wi.c revision 1.154 1 /* $NetBSD: wi.c,v 1.154 2004/02/10 01:08:05 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.154 2004/02/10 01:08:05 dyoung Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_llc.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95
96 #include <net80211/ieee80211_var.h>
97 #include <net80211/ieee80211_compat.h>
98 #include <net80211/ieee80211_ioctl.h>
99 #include <net80211/ieee80211_radiotap.h>
100 #include <net80211/ieee80211_rssadapt.h>
101
102 #if NBPFILTER > 0
103 #include <net/bpf.h>
104 #include <net/bpfdesc.h>
105 #endif
106
107 #include <machine/bus.h>
108
109 #include <dev/ic/wi_ieee.h>
110 #include <dev/ic/wireg.h>
111 #include <dev/ic/wivar.h>
112
113 static int wi_init(struct ifnet *);
114 static void wi_stop(struct ifnet *, int);
115 static void wi_start(struct ifnet *);
116 static int wi_reset(struct wi_softc *);
117 static void wi_watchdog(struct ifnet *);
118 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
119 static int wi_media_change(struct ifnet *);
120 static void wi_media_status(struct ifnet *, struct ifmediareq *);
121
122 static struct ieee80211_node *wi_node_alloc(struct ieee80211com *);
123 static void wi_node_copy(struct ieee80211com *, struct ieee80211_node *,
124 const struct ieee80211_node *);
125 static void wi_node_free(struct ieee80211com *, struct ieee80211_node *);
126
127 static void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
128 static void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
129 static void wi_choose_rate(struct ieee80211com *, struct ieee80211_node *,
130 struct ieee80211_frame *, u_int);
131 static void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *);
132 static void wi_rssadapt_updatestats(void *);
133
134 static void wi_rx_intr(struct wi_softc *);
135 static void wi_txalloc_intr(struct wi_softc *);
136 static void wi_tx_intr(struct wi_softc *);
137 static void wi_tx_ex_intr(struct wi_softc *);
138 static void wi_info_intr(struct wi_softc *);
139
140 static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
141 static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
142 static int wi_cfg_txrate(struct wi_softc *);
143 static int wi_write_txrate(struct wi_softc *, int);
144 static int wi_write_wep(struct wi_softc *);
145 static int wi_write_multi(struct wi_softc *);
146 static int wi_alloc_fid(struct wi_softc *, int, int *);
147 static void wi_read_nicid(struct wi_softc *);
148 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
149
150 static int wi_cmd(struct wi_softc *, int, int, int, int);
151 static int wi_seek_bap(struct wi_softc *, int, int);
152 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
153 static int wi_write_bap(struct wi_softc *, int, int, void *, int);
154 static int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
155 static int wi_read_rid(struct wi_softc *, int, void *, int *);
156 static int wi_write_rid(struct wi_softc *, int, void *, int);
157
158 static int wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
159 static int wi_set_tim(struct ieee80211com *, int, int);
160
161 static int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
162 static void wi_scan_result(struct wi_softc *, int, int);
163
164 static void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
165
166 static inline int
167 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
168 {
169
170 val = htole16(val);
171 return wi_write_rid(sc, rid, &val, sizeