wi.c revision 1.141 1 /* $NetBSD: wi.c,v 1.141 2003/11/02 00:55:46 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.141 2003/11/02 00:55:46 dyoung Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_llc.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95
96 #include <net80211/ieee80211_var.h>
97 #include <net80211/ieee80211_compat.h>
98 #include <net80211/ieee80211_ioctl.h>
99
100 #if NBPFILTER > 0
101 #include <net/bpf.h>
102 #include <net/bpfdesc.h>
103 #endif
104
105 #include <machine/bus.h>
106
107 #include <dev/ic/wi_ieee.h>
108 #include <dev/ic/wireg.h>
109 #include <dev/ic/wivar.h>
110
111 static int wi_init(struct ifnet *);
112 static void wi_stop(struct ifnet *, int);
113 static void wi_start(struct ifnet *);
114 static int wi_reset(struct wi_softc *);
115 static void wi_watchdog(struct ifnet *);
116 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
117 static int wi_media_change(struct ifnet *);
118 static void wi_media_status(struct ifnet *, struct ifmediareq *);
119
120 static void wi_rx_intr(struct wi_softc *);
121 static void wi_tx_intr(struct wi_softc *);
122 static void wi_tx_ex_intr(struct wi_softc *);
123 static void wi_info_intr(struct wi_softc *);
124
125 static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
126 static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
127 static int wi_cfg_txrate(struct wi_softc *);
128 static int wi_write_txrate(struct wi_softc *, int);
129 static int wi_write_wep(struct wi_softc *);
130 static int wi_write_multi(struct wi_softc *);
131 static int wi_alloc_fid(struct wi_softc *, int, int *);
132 static void wi_read_nicid(struct wi_softc *);
133 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
134
135 static int wi_cmd(struct wi_softc *, int, int, int, int);
136 static int wi_seek_bap(struct wi_softc *, int, int);
137 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
138 static int wi_write_bap(struct wi_softc *, int, int, void *, int);
139 static int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
140 static int wi_read_rid(struct wi_softc *, int, void *, int *);
141 static int wi_write_rid(struct wi_softc *, int, void *, int);
142
143 static int wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
144 static int wi_set_tim(struct ieee80211com *, int, int);
145
146 static int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
147 static void wi_scan_result(struct wi_softc *, int, int);
148
149 static void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
150
151 static inline int
152 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
153 {
154
155 val = htole16(val);
156 return wi_write_rid(sc, rid, &val, sizeof(val));
157 }
158
159 static struct timeval lasttxerror; /* time of last tx error msg */
160 static int curtxeps = 0; /* current tx error msgs/sec */
161 static int wi_txerate = 0; /* tx error rate: max msgs/sec */
162
163 #ifdef WI_DEBUG
164 int wi_debug = 0;
165
166 #define DPRINTF(X) if (wi_debug) printf X
167 #define DPRINTF2(X) if (wi_debug > 1) printf X
168 #define IFF_DUMPPKTS(_ifp) \
169 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
170 #else
171 #define DPRINTF(X)
172 #define DPRINTF2(X)
173 #define IFF_DUMPPKTS(_ifp) 0
174 #endif
175
176 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
177
178 struct wi_card_ident
179 wi_card_ident[] = {
180 /* CARD_ID CARD_NAME FIRM_TYPE */
181 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
182 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
183 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
184 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
185 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
186 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
187 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
188 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
189 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
190 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
191 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
192 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
193 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
194 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
195 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
196 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
197 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
198 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
199 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
200 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
201 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
202 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
203 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
204 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
205 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
206 { 0, NULL, 0 },
207 };
208
209 int
210 wi_attach(struct wi_softc *sc)
211 {
212 struct ieee80211com *ic = &sc->sc_ic;
213 struct ifnet *ifp = &ic->ic_if;
214 int chan, i, nrate, buflen;
215 u_int16_t val;
216 u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
217 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
218 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
219 };
220 int s;
221
222 s = splnet();
223
224 /* Make sure interrupts are disabled. */
225 CSR_WRITE_2(sc, WI_INT_EN, 0);
226 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
227
228 sc->sc_invalid = 0;
229
230 /* Reset the NIC. */
231 if (wi_reset(sc) != 0) {
232 sc->sc_invalid = 1;
233 splx(s);
234 return 1;
235 }
236
237 buflen = IEEE80211_ADDR_LEN;
238 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
239 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
240 printf(" could not get mac address, attach failed\n");
241 splx(s);
242 return 1;
243 }
244
245 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
246
247 /* Read NIC identification */
248 wi_read_nicid(sc);
249
250 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
251 ifp->if_softc = sc;
252 ifp->if_start = wi_start;
253 ifp->if_ioctl = wi_ioctl;
254 ifp->if_watchdog = wi_watchdog;
255 ifp->if_init = wi_init;
256 ifp->if_stop = wi_stop;
257 ifp->if_flags =
258 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
259 IFQ_SET_READY(&ifp->if_snd);
260
261 ic->ic_phytype = IEEE80211_T_DS;
262 ic->ic_opmode = IEEE80211_M_STA;
263 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_AHDEMO;
264 ic->ic_state = IEEE80211_S_INIT;
265 ic->ic_max_aid = WI_MAX_AID;
266
267 /* Find available channel */
268 buflen = sizeof(val);
269 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
270 val = htole16(0x1fff); /* assume 1-11 */
271 for (i = 0; i < 16; i++) {
272 chan = i + 1;
273 if (isset((u_int8_t*)&val, i))
274 setbit(ic->ic_chan_avail, chan);
275 ic->ic_channels[chan].ic_freq =
276 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
277 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
278 }
279
280 if (sc->sc_firmware_type == WI_LUCENT) {
281 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
282 } else {
283 buflen = sizeof(val);
284 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
285 wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0)
286 sc->sc_dbm_offset = le16toh(val);
287 else
288 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
289 }
290
291 /* Find default IBSS channel */
292 buflen = sizeof(val);
293 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0)
294 chan = le16toh(val);
295 else {
296 /* use lowest available channel */
297 for (chan = 0; chan < 16; chan++) {
298 if (isset(ic->ic_chan_avail, chan))
299 break;
300 }
301 }
302 if (!isset(ic->ic_chan_avail, chan))
303 panic("%s: no available channel\n", sc->sc_dev.dv_xname);
304
305 ic->ic_ibss_chan = &ic->ic_channels[chan];
306
307 /*
308 * Set flags based on firmware version.
309 */
310 switch (sc->sc_firmware_type) {
311 case WI_LUCENT:
312 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
313 #ifdef WI_HERMES_AUTOINC_WAR
314 /* XXX: not confirmed, but never seen for recent firmware */
315 if (sc->sc_sta_firmware_ver < 40000) {
316 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
317 }
318 #endif
319 if (sc->sc_sta_firmware_ver >= 60000)
320 sc->sc_flags |= WI_FLAGS_HAS_MOR;
321 if (sc->sc_sta_firmware_ver >= 60006) {
322 ic->ic_caps |= IEEE80211_C_IBSS;
323 ic->ic_caps |= IEEE80211_C_MONITOR;
324 }
325 sc->sc_ibss_port = 1;
326 break;
327
328 case WI_INTERSIL:
329 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
330 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
331 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
332 if (sc->sc_sta_firmware_ver > 10101)
333 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
334 if (sc->sc_sta_firmware_ver >= 800) {
335 if (sc->sc_sta_firmware_ver != 10402)
336 ic->ic_caps |= IEEE80211_C_HOSTAP;
337 ic->ic_caps |= IEEE80211_C_IBSS;
338 ic->ic_caps |= IEEE80211_C_MONITOR;
339 }
340 sc->sc_ibss_port = 0;
341 break;
342
343 case WI_SYMBOL:
344 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
345 if (sc->sc_sta_firmware_ver >= 20000)
346 ic->ic_caps |= IEEE80211_C_IBSS;
347 sc->sc_ibss_port = 4;
348 break;
349 }
350
351 /*
352 * Find out if we support WEP on this card.
353 */
354 buflen = sizeof(val);
355 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
356 val != htole16(0))
357 ic->ic_caps |= IEEE80211_C_WEP;
358
359 /* Find supported rates. */
360 buflen = sizeof(ratebuf);
361 if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
362 nrate = le16toh(*(u_int16_t *)ratebuf);
363 if (nrate > IEEE80211_RATE_SIZE)
364 nrate = IEEE80211_RATE_SIZE;
365 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates,
366 ratebuf + 2, nrate);
367 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
368 }
369 buflen = sizeof(val);
370
371 sc->sc_max_datalen = 2304;
372 sc->sc_rts_thresh = 2347;
373 sc->sc_frag_thresh = 2346;
374 sc->sc_system_scale = 1;
375 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
376 sc->sc_roaming_mode = 1;
377
378 /*
379 * Call MI attach routines.
