WI_LUCENT:
1799 if (rate == 0)
1800 rate = 3; /* auto */
1801 break;
1802 default:
1803 /* Choose a bit according to this table.
1804 *
1805 * bit | data rate
1806 * ----+-------------------
1807 * 0 | 1Mbps
1808 * 1 | 2Mbps
1809 * 2 | 5.5Mbps
1810 * 3 | 11Mbps
1811 */
1812 for (i = 8; i > 0; i >>= 1) {
1813 if (rate >= i)
1814 break;
1815 }
1816 if (i == 0)
1817 rate = 0xf; /* auto */
1818 else
1819 rate = i;
1820 break;
1821 }
1822 return wi_write_val(sc, WI_RID_TX_RATE, rate);
1823 }
1824
1825 static int
1826 wi_write_wep(struct wi_softc *sc)
1827 {
1828 struct ieee80211com *ic = &sc->sc_ic;
1829 int error = 0;
1830 int i, keylen;
1831 u_int16_t val;
1832 struct wi_key wkey[IEEE80211_WEP_NKID];
1833
1834 switch (sc->sc_firmware_type) {
1835 case WI_LUCENT:
1836 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
1837 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
1838 if (error)
1839 break;
1840 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
1841 if (error)
1842 break;
1843 memset(wkey, 0, sizeof(wkey));
1844 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1845 keylen = ic->ic_nw_keys[i].wk_len;
1846 wkey[i].wi_keylen = htole16(keylen);
1847 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
1848 keylen);
1849 }
1850 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
1851 wkey, sizeof(wkey));
1852 break;
1853
1854 case WI_INTERSIL:
1855 case WI_SYMBOL:
1856 if (ic->ic_flags & IEEE80211_F_WEPON) {
1857 /*
1858 * ONLY HWB3163 EVAL-CARD Firmware version
1859 * less than 0.8 variant2
1860 *
1861 * If promiscuous mode disable, Prism2 chip
1862 * does not work with WEP .
1863 * It is under investigation for details.
1864 * (ichiro (at) netbsd.org)
1865 */
1866 if (sc->sc_firmware_type == WI_INTERSIL &&
1867 sc->sc_sta_firmware_ver < 802 ) {
1868 /* firm ver < 0.8 variant 2 */
1869 wi_write_val(sc, WI_RID_PROMISC, 1);
1870 }
1871 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1872 sc->sc_cnfauthmode);
1873 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
1874 /*
1875 * Encryption firmware has a bug for HostAP mode.
1876 */
1877 if (sc->sc_firmware_type == WI_INTERSIL &&
1878 ic->ic_opmode == IEEE80211_M_HOSTAP)
1879 val |= HOST_ENCRYPT;
1880 } else {
1881 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1882 IEEE80211_AUTH_OPEN);
1883 val = HOST_ENCRYPT | HOST_DECRYPT;
1884 }
1885 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
1886 if (error)
1887 break;
1888 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
1889 ic->ic_wep_txkey);
1890 if (error)
1891 break;
1892 /*
1893 * It seems that the firmware accept 104bit key only if
1894 * all the keys have 104bit length. We get the length of
1895 * the transmit key and use it for all other keys.
1896 * Perhaps we should use software WEP for such situation.
