wi.c revision 1.119 1 /* $NetBSD: wi.c,v 1.119 2003/05/13 06:48:56 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.119 2003/05/13 06:48:56 dyoung Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_llc.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95 #include <net/if_ieee80211.h>
96
97 #if NBPFILTER > 0
98 #include <net/bpf.h>
99 #include <net/bpfdesc.h>
100 #endif
101
102 #include <machine/bus.h>
103
104 #include <dev/ic/wi_ieee.h>
105 #include <dev/ic/wireg.h>
106 #include <dev/ic/wivar.h>
107
108 static int wi_init(struct ifnet *);
109 static void wi_stop(struct ifnet *, int);
110 static void wi_start(struct ifnet *);
111 static int wi_reset(struct wi_softc *);
112 static void wi_watchdog(struct ifnet *);
113 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
114 static int wi_media_change(struct ifnet *);
115 static void wi_media_status(struct ifnet *, struct ifmediareq *);
116
117 static void wi_rx_intr(struct wi_softc *);
118 static void wi_tx_intr(struct wi_softc *);
119 static void wi_info_intr(struct wi_softc *);
120
121 static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
122 static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
123 static int wi_write_txrate(struct wi_softc *);
124 static int wi_write_wep(struct wi_softc *);
125 static int wi_write_multi(struct wi_softc *);
126 static int wi_alloc_fid(struct wi_softc *, int, int *);
127 static void wi_read_nicid(struct wi_softc *);
128 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
129
130 static int wi_cmd(struct wi_softc *, int, int, int, int);
131 static int wi_seek_bap(struct wi_softc *, int, int);
132 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
133 static int wi_write_bap(struct wi_softc *, int, int, void *, int);
134 static int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
135 static int wi_read_rid(struct wi_softc *, int, void *, int *);
136 static int wi_write_rid(struct wi_softc *, int, void *, int);
137
138 static int wi_newstate(void *, enum ieee80211_state);
139 static int wi_set_tim(struct ieee80211com *, int, int);
140
141 static int wi_scan_ap(struct wi_softc *);
142 static void wi_scan_result(struct wi_softc *, int, int);
143
144 static void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
145
146 static inline int
147 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
148 {
149
150 val = htole16(val);
151 return wi_write_rid(sc, rid, &val, sizeof(val));
152 }
153
154 #ifdef WI_DEBUG
155 int wi_debug = 0;
156
157 #define DPRINTF(X) if (wi_debug) printf X
158 #define DPRINTF2(X) if (wi_debug > 1) printf X
159 #define IFF_DUMPPKTS(_ifp) \
160 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
161 #else
162 #define DPRINTF(X)
163 #define DPRINTF2(X)
164 #define IFF_DUMPPKTS(_ifp) 0
165 #endif
166
167 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
168
169 struct wi_card_ident
170 wi_card_ident[] = {
171 /* CARD_ID CARD_NAME FIRM_TYPE */
172 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
173 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
174 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
175 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
176 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
177 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
178 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
179 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
180 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
181 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
182 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
183 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
184 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
185 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
186 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
187 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
188 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
189 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
190 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
191 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
192 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
193 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
194 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
195 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
196 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
197 { 0, NULL, 0 },
198 };
199
200 int
201 wi_attach(struct wi_softc *sc)
202 {
203 struct ieee80211com *ic = &sc->sc_ic;
204 struct ifnet *ifp = &ic->ic_if;
205 int i, nrate, mword, buflen;
206 u_int8_t r;
207 u_int16_t val;
208 u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
209 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
210 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
211 };
212 int s;
213
214 s = splnet();
215
216 /* Make sure interrupts are disabled. */
217 CSR_WRITE_2(sc, WI_INT_EN, 0);
218 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
219
220 /* Reset the NIC. */
221 if (wi_reset(sc) != 0) {
222 splx(s);
223 return 1;
224 }
225
226 buflen = IEEE80211_ADDR_LEN;
227 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
228 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
229 printf(" could not get mac address, attach failed\n");
230 splx(s);
231 return 1;
232 }
233
234 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
235
236 /* Read NIC identification */
237 wi_read_nicid(sc);
238
239 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
240 ifp->if_softc = sc;
241 ifp->if_start = wi_start;
242 ifp->if_ioctl = wi_ioctl;
243 ifp->if_watchdog = wi_watchdog;
244 ifp->if_init = wi_init;
245 ifp->if_stop = wi_stop;
246 ifp->if_flags =
247 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
248 IFQ_SET_READY(&ifp->if_snd);
249
250 ic->ic_phytype = IEEE80211_T_DS;
251 ic->ic_opmode = IEEE80211_M_STA;
252 ic->ic_flags = IEEE80211_F_HASPMGT | IEEE80211_F_HASAHDEMO;
253 ic->ic_state = IEEE80211_S_INIT;
254 ic->ic_newstate = wi_newstate;
255 ic->ic_set_tim = wi_set_tim;
256 ic->ic_max_aid = WI_MAX_AID;
257
258 /* Find available channel */
259 buflen = sizeof(val);
260 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
261 val = htole16(0x1fff); /* assume 1-11 */
262 for (i = 0; i < 16; i++) {
263 if (isset((u_int8_t*)&val, i))
264 setbit(ic->ic_chan_avail, i + 1);
265 }
266
267 sc->sc_dbm_adjust = 100; /* default */
268
269 buflen = sizeof(val);
270 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
271 wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0) {
272 sc->sc_dbm_adjust = le16toh(val);
273 }
274
275 /* Find default IBSS channel */
276 buflen = sizeof(val);
277 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0)
278 ic->ic_ibss_chan = le16toh(val);
279 else {
280 /* use lowest available channel */
281 for (i = 0; i < 16; i++) {
282 if (isset(ic->ic_chan_avail, i))
283 break;
284 }
285 ic->ic_ibss_chan = i;
286 }
287
288 /*
289 * Set flags based on firmware version.
290 */
291 switch (sc->sc_firmware_type) {
292 case WI_LUCENT:
293 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
294 #ifdef WI_HERMES_AUTOINC_WAR
295 /* XXX: not confirmed, but never seen for recent firmware */
296 if (sc->sc_sta_firmware_ver < 40000) {
297 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
298 }
299 #endif
300 if (sc->sc_sta_firmware_ver >= 60000)
301 sc->sc_flags |= WI_FLAGS_HAS_MOR;
302 if (sc->sc_sta_firmware_ver >= 60006)
303 ic->ic_flags |= IEEE80211_F_HASIBSS;
304 sc->sc_ibss_port = 1;
305 break;
306
307 case WI_INTERSIL:
308 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
309 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
310 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
311 if (sc->sc_sta_firmware_ver > 10101)
312 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
313 if (sc->sc_sta_firmware_ver >= 800) {
314 if (sc->sc_sta_firmware_ver != 10402)
315 ic->ic_flags |= IEEE80211_F_HASHOSTAP;
316 ic->ic_flags |= IEEE80211_F_HASIBSS;
317 ic->ic_flags |= IEEE80211_F_HASMONITOR;
318 }
319 sc->sc_ibss_port = 0;
320 break;
321
322 case WI_SYMBOL:
323 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
324 if (sc->sc_sta_firmware_ver >= 20000)
325 ic->ic_flags |= IEEE80211_F_HASIBSS;
326 sc->sc_ibss_port = 4;
327 break;
328 }
329
330 /*
331 * Find out if we support WEP on this card.
332 */
333 buflen = sizeof(val);
334 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
335 val != htole16(0))
336 ic->ic_flags |= IEEE80211_F_HASWEP;
337
338 /* Find supported rates. */
339 buflen = sizeof(ratebuf);
340 if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
341 nrate = le16toh(*(u_int16_t *)ratebuf);
342 if (nrate > IEEE80211_RATE_SIZE)
343 nrate = IEEE80211_RATE_SIZE;
344 memcpy(ic->ic_sup_rates, ratebuf + 2, nrate);
345 }
346 buflen = sizeof(val);
347
348 sc->sc_max_datalen = 2304;
349 sc->sc_rts_thresh = 2347;
350 sc->sc_frag_thresh = 2346;
351 sc->sc_system_scale = 1;
352 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
353 sc->sc_roaming_mode = 1;
354
355 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
356 printf("%s: supported rates: ", sc->sc_dev.dv_xname);
357 #define ADD(s, o) ifmedia_add(&sc->sc_media, \
358 IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL)
359 ADD(IFM_AUTO, 0);
360 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
361 ADD(IFM_AUTO, IFM_IEEE80211_HOSTAP);
362 if (ic->ic_flags & IEEE80211_F_HASIBSS)
363 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC);
364 if (ic->ic_flags & IEEE80211_F_HASMONITOR)
365 ADD(IFM_AUTO, IFM_IEEE80211_MONITOR);
366 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC | IFM_FLAG0);
367 for (i = 0; i < nrate; i++) {
368 r = ic->ic_sup_rates[i];
369 mword = ieee80211_rate2media(r, IEEE80211_T_DS);
370 if (mword == 0)
371 continue;
372 printf("%s%d%sMbps", (i != 0 ? " " : ""),
373 (r & IEEE80211_RATE_VAL) / 2, ((r & 0x1) != 0 ? ".5" : ""));
374 ADD(mword, 0);
375 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
376 ADD(mword, IFM_IEEE80211_HOSTAP);
377 if (ic->ic_flags & IEEE80211_F_HASIBSS)
378 ADD(mword, IFM_IEEE80211_ADHOC);
379 if (ic->ic_flags & IEEE80211_F_HASMONITOR)
380 ADD(mword, IFM_IEEE80211_MONITOR);
381 ADD(mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
382 }
383 printf("\n");
384 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
385 #undef ADD
386
387 /*
388 * Call MI attach routines.