380 */
381 if_attach(ifp);
382 ieee80211_ifattach(ifp);
383
384 sc->sc_newstate = ic->ic_newstate;
385 ic->ic_newstate = wi_newstate;
386 ic->ic_set_tim = wi_set_tim;
387
388 ieee80211_media_init(ifp, wi_media_change, wi_media_status);
389
390 /* Attach is successful. */
391 sc->sc_attached = 1;
392
393 splx(s);
394 return 0;
395 }
396
397 int
398 wi_detach(struct wi_softc *sc)
399 {
400 struct ifnet *ifp = &sc->sc_ic.ic_if;
401 int s;
402
403 if (!sc->sc_attached)
404 return 0;
405
406 s = splnet();
407
408 sc->sc_invalid = 1;
409 wi_stop(ifp, 1);
410
411 /* Delete all remaining media. */
412 ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY);
413
414 ieee80211_ifdetach(ifp);
415 if_detach(ifp);
416 splx(s);
417 return 0;
418 }
419
420 #ifdef __NetBSD__
421 int
422 wi_activate(struct device *self, enum devact act)
423 {
424 struct wi_softc *sc = (struct wi_softc *)self;
425 int rv = 0, s;
426
427 s = splnet();
428 switch (act) {
429 case DVACT_ACTIVATE:
430 rv = EOPNOTSUPP;
431 break;
432
433 case DVACT_DEACTIVATE:
434 if_deactivate(&sc->sc_ic.ic_if);
435 break;
436 }
437 splx(s);
438 return rv;
439 }
440
441 void
442 wi_power(struct wi_softc *sc, int why)
443 {
444 struct ifnet *ifp = &sc->sc_ic.ic_if;
445 int s;
446
447 s = splnet();
448 switch (why) {
449 case PWR_SUSPEND:
450 case PWR_STANDBY:
451 wi_stop(ifp, 1);
452 break;
453 case PWR_RESUME:
454 if (ifp->if_flags & IFF_UP) {
455 wi_init(ifp);
456 (void)wi_intr(sc);
457 }
458 break;
459 case PWR_SOFTSUSPEND:
460 case PWR_SOFTSTANDBY:
461 case PWR_SOFTRESUME:
462 break;
463 }
464 splx(s);
465 }
466 #endif /* __NetBSD__ */
467
468 void
469 wi_shutdown(struct wi_softc *sc)
470 {
471 struct ifnet *ifp = &sc->sc_ic.ic_if;
472
473 if (sc->sc_attached)
474 wi_stop(ifp, 1);
475 }
476
477 int
478 wi_intr(void *arg)
479 {
480 int i;
481 struct wi_softc *sc = arg;
482 struct ifnet *ifp = &sc->sc_ic.ic_if;
483 u_int16_t status;
484
485 if (sc->sc_enabled == 0 ||
486 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
487 (ifp->if_flags & IFF_RUNNING) == 0)
488 return 0;
489
490 if ((ifp->if_flags & IFF_UP) == 0) {
491 CSR_WRITE_2(sc, WI_INT_EN, 0);
492 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
493 return 1;
494 }
495
496 /* This is superfluous on Prism, but Lucent breaks if we
497 * do not disable interrupts.
498 */
499 CSR_WRITE_2(sc, WI_INT_EN, 0);
500
501 /* maximum 10 loops per interrupt */
502 for (i = 0; i < 10; i++) {
503 /*
504 * Only believe a status bit when we enter wi_intr, or when
505 * the bit was "off" the last time through the loop. This is
506 * my strategy to avoid racing the hardware/firmware if I
507 * can re-read the event status register more quickly than
508 * it is updated.
509 */
510 status = CSR_READ_2(sc, WI_EVENT_STAT);
511 if ((status & WI_INTRS) == 0)
512 break;
513
514 if (status & WI_EV_RX)
515 wi_rx_intr(sc);
516
517 if (status & WI_EV_ALLOC)
518 wi_tx_intr(sc);
519
520 if (status & WI_EV_TX_EXC)
521 wi_tx_ex_intr(sc);
522
523 if (status & WI_EV_INFO)
524 wi_info_intr(sc);
525
526 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
527 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
528 !IFQ_IS_EMPTY(&ifp->if_snd))
529 wi_start(ifp);
530 }
531
532 /* re-enable interrupts */
533 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
534
535 return 1;
536 }
537
538 static int
539 wi_init(struct ifnet *ifp)
540 {
541 struct wi_softc *sc = ifp->if_softc;
542 struct ieee80211com *ic = &sc->sc_ic;
543 struct wi_joinreq join;
544 int i;
545 int error = 0, wasenabled;
546
547 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
548 wasenabled = sc->sc_enabled;
549 if (!sc->sc_enabled) {
550 if ((error = (*sc->sc_enable)(sc)) != 0)
551 goto out;
552 sc->sc_enabled = 1;
553 } else
554 wi_stop(ifp, 0);
555
556 /* Symbol firmware cannot be initialized more than once */
557 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled)
558 if ((error = wi_reset(sc)) != 0)
559 goto out;
560
561 /* common 802.11 configuration */
562 ic->ic_flags &= ~IEEE80211_F_IBSSON;
563 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
564 switch (ic->ic_opmode) {
565 case IEEE80211_M_STA:
566 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
567 break;
568 case IEEE80211_M_IBSS:
569 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
570 ic->ic_flags |= IEEE80211_F_IBSSON;
571 sc->sc_syn_timer = 5;
572 ifp->if_timer = 1;
573 break;
574 case IEEE80211_M_AHDEMO:
575 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
576 break;
577 case IEEE80211_M_HOSTAP:
578 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
579 break;
580 case IEEE80211_M_MONITOR:
581 if (sc->sc_firmware_type == WI_LUCENT)
582 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
583 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
584 break;
585 }
586
587 /* Intersil interprets this RID as joining ESS even in IBSS mode */
588 if (sc->sc_firmware_type == WI_LUCENT &&
589 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
590 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
591 else
592 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
593 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
594 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
595 ic->ic_des_esslen);
596 wi_write_val(sc, WI_RID_OWN_CHNL,
597 ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
598 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
599 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
600 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
601 wi_write_val(sc, WI_RID_PM_ENABLED,
602 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
603
604 /* not yet common 802.11 configuration */
605 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
606 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
607 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
608 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
609
610 /* driver specific 802.11 configuration */
611 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
612 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
613 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
614 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
615 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
616 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
617 wi_cfg_txrate(sc);
618 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
619
620 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
621 sc->sc_firmware_type == WI_INTERSIL) {
622 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
623 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
624 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
625 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
626 }
627
628 /*
629 * Initialize promisc mode.
630 * Being in the Host-AP mode causes a great
631 * deal of pain if primisc mode is set.
632 * Therefore we avoid confusing the firmware
633 * and always reset promisc mode in Host-AP
634 * mode. Host-AP sees all the packets anyway.
635 */
636 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
637 (ifp->if_flags & IFF_PROMISC) != 0) {
638 wi_write_val(sc, WI_RID_PROMISC, 1);
639 } else {
640 wi_write_val(sc, WI_RID_PROMISC, 0);
641 }
642
643 /* Configure WEP. */
644 if (ic->ic_caps & IEEE80211_C_WEP)
645 wi_write_wep(sc);
646
647 /* Set multicast filter. */
648 wi_write_multi(sc);
649
650 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
651 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
652 if (sc->sc_firmware_type == WI_SYMBOL)
653 sc->sc_buflen = 1585; /* XXX */
654 for (i = 0; i < WI_NTXBUF; i++) {
655 error = wi_alloc_fid(sc, sc->sc_buflen,
656 &sc->sc_txd[i].d_fid);
657 if (error) {
658 printf("%s: tx buffer allocation failed\n",
659 sc->sc_dev.dv_xname);
660 goto out;
661 }
662 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
663 sc->sc_txd[i].d_fid));
664 sc->sc_txd[i].d_len = 0;
665 }
666 }
667 sc->sc_txcur = sc->sc_txnext = 0;
668
669 /* Enable desired port */
670 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
671 ifp->if_flags |= IFF_RUNNING;
672 ifp->if_flags &= ~IFF_OACTIVE;
673 ic->ic_state = IEEE80211_S_INIT;
674
675 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
676 ic->ic_opmode == IEEE80211_M_MONITOR ||
677 ic->ic_opmode == IEEE80211_M_HOSTAP)
678 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
679
680 /* Enable interrupts */
681 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
682
683 if (!wasenabled &&
684 ic->ic_opmode == IEEE80211_M_HOSTAP &&
685 sc->sc_firmware_type == WI_INTERSIL) {
686 /* XXX: some card need to be re-enabled for hostap */
687 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
688 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
689 }
690
691 if (ic->ic_opmode == IEEE80211_M_STA &&
692 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
693 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
694 memset(&join, 0, sizeof(join));
695 if (ic->ic_flags & IEEE80211_F_DESBSSID)
696 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
697 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
698 join.wi_chan =
699 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan));
700 /* Lucent firmware does not support the JOIN RID. */
701 if (sc->sc_firmware_type != WI_LUCENT)
702 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
703 }
704
705 out:
706 if (error) {
707 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
708 wi_stop(ifp, 0);
709 }
710 DPRINTF(("wi_init: return %d\n", error));
711 return error;
712 }
713
714 static void
715 wi_stop(struct ifnet *ifp, int disable)
716 {
717 struct wi_softc *sc = ifp->if_softc;
718 struct ieee80211com *ic = &sc->sc_ic;
719 int s;
720
721 if (!sc->sc_enabled)
722 return;
723
724 s = splnet();
725
726 DPRINTF(("wi_stop: disable %d\n", disable));
727
728 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
729 if (!sc->sc_invalid) {
730 CSR_WRITE_2(sc, WI_INT_EN, 0);
731 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
732 }
733
734 sc->sc_tx_timer = 0;
735 sc->sc_scan_timer = 0;
736 sc->sc_syn_timer = 0;
737 sc->sc_false_syns = 0;
738 sc->sc_naps = 0;
739 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
740 ifp->if_timer = 0;
741
742 if (disable) {
743 if (sc->sc_disable)
744 (*sc->sc_disable)(sc);
745 sc->sc_enabled = 0;
746 }
747 splx(s);
748 }
749
750 static void
751 wi_start(struct ifnet *ifp)
752 {
753 struct wi_softc *sc = ifp->if_softc;
754 struct ieee80211com *ic = &sc->sc_ic;
755 struct ieee80211_node *ni;
756 struct ieee80211_frame *wh;
757 struct mbuf *m0;
758 struct wi_frame frmhdr;
759 int cur, fid, off;
760
761 if (!sc->sc_enabled || sc->sc_invalid)
762 return;
763 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
764 return;
765
766 memset(&frmhdr, 0, sizeof(frmhdr));
767 cur = sc->sc_txnext;
768 for (;;) {
769 ni = ic->ic_bss;
770 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
771 if (sc->sc_txd[cur].d_len != 0) {
772 ifp->if_flags |= IFF_OACTIVE;
773 break;
774 }
775 IF_DEQUEUE(&ic->ic_mgtq, m0);
776 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
777 (caddr_t)&frmhdr.wi_ehdr);
778 frmhdr.wi_ehdr.ether_type = 0;
779 wh = mtod(m0, struct ieee80211_frame *);
780 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
781 m0->m_pkthdr.rcvif = NULL;
782 } else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
783 struct llc *llc;
784
785 /*
786 * Should these packets be processed after the
787 * regular packets or before? Since they are being
788 * probed for, they are probably less time critical
789 * than other packets, but, on the other hand,
790 * we want the power saving nodes to go back to
791 * sleep as quickly as possible to save power...