1897 */
1898 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
1899 if (keylen > IEEE80211_WEP_KEYLEN)
1900 keylen = 13; /* 104bit keys */
1901 else
1902 keylen = IEEE80211_WEP_KEYLEN;
1903 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1904 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
1905 ic->ic_nw_keys[i].wk_key, keylen);
1906 if (error)
1907 break;
1908 }
1909 break;
1910 }
1911 return error;
1912 }
1913
1914 /* Must be called at proper protection level! */
1915 static int
1916 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
1917 {
1918 int i, status;
1919
1920 /* wait for the busy bit to clear */
1921 for (i = 0; ; i++) {
1922 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
1923 break;
1924 if (i == WI_TIMEOUT) {
1925 printf("%s: wi_cmd: BUSY did not clear, "
1926 "cmd=0x%x, prev=0x%x\n", sc->sc_dev.dv_xname,
1927 cmd, CSR_READ_2(sc, WI_COMMAND));
1928 return EIO;
1929 }
1930 DELAY(1);
1931 }
1932
1933 CSR_WRITE_2(sc, WI_PARAM0, val0);
1934 CSR_WRITE_2(sc, WI_PARAM1, val1);
1935 CSR_WRITE_2(sc, WI_PARAM2, val2);
1936 CSR_WRITE_2(sc, WI_COMMAND, cmd);
1937
1938 if (cmd == WI_CMD_INI) {
1939 /* XXX: should sleep here. */
1940 DELAY(100*1000);
1941 }
1942 /* wait for the cmd completed bit */
1943 for (i = 0; i < WI_TIMEOUT; i++) {
1944 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
1945 break;
1946 DELAY(1);
1947 }
1948
1949 status = CSR_READ_2(sc, WI_STATUS);
1950
1951 /* Ack the command */
1952 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1953
1954 if (i == WI_TIMEOUT) {
1955 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
1956 sc->sc_dev.dv_xname, cmd, val0);
1957 return ETIMEDOUT;
1958 }
1959
1960 if (status & WI_STAT_CMD_RESULT) {
1961 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
1962 sc->sc_dev.dv_xname, cmd, val0);
1963 return EIO;
1964 }
1965 return 0;
1966 }
1967
1968 static int
1969 wi_seek_bap(struct wi_softc *sc, int id, int off)
1970 {
1971 int i, status;
1972
1973 CSR_WRITE_2(sc, WI_SEL0, id);
1974 CSR_WRITE_2(sc, WI_OFF0, off);
1975
1976 for (i = 0; ; i++) {
1977 status = CSR_READ_2(sc, WI_OFF0);
1978 if ((status & WI_OFF_BUSY) == 0)
1979 break;
1980 if (i == WI_TIMEOUT) {
1981 printf("%s: timeout in wi_seek to %x/%x\n",
1982 sc->sc_dev.dv_xname, id, off);
1983 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1984 return ETIMEDOUT;
1985 }
1986 DELAY(1);
1987 }
1988 if (status & WI_OFF_ERR) {
1989 printf("%s: failed in wi_seek to %x/%x\n",
1990 sc->sc_dev.dv_xname, id, off);
1991 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1992 return EIO;
1993 }
1994 sc->sc_bap_id = id;
1995 sc->sc_bap_off = off;
1996 return 0;
1997 }
1998
1999 static int
2000 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2001 {
2002 int error, cnt;
2003
2004 if (buflen == 0)
2005 return 0;
2006 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2007 if ((error = wi_seek_bap(sc, id, off)) != 0)
2008 return error;
2009 }
2010 cnt = (buflen + 1) / 2;
2011 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2012 sc->sc_bap_off += cnt * 2;
2013 return 0;
2014 }
2015
2016 static int
2017 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2018 {
2019 int error, cnt;
2020
2021 if (buflen == 0)
2022 return 0;
2023
2024 #ifdef WI_HERMES_AUTOINC_WAR
2025 again:
2026 #endif
2027 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2028 if ((error = wi_seek_bap(sc, id, off)) != 0)
2029 return error;
2030 }
2031 cnt = (buflen + 1) / 2;
2032 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2033 sc->sc_bap_off += cnt * 2;
2034
2035 #ifdef WI_HERMES_AUTOINC_WAR
2036 /*
2037 * According to the comments in the HCF Light code, there is a bug
2038 * in the Hermes (or possibly in certain Hermes firmware revisions)
2039 * where the chip's internal autoincrement counter gets thrown off
2040 * during data writes: the autoincrement is missed, causing one
2041 * data word to be overwritten and subsequent words to be written to
2042 * the wrong memory locations. The end result is that we could end
2043 * up transmitting bogus frames without realizing it. The workaround
2044 * for this is to write a couple of extra guard words after the end
2045 * of the transfer, then attempt to read then back. If we fail to
2046 * locate the guard words where we expect them, we preform the
2047 * transfer over again.