389 */
390
391 if_attach(ifp);
392 ieee80211_ifattach(ifp);
393
394 /* Attach is successful. */
395 sc->sc_attached = 1;
396
397 splx(s);
398 return 0;
399 }
400
401 int
402 wi_detach(struct wi_softc *sc)
403 {
404 struct ifnet *ifp = &sc->sc_ic.ic_if;
405 int s;
406
407 if (!sc->sc_attached)
408 return 0;
409
410 s = splnet();
411
412 /* Delete all remaining media. */
413 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
414
415 ieee80211_ifdetach(ifp);
416 if_detach(ifp);
417 if (sc->sc_enabled) {
418 if (sc->sc_disable)
419 (*sc->sc_disable)(sc);
420 sc->sc_enabled = 0;
421 }
422 splx(s);
423 return 0;
424 }
425
426 int
427 wi_activate(struct device *self, enum devact act)
428 {
429 struct wi_softc *sc = (struct wi_softc *)self;
430 int rv = 0, s;
431
432 s = splnet();
433 switch (act) {
434 case DVACT_ACTIVATE:
435 rv = EOPNOTSUPP;
436 break;
437
438 case DVACT_DEACTIVATE:
439 if_deactivate(&sc->sc_ic.ic_if);
440 break;
441 }
442 splx(s);
443 return rv;
444 }
445
446 void
447 wi_power(struct wi_softc *sc, int why)
448 {
449 struct ifnet *ifp = &sc->sc_ic.ic_if;
450 int s;
451
452 s = splnet();
453 switch (why) {
454 case PWR_SUSPEND:
455 case PWR_STANDBY:
456 wi_stop(ifp, 1);
457 break;
458 case PWR_RESUME:
459 if (ifp->if_flags & IFF_UP) {
460 wi_init(ifp);
461 (void)wi_intr(sc);
462 }
463 break;
464 case PWR_SOFTSUSPEND:
465 case PWR_SOFTSTANDBY:
466 case PWR_SOFTRESUME:
467 break;
468 }
469 splx(s);
470 }
471
472 void
473 wi_shutdown(struct wi_softc *sc)
474 {
475 struct ifnet *ifp = &sc->sc_ic.ic_if;
476
477 if (sc->sc_attached)
478 wi_stop(ifp, 1);
479 }
480
481 int
482 wi_intr(void *arg)
483 {
484 int i;
485 struct wi_softc *sc = arg;
486 struct ifnet *ifp = &sc->sc_ic.ic_if;
487 u_int16_t status, raw_status, last_status;
488
489 if (sc->sc_enabled == 0 ||
490 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
491 (ifp->if_flags & IFF_RUNNING) == 0)
492 return 0;
493
494 if ((ifp->if_flags & IFF_UP) == 0) {
495 CSR_WRITE_2(sc, WI_INT_EN, 0);
496 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
497 return 1;
498 }
499
500 /* maximum 10 loops per interrupt */
501 last_status = 0;
502 for (i = 0; i < 10; i++) {
503 /*
504 * Only believe a status bit when we enter wi_intr, or when
505 * the bit was "off" the last time through the loop. This is
506 * my strategy to avoid racing the hardware/firmware if I
507 * can re-read the event status register more quickly than
508 * it is updated.
509 */
510 raw_status = CSR_READ_2(sc, WI_EVENT_STAT);
511 status = raw_status & ~last_status;
512 if ((status & WI_INTRS) == 0)
513 break;
514 last_status = raw_status;
515
516 if (status & WI_EV_RX)
517 wi_rx_intr(sc);
518
519 if (status & WI_EV_ALLOC)
520 wi_tx_intr(sc);
521
522 if (status & WI_EV_INFO)
523 wi_info_intr(sc);
524
525 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
526 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
527 !IFQ_IS_EMPTY(&ifp->if_snd))
528 wi_start(ifp);
529 }
530
531 return 1;
532 }
533
534 static int
535 wi_init(struct ifnet *ifp)
536 {
537 struct wi_softc *sc = ifp->if_softc;
538 struct ieee80211com *ic = &sc->sc_ic;
539 struct wi_joinreq join;
540 int i;
541 int error = 0, wasenabled;
542
543 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
544 wasenabled = sc->sc_enabled;
545 if (!sc->sc_enabled) {
546 if ((error = (*sc->sc_enable)(sc)) != 0)
547 goto out;
548 sc->sc_enabled = 1;
549 } else
550 wi_stop(ifp, 0);
551
552 /* Symbol firmware cannot be initialized more than once */
553 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
554 if ((error = wi_reset(sc)) != 0)
555 goto out;
556 }
557
558 /* common 802.11 configuration */
559 ic->ic_flags &= ~IEEE80211_F_IBSSON;
560 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
561 switch (ic->ic_opmode) {
562 case IEEE80211_M_STA:
563 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
564 break;
565 case IEEE80211_M_IBSS:
566 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
567 ic->ic_flags |= IEEE80211_F_IBSSON;
568 sc->sc_syn_timer = 5;
569 ifp->if_timer = 1;
570 break;
571 case IEEE80211_M_AHDEMO:
572 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
573 break;
574 case IEEE80211_M_HOSTAP:
575 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
576 break;
577 case IEEE80211_M_MONITOR:
578 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
579 break;
580 }
581
582 /* Intersil interprets this RID as joining ESS even in IBSS mode */
583 if (sc->sc_firmware_type == WI_LUCENT &&
584 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
585 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
586 else
587 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
588 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
589 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
590 ic->ic_des_esslen);
591 wi_write_val(sc, WI_RID_OWN_CHNL, ic->ic_ibss_chan);
592 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
593 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
594 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
595 wi_write_val(sc, WI_RID_PM_ENABLED,
596 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
597
598 /* not yet common 802.11 configuration */
599 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
600 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
601 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
602 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
603
604 /* driver specific 802.11 configuration */
605 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
606 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
607 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
608 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
609 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
610 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
611 wi_write_txrate(sc);
612 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
613
614 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
615 sc->sc_firmware_type == WI_INTERSIL) {
616 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
617 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
618 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
619 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
620 }
621
622 /*
623 * Initialize promisc mode.
624 * Being in the Host-AP mode causes a great
625 * deal of pain if primisc mode is set.
626 * Therefore we avoid confusing the firmware
627 * and always reset promisc mode in Host-AP
628 * mode. Host-AP sees all the packets anyway.
629 */
630 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
631 (ifp->if_flags & IFF_PROMISC) != 0) {
632 wi_write_val(sc, WI_RID_PROMISC, 1);
633 } else {
634 wi_write_val(sc, WI_RID_PROMISC, 0);
635 }
636
637 /* Configure WEP. */
638 if (ic->ic_flags & IEEE80211_F_HASWEP)
639 wi_write_wep(sc);
640
641 /* Set multicast filter. */
642 wi_write_multi(sc);
643
644 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
645 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
646 if (sc->sc_firmware_type == WI_SYMBOL)
647 sc->sc_buflen = 1585; /* XXX */
648 for (i = 0; i < WI_NTXBUF; i++) {
649 error = wi_alloc_fid(sc, sc->sc_buflen,
650 &sc->sc_txd[i].d_fid);
651 if (error) {
652 printf("%s: tx buffer allocation failed\n",
653 sc->sc_dev.dv_xname);
654 goto out;
655 }
656 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
657 sc->sc_txd[i].d_fid));
658 sc->sc_txd[i].d_len = 0;
659 }
660 }
661 sc->sc_txcur = sc->sc_txnext = 0;
662
663 /* Enable desired port */
664 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
665 ifp->if_flags |= IFF_RUNNING;
666 ifp->if_flags &= ~IFF_OACTIVE;
667 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
668 ic->ic_opmode == IEEE80211_M_MONITOR ||
669 ic->ic_opmode == IEEE80211_M_HOSTAP)
670 wi_newstate(sc, IEEE80211_S_RUN);
671
672 /* Enable interrupts */
673 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
674
675 if (!wasenabled &&
676 ic->ic_opmode == IEEE80211_M_HOSTAP &&
677 sc->sc_firmware_type == WI_INTERSIL) {
678 /* XXX: some card need to be re-enabled for hostap */
679 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
680 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
681 }
682
683 if (ic->ic_opmode == IEEE80211_M_STA &&
684 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
685 ic->ic_des_chan != IEEE80211_CHAN_ANY)) {
686 memset(&join, 0, sizeof(join));
687 if (ic->ic_flags & IEEE80211_F_DESBSSID)
688 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
689 if (ic->ic_des_chan != IEEE80211_CHAN_ANY)
690 join.wi_chan = htole16(ic->ic_des_chan);
691 /* Lucent firmware does not support the JOIN RID. */
692 if (sc->sc_firmware_type != WI_LUCENT)
693 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
694 }
695
696 out:
697 if (error) {
698 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
699 wi_stop(ifp, 0);
700 }
701 DPRINTF(("wi_init: return %d\n", error));
702 return error;
703 }
704
705 static void
706 wi_stop(struct ifnet *ifp, int disable)
707 {
708 struct wi_softc *sc = ifp->if_softc;
709 int s;
710
711 s = splnet();
712
713 DPRINTF(("wi_stop: disable %d\n", disable));
714 /* Writing registers of a detached wi provokes an
715 * MCHK on PowerPC, but disabling keeps wi from writing
716 * registers, so disable before doing anything else.