792 */
793
794 if (ic->ic_state != IEEE80211_S_RUN)
795 break;
796
797 if (sc->sc_txd[cur].d_len != 0) {
798 ifp->if_flags |= IFF_OACTIVE;
799 break;
800 }
801 IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
802 wh = mtod(m0, struct ieee80211_frame *);
803 llc = (struct llc *) (wh + 1);
804 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
805 (caddr_t)&frmhdr.wi_ehdr);
806 frmhdr.wi_ehdr.ether_type = llc->llc_snap.ether_type;
807 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
808 m0->m_pkthdr.rcvif = NULL;
809 } else {
810 if (ic->ic_state != IEEE80211_S_RUN) {
811 break;
812 }
813 IFQ_POLL(&ifp->if_snd, m0);
814 if (m0 == NULL) {
815 break;
816 }
817 if (sc->sc_txd[cur].d_len != 0) {
818 ifp->if_flags |= IFF_OACTIVE;
819 break;
820 }
821 IFQ_DEQUEUE(&ifp->if_snd, m0);
822 ifp->if_opackets++;
823 m_copydata(m0, 0, ETHER_HDR_LEN,
824 (caddr_t)&frmhdr.wi_ehdr);
825 #if NBPFILTER > 0
826 if (ifp->if_bpf)
827 bpf_mtap(ifp->if_bpf, m0);
828 #endif
829
830 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
831 ifp->if_oerrors++;
832 continue;
833 }
834 wh = mtod(m0, struct ieee80211_frame *);
835 if (ic->ic_flags & IEEE80211_F_WEPON)
836 wh->i_fc[1] |= IEEE80211_FC1_WEP;
837 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
838 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
839 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
840 IEEE80211_FC0_TYPE_DATA) {
841 if (ni->ni_associd == 0) {
842 m_freem(m0);
843 ifp->if_oerrors++;
844 goto next;
845 }
846 if (ni->ni_pwrsave & IEEE80211_PS_SLEEP) {
847 ieee80211_pwrsave(ic, ni, m0);
848 continue; /* don't free node. */
849 }
850 }
851 }
852 #if NBPFILTER > 0
853 if (ic->ic_rawbpf)
854 bpf_mtap(ic->ic_rawbpf, m0);
855 #endif
856 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX);
857 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
858 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
859 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
860 ifp->if_oerrors++;
861 goto next;
862 }
863 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
864 }
865 #if NBPFILTER > 0
866 if (sc->sc_drvbpf) {
867 struct mbuf mb;
868
869 M_COPY_PKTHDR(&mb, m0);
870 mb.m_data = (caddr_t)&frmhdr;
871 mb.m_len = sizeof(frmhdr);
872 mb.m_next = m0;
873 mb.m_pkthdr.len += mb.m_len;
874 bpf_mtap(sc->sc_drvbpf, &mb);
875 }
876 #endif
877 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
878 (caddr_t)&frmhdr.wi_whdr);
879 m_adj(m0, sizeof(struct ieee80211_frame));
880 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
881 if (IFF_DUMPPKTS(ifp))
882 wi_dump_pkt(&frmhdr, ni, -1);
883 fid = sc->sc_txd[cur].d_fid;
884 off = sizeof(frmhdr);
885 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
886 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
887 ifp->if_oerrors++;
888 m_freem(m0);
889 goto next;
890 }
891 m_freem(m0);
892 sc->sc_txd[cur].d_len = off;
893 if (sc->sc_txcur == cur) {
894 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
895 printf("%s: xmit failed\n",
896 sc->sc_dev.dv_xname);
897 sc->sc_txd[cur].d_len = 0;
898 goto next;
899 }
900 sc->sc_tx_timer = 5;
901 ifp->if_timer = 1;
902 }
903 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF;
904 next:
905 if (ni != NULL && ni != ic->ic_bss)
906 ieee80211_free_node(ic, ni);
907 }
908 }
909
910
911 static int
912 wi_reset(struct wi_softc *sc)
913 {
914 int i, error;
915
916 DPRINTF(("wi_reset\n"));
917
918 if (sc->sc_reset)
919 (*sc->sc_reset)(sc);
920
921 error = 0;
922 for (i = 0; i < 5; i++) {
923 DELAY(20*1000); /* XXX: way too long! */
924 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
925 break;
926 }
927 if (error) {
928 printf("%s: init failed\n", sc->sc_dev.dv_xname);
929 return error;
930 }
931 CSR_WRITE_2(sc, WI_INT_EN, 0);
932 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
933
934 /* Calibrate timer. */
935 wi_write_val(sc, WI_RID_TICK_TIME, 0);
936 return 0;
937 }
938
939 static void
940 wi_watchdog(struct ifnet *ifp)
941 {
942 struct wi_softc *sc = ifp->if_softc;
943 struct ieee80211com *ic = &sc->sc_ic;
944
945 ifp->if_timer = 0;
946 if (!sc->sc_enabled)
947 return;
948
949 if (sc->sc_tx_timer) {
950 if (--sc->sc_tx_timer == 0) {
951 printf("%s: device timeout\n", ifp->if_xname);
952 ifp->if_oerrors++;
953 wi_init(ifp);
954 return;
955 }
956 ifp->if_timer = 1;
957 }
958
959 if (sc->sc_scan_timer) {
960 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
961 sc->sc_firmware_type == WI_INTERSIL) {
962 DPRINTF(("wi_watchdog: inquire scan\n"));
963 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
964 }
965 if (sc->sc_scan_timer)
966 ifp->if_timer = 1;
967 }
968
969 if (sc->sc_syn_timer) {
970 if (--sc->sc_syn_timer == 0) {
971 DPRINTF2(("%s: %d false syns\n",
972 sc->sc_dev.dv_xname, sc->sc_false_syns));
973 sc->sc_false_syns = 0;
974 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
975 sc->sc_syn_timer = 5;
976 }
977 ifp->if_timer = 1;
978 }
979
980 /* TODO: rate control */
981 ieee80211_watchdog(ifp);
982 }
983
984 static int
985 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
986 {
987 struct wi_softc *sc = ifp->if_softc;
988 struct ieee80211com *ic = &sc->sc_ic;
989 struct ifreq *ifr = (struct ifreq *)data;
990 int s, error = 0;
991
992 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
993 return ENXIO;
994
995 s = splnet();
996
997 switch (cmd) {
998 case SIOCSIFFLAGS:
999 /*
1000 * Can't do promisc and hostap at the same time. If all that's
1001 * changing is the promisc flag, try to short-circuit a call to
1002 * wi_init() by just setting PROMISC in the hardware.
1003 */
1004 if (ifp->if_flags & IFF_UP) {
1005 if (sc->sc_enabled) {
1006 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1007 (ifp->if_flags & IFF_PROMISC) != 0)
1008 wi_write_val(sc, WI_RID_PROMISC, 1);
1009 else
1010 wi_write_val(sc, WI_RID_PROMISC, 0);
1011 } else
1012 error = wi_init(ifp);
1013 } else if (sc->sc_enabled)
1014 wi_stop(ifp, 1);
1015 break;
1016 case SIOCSIFMEDIA:
1017 case SIOCGIFMEDIA:
1018 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1019 break;
1020 case SIOCADDMULTI:
1021 case SIOCDELMULTI:
1022 error = (cmd == SIOCADDMULTI) ?