2048 */
2049 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2050 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2051 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2052 wi_seek_bap(sc, id, sc->sc_bap_off);
2053 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2054 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2055 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2056 printf("%s: detect auto increment bug, try again\n",
2057 sc->sc_dev.dv_xname);
2058 goto again;
2059 }
2060 }
2061 #endif
2062 return 0;
2063 }
2064
2065 static int
2066 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2067 {
2068 int error, len;
2069 struct mbuf *m;
2070
2071 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2072 if (m->m_len == 0)
2073 continue;
2074
2075 len = min(m->m_len, totlen);
2076
2077 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2078 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2079 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2080 totlen);
2081 }
2082
2083 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2084 return error;
2085
2086 off += m->m_len;
2087 totlen -= len;
2088 }
2089 return 0;
2090 }
2091
2092 static int
2093 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2094 {
2095 int i;
2096
2097 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2098 printf("%s: failed to allocate %d bytes on NIC\n",
2099 sc->sc_dev.dv_xname, len);
2100 return ENOMEM;
2101 }
2102
2103 for (i = 0; i < WI_TIMEOUT; i++) {
2104 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2105 break;
2106 if (i == WI_TIMEOUT) {
2107 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
2108 return ETIMEDOUT;
2109 }
2110 DELAY(1);
2111 }
2112 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
2113 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2114 return 0;
2115 }
2116
2117 static int
2118 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2119 {
2120 int error, len;
2121 u_int16_t ltbuf[2];
2122
2123 /* Tell the NIC to enter record read mode. */
2124 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2125 if (error)
2126 return error;
2127
2128 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2129 if (error)
2130 return error;
2131
2132 if (le16toh(ltbuf[1]) != rid) {
2133 printf("%s: record read mismatch, rid=%x, got=%x\n",
2134 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
2135 return EIO;
2136 }
2137 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
2138 if (*buflenp < len) {
2139 printf("%s: record buffer is too small, "
2140 "rid=%x, size=%d, len=%d\n",
2141 sc->sc_dev.dv_xname, rid, *buflenp, len);
2142 return ENOSPC;
2143 }
2144 *buflenp = len;
2145 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2146 }
2147
2148 static int
2149 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2150 {
2151 int error;
2152 u_int16_t ltbuf[2];
2153
2154 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
2155 ltbuf[1] = htole16(rid);
2156
2157 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2158 if (error)
2159 return error;
2160 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2161 if (error)
2162 return error;
2163
2164 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2165 }
2166
2167 static int
2168 wi_newstate(void *arg, enum ieee80211_state nstate)
2169 {
2170 struct wi_softc *sc = arg;
2171 struct ieee80211com *ic = &sc->sc_ic;
2172 struct ieee80211_node *ni = &ic->ic_bss;
2173 int i, buflen;
2174 u_int16_t val;
2175 struct wi_ssid ssid;
2176 u_int8_t old_bssid[IEEE80211_ADDR_LEN];
2177 enum ieee80211_state ostate;
2178 #ifdef WI_DEBUG
2179 static const char *stname[] =
2180 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
2181 #endif /* WI_DEBUG */
2182
2183 ostate = ic->ic_state;
2184 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
2185
2186 ic->ic_state = nstate;
2187 switch (nstate) {
2188 case IEEE80211_S_INIT:
2189 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2190 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2191 return 0;
2192
2193 case IEEE80211_S_RUN:
2194 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2195 buflen = IEEE80211_ADDR_LEN;
2196 IEEE80211_ADDR_COPY(old_bssid, ni->ni_bssid);