717 */
718 if (sc->sc_attached)
719 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
720 if (sc->sc_enabled) {
721 CSR_WRITE_2(sc, WI_INT_EN, 0);
722 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
723 if (disable) {
724 if (sc->sc_disable)
725 (*sc->sc_disable)(sc);
726 sc->sc_enabled = 0;
727 }
728 }
729 if (!sc->sc_attached)
730 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
731
732 sc->sc_tx_timer = 0;
733 sc->sc_scan_timer = 0;
734 sc->sc_syn_timer = 0;
735 sc->sc_false_syns = 0;
736 sc->sc_naps = 0;
737 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
738 ifp->if_timer = 0;
739
740 splx(s);
741 }
742
743 static void
744 wi_start(struct ifnet *ifp)
745 {
746 struct wi_softc *sc = ifp->if_softc;
747 struct ieee80211com *ic = &sc->sc_ic;
748 struct ieee80211_node *ni;
749 struct ieee80211_frame *wh;
750 struct mbuf *m0;
751 struct wi_frame frmhdr;
752 int cur, fid, off;
753
754 if (ifp->if_flags & IFF_OACTIVE)
755 return;
756 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
757 return;
758
759 memset(&frmhdr, 0, sizeof(frmhdr));
760 cur = sc->sc_txnext;
761 for (;;) {
762 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
763 if (sc->sc_txd[cur].d_len != 0) {
764 ifp->if_flags |= IFF_OACTIVE;
765 break;
766 }
767 IF_DEQUEUE(&ic->ic_mgtq, m0);
768 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
769 (caddr_t)&frmhdr.wi_ehdr);
770 frmhdr.wi_ehdr.ether_type = 0;
771 wh = mtod(m0, struct ieee80211_frame *);
772 } else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
773 struct llc *llc;
774
775 /*
776 * Should these packets be processed after the
777 * regular packets or before? Since they are being
778 * probed for, they are probably less time critical
779 * than other packets, but, on the other hand,
780 * we want the power saving nodes to go back to
781 * sleep as quickly as possible to save power...
782 */
783
784 if (ic->ic_state != IEEE80211_S_RUN)
785 break;
786
787 if (sc->sc_txd[cur].d_len != 0) {
788 ifp->if_flags |= IFF_OACTIVE;
789 break;
790 }
791 IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
792 wh = mtod(m0, struct ieee80211_frame *);
793 llc = (struct llc *) (wh + 1);
794 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
795 (caddr_t)&frmhdr.wi_ehdr);
796 frmhdr.wi_ehdr.ether_type = llc->llc_snap.ether_type;
797 } else {
798 if (ic->ic_state != IEEE80211_S_RUN)
799 break;
800 IFQ_POLL(&ifp->if_snd, m0);
801 if (m0 == NULL)
802 break;
803 if (sc->sc_txd[cur].d_len != 0) {
804 ifp->if_flags |= IFF_OACTIVE;
805 break;
806 }
807 IFQ_DEQUEUE(&ifp->if_snd, m0);
808 ifp->if_opackets++;
809 m_copydata(m0, 0, ETHER_HDR_LEN,
810 (caddr_t)&frmhdr.wi_ehdr);
811 #if NBPFILTER > 0
812 if (ifp->if_bpf)
813 bpf_mtap(ifp->if_bpf, m0);
814 #endif
815
816 if ((m0 = ieee80211_encap(ifp, m0)) == NULL) {
817 ifp->if_oerrors++;
818 continue;
819 }
820 wh = mtod(m0, struct ieee80211_frame *);
821 if (ic->ic_flags & IEEE80211_F_WEPON)
822 wh->i_fc[1] |= IEEE80211_FC1_WEP;
823 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
824 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
825 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
826 IEEE80211_FC0_TYPE_DATA) {
827 ni = ieee80211_find_node(ic, wh->i_addr1);
828 if (ni == NULL || ni->ni_associd == 0) {
829 m_freem(m0);
830 ifp->if_oerrors++;
831 continue;
832 }
833 if (ni->ni_pwrsave & IEEE80211_PS_SLEEP) {
834 ieee80211_pwrsave(ic, ni, m0);
835 continue;
836 }
837 }
838 }
839 #if NBPFILTER > 0
840 if (ic->ic_rawbpf)
841 bpf_mtap(ic->ic_rawbpf, m0);
842 #endif
843 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11);
844 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
845 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
846 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
847 ifp->if_oerrors++;
848 continue;
849 }
850 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
851 }
852 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
853 (caddr_t)&frmhdr.wi_whdr);
854 m_adj(m0, sizeof(struct ieee80211_frame));
855 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
856 #if NBPFILTER > 0
857 if (sc->sc_drvbpf) {
858 struct mbuf mb;
859
860 M_COPY_PKTHDR(&mb, m0);
861 mb.m_data = (caddr_t)&frmhdr;
862 mb.m_len = sizeof(frmhdr);
863 mb.m_next = m0;
864 mb.m_pkthdr.len += mb.m_len;
865 bpf_mtap(sc->sc_drvbpf, &mb);
866 }
867 #endif
868 if (IFF_DUMPPKTS(ifp))
869 wi_dump_pkt(&frmhdr, ni, -1);
870 fid = sc->sc_txd[cur].d_fid;
871 off = sizeof(frmhdr);
872 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
873 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
874 ifp->if_oerrors++;
875 m_freem(m0);
876 continue;
877 }
878 m_freem(m0);
879 sc->sc_txd[cur].d_len = off;
880 if (sc->sc_txcur == cur) {
881 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
882 printf("%s: xmit failed\n",
883 sc->sc_dev.dv_xname);
884 sc->sc_txd[cur].d_len = 0;
885 continue;
886 }
887 sc->sc_tx_timer = 5;
888 ifp->if_timer = 1;
889 }
890 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF;
891 }
892 }
893
894
895 static int
896 wi_reset(struct wi_softc *sc)
897 {
898 int i, error;
899
900 DPRINTF(("wi_reset\n"));
901
902 if (sc->sc_reset)
903 (*sc->sc_reset)(sc);
904
905 error = 0;
906 for (i = 0; i < 5; i++) {
907 DELAY(20*1000); /* XXX: way too long! */
908 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
909 break;
910 }
911 if (error) {
912 printf("%s: init failed\n", sc->sc_dev.dv_xname);
913 return error;
914 }
915 CSR_WRITE_2(sc, WI_INT_EN, 0);
916 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
917
918 /* Calibrate timer. */
919 wi_write_val(sc, WI_RID_TICK_TIME, 0);
920 return 0;
921 }
922
923 static void
924 wi_watchdog(struct ifnet *ifp)
925 {
926 struct wi_softc *sc = ifp->if_softc;
927
928 ifp->if_timer = 0;
929 if (!sc->sc_enabled)
930 return;
931
932 if (sc->sc_tx_timer) {
933 if (--sc->sc_tx_timer == 0) {
934 printf("%s: device timeout\n", ifp->if_xname);
935 ifp->if_oerrors++;
936 wi_init(ifp);
937 return;
938 }
939 ifp->if_timer = 1;
940 }
941
942 if (sc->sc_scan_timer) {
943 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
944 sc->sc_firmware_type == WI_INTERSIL) {
945 DPRINTF(("wi_watchdog: inquire scan\n"));
946 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
947 }
948 if (sc->sc_scan_timer)
949 ifp->if_timer = 1;
950 }
951
952 if (sc->sc_syn_timer) {
953 if (--sc->sc_syn_timer == 0) {
954 DPRINTF2(("%s: %d false syns\n",
955 sc->sc_dev.dv_xname, sc->sc_false_syns));
956 sc->sc_false_syns = 0;
957 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
958 sc->sc_syn_timer = 5;
959 }
960 ifp->if_timer = 1;
961 }
962
963 /* TODO: rate control */
964 ieee80211_watchdog(ifp);
965 }
966
967 static int
968 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
969 {
970 struct wi_softc *sc = ifp->if_softc;
971 struct ieee80211com *ic = &sc->sc_ic;
972 struct ifreq *ifr = (struct ifreq *)data;
973 int s, error = 0;
974
975 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
976 return ENXIO;
977
978 s = splnet();
979
980 switch (cmd) {
981 case SIOCSIFFLAGS:
982 if (ifp->if_flags & IFF_UP) {
983 if (sc->sc_enabled) {
984 /*
985 * To avoid rescanning another access point,
986 * do not call wi_init() here. Instead,
987 * only reflect promisc mode settings.