1023 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1024 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1025 if (error == ENETRESET) {
1026 if (sc->sc_enabled) {
1027 /* do not rescan */
1028 error = wi_write_multi(sc);
1029 } else
1030 error = 0;
1031 }
1032 break;
1033 case SIOCGIFGENERIC:
1034 error = wi_get_cfg(ifp, cmd, data);
1035 break;
1036 case SIOCSIFGENERIC:
1037 error = suser(curproc->p_ucred, &curproc->p_acflag);
1038 if (error)
1039 break;
1040 error = wi_set_cfg(ifp, cmd, data);
1041 if (error == ENETRESET) {
1042 if (sc->sc_enabled)
1043 error = wi_init(ifp);
1044 else
1045 error = 0;
1046 }
1047 break;
1048 case SIOCS80211BSSID:
1049 if (sc->sc_firmware_type == WI_LUCENT) {
1050 error = ENODEV;
1051 break;
1052 }
1053 /* fall through */
1054 default:
1055 error = ieee80211_ioctl(ifp, cmd, data);
1056 if (error == ENETRESET) {
1057 if (sc->sc_enabled)
1058 error = wi_init(ifp);
1059 else
1060 error = 0;
1061 }
1062 break;
1063 }
1064 splx(s);
1065 return error;
1066 }
1067
1068 /* TBD factor with ieee80211_media_change */
1069 static int
1070 wi_media_change(struct ifnet *ifp)
1071 {
1072 struct wi_softc *sc = ifp->if_softc;
1073 struct ieee80211com *ic = &sc->sc_ic;
1074 struct ifmedia_entry *ime;
1075 enum ieee80211_opmode newmode;
1076 int i, rate, error = 0;
1077
1078 ime = ic->ic_media.ifm_cur;
1079 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
1080 i = -1;
1081 } else {
1082 struct ieee80211_rateset *rs =
1083 &ic->ic_sup_rates[ieee80211_chan2mode(ic,
1084 ic->ic_bss->ni_chan)];
1085 rate = ieee80211_media2rate(ime->ifm_media);
1086 if (rate == 0)
1087 return EINVAL;
1088 for (i = 0; i < rs->rs_nrates; i++) {
1089 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate)
1090 break;
1091 }
1092 if (i == rs->rs_nrates)
1093 return EINVAL;
1094 }
1095 if (ic->ic_fixed_rate != i) {
1096 ic->ic_fixed_rate = i;
1097 error = ENETRESET;
1098 }
1099
1100 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
1101 (ime->ifm_media & IFM_FLAG0))
1102 newmode = IEEE80211_M_AHDEMO;
1103 else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
1104 newmode = IEEE80211_M_IBSS;
1105 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
1106 newmode = IEEE80211_M_HOSTAP;
1107 else if (ime->ifm_media & IFM_IEEE80211_MONITOR)
1108 newmode = IEEE80211_M_MONITOR;
1109 else
1110 newmode = IEEE80211_M_STA;
1111 if (ic->ic_opmode != newmode) {
1112 ic->ic_opmode = newmode;
1113 error = ENETRESET;
1114 }
1115 if (error == ENETRESET) {
1116 if (sc->sc_enabled)
1117 error = wi_init(ifp);
1118 else
1119 error = 0;
1120 }
1121 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1122
1123 return error;
1124 }
1125
1126 static void
1127 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1128 {
1129 struct wi_softc *sc = ifp->if_softc;
1130 struct ieee80211com *ic = &sc->sc_ic;
1131 u_int16_t val;
1132 int rate, len;
1133
1134 if (sc->sc_enabled == 0) {
1135 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1136 imr->ifm_status = 0;
1137 return;
1138 }
1139
1140 imr->ifm_status = IFM_AVALID;
1141 imr->ifm_active = IFM_IEEE80211;
1142 if (ic->ic_state == IEEE80211_S_RUN &&
1143 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1144 imr->ifm_status |= IFM_ACTIVE;
1145 len = sizeof(val);
1146 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1147 rate = 0;
1148 else {
1149 /* convert to 802.11 rate */
1150 rate = val * 2;
1151 if (sc->sc_firmware_type == WI_LUCENT) {
1152 if (rate == 10)
1153 rate = 11; /* 5.5Mbps */
1154 } else {
1155 if (rate == 4*2)
1156 rate = 11; /* 5.5Mbps */
1157 else if (rate == 8*2)
1158 rate = 22; /* 11Mbps */
1159 }
1160 }
1161 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1162 switch (ic->ic_opmode) {
1163 case IEEE80211_M_STA:
1164 break;
1165 case IEEE80211_M_IBSS:
1166 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1167 break;
1168 case IEEE80211_M_AHDEMO:
1169 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1170 break;
1171 case IEEE80211_M_HOSTAP:
1172 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1173 break;
1174 case IEEE80211_M_MONITOR:
1175 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1176 break;
1177 }
1178 }
1179
1180 static void
1181 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1182 {
1183 struct ieee80211com *ic = &sc->sc_ic;
1184 struct ieee80211_node *ni = ic->ic_bss;
1185 struct ifnet *ifp = &ic->ic_if;
1186
1187 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1188 return;
1189
1190 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
1191 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1192
1193 /* In promiscuous mode, the BSSID field is not a reliable
1194 * indicator of the firmware's BSSID. Damp spurious
1195 * change-of-BSSID indications.
1196 */
1197 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1198 sc->sc_false_syns >= WI_MAX_FALSE_SYNS)
1199 return;
1200
1201 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1202 }
1203
1204 static void
1205 wi_rx_intr(struct wi_softc *sc)
1206 {
1207 struct ieee80211com *ic = &sc->sc_ic;
1208 struct ifnet *ifp = &ic->ic_if;
1209 struct ieee80211_node *ni;
1210 struct wi_frame frmhdr;
1211 struct mbuf *m;
1212 struct ieee80211_frame *wh;
1213 int fid, len, off, rssi;
1214 u_int8_t dir;
1215 u_int16_t status;
1216 u_int32_t rstamp;
1217
1218 fid = CSR_READ_2(sc, WI_RX_FID);
1219
1220 /* First read in the frame header */
1221 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1222 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1223 ifp->if_ierrors++;
1224 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1225 return;
1226 }
1227
1228 if (IFF_DUMPPKTS(ifp))
1229 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1230
1231 /*
1232 * Drop undecryptable or packets with receive errors here
1233 */
1234 status = le16toh(frmhdr.wi_status);
1235 if (status & WI_STAT_ERRSTAT) {
1236 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1237 ifp->if_ierrors++;
1238 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1239 return;
1240 }
1241 rssi = frmhdr.wi_rx_signal;
1242 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1243 le16toh(frmhdr.wi_rx_tstamp1);
1244
1245 len = le16toh(frmhdr.wi_dat_len);
1246 off = ALIGN(sizeof(struct ieee80211_frame));
1247
1248 /* Sometimes the PRISM2.x returns bogusly large frames. Except
1249 * in monitor mode, just throw them away.
1250 */
1251 if (off + len > MCLBYTES) {
1252 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1253 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1254 ifp->if_ierrors++;
1255 DPRINTF(("wi_rx_intr: oversized packet\n"));
1256 return;
1257 } else
1258 len = 0;
1259 }
1260
1261 MGETHDR(m, M_DONTWAIT, MT_DATA);
1262 if (m == NULL) {
1263 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1264 ifp->if_ierrors++;
1265 DPRINTF(("wi_rx_intr: MGET failed\n"));
1266 return;
1267 }
1268 if (off + len > MHLEN) {
1269 MCLGET(m, M_DONTWAIT);
1270 if ((m->m_flags & M_EXT) == 0) {
1271 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1272 m_freem(m);
1273 ifp->if_ierrors++;
1274 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1275 return;
1276 }
1277 }
1278
1279 m->m_data += off - sizeof(struct ieee80211_frame);
1280 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1281 wi_read_bap(sc, fid, sizeof(frmhdr),
1282 m->m_data + sizeof(struct ieee80211_frame), len);
1283 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1284 m->m_pkthdr.rcvif = ifp;
1285
1286 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1287
1288 #if NBPFILTER > 0
1289 if (sc->sc_drvbpf) {
1290 struct mbuf mb;
1291
1292 M_COPY_PKTHDR(&mb, m);
1293 mb.m_data = (caddr_t)&frmhdr;
1294 frmhdr.wi_rx_signal = WI_RSSI_TO_DBM(sc, frmhdr.wi_rx_signal);
1295 frmhdr.wi_rx_silence = WI_RSSI_TO_DBM(sc, frmhdr.wi_rx_silence);
1296 mb.m_len = (char *)&frmhdr.wi_whdr - (char *)&frmhdr;
1297 mb.m_next = m;
1298 mb.m_pkthdr.len += mb.m_len;
1299 bpf_mtap(sc->sc_drvbpf, &mb);
1300 }
1301 #endif
1302 wh = mtod(m, struct ieee80211_frame *);
1303 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1304 /*
1305 * WEP is decrypted by hardware. Clear WEP bit
1306 * header for ieee80211_input().