2197 wi_read_rid(sc, WI_RID_CURRENT_BSSID, ni->ni_bssid, &buflen);
2198 IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
2199 buflen = sizeof(val);
2200 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
2201 ni->ni_chan = le16toh(val);
2202
2203 if (IEEE80211_ADDR_EQ(old_bssid, ni->ni_bssid))
2204 sc->sc_false_syns++;
2205 else
2206 sc->sc_false_syns = 0;
2207
2208 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2209 ni->ni_esslen = ic->ic_des_esslen;
2210 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2211 ni->ni_nrate = 0;
2212 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2213 if (ic->ic_sup_rates[i])
2214 ni->ni_rates[ni->ni_nrate++] =
2215 ic->ic_sup_rates[i];
2216 }
2217 ni->ni_intval = ic->ic_lintval;
2218 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2219 if (ic->ic_flags & IEEE80211_F_WEPON)
2220 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2221 } else {
2222 buflen = sizeof(ssid);
2223 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2224 ni->ni_esslen = le16toh(ssid.wi_len);
2225 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2226 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2227 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2228 }
2229 break;
2230
2231 case IEEE80211_S_SCAN:
2232 case IEEE80211_S_AUTH:
2233 case IEEE80211_S_ASSOC:
2234 break;
2235 }
2236
2237 /* skip standard ieee80211 handling */
2238 return EINPROGRESS;
2239 }
2240
2241 static int
2242 wi_scan_ap(struct wi_softc *sc)
2243 {
2244 int error = 0;
2245 u_int16_t val[2];
2246
2247 if (!sc->sc_enabled)
2248 return ENXIO;
2249 switch (sc->sc_firmware_type) {
2250 case WI_LUCENT:
2251 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2252 break;
2253 case WI_INTERSIL:
2254 val[0] = 0x3fff; /* channel */
2255 val[1] = 0x000f; /* tx rate */
2256 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2257 break;
2258 case WI_SYMBOL:
2259 /*
2260 * XXX only supported on 3.x ?
2261 */
2262 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2263 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2264 val, sizeof(val[0]));
2265 break;
2266 }
2267 if (error == 0) {
2268 sc->sc_scan_timer = WI_SCAN_WAIT;
2269 sc->sc_ic.ic_if.if_timer = 1;
2270 DPRINTF(("wi_scan_ap: start scanning\n"));
2271 }
2272 return error;
2273 }
2274
2275 static void
2276 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2277 {
2278 int i, naps, off, szbuf;
2279 struct wi_scan_header ws_hdr; /* Prism2 header */
2280 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2281 struct wi_apinfo *ap;
2282
2283 off = sizeof(u_int16_t) * 2;
2284 memset(&ws_hdr, 0, sizeof(ws_hdr));
2285 switch (sc->sc_firmware_type) {
2286 case WI_INTERSIL:
2287 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2288 off += sizeof(ws_hdr);
2289 szbuf = sizeof(struct wi_scan_data_p2);
2290 break;
2291 case WI_SYMBOL:
2292 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2293 break;
2294 case WI_LUCENT:
2295 szbuf = sizeof(struct wi_scan_data);
2296 break;
2297 }
2298 naps = (cnt * 2 + 2 - off) / szbuf;
2299 if (naps > MAXAPINFO)
2300 naps = MAXAPINFO;
2301 sc->sc_naps = naps;
2302 /* Read Data */
2303 ap = sc->sc_aps;
2304 memset(&ws_dat, 0, sizeof(ws_dat));
2305 for (i = 0; i < naps; i++, ap++) {
2306 wi_read_bap(sc, fid, off, &ws_dat,
2307 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2308 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
2309 ether_sprintf(ws_dat.wi_bssid)));
2310 off += szbuf;
2311 ap->scanreason = le16toh(ws_hdr.wi_reason);
2312 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2313 ap->channel = le16toh(ws_dat.wi_chid);
2314 ap->signal = le16toh(ws_dat.wi_signal);
2315 ap->noise = le16toh(ws_dat.wi_noise);
2316 ap->quality = ap->signal - ap->noise;
2317 ap->capinfo = le16toh(ws_dat.wi_capinfo);
2318 ap->interval = le16toh(ws_dat.wi_interval);
2319 ap->rate = le16toh(ws_dat.wi_rate);
2320 ap->namelen = le16toh(ws_dat.wi_namelen);
2321 if (ap->namelen > sizeof(ap->name))
2322 ap->namelen = sizeof(ap->name);
2323 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2324 }
2325 /* Done scanning */
2326 sc->sc_scan_timer = 0;
2327 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
2328 }
2329