988 */
989 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
990 (ifp->if_flags & IFF_PROMISC) != 0)
991 wi_write_val(sc, WI_RID_PROMISC, 1);
992 else
993 wi_write_val(sc, WI_RID_PROMISC, 0);
994 } else
995 error = wi_init(ifp);
996 } else if (sc->sc_enabled)
997 wi_stop(ifp, 1);
998 break;
999 case SIOCSIFMEDIA:
1000 case SIOCGIFMEDIA:
1001 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1002 break;
1003 case SIOCADDMULTI:
1004 case SIOCDELMULTI:
1005 error = (cmd == SIOCADDMULTI) ?
1006 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1007 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1008 if (error == ENETRESET) {
1009 if (sc->sc_enabled) {
1010 /* do not rescan */
1011 error = wi_write_multi(sc);
1012 } else
1013 error = 0;
1014 }
1015 break;
1016 case SIOCGIFGENERIC:
1017 error = wi_get_cfg(ifp, cmd, data);
1018 break;
1019 case SIOCSIFGENERIC:
1020 error = suser(curproc->p_ucred, &curproc->p_acflag);
1021 if (error)
1022 break;
1023 error = wi_set_cfg(ifp, cmd, data);
1024 if (error == ENETRESET) {
1025 if (sc->sc_enabled)
1026 error = wi_init(ifp);
1027 else
1028 error = 0;
1029 }
1030 break;
1031 case SIOCS80211BSSID:
1032 if (sc->sc_firmware_type == WI_LUCENT) {
1033 error = ENODEV;
1034 break;
1035 }
1036 /* fall through */
1037 default:
1038 error = ieee80211_ioctl(ifp, cmd, data);
1039 if (error == ENETRESET) {
1040 if (sc->sc_enabled)
1041 error = wi_init(ifp);
1042 else
1043 error = 0;
1044 }
1045 break;
1046 }
1047 splx(s);
1048 return error;
1049 }
1050
1051 static int
1052 wi_media_change(struct ifnet *ifp)
1053 {
1054 struct wi_softc *sc = ifp->if_softc;
1055 struct ieee80211com *ic = &sc->sc_ic;
1056 struct ifmedia_entry *ime;
1057 enum ieee80211_opmode newmode;
1058 int i, rate, error = 0;
1059
1060 ime = sc->sc_media.ifm_cur;
1061 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
1062 i = -1;
1063 } else {
1064 rate = ieee80211_media2rate(ime->ifm_media, IEEE80211_T_DS);
1065 if (rate == 0)
1066 return EINVAL;
1067 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1068 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL) == rate)
1069 break;
1070 }
1071 if (i == IEEE80211_RATE_SIZE)
1072 return EINVAL;
1073 }
1074 if (ic->ic_fixed_rate != i) {
1075 ic->ic_fixed_rate = i;
1076 error = ENETRESET;
1077 }
1078
1079 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
1080 (ime->ifm_media & IFM_FLAG0))
1081 newmode = IEEE80211_M_AHDEMO;
1082 else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
1083 newmode = IEEE80211_M_IBSS;
1084 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
1085 newmode = IEEE80211_M_HOSTAP;
1086 else if (ime->ifm_media & IFM_IEEE80211_MONITOR)
1087 newmode = IEEE80211_M_MONITOR;
1088 else
1089 newmode = IEEE80211_M_STA;
1090 if (ic->ic_opmode != newmode) {
1091 ic->ic_opmode = newmode;
1092 error = ENETRESET;
1093 }
1094 if (error == ENETRESET) {
1095 if (sc->sc_enabled)
1096 error = wi_init(ifp);
1097 else
1098 error = 0;
1099 }
1100 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
1101
1102 return error;
1103 }
1104
1105 static void
1106 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1107 {
1108 struct wi_softc *sc = ifp->if_softc;
1109 struct ieee80211com *ic = &sc->sc_ic;
1110 u_int16_t val;
1111 int rate, len;
1112
1113 if (sc->sc_enabled == 0) {
1114 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1115 imr->ifm_status = 0;
1116 return;
1117 }
1118
1119 imr->ifm_status = IFM_AVALID;
1120 imr->ifm_active = IFM_IEEE80211;
1121 if (ic->ic_state == IEEE80211_S_RUN &&
1122 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1123 imr->ifm_status |= IFM_ACTIVE;
1124 len = sizeof(val);
1125 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1126 rate = 0;
1127 else {
1128 /* convert to 802.11 rate */
1129 rate = val * 2;
1130 if (sc->sc_firmware_type == WI_LUCENT) {
1131 if (rate == 10)
1132 rate = 11; /* 5.5Mbps */
1133 } else {
1134 if (rate == 4*2)
1135 rate = 11; /* 5.5Mbps */
1136 else if (rate == 8*2)
1137 rate = 22; /* 11Mbps */
1138 }
1139 }
1140 imr->ifm_active |= ieee80211_rate2media(rate, IEEE80211_T_DS);
1141 switch (ic->ic_opmode) {
1142 case IEEE80211_M_STA:
1143 break;
1144 case IEEE80211_M_IBSS:
1145 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1146 break;
1147 case IEEE80211_M_AHDEMO:
1148 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1149 break;
1150 case IEEE80211_M_HOSTAP:
1151 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1152 break;
1153 case IEEE80211_M_MONITOR:
1154 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1155 break;
1156 }
1157 }
1158
1159 static void
1160 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1161 {
1162 struct ieee80211com *ic = &sc->sc_ic;
1163 struct ieee80211_node *ni = &ic->ic_bss;
1164 struct ifnet *ifp = &ic->ic_if;
1165
1166 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1167 return;
1168
1169 DPRINTF(("%s: bssid %s -> ", sc->sc_dev.dv_xname,
1170 ether_sprintf(ni->ni_bssid)));
1171 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1172
1173 /* In promiscuous mode, the BSSID field is not a reliable
1174 * indicator of the firmware's BSSID. Damp spurious
1175 * change-of-BSSID indications.
1176 */
1177 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1178 sc->sc_false_syns >= WI_MAX_FALSE_SYNS)
1179 return;
1180
1181 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
1182 }
1183
1184 static void
1185 wi_rx_intr(struct wi_softc *sc)
1186 {
1187 struct ieee80211com *ic = &sc->sc_ic;
1188 struct ifnet *ifp = &ic->ic_if;
1189 struct wi_frame frmhdr;
1190 struct mbuf *m;
1191 struct ieee80211_frame *wh;
1192 int fid, len, off, rssi;
1193 u_int8_t dir;
1194 u_int16_t status;
1195 u_int32_t rstamp;
1196
1197 fid = CSR_READ_2(sc, WI_RX_FID);
1198
1199 /* First read in the frame header */
1200 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1201 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1202 ifp->if_ierrors++;
1203 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1204 return;
1205 }
1206
1207 /*
1208 * Drop undecryptable or packets with receive errors here
1209 */
1210 status = le16toh(frmhdr.wi_status);
1211 if (status & WI_STAT_ERRSTAT) {
1212 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1213 ifp->if_ierrors++;
1214 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1215 return;
1216 }
1217 rssi = frmhdr.wi_rx_signal;
1218 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1219 le16toh(frmhdr.wi_rx_tstamp1);
1220
1221 len = le16toh(frmhdr.wi_dat_len);
1222 off = ALIGN(sizeof(struct ieee80211_frame));
1223
1224 /* Sometimes the PRISM2.x returns bogusly large frames. Except
1225 * in monitor mode, just throw them away.