1307 */
1308 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1309 }
1310
1311 /* synchronize driver's BSSID with firmware's BSSID */
1312 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1313 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1314 wi_sync_bssid(sc, wh->i_addr3);
1315
1316 if (ic->ic_opmode != IEEE80211_M_STA) {
1317 ni = ieee80211_find_node(ic, wh->i_addr2);
1318 if (ni == NULL)
1319 ni = ieee80211_ref_node(ic->ic_bss);
1320 } else
1321 ni = ieee80211_ref_node(ic->ic_bss);
1322
1323 ieee80211_input(ifp, m, ni, rssi, rstamp);
1324
1325 /*
1326 * The frame may have caused the node to be marked for
1327 * reclamation (e.g. in response to a DEAUTH message)
1328 * so use free_node here instead of unref_node.
1329 */
1330 if (ni == ic->ic_bss)
1331 ieee80211_unref_node(&ni);
1332 else
1333 ieee80211_free_node(ic, ni);
1334 }
1335
1336 static void
1337 wi_tx_ex_intr(struct wi_softc *sc)
1338 {
1339 struct ieee80211com *ic = &sc->sc_ic;
1340 struct ifnet *ifp = &ic->ic_if;
1341 struct wi_frame frmhdr;
1342 int fid;
1343
1344 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1345 /* Read in the frame header */
1346 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) == 0) {
1347 u_int16_t status = le16toh(frmhdr.wi_status);
1348
1349 /*
1350 * Spontaneous station disconnects appear as xmit
1351 * errors. Don't announce them and/or count them
1352 * as an output error.
1353 */
1354 if ((status & WI_TXSTAT_DISCONNECT) == 0) {
1355 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1356 curtxeps = 0;
1357 printf("%s: tx failed", sc->sc_dev.dv_xname);
1358 if (status & WI_TXSTAT_RET_ERR)
1359 printf(", retry limit exceeded");
1360 if (status & WI_TXSTAT_AGED_ERR)
1361 printf(", max transmit lifetime exceeded");
1362 if (status & WI_TXSTAT_DISCONNECT)
1363 printf(", port disconnected");
1364 if (status & WI_TXSTAT_FORM_ERR)
1365 printf(", invalid format (data len %u src %s)",
1366 le16toh(frmhdr.wi_dat_len),
1367 ether_sprintf(frmhdr.wi_ehdr.ether_shost));
1368 if (status & ~0xf)
1369 printf(", status=0x%x", status);
1370 printf("\n");
1371 }
1372 ifp->if_oerrors++;
1373 } else {
1374 DPRINTF(("port disconnected\n"));
1375 ifp->if_collisions++; /* XXX */
1376 }
1377 } else
1378 DPRINTF(("wi_tx_ex_intr: read fid %x failed\n", fid));
1379 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
1380 }
1381
1382 static void
1383 wi_tx_intr(struct wi_softc *sc)
1384 {
1385 struct ieee80211com *ic = &sc->sc_ic;
1386 struct ifnet *ifp = &ic->ic_if;
1387 int fid, cur;
1388
1389 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1390 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1391
1392 cur = sc->sc_txcur;
1393 if (sc->sc_txd[cur].d_fid != fid) {
1394 printf("%s: bad alloc %x != %x, cur %d nxt %d\n",
1395 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1396 sc->sc_txnext);
1397 return;
1398 }
1399 sc->sc_tx_timer = 0;
1400 sc->sc_txd[cur].d_len = 0;
1401 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF;
1402 if (sc->sc_txd[cur].d_len == 0)
1403 ifp->if_flags &= ~IFF_OACTIVE;
1404 else {
1405 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1406 0, 0)) {
1407 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1408 sc->sc_txd[cur].d_len = 0;
1409 } else {
1410 sc->sc_tx_timer = 5;
1411 ifp->if_timer = 1;
1412 }
1413 }
1414 }
1415
1416 static void
1417 wi_info_intr(struct wi_softc *sc)
1418 {
1419 struct ieee80211com *ic = &sc->sc_ic;
1420 struct ifnet *ifp = &ic->ic_if;
1421 int i, fid, len, off;
1422 u_int16_t ltbuf[2];
1423 u_int16_t stat;
1424 u_int32_t *ptr;
1425
1426 fid = CSR_READ_2(sc, WI_INFO_FID);
1427 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1428
1429 switch (le16toh(ltbuf[1])) {
1430
1431 case WI_INFO_LINK_STAT:
1432 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1433 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1434 switch (le16toh(stat)) {
1435 case CONNECTED:
1436 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1437 if (ic->ic_state == IEEE80211_S_RUN &&
1438 ic->ic_opmode != IEEE80211_M_IBSS)
1439 break;
1440 /* FALLTHROUGH */
1441 case AP_CHANGE:
1442 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1443 break;
1444 case AP_IN_RANGE:
1445 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1446 break;
1447 case AP_OUT_OF_RANGE:
1448 if (sc->sc_firmware_type == WI_SYMBOL &&
1449 sc->sc_scan_timer > 0) {
1450 if (wi_cmd(sc, WI_CMD_INQUIRE,
1451 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1452 sc->sc_scan_timer = 0;
1453 break;
1454 }
1455 if (ic->ic_opmode == IEEE80211_M_STA)
1456 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1457 break;
1458 case DISCONNECTED:
1459 case ASSOC_FAILED:
1460 if (ic->ic_opmode == IEEE80211_M_STA)
1461 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1462 break;
1463 }
1464 break;
1465
1466 case WI_INFO_COUNTERS:
1467 /* some card versions have a larger stats structure */
1468 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1469 ptr = (u_int32_t *)&sc->sc_stats;
1470 off = sizeof(ltbuf);
1471 for (i = 0; i < len; i++, off += 2, ptr++) {
1472 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1473 #ifdef WI_HERMES_STATS_WAR
1474 if (stat & 0xf000)
1475 stat = ~stat;
1476 #endif
1477 *ptr += stat;
1478 }
1479 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1480 sc->sc_stats.wi_tx_multi_retries +
1481 sc->sc_stats.wi_tx_retry_limit;
1482 break;
1483
1484 case WI_INFO_SCAN_RESULTS:
1485 case WI_INFO_HOST_SCAN_RESULTS:
1486 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1487 break;
1488
1489 default:
1490 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1491 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1492 break;
1493 }
1494 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1495 }
1496
1497 static int
1498 wi_write_multi(struct wi_softc *sc)
1499 {
1500 struct ifnet *ifp = &sc->sc_ic.ic_if;
1501 int n;
1502 struct wi_mcast mlist;
1503 struct ether_multi *enm;
1504 struct ether_multistep estep;
1505
1506 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1507 allmulti:
1508 ifp->if_flags |= IFF_ALLMULTI;
1509 memset(&mlist, 0, sizeof(mlist));
1510 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1511 sizeof(mlist));
1512 }
1513
1514 n = 0;
1515 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1516 while (enm != NULL) {
1517 /* Punt on ranges or too many multicast addresses. */
1518 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1519 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1520 goto allmulti;
1521
1522 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1523 n++;
1524 ETHER_NEXT_MULTI(estep, enm);
1525 }
1526 ifp->if_flags &= ~IFF_ALLMULTI;
1527 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1528 IEEE80211_ADDR_LEN * n);
1529 }
1530
1531
1532 static void
1533 wi_read_nicid(struct wi_softc *sc)
1534 {
1535 struct wi_card_ident *id;
1536 char *p;
1537 int len;
1538 u_int16_t ver[4];
1539
1540 /* getting chip identity */
1541 memset(ver, 0, sizeof(ver));
1542 len = sizeof(ver);
1543 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1544 printf("%s: using ", sc->sc_dev.dv_xname);
1545 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1546
1547 sc->sc_firmware_type = WI_NOTYPE;
1548 for (id = wi_card_ident; id->card_name != NULL; id++) {
1549 if (le16toh(ver[0]) == id->card_id) {
1550 printf("%s", id->card_name);
1551 sc->sc_firmware_type = id->firm_type;
1552 break;
1553 }
1554 }
1555 if (sc->sc_firmware_type == WI_NOTYPE) {
1556 if (le16toh(ver[0]) & 0x8000) {
1557 printf("Unknown PRISM2 chip");
1558 sc->sc_firmware_type = WI_INTERSIL;
1559 } else {
1560 printf("Unknown Lucent chip");
1561 sc->sc_firmware_type = WI_LUCENT;
1562 }
1563 }
1564
1565 /* get primary firmware version (Only Prism chips) */
1566 if (sc->sc_firmware_type != WI_LUCENT) {
1567 memset(ver, 0, sizeof(ver));
1568 len = sizeof(ver);
1569 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1570 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1571 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1572 }
1573
1574 /* get station firmware version */
1575 memset(ver, 0, sizeof(ver));
1576 len = sizeof(ver);
1577 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1578 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1579 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1580 if (sc->sc_firmware_type == WI_INTERSIL &&
1581 (sc->sc_sta_firmware_ver == 10102 ||
1582 sc->sc_sta_firmware_ver == 20102)) {
1583 char ident[12];
1584 memset(ident, 0, sizeof(ident));
1585 len = sizeof(ident);
1586 /* value should be the format like "V2.00-11" */
1587 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1588 *(p = (char *)ident) >= 'A' &&
1589 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1590 sc->sc_firmware_type = WI_SYMBOL;
1591 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1592 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1593 (p[6] - '0') * 10 + (p[7] - '0');
1594 }
1595 }
1596
1597 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1598 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1599 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1600 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1601 printf("Primary (%u.%u.%u), ",
1602 sc->sc_pri_firmware_ver / 10000,
1603 (sc->sc_pri_firmware_ver % 10000) / 100,
1604 sc->sc_pri_firmware_ver % 100);
1605 printf("Station (%u.%u.%u)\n",
1606 sc->sc_sta_firmware_ver / 10000,
1607 (sc->sc_sta_firmware_ver % 10000) / 100,
1608 sc->sc_sta_firmware_ver % 100);
1609 }
1610
1611 static int
1612 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1613 {
1614 struct wi_ssid ssid;
1615
1616 if (buflen > IEEE80211_NWID_LEN)
1617 return ENOBUFS;
1618 memset(&ssid, 0, sizeof(ssid));
1619 ssid.wi_len = htole16(buflen);
1620 memcpy(ssid.wi_ssid, buf, buflen);
1621 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
1622 }
1623
1624 static int
1625 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1626 {
1627 struct wi_softc *sc = ifp->if_softc;
1628 struct ieee80211com *ic = &sc->sc_ic;
1629 struct ifreq *ifr = (struct ifreq *)data;
1630 struct wi_req wreq;
1631 int len, n, error;
1632
1633 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1634 if (error)
1635 return error;
1636 len = (wreq.wi_len - 1) * 2;
1637 if (len < sizeof(u_int16_t))
1638 return ENOSPC;
1639 if (len > sizeof(wreq.wi_val))
1640 len = sizeof(wreq.wi_val);
1641
1642 switch (wreq.wi_type) {
1643
1644 case WI_RID_IFACE_STATS:
1645 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1646 if (len < sizeof(sc->sc_stats))
1647 error = ENOSPC;
1648 else
1649 len = sizeof(sc->sc_stats);
1650 break;
1651
1652 case WI_RID_ENCRYPTION:
1653 case WI_RID_TX_CRYPT_KEY:
1654 case WI_RID_DEFLT_CRYPT_KEYS:
1655 case WI_RID_TX_RATE:
1656 return ieee80211_cfgget(ifp, cmd, data);
1657
1658 case WI_RID_MICROWAVE_OVEN:
1659 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1660 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1661 &len);
1662 break;
1663 }
1664 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1665 len = sizeof(u_int16_t);
1666 break;
1667
1668 case WI_RID_DBM_ADJUST:
1669 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
1670 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1671 &len);
1672 break;
1673 }
1674 wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
1675 len = sizeof(u_int16_t);
1676 break;
1677
1678 case WI_RID_ROAMING_MODE:
1679 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
1680 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1681 &len);
1682 break;
1683 }
1684 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
1685 len = sizeof(u_int16_t);
1686 break;
1687
1688 case WI_RID_SYSTEM_SCALE:
1689 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
1690 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1691 &len);
1692 break;
1693 }
1694 wreq.wi_val[0] = htole16(sc->sc_system_scale);
1695 len = sizeof(u_int16_t);
1696 break;
1697
1698 case WI_RID_FRAG_THRESH:
1699 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
1700 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1701 &len);
1702 break;
1703 }
1704 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
1705 len = sizeof(u_int16_t);
1706 break;
1707
1708 case WI_RID_READ_APS:
1709 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1710 return ieee80211_cfgget(ifp, cmd, data);
1711 if (sc->sc_scan_timer > 0) {
1712 error = EINPROGRESS;
1713 break;
1714 }
1715 n = sc->sc_naps;
1716 if (len < sizeof(n)) {
1717 error = ENOSPC;
1718 break;
1719 }
1720 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
1721 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
1722 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
1723 memcpy(wreq.wi_val, &n, sizeof(n));
1724 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
1725 sizeof(struct wi_apinfo) * n);
1726 break;
1727
1728 default:
1729 if (sc->sc_enabled) {
1730 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1731 &len);
1732 break;
1733 }
1734 switch (wreq.wi_type) {
1735 case WI_RID_MAX_DATALEN:
1736 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
1737 len = sizeof(u_int16_t);
1738 break;
1739 case WI_RID_FRAG_THRESH:
1740 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
1741 len = sizeof(u_int16_t);
1742 break;
1743 case WI_RID_RTS_THRESH:
1744 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
1745 len = sizeof(u_int16_t);
1746 break;
1747 case WI_RID_CNFAUTHMODE:
1748 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
1749 len = sizeof(u_int16_t);
1750 break;
1751 case WI_RID_NODENAME:
1752 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
1753 error = ENOSPC;
1754 break;
1755 }
1756 len = sc->sc_nodelen + sizeof(u_int16_t);
1757 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
1758 memcpy(&wreq.wi_val[1], sc->sc_nodename,
1759 sc->sc_nodelen);
1760 break;
1761 default:
1762 return ieee80211_cfgget(ifp, cmd, data);
1763 }
1764 break;
1765 }
1766 if (error)
1767 return error;
1768 wreq.wi_len = (len + 1) / 2 + 1;
1769 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
1770 }
1771
1772 static int
1773 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1774 {
1775 struct wi_softc *sc = ifp->if_softc;
1776 struct ieee80211com *ic = &sc->sc_ic;
1777 struct ifreq *ifr = (struct ifreq *)data;
1778 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
1779 struct wi_req wreq;
1780 struct mbuf *m;
1781 int i, len, error;
1782
1783 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1784 if (error)
1785 return error;
1786 len = (wreq.wi_len - 1) * 2;
1787 switch (wreq.wi_type) {
1788 case WI_RID_DBM_ADJUST:
1789 return ENODEV;
1790
1791 case WI_RID_NODENAME:
1792 if (le16toh(wreq.wi_val[0]) * 2 > len ||
1793 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
1794 error = ENOSPC;
1795 break;
1796 }
1797 if (sc->sc_enabled) {
1798 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1799 len);
1800 if (error)
1801 break;
1802 }
1803 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
1804 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
1805 break;
1806
1807 case WI_RID_MICROWAVE_OVEN:
1808 case WI_RID_ROAMING_MODE:
1809 case WI_RID_SYSTEM_SCALE:
1810 case WI_RID_FRAG_THRESH:
1811 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
1812 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
1813 break;
1814 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
1815 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
1816 break;
1817 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
1818 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
1819 break;
1820 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
1821 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
1822 break;
1823 /* FALLTHROUGH */
1824 case WI_RID_RTS_THRESH:
1825 case WI_RID_CNFAUTHMODE:
1826 case WI_RID_MAX_DATALEN:
1827 if (sc->sc_enabled) {
1828 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1829 sizeof(u_int16_t));
1830 if (error)
1831 break;
1832 }
1833 switch (wreq.wi_type) {
1834 case WI_RID_FRAG_THRESH:
1835 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
1836 break;
1837 case WI_RID_RTS_THRESH:
1838 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
1839 break;
1840 case WI_RID_MICROWAVE_OVEN:
1841 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
1842 break;
1843 case WI_RID_ROAMING_MODE:
1844 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
1845 break;
1846 case WI_RID_SYSTEM_SCALE:
1847 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
1848 break;
1849 case WI_RID_CNFAUTHMODE:
1850 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
1851 break;
1852 case WI_RID_MAX_DATALEN:
1853 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
1854 break;
1855 }
1856 break;
1857
1858 case WI_RID_TX_RATE:
1859 switch (le16toh(wreq.wi_val[0])) {
1860 case 3:
1861 ic->ic_fixed_rate = -1;
1862 break;
1863 default:
1864 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1865 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
1866 / 2 == le16toh(wreq.wi_val[0]))
1867 break;
1868 }
1869 if (i == IEEE80211_RATE_SIZE)
1870 return EINVAL;
1871 ic->ic_fixed_rate = i;
1872 }
1873 if (sc->sc_enabled)
1874 error = wi_cfg_txrate(sc);
1875 break;
1876
1877 case WI_RID_SCAN_APS:
1878 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
1879 error = wi_scan_ap(sc, 0x3fff, 0x000f);
1880 break;
1881
1882 case WI_RID_MGMT_XMIT:
1883 if (!sc->sc_enabled) {
1884 error = ENETDOWN;
1885 break;
1886 }
1887 if (ic->ic_mgtq.ifq_len > 5) {
1888 error = EAGAIN;
1889 break;
1890 }
1891 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
1892 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
1893 if (m == NULL) {
1894 error = ENOMEM;
1895 break;
1896 }
1897 IF_ENQUEUE(&ic->ic_mgtq, m);
1898 break;
1899
1900 default:
1901 if (sc->sc_enabled) {
1902 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1903 len);
1904 if (error)
1905 break;
1906 }
1907 error = ieee80211_cfgset(ifp, cmd, data);
1908 break;
1909 }
1910 return error;
1911 }
1912
1913 /* Rate is 0 for hardware auto-select, otherwise rate is
1914 * 2, 4, 11, or 22 (units of 500Kbps).