1226 */
1227 if (off + len > MCLBYTES) {
1228 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1229 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1230 ifp->if_ierrors++;
1231 DPRINTF(("wi_rx_intr: oversized packet\n"));
1232 return;
1233 } else
1234 len = 0;
1235 }
1236
1237 MGETHDR(m, M_DONTWAIT, MT_DATA);
1238 if (m == NULL) {
1239 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1240 ifp->if_ierrors++;
1241 DPRINTF(("wi_rx_intr: MGET failed\n"));
1242 return;
1243 }
1244 if (off + len > MHLEN) {
1245 MCLGET(m, M_DONTWAIT);
1246 if ((m->m_flags & M_EXT) == 0) {
1247 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1248 m_freem(m);
1249 ifp->if_ierrors++;
1250 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1251 return;
1252 }
1253 }
1254
1255 m->m_data += off - sizeof(struct ieee80211_frame);
1256 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1257 wi_read_bap(sc, fid, sizeof(frmhdr),
1258 m->m_data + sizeof(struct ieee80211_frame), len);
1259 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1260 m->m_pkthdr.rcvif = ifp;
1261
1262 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1263
1264 #if NBPFILTER > 0
1265 if (sc->sc_drvbpf) {
1266 struct mbuf mb;
1267
1268 M_COPY_PKTHDR(&mb, m);
1269 mb.m_data = (caddr_t)&frmhdr;
1270 mb.m_len = sizeof(frmhdr);
1271 mb.m_next = m;
1272 mb.m_pkthdr.len += mb.m_len;
1273 bpf_mtap(sc->sc_drvbpf, &mb);
1274 }
1275 #endif
1276 wh = mtod(m, struct ieee80211_frame *);
1277 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1278 /*
1279 * WEP is decrypted by hardware. Clear WEP bit
1280 * header for ieee80211_input().
1281 */
1282 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1283 }
1284
1285 /* synchronize driver's BSSID with firmware's BSSID */
1286 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1287 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1288 wi_sync_bssid(sc, wh->i_addr3);
1289
1290 ieee80211_input(ifp, m, rssi, rstamp);
1291 }
1292
1293 static void
1294 wi_tx_intr(struct wi_softc *sc)
1295 {
1296 struct ieee80211com *ic = &sc->sc_ic;
1297 struct ifnet *ifp = &ic->ic_if;
1298 int fid, cur;
1299
1300 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1301 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1302
1303 cur = sc->sc_txcur;
1304 if (sc->sc_txd[cur].d_fid != fid) {
1305 printf("%s: bad alloc %x != %x, cur %d nxt %d\n",
1306 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1307 sc->sc_txnext);
1308 return;
1309 }
1310 sc->sc_tx_timer = 0;
1311 sc->sc_txd[cur].d_len = 0;
1312 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF;
1313 if (sc->sc_txd[cur].d_len == 0)
1314 ifp->if_flags &= ~IFF_OACTIVE;
1315 else {
1316 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1317 0, 0)) {
1318 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1319 sc->sc_txd[cur].d_len = 0;
1320 } else {
1321 sc->sc_tx_timer = 5;
1322 ifp->if_timer = 1;
1323 }
1324 }
1325 }
1326
1327 static void
1328 wi_info_intr(struct wi_softc *sc)
1329 {
1330 struct ieee80211com *ic = &sc->sc_ic;
1331 struct ifnet *ifp = &ic->ic_if;
1332 int i, fid, len, off;
1333 u_int16_t ltbuf[2];
1334 u_int16_t stat;
1335 u_int32_t *ptr;
1336
1337 fid = CSR_READ_2(sc, WI_INFO_FID);
1338 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1339
1340 switch (le16toh(ltbuf[1])) {
1341
1342 case WI_INFO_LINK_STAT:
1343 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1344 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1345 switch (le16toh(stat)) {
1346 case CONNECTED:
1347 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1348 if (ic->ic_state == IEEE80211_S_RUN &&
1349 ic->ic_opmode != IEEE80211_M_IBSS)
1350 break;
1351 /* FALLTHROUGH */
1352 case AP_CHANGE:
1353 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
1354 break;
1355 case AP_IN_RANGE:
1356 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1357 break;
1358 case AP_OUT_OF_RANGE:
1359 if (sc->sc_firmware_type == WI_SYMBOL &&
1360 sc->sc_scan_timer > 0) {
1361 if (wi_cmd(sc, WI_CMD_INQUIRE,
1362 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1363 sc->sc_scan_timer = 0;
1364 break;
1365 }
1366 if (ic->ic_opmode == IEEE80211_M_STA)
1367 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1368 break;
1369 case DISCONNECTED:
1370 case ASSOC_FAILED:
1371 if (ic->ic_opmode == IEEE80211_M_STA)
1372 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
1373 break;
1374 }
1375 break;
1376
1377 case WI_INFO_COUNTERS:
1378 /* some card versions have a larger stats structure */
1379 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1380 ptr = (u_int32_t *)&sc->sc_stats;
1381 off = sizeof(ltbuf);
1382 for (i = 0; i < len; i++, off += 2, ptr++) {
1383 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1384 #ifdef WI_HERMES_STATS_WAR
1385 if (stat & 0xf000)
1386 stat = ~stat;
1387 #endif
1388 *ptr += stat;
1389 }
1390 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1391 sc->sc_stats.wi_tx_multi_retries +
1392 sc->sc_stats.wi_tx_retry_limit;
1393 break;
1394
1395 case WI_INFO_SCAN_RESULTS:
1396 case WI_INFO_HOST_SCAN_RESULTS:
1397 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1398 break;
1399
1400 default:
1401 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1402 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1403 break;
1404 }
1405 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1406 }
1407
1408 /*
1409 * Allocate a region of memory inside the NIC and zero
1410 * it out.
1411 */
1412 static int
1413 wi_write_multi(struct wi_softc *sc)
1414 {
1415 struct ifnet *ifp = &sc->sc_ic.ic_if;
1416 int n = 0;
1417 struct wi_mcast mlist;
1418 struct ether_multi *enm;
1419 struct ether_multistep estep;
1420
1421 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1422 allmulti:
1423 ifp->if_flags |= IFF_ALLMULTI;
1424 memset(&mlist, 0, sizeof(mlist));
1425 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1426 sizeof(mlist));
1427 }
1428
1429 n = 0;
1430 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1431 while (enm != NULL) {
1432 /* Punt on ranges or too many multicast addresses. */
1433 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1434 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1435 goto allmulti;
1436
1437 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1438 n++;
1439 ETHER_NEXT_MULTI(estep, enm);
1440 }
1441 ifp->if_flags &= ~IFF_ALLMULTI;
1442 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1443 IEEE80211_ADDR_LEN * n);
1444 }
1445
1446
1447 static void
1448 wi_read_nicid(sc)
1449 struct wi_softc *sc;
1450 {
1451 struct wi_card_ident *id;
1452 char *p;
1453 int len;
1454 u_int16_t ver[4];
1455
1456 /* getting chip identity */
1457 memset(ver, 0, sizeof(ver));
1458 len = sizeof(ver);
1459 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1460 printf("%s: using ", sc->sc_dev.dv_xname);
1461 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1462
1463 sc->sc_firmware_type = WI_NOTYPE;
1464 for (id = wi_card_ident; id->card_name != NULL; id++) {
1465 if (le16toh(ver[0]) == id->card_id) {
1466 printf("%s", id->card_name);
1467 sc->sc_firmware_type = id->firm_type;
1468 break;
1469 }
1470 }
1471 if (sc->sc_firmware_type == WI_NOTYPE) {
1472 if (le16toh(ver[0]) & 0x8000) {
1473 printf("Unknown PRISM2 chip");
1474 sc->sc_firmware_type = WI_INTERSIL;
1475 } else {
1476 printf("Unknown Lucent chip");
1477 sc->sc_firmware_type = WI_LUCENT;
1478 }
1479 }
1480
1481 /* get primary firmware version (Only Prism chips) */
1482 if (sc->sc_firmware_type != WI_LUCENT) {
1483 memset(ver, 0, sizeof(ver));
1484 len = sizeof(ver);
1485 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1486 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1487 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1488 DPRINTF2(("wi_read_nicid: PRI_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1489 }
1490
1491 /* get station firmware version */
1492 memset(ver, 0, sizeof(ver));
1493 len = sizeof(ver);
1494 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1495 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1496 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1497 DPRINTF2(("wi_read_nicid: STA_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1498 if (sc->sc_firmware_type == WI_INTERSIL &&
1499 (sc->sc_sta_firmware_ver == 10102 ||
1500 sc->sc_sta_firmware_ver == 20102)) {
1501 char ident[12];
1502 memset(ident, 0, sizeof(ident));
1503 len = sizeof(ident);
1504 /* value should be the format like "V2.00-11" */
1505 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1506 *(p = (char *)ident) >= 'A' &&
1507 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1508 sc->sc_firmware_type = WI_SYMBOL;
1509 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1510 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1511 (p[6] - '0') * 10 + (p[7] - '0');
1512 }
1513 DPRINTF2(("wi_read_nicid: SYMBOL_ID: %x %x %x %x\n", le16toh(ident[0]), le16toh(ident[1]), le16toh(ident[2]), le16toh(ident[3])));
1514 }
1515
1516 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1517 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1518 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1519 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1520 printf("Primary (%u.%u.%u), ",
1521 sc->sc_pri_firmware_ver / 10000,
1522 (sc->sc_pri_firmware_ver % 10000) / 100,
1523 sc->sc_pri_firmware_ver % 100);
1524 printf("Station (%u.%u.%u)\n",
1525 sc->sc_sta_firmware_ver / 10000,
1526 (sc->sc_sta_firmware_ver % 10000) / 100,
1527 sc->sc_sta_firmware_ver % 100);
1528 }
1529
1530 static int
1531 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1532 {
1533 struct wi_ssid ssid;
1534
1535 if (buflen > IEEE80211_NWID_LEN)
1536 return ENOBUFS;
1537 memset(&ssid, 0, sizeof(ssid));
1538 ssid.wi_len = htole16(buflen);
1539 memcpy(ssid.wi_ssid, buf, buflen);
1540 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
1541 }
1542
1543 static int
1544 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1545 {
1546 struct wi_softc *sc = ifp->if_softc;
1547 struct ieee80211com *ic = &sc->sc_ic;
1548 struct ifreq *ifr = (struct ifreq *)data;
1549 struct wi_req wreq;
1550 int len, n, error;
1551
1552 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1553 if (error)
1554 return error;
1555 len = (wreq.wi_len - 1) * 2;
1556 if (len < sizeof(u_int16_t))
1557 return ENOSPC;
1558 if (len > sizeof(wreq.wi_val))
1559 len = sizeof(wreq.wi_val);
1560
1561 switch (wreq.wi_type) {
1562
1563 case WI_RID_IFACE_STATS:
1564 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1565 if (len < sizeof(sc->sc_stats))
1566 error = ENOSPC;
1567 else
1568 len = sizeof(sc->sc_stats);
1569 break;
1570
1571 case WI_RID_ENCRYPTION:
1572 case WI_RID_TX_CRYPT_KEY:
1573 case WI_RID_DEFLT_CRYPT_KEYS:
1574 case WI_RID_TX_RATE:
1575 return ieee80211_cfgget(ifp, cmd, data);
1576
1577 case WI_RID_MICROWAVE_OVEN:
1578 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1579 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1580 &len);
1581 break;
1582 }
1583 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1584 len = sizeof(u_int16_t);
1585 break;
1586
1587 case WI_RID_DBM_ADJUST:
1588 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
1589 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1590 &len);
1591 break;
1592 }
1593 wreq.wi_val[0] = htole16(sc->sc_dbm_adjust);
1594 len = sizeof(u_int16_t);
1595 break;
1596
1597 case WI_RID_ROAMING_MODE:
1598 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
1599 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1600 &len);
1601 break;
1602 }
1603 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
1604 len = sizeof(u_int16_t);
1605 break;
1606
1607 case WI_RID_SYSTEM_SCALE:
1608 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
1609 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1610 &len);
1611 break;
1612 }
1613 wreq.wi_val[0] = htole16(sc->sc_system_scale);
1614 len = sizeof(u_int16_t);
1615 break;
1616
1617 case WI_RID_FRAG_THRESH:
1618 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
1619 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1620 &len);
1621 break;
1622 }
1623 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
1624 len = sizeof(u_int16_t);
1625 break;
1626
1627 case WI_RID_READ_APS:
1628 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1629 return ieee80211_cfgget(ifp, cmd, data);
1630 if (sc->sc_scan_timer > 0) {
1631 error = EINPROGRESS;
1632 break;
1633 }
1634 n = sc->sc_naps;
1635 if (len < sizeof(n)) {
1636 error = ENOSPC;
1637 break;
1638 }
1639 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
1640 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
1641 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
1642 memcpy(wreq.wi_val, &n, sizeof(n));
1643 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
1644 sizeof(struct wi_apinfo) * n);
1645 break;
1646
1647 default:
1648 if (sc->sc_enabled) {
1649 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1650 &len);
1651 break;
1652 }
1653 switch (wreq.wi_type) {
1654 case WI_RID_MAX_DATALEN:
1655 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
1656 len = sizeof(u_int16_t);
1657 break;
1658 case WI_RID_FRAG_THRESH:
1659 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
1660 len = sizeof(u_int16_t);
1661 break;
1662 case WI_RID_RTS_THRESH:
1663 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
1664 len = sizeof(u_int16_t);
1665 break;
1666 case WI_RID_CNFAUTHMODE:
1667 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
1668 len = sizeof(u_int16_t);
1669 break;
1670 case WI_RID_NODENAME:
1671 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
1672 error = ENOSPC;
1673 break;
1674 }
1675 len = sc->sc_nodelen + sizeof(u_int16_t);
1676 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
1677 memcpy(&wreq.wi_val[1], sc->sc_nodename,
1678 sc->sc_nodelen);
1679 break;
1680 default:
1681 return ieee80211_cfgget(ifp, cmd, data);
1682 }
1683 break;
1684 }
1685 if (error)
1686 return error;
1687 wreq.wi_len = (len + 1) / 2 + 1;
1688 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
1689 }
1690
1691 static int
1692 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1693 {
1694 struct wi_softc *sc = ifp->if_softc;
1695 struct ieee80211com *ic = &sc->sc_ic;
1696 struct ifreq *ifr = (struct ifreq *)data;
1697 struct wi_req wreq;
1698 struct mbuf *m;
1699 int i, len, error;
1700
1701 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1702 if (error)
1703 return error;
1704 len = (wreq.wi_len - 1) * 2;
1705 switch (wreq.wi_type) {
1706 case WI_RID_DBM_ADJUST:
1707 return ENODEV;
1708
1709 case WI_RID_NODENAME:
1710 if (le16toh(wreq.wi_val[0]) * 2 > len ||
1711 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
1712 error = ENOSPC;
1713 break;
1714 }
1715 if (sc->sc_enabled) {
1716 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1717 len);
1718 if (error)
1719 break;
1720 }
1721 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
1722 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
1723 break;
1724
1725 case WI_RID_MICROWAVE_OVEN:
1726 case WI_RID_ROAMING_MODE:
1727 case WI_RID_SYSTEM_SCALE:
1728 case WI_RID_FRAG_THRESH:
1729 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
1730 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
1731 break;
1732 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
1733 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
1734 break;
1735 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
1736 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
1737 break;
1738 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
1739 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
1740 break;
1741 /* FALLTHROUGH */
1742 case WI_RID_RTS_THRESH:
1743 case WI_RID_CNFAUTHMODE:
1744 case WI_RID_MAX_DATALEN:
1745 if (sc->sc_enabled) {
1746 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1747 sizeof(u_int16_t));
1748 if (error)
1749 break;
1750 }
1751 switch (wreq.wi_type) {
1752 case WI_RID_FRAG_THRESH:
1753 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
1754 break;
1755 case WI_RID_RTS_THRESH:
1756 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
1757 break;
1758 case WI_RID_MICROWAVE_OVEN:
1759 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
1760 break;
1761 case WI_RID_ROAMING_MODE:
1762 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
1763 break;
1764 case WI_RID_SYSTEM_SCALE:
1765 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
1766 break;
1767 case WI_RID_CNFAUTHMODE:
1768 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
1769 break;
1770 case WI_RID_MAX_DATALEN:
1771 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
1772 break;
1773 }
1774 break;
1775
1776 case WI_RID_TX_RATE:
1777 switch (le16toh(wreq.wi_val[0])) {
1778 case 3:
1779 ic->ic_fixed_rate = -1;
1780 break;
1781 default:
1782 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1783 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL)
1784 / 2 == le16toh(wreq.wi_val[0]))
1785 break;
1786 }
1787 if (i == IEEE80211_RATE_SIZE)
1788 return EINVAL;
1789 ic->ic_fixed_rate = i;
1790 }
1791 if (sc->sc_enabled)
1792 error = wi_write_txrate(sc);
1793 break;
1794
1795 case WI_RID_SCAN_APS:
1796 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
1797 error = wi_scan_ap(sc);
1798 break;
1799
1800 case WI_RID_MGMT_XMIT:
1801 if (!sc->sc_enabled) {
1802 error = ENETDOWN;
1803 break;
1804 }
1805 if (ic->ic_mgtq.ifq_len > 5) {
1806 error = EAGAIN;
1807 break;
1808 }
1809 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
1810 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
1811 if (m == NULL) {
1812 error = ENOMEM;
1813 break;
1814 }
1815 IF_ENQUEUE(&ic->ic_mgtq, m);
1816 break;
1817
1818 default:
1819 if (sc->sc_enabled) {
1820 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1821 len);
1822 if (error)
1823 break;
1824 }
1825 error = ieee80211_cfgset(ifp, cmd, data);
1826 break;
1827 }
1828 return error;
1829 }
1830
1831 static int
1832 wi_write_txrate(struct wi_softc *sc)
1833 {
1834 struct ieee80211com *ic = &sc->sc_ic;
1835 int i;
1836 u_int16_t rate;
1837
1838 if (ic->ic_fixed_rate < 0)
1839 rate = 0; /* auto */
1840 else
1841 rate = (ic->ic_sup_rates[ic->ic_fixed_rate] &
1842 IEEE80211_RATE_VAL) / 2;
1843
1844 /* rate: 0, 1, 2, 5, 11 */
1845
1846 switch (sc->sc_firmware_type) {
1847 case WI_LUCENT:
1848 if (rate == 0)
1849 rate = 3; /* auto */
1850 break;
1851 default:
1852 /* Choose a bit according to this table.