1915 */
1916 static int
1917 wi_write_txrate(struct wi_softc *sc, int rate)
1918 {
1919 u_int16_t hwrate;
1920 int i;
1921
1922 rate = (rate & IEEE80211_RATE_VAL) / 2;
1923
1924 /* rate: 0, 1, 2, 5, 11 */
1925 switch (sc->sc_firmware_type) {
1926 case WI_LUCENT:
1927 switch (rate) {
1928 case 0:
1929 hwrate = 3; /* auto */
1930 break;
1931 case 5:
1932 hwrate = 4;
1933 break;
1934 case 11:
1935 hwrate = 5;
1936 break;
1937 default:
1938 hwrate = rate;
1939 break;
1940 }
1941 break;
1942 default:
1943 /* Choose a bit according to this table.
1944 *
1945 * bit | data rate
1946 * ----+-------------------
1947 * 0 | 1Mbps
1948 * 1 | 2Mbps
1949 * 2 | 5.5Mbps
1950 * 3 | 11Mbps
1951 */
1952 for (i = 8; i > 0; i >>= 1) {
1953 if (rate >= i)
1954 break;
1955 }
1956 if (i == 0)
1957 hwrate = 0xf; /* auto */
1958 else
1959 hwrate = i;
1960 break;
1961 }
1962
1963 if (sc->sc_tx_rate == hwrate)
1964 return 0;
1965
1966 if (sc->sc_if.if_flags & IFF_DEBUG)
1967 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate,
1968 hwrate, rate);
1969
1970 sc->sc_tx_rate = hwrate;
1971
1972 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate);
1973 }
1974
1975 static int
1976 wi_cfg_txrate(struct wi_softc *sc)
1977 {
1978 struct ieee80211com *ic = &sc->sc_ic;
1979 struct ieee80211_rateset *rs;
1980 int rate;
1981
1982 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
1983
1984 sc->sc_tx_rate = 0; /* force write to RID */
1985
1986 if (ic->ic_fixed_rate < 0)
1987 rate = 0; /* auto */
1988 else
1989 rate = rs->rs_rates[ic->ic_fixed_rate];
1990
1991 return wi_write_txrate(sc, rate);
1992 }
1993
1994 static int
1995 wi_write_wep(struct wi_softc *sc)
1996 {
1997 struct ieee80211com *ic = &sc->sc_ic;
1998 int error = 0;
1999 int i, keylen;
2000 u_int16_t val;
2001 struct wi_key wkey[IEEE80211_WEP_NKID];
2002
2003 switch (sc->sc_firmware_type) {
2004 case WI_LUCENT:
2005 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
2006 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2007 if (error)
2008 break;
2009 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
2010 if (error)
2011 break;
2012 memset(wkey, 0, sizeof(wkey));
2013 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2014 keylen = ic->ic_nw_keys[i].wk_len;
2015 wkey[i].wi_keylen = htole16(keylen);
2016 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2017 keylen);
2018 }
2019 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2020 wkey, sizeof(wkey));
2021 break;
2022
2023 case WI_INTERSIL:
2024 case WI_SYMBOL:
2025 if (ic->ic_flags & IEEE80211_F_WEPON) {
2026 /*
2027 * ONLY HWB3163 EVAL-CARD Firmware version
2028 * less than 0.8 variant2
2029 *
2030 * If promiscuous mode disable, Prism2 chip
2031 * does not work with WEP .
2032 * It is under investigation for details.
2033 * (ichiro (at) netbsd.org)
2034 */
2035 if (sc->sc_firmware_type == WI_INTERSIL &&
2036 sc->sc_sta_firmware_ver < 802 ) {
2037 /* firm ver < 0.8 variant 2 */
2038 wi_write_val(sc, WI_RID_PROMISC, 1);
2039 }
2040 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2041 sc->sc_cnfauthmode);
2042 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
2043 /*
2044 * Encryption firmware has a bug for HostAP mode.
2045 */
2046 if (sc->sc_firmware_type == WI_INTERSIL &&
2047 ic->ic_opmode == IEEE80211_M_HOSTAP)
2048 val |= HOST_ENCRYPT;
2049 } else {
2050 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2051 IEEE80211_AUTH_OPEN);
2052 val = HOST_ENCRYPT | HOST_DECRYPT;
2053 }
2054 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2055 if (error)
2056 break;
2057 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2058 ic->ic_wep_txkey);
2059 if (error)
2060 break;
2061 /*
2062 * It seems that the firmware accept 104bit key only if
2063 * all the keys have 104bit length. We get the length of
2064 * the transmit key and use it for all other keys.
2065 * Perhaps we should use software WEP for such situation.
2066 */
2067 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
2068 if (keylen > IEEE80211_WEP_KEYLEN)
2069 keylen = 13; /* 104bit keys */
2070 else
2071 keylen = IEEE80211_WEP_KEYLEN;
2072 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2073 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2074 ic->ic_nw_keys[i].wk_key, keylen);
2075 if (error)
2076 break;
2077 }
2078 break;
2079 }
2080 return error;
2081 }
2082
2083 /* Must be called at proper protection level! */
2084 static int
2085 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2086 {
2087 int i, status;
2088
2089 /* wait for the busy bit to clear */
2090 for (i = 500; i > 0; i--) { /* 5s */
2091 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2092 break;
2093 DELAY(10*1000); /* 10 m sec */
2094 }
2095 if (i == 0) {
2096 printf("%s: wi_cmd: busy bit won't clear.\n",
2097 sc->sc_dev.dv_xname);
2098 return(ETIMEDOUT);
2099 }
2100 CSR_WRITE_2(sc, WI_PARAM0, val0);
2101 CSR_WRITE_2(sc, WI_PARAM1, val1);
2102 CSR_WRITE_2(sc, WI_PARAM2, val2);
2103 CSR_WRITE_2(sc, WI_COMMAND, cmd);
2104
2105 if (cmd == WI_CMD_INI) {
2106 /* XXX: should sleep here. */
2107 DELAY(100*1000);
2108 }
2109 /* wait for the cmd completed bit */
2110 for (i = 0; i < WI_TIMEOUT; i++) {
2111 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
2112 break;
2113 DELAY(WI_DELAY);
2114 }
2115
2116 status = CSR_READ_2(sc, WI_STATUS);
2117
2118 /* Ack the command */
2119 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2120
2121 if (i == WI_TIMEOUT) {
2122 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
2123 sc->sc_dev.dv_xname, cmd, val0);
2124 return ETIMEDOUT;
2125 }
2126
2127 if (status & WI_STAT_CMD_RESULT) {
2128 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
2129 sc->sc_dev.dv_xname, cmd, val0);
2130 return EIO;
2131 }
2132 return 0;
2133 }
2134
2135 static int
2136 wi_seek_bap(struct wi_softc *sc, int id, int off)
2137 {
2138 int i, status;
2139
2140 CSR_WRITE_2(sc, WI_SEL0, id);
2141 CSR_WRITE_2(sc, WI_OFF0, off);
2142
2143 for (i = 0; ; i++) {
2144 status = CSR_READ_2(sc, WI_OFF0);
2145 if ((status & WI_OFF_BUSY) == 0)
2146 break;
2147 if (i == WI_TIMEOUT) {
2148 printf("%s: timeout in wi_seek to %x/%x\n",
2149 sc->sc_dev.dv_xname, id, off);
2150 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2151 return ETIMEDOUT;
2152 }
2153 DELAY(1);
2154 }
2155 if (status & WI_OFF_ERR) {
2156 printf("%s: failed in wi_seek to %x/%x\n",
2157 sc->sc_dev.dv_xname, id, off);
2158 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2159 return EIO;
2160 }
2161 sc->sc_bap_id = id;
2162 sc->sc_bap_off = off;
2163 return 0;
2164 }
2165
2166 static int
2167 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2168 {
2169 int error, cnt;
2170
2171 if (buflen == 0)
2172 return 0;
2173 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2174 if ((error = wi_seek_bap(sc, id, off)) != 0)
2175 return error;
2176 }
2177 cnt = (buflen + 1) / 2;
2178 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2179 sc->sc_bap_off += cnt * 2;
2180 return 0;
2181 }
2182
2183 static int
2184 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2185 {
2186 int error, cnt;
2187
2188 if (buflen == 0)
2189 return 0;
2190
2191 #ifdef WI_HERMES_AUTOINC_WAR
2192 again:
2193 #endif
2194 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2195 if ((error = wi_seek_bap(sc, id, off)) != 0)
2196 return error;
2197 }
2198 cnt = (buflen + 1) / 2;
2199 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2200 sc->sc_bap_off += cnt * 2;
2201
2202 #ifdef WI_HERMES_AUTOINC_WAR
2203 /*
2204 * According to the comments in the HCF Light code, there is a bug
2205 * in the Hermes (or possibly in certain Hermes firmware revisions)
2206 * where the chip's internal autoincrement counter gets thrown off
2207 * during data writes: the autoincrement is missed, causing one
2208 * data word to be overwritten and subsequent words to be written to
2209 * the wrong memory locations. The end result is that we could end
2210 * up transmitting bogus frames without realizing it. The workaround
2211 * for this is to write a couple of extra guard words after the end
2212 * of the transfer, then attempt to read then back. If we fail to
2213 * locate the guard words where we expect them, we preform the
2214 * transfer over again.