1853 *
1854 * bit | data rate
1855 * ----+-------------------
1856 * 0 | 1Mbps
1857 * 1 | 2Mbps
1858 * 2 | 5.5Mbps
1859 * 3 | 11Mbps
1860 */
1861 for (i = 8; i > 0; i >>= 1) {
1862 if (rate >= i)
1863 break;
1864 }
1865 if (i == 0)
1866 rate = 0xf; /* auto */
1867 else
1868 rate = i;
1869 break;
1870 }
1871 return wi_write_val(sc, WI_RID_TX_RATE, rate);
1872 }
1873
1874 static int
1875 wi_write_wep(struct wi_softc *sc)
1876 {
1877 struct ieee80211com *ic = &sc->sc_ic;
1878 int error = 0;
1879 int i, keylen;
1880 u_int16_t val;
1881 struct wi_key wkey[IEEE80211_WEP_NKID];
1882
1883 switch (sc->sc_firmware_type) {
1884 case WI_LUCENT:
1885 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
1886 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
1887 if (error)
1888 break;
1889 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
1890 if (error)
1891 break;
1892 memset(wkey, 0, sizeof(wkey));
1893 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1894 keylen = ic->ic_nw_keys[i].wk_len;
1895 wkey[i].wi_keylen = htole16(keylen);
1896 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
1897 keylen);
1898 }
1899 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
1900 wkey, sizeof(wkey));
1901 break;
1902
1903 case WI_INTERSIL:
1904 case WI_SYMBOL:
1905 if (ic->ic_flags & IEEE80211_F_WEPON) {
1906 /*
1907 * ONLY HWB3163 EVAL-CARD Firmware version
1908 * less than 0.8 variant2
1909 *
1910 * If promiscuous mode disable, Prism2 chip
1911 * does not work with WEP .
1912 * It is under investigation for details.
1913 * (ichiro (at) netbsd.org)
1914 */
1915 if (sc->sc_firmware_type == WI_INTERSIL &&
1916 sc->sc_sta_firmware_ver < 802 ) {
1917 /* firm ver < 0.8 variant 2 */
1918 wi_write_val(sc, WI_RID_PROMISC, 1);
1919 }
1920 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1921 sc->sc_cnfauthmode);
1922 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
1923 /*
1924 * Encryption firmware has a bug for HostAP mode.
1925 */
1926 if (sc->sc_firmware_type == WI_INTERSIL &&
1927 ic->ic_opmode == IEEE80211_M_HOSTAP)
1928 val |= HOST_ENCRYPT;
1929 } else {
1930 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1931 IEEE80211_AUTH_OPEN);
1932 val = HOST_ENCRYPT | HOST_DECRYPT;
1933 }
1934 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
1935 if (error)
1936 break;
1937 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
1938 ic->ic_wep_txkey);
1939 if (error)
1940 break;
1941 /*
1942 * It seems that the firmware accept 104bit key only if
1943 * all the keys have 104bit length. We get the length of
1944 * the transmit key and use it for all other keys.
1945 * Perhaps we should use software WEP for such situation.
1946 */
1947 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
1948 if (keylen > IEEE80211_WEP_KEYLEN)
1949 keylen = 13; /* 104bit keys */
1950 else
1951 keylen = IEEE80211_WEP_KEYLEN;
1952 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1953 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
1954 ic->ic_nw_keys[i].wk_key, keylen);
1955 if (error)
1956 break;
1957 }
1958 break;
1959 }
1960 return error;
1961 }
1962
1963 /* Must be called at proper protection level! */
1964 static int
1965 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
1966 {
1967 int i, status;
1968
1969 /* wait for the busy bit to clear */
1970 for (i = 500; i > 0; i--) { /* 5s */
1971 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
1972 break;
1973 DELAY(10*1000); /* 10 m sec */
1974 }
1975 if (i == 0) {
1976 printf("%s: wi_cmd: busy bit won't clear.\n",
1977 sc->sc_dev.dv_xname);
1978 return(ETIMEDOUT);
1979 }
1980 CSR_WRITE_2(sc, WI_PARAM0, val0);
1981 CSR_WRITE_2(sc, WI_PARAM1, val1);
1982 CSR_WRITE_2(sc, WI_PARAM2, val2);
1983 CSR_WRITE_2(sc, WI_COMMAND, cmd);
1984
1985 if (cmd == WI_CMD_INI) {
1986 /* XXX: should sleep here. */
1987 DELAY(100*1000);
1988 }
1989 /* wait for the cmd completed bit */
1990 for (i = 0; i < WI_TIMEOUT; i++) {
1991 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
1992 break;
1993 DELAY(1);
1994 }
1995
1996 status = CSR_READ_2(sc, WI_STATUS);
1997
1998 /* Ack the command */
1999 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2000
2001 if (i == WI_TIMEOUT) {
2002 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
2003 sc->sc_dev.dv_xname, cmd, val0);
2004 return ETIMEDOUT;
2005 }
2006
2007 if (status & WI_STAT_CMD_RESULT) {
2008 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
2009 sc->sc_dev.dv_xname, cmd, val0);
2010 return EIO;
2011 }
2012 return 0;
2013 }
2014
2015 static int
2016 wi_seek_bap(struct wi_softc *sc, int id, int off)
2017 {
2018 int i, status;
2019
2020 CSR_WRITE_2(sc, WI_SEL0, id);
2021 CSR_WRITE_2(sc, WI_OFF0, off);
2022
2023 for (i = 0; ; i++) {
2024 status = CSR_READ_2(sc, WI_OFF0);
2025 if ((status & WI_OFF_BUSY) == 0)
2026 break;
2027 if (i == WI_TIMEOUT) {
2028 printf("%s: timeout in wi_seek to %x/%x\n",
2029 sc->sc_dev.dv_xname, id, off);
2030 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2031 return ETIMEDOUT;
2032 }
2033 DELAY(1);
2034 }
2035 if (status & WI_OFF_ERR) {
2036 printf("%s: failed in wi_seek to %x/%x\n",
2037 sc->sc_dev.dv_xname, id, off);
2038 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2039 return EIO;
2040 }
2041 sc->sc_bap_id = id;
2042 sc->sc_bap_off = off;
2043 return 0;
2044 }
2045
2046 static int
2047 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2048 {
2049 int error, cnt;
2050
2051 if (buflen == 0)
2052 return 0;
2053 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2054 if ((error = wi_seek_bap(sc, id, off)) != 0)
2055 return error;
2056 }
2057 cnt = (buflen + 1) / 2;
2058 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2059 sc->sc_bap_off += cnt * 2;
2060 return 0;
2061 }
2062
2063 static int
2064 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2065 {
2066 int error, cnt;
2067
2068 if (buflen == 0)
2069 return 0;
2070
2071 #ifdef WI_HERMES_AUTOINC_WAR
2072 again:
2073 #endif
2074 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2075 if ((error = wi_seek_bap(sc, id, off)) != 0)
2076 return error;
2077 }
2078 cnt = (buflen + 1) / 2;
2079 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2080 sc->sc_bap_off += cnt * 2;
2081
2082 #ifdef WI_HERMES_AUTOINC_WAR
2083 /*
2084 * According to the comments in the HCF Light code, there is a bug
2085 * in the Hermes (or possibly in certain Hermes firmware revisions)
2086 * where the chip's internal autoincrement counter gets thrown off
2087 * during data writes: the autoincrement is missed, causing one
2088 * data word to be overwritten and subsequent words to be written to
2089 * the wrong memory locations. The end result is that we could end
2090 * up transmitting bogus frames without realizing it. The workaround
2091 * for this is to write a couple of extra guard words after the end
2092 * of the transfer, then attempt to read then back. If we fail to
2093 * locate the guard words where we expect them, we preform the
2094 * transfer over again.
2095 */
2096 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2097 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2098 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2099 wi_seek_bap(sc, id, sc->sc_bap_off);
2100 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2101 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2102 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2103 printf("%s: detect auto increment bug, try again\n",
2104 sc->sc_dev.dv_xname);
2105 goto again;
2106 }
2107 }
2108 #endif
2109 return 0;
2110 }
2111
2112 static int
2113 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2114 {
2115 int error, len;
2116 struct mbuf *m;
2117
2118 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2119 if (m->m_len == 0)
2120 continue;
2121
2122 len = min(m->m_len, totlen);
2123
2124 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2125 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2126 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2127 totlen);
2128 }
2129
2130 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2131 return error;
2132
2133 off += m->m_len;
2134 totlen -= len;
2135 }
2136 return 0;
2137 }
2138
2139 static int
2140 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2141 {
2142 int i;
2143
2144 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2145 printf("%s: failed to allocate %d bytes on NIC\n",
2146 sc->sc_dev.dv_xname, len);
2147 return ENOMEM;
2148 }
2149
2150 for (i = 0; i < WI_TIMEOUT; i++) {
2151 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2152 break;
2153 if (i == WI_TIMEOUT) {
2154 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
2155 return ETIMEDOUT;
2156 }
2157 DELAY(1);
2158 }
2159 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
2160 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2161 return 0;
2162 }
2163
2164 static int
2165 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2166 {
2167 int error, len;
2168 u_int16_t ltbuf[2];
2169
2170 /* Tell the NIC to enter record read mode. */
2171 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2172 if (error)
2173 return error;
2174
2175 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2176 if (error)
2177 return error;
2178
2179 if (le16toh(ltbuf[1]) != rid) {
2180 printf("%s: record read mismatch, rid=%x, got=%x\n",
2181 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
2182 return EIO;
2183 }
2184 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
2185 if (*buflenp < len) {
2186 printf("%s: record buffer is too small, "
2187 "rid=%x, size=%d, len=%d\n",
2188 sc->sc_dev.dv_xname, rid, *buflenp, len);
2189 return ENOSPC;
2190 }
2191 *buflenp = len;
2192 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2193 }
2194
2195 static int
2196 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2197 {
2198 int error;
2199 u_int16_t ltbuf[2];
2200
2201 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
2202 ltbuf[1] = htole16(rid);
2203
2204 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2205 if (error)
2206 return error;
2207 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2208 if (error)
2209 return error;
2210
2211 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2212 }
2213
2214 static int
2215 wi_newstate(void *arg, enum ieee80211_state nstate)
2216 {
2217 struct wi_softc *sc = arg;
2218 struct ieee80211com *ic = &sc->sc_ic;
2219 struct ieee80211_node *ni = &ic->ic_bss;
2220 int i, buflen;
2221 u_int16_t val;
2222 struct wi_ssid ssid;
2223 u_int8_t old_bssid[IEEE80211_ADDR_LEN];
2224 enum ieee80211_state ostate;
2225 #ifdef WI_DEBUG
2226 static const char *stname[] =
2227 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
2228 #endif /* WI_DEBUG */
2229
2230 ostate = ic->ic_state;
2231 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
2232
2233 ic->ic_state = nstate;
2234 switch (nstate) {
2235 case IEEE80211_S_INIT:
2236 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2237 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2238 return 0;
2239
2240 case IEEE80211_S_RUN:
2241 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2242 buflen = IEEE80211_ADDR_LEN;
2243 IEEE80211_ADDR_COPY(old_bssid, ni->ni_bssid);
2244 wi_read_rid(sc, WI_RID_CURRENT_BSSID, ni->ni_bssid, &buflen);
2245 IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
2246 buflen = sizeof(val);
2247 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
2248 ni->ni_chan = le16toh(val);
2249
2250 if (IEEE80211_ADDR_EQ(old_bssid, ni->ni_bssid))
2251 sc->sc_false_syns++;
2252 else
2253 sc->sc_false_syns = 0;
2254
2255 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2256 ni->ni_esslen = ic->ic_des_esslen;
2257 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2258 ni->ni_nrate = 0;
2259 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2260 if (ic->ic_sup_rates[i])
2261 ni->ni_rates[ni->ni_nrate++] =
2262 ic->ic_sup_rates[i];
2263 }
2264 ni->ni_intval = ic->ic_lintval;
2265 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2266 if (ic->ic_flags & IEEE80211_F_WEPON)
2267 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2268 } else {
2269 buflen = sizeof(ssid);
2270 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2271 ni->ni_esslen = le16toh(ssid.wi_len);
2272 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2273 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2274 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2275 }
2276 break;
2277
2278 case IEEE80211_S_SCAN:
2279 case IEEE80211_S_AUTH:
2280 case IEEE80211_S_ASSOC:
2281 break;
2282 }
2283
2284 /* skip standard ieee80211 handling */
2285 return EINPROGRESS;
2286 }
2287
2288 static int
2289 wi_set_tim(struct ieee80211com *ic, int aid, int which)
2290 {
2291 struct wi_softc *sc = ic->ic_softc;
2292
2293 aid &= ~0xc000;
2294 if (which)
2295 aid |= 0x8000;
2296
2297 return wi_write_val(sc, WI_RID_SET_TIM, aid);
2298 }
2299
2300 static int
2301 wi_scan_ap(struct wi_softc *sc)
2302 {
2303 int error = 0;
2304 u_int16_t val[2];
2305
2306 if (!sc->sc_enabled)
2307 return ENXIO;
2308 switch (sc->sc_firmware_type) {
2309 case WI_LUCENT:
2310 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2311 break;
2312 case WI_INTERSIL:
2313 val[0] = 0x3fff; /* channel */
2314 val[1] = 0x000f; /* tx rate */
2315 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2316 break;
2317 case WI_SYMBOL:
2318 /*
2319 * XXX only supported on 3.x ?
2320 */
2321 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2322 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2323 val, sizeof(val[0]));
2324 break;
2325 }
2326 if (error == 0) {
2327 sc->sc_scan_timer = WI_SCAN_WAIT;
2328 sc->sc_ic.ic_if.if_timer = 1;
2329 DPRINTF(("wi_scan_ap: start scanning\n"));
2330 }
2331 return error;
2332 }
2333
2334 static void
2335 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2336 {
2337 int i, naps, off, szbuf;
2338 struct wi_scan_header ws_hdr; /* Prism2 header */
2339 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2340 struct wi_apinfo *ap;
2341
2342 off = sizeof(u_int16_t) * 2;
2343 memset(&ws_hdr, 0, sizeof(ws_hdr));
2344 switch (sc->sc_firmware_type) {
2345 case WI_INTERSIL:
2346 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2347 off += sizeof(ws_hdr);
2348 szbuf = sizeof(struct wi_scan_data_p2);
2349 break;
2350 case WI_SYMBOL:
2351 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2352 break;
2353 case WI_LUCENT:
2354 szbuf = sizeof(struct wi_scan_data);
2355 break;
2356 }
2357 naps = (cnt * 2 + 2 - off) / szbuf;
2358 if (naps > MAXAPINFO)
2359 naps = MAXAPINFO;
2360 sc->sc_naps = naps;
2361 /* Read Data */
2362 ap = sc->sc_aps;
2363 memset(&ws_dat, 0, sizeof(ws_dat));
2364 for (i = 0; i < naps; i++, ap++) {
2365 wi_read_bap(sc, fid, off, &ws_dat,
2366 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2367 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
2368 ether_sprintf(ws_dat.wi_bssid)));
2369 off += szbuf;
2370 ap->scanreason = le16toh(ws_hdr.wi_reason);
2371 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2372 ap->channel = le16toh(ws_dat.wi_chid);
2373 ap->signal = le16toh(ws_dat.wi_signal);
2374 ap->noise = le16toh(ws_dat.wi_noise);
2375 ap->quality = ap->signal - ap->noise;
2376 ap->capinfo = le16toh(ws_dat.wi_capinfo);
2377 ap->interval = le16toh(ws_dat.wi_interval);
2378 ap->rate = le16toh(ws_dat.wi_rate);
2379 ap->namelen = le16toh(ws_dat.wi_namelen);
2380 if (ap->namelen > sizeof(ap->name))
2381 ap->namelen = sizeof(ap->name);
2382 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2383 }
2384 /* Done scanning */
2385 sc->sc_scan_timer = 0;
2386 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
2387 }
2388
2389 static void
2390 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
2391 {
2392 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
2393 ni ? ni->ni_rates[ni->ni_txrate] & IEEE80211_RATE_VAL : -1, rssi);
2394 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
2395 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
2396 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
2397 printf(" rx_signal %u rx_rate %u rx_flow %u\n",
2398 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
2399 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
2400 wh->wi_tx_rtry, wh->wi_tx_rate,
2401 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
2402 printf(" ehdr dst %s src %s type 0x%x\n",
2403 ether_sprintf(wh->wi_ehdr.ether_dhost),
2404 ether_sprintf(wh->wi_ehdr.ether_shost),
2405 wh->wi_ehdr.ether_type);
2406 }
2407