2215 */
2216 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2217 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2218 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2219 wi_seek_bap(sc, id, sc->sc_bap_off);
2220 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2221 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2222 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2223 printf("%s: detect auto increment bug, try again\n",
2224 sc->sc_dev.dv_xname);
2225 goto again;
2226 }
2227 }
2228 #endif
2229 return 0;
2230 }
2231
2232 static int
2233 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2234 {
2235 int error, len;
2236 struct mbuf *m;
2237
2238 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2239 if (m->m_len == 0)
2240 continue;
2241
2242 len = min(m->m_len, totlen);
2243
2244 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2245 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2246 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2247 totlen);
2248 }
2249
2250 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2251 return error;
2252
2253 off += m->m_len;
2254 totlen -= len;
2255 }
2256 return 0;
2257 }
2258
2259 static int
2260 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2261 {
2262 int i;
2263
2264 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2265 printf("%s: failed to allocate %d bytes on NIC\n",
2266 sc->sc_dev.dv_xname, len);
2267 return ENOMEM;
2268 }
2269
2270 for (i = 0; i < WI_TIMEOUT; i++) {
2271 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2272 break;
2273 if (i == WI_TIMEOUT) {
2274 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
2275 return ETIMEDOUT;
2276 }
2277 DELAY(1);
2278 }
2279 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
2280 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2281 return 0;
2282 }
2283
2284 static int
2285 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2286 {
2287 int error, len;
2288 u_int16_t ltbuf[2];
2289
2290 /* Tell the NIC to enter record read mode. */
2291 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2292 if (error)
2293 return error;
2294
2295 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2296 if (error)
2297 return error;
2298
2299 if (le16toh(ltbuf[1]) != rid) {
2300 printf("%s: record read mismatch, rid=%x, got=%x\n",
2301 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
2302 return EIO;
2303 }
2304 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
2305 if (*buflenp < len) {
2306 printf("%s: record buffer is too small, "
2307 "rid=%x, size=%d, len=%d\n",
2308 sc->sc_dev.dv_xname, rid, *buflenp, len);
2309 return ENOSPC;
2310 }
2311 *buflenp = len;
2312 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2313 }
2314
2315 static int
2316 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2317 {
2318 int error;
2319 u_int16_t ltbuf[2];
2320
2321 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
2322 ltbuf[1] = htole16(rid);
2323
2324 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2325 if (error)
2326 return error;
2327 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2328 if (error)
2329 return error;
2330
2331 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2332 }
2333
2334 static int
2335 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2336 {
2337 struct wi_softc *sc = ic->ic_softc;
2338 struct ieee80211_node *ni = ic->ic_bss;
2339 int buflen;
2340 u_int16_t val;
2341 struct wi_ssid ssid;
2342 struct wi_macaddr bssid, old_bssid;
2343 enum ieee80211_state ostate;
2344 #ifdef WI_DEBUG
2345 static const char *stname[] =
2346 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
2347 #endif /* WI_DEBUG */
2348
2349 ostate = ic->ic_state;
2350 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
2351
2352 switch (nstate) {
2353 case IEEE80211_S_INIT:
2354 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2355 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2356 return (*sc->sc_newstate)(ic, nstate, arg);
2357
2358 case IEEE80211_S_RUN:
2359 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2360 buflen = IEEE80211_ADDR_LEN;
2361 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid);
2362 wi_read_rid(sc, WI_RID_CURRENT_BSSID, &bssid, &buflen);
2363 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid);
2364 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid);
2365 buflen = sizeof(val);
2366 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
2367 if (!isset(ic->ic_chan_avail, le16toh(val)))
2368 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname,
2369 le16toh(val));
2370 ni->ni_chan = &ic->ic_channels[le16toh(val)];
2371
2372 if (IEEE80211_ADDR_EQ(old_bssid.wi_mac_addr, ni->ni_bssid))
2373 sc->sc_false_syns++;
2374 else
2375 sc->sc_false_syns = 0;
2376
2377 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2378 ni->ni_esslen = ic->ic_des_esslen;
2379 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2380 ni->ni_rates = ic->ic_sup_rates[
2381 ieee80211_chan2mode(ic, ni->ni_chan)];
2382 ni->ni_intval = ic->ic_lintval;
2383 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2384 if (ic->ic_flags & IEEE80211_F_WEPON)
2385 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2386 } else {
2387 buflen = sizeof(ssid);
2388 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2389 ni->ni_esslen = le16toh(ssid.wi_len);
2390 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2391 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2392 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2393 }
2394 break;
2395
2396 case IEEE80211_S_SCAN:
2397 case IEEE80211_S_AUTH:
2398 case IEEE80211_S_ASSOC:
2399 break;
2400 }
2401
2402 ic->ic_state = nstate;
2403 /* skip standard ieee80211 handling */
2404 return 0;
2405 }
2406
2407 static int
2408 wi_set_tim(struct ieee80211com *ic, int aid, int which)
2409 {
2410 struct wi_softc *sc = ic->ic_softc;
2411
2412 aid &= ~0xc000;
2413 if (which)
2414 aid |= 0x8000;
2415
2416 return wi_write_val(sc, WI_RID_SET_TIM, aid);
2417 }
2418
2419 static int
2420 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
2421 {
2422 int error = 0;
2423 u_int16_t val[2];
2424
2425 if (!sc->sc_enabled)
2426 return ENXIO;
2427 switch (sc->sc_firmware_type) {
2428 case WI_LUCENT:
2429 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2430 break;
2431 case WI_INTERSIL:
2432 val[0] = chanmask; /* channel */
2433 val[1] = txrate; /* tx rate */
2434 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2435 break;
2436 case WI_SYMBOL:
2437 /*
2438 * XXX only supported on 3.x ?
2439 */
2440 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2441 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2442 val, sizeof(val[0]));
2443 break;
2444 }
2445 if (error == 0) {
2446 sc->sc_scan_timer = WI_SCAN_WAIT;
2447 sc->sc_ic.ic_if.if_timer = 1;
2448 DPRINTF(("wi_scan_ap: start scanning, "
2449 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate));
2450 }
2451 return error;
2452 }
2453
2454 static void
2455 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2456 {
2457 #define N(a) (sizeof (a) / sizeof (a[0]))
2458 int i, naps, off, szbuf;
2459 struct wi_scan_header ws_hdr; /* Prism2 header */
2460 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2461 struct wi_apinfo *ap;
2462
2463 off = sizeof(u_int16_t) * 2;
2464 memset(&ws_hdr, 0, sizeof(ws_hdr));
2465 switch (sc->sc_firmware_type) {
2466 case WI_INTERSIL:
2467 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2468 off += sizeof(ws_hdr);
2469 szbuf = sizeof(struct wi_scan_data_p2);
2470 break;
2471 case WI_SYMBOL:
2472 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2473 break;
2474 case WI_LUCENT:
2475 szbuf = sizeof(struct wi_scan_data);
2476 break;
2477 default:
2478 printf("%s: wi_scan_result: unknown firmware type %u\n",
2479 sc->sc_dev.dv_xname, sc->sc_firmware_type);
2480 naps = 0;
2481 goto done;
2482 }
2483 naps = (cnt * 2 + 2 - off) / szbuf;
2484 if (naps > N(sc->sc_aps))
2485 naps = N(sc->sc_aps);
2486 sc->sc_naps = naps;
2487 /* Read Data */
2488 ap = sc->sc_aps;
2489 memset(&ws_dat, 0, sizeof(ws_dat));
2490 for (i = 0; i < naps; i++, ap++) {
2491 wi_read_bap(sc, fid, off, &ws_dat,
2492 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2493 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
2494 ether_sprintf(ws_dat.wi_bssid)));
2495 off += szbuf;
2496 ap->scanreason = le16toh(ws_hdr.wi_reason);
2497 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2498 ap->channel = le16toh(ws_dat.wi_chid);
2499 ap->signal = le16toh(ws_dat.wi_signal);
2500 ap->noise = le16toh(ws_dat.wi_noise);
2501 ap->quality = ap->signal - ap->noise;
2502 ap->capinfo = le16toh(ws_dat.wi_capinfo);
2503 ap->interval = le16toh(ws_dat.wi_interval);
2504 ap->rate = le16toh(ws_dat.wi_rate);
2505 ap->namelen = le16toh(ws_dat.wi_namelen);
2506 if (ap->namelen > sizeof(ap->name))
2507 ap->namelen = sizeof(ap->name);
2508 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2509 }
2510 done:
2511 /* Done scanning */
2512 sc->sc_scan_timer = 0;
2513 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
2514 #undef N
2515 }
2516
2517 static void
2518 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
2519 {
2520 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
2521 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL
2522 : -1,
2523 rssi);
2524 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
2525 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
2526 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
2527 printf(" rx_signal %u rx_rate %u rx_flow %u\n",
2528 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
2529 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
2530 wh->wi_tx_rtry, wh->wi_tx_rate,
2531 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
2532 printf(" ehdr dst %s src %s type 0x%x\n",
2533 ether_sprintf(wh->wi_ehdr.ether_dhost),
2534 ether_sprintf(wh->wi_ehdr.ether_shost),
2535 wh->wi_ehdr.ether_type);
2536 }
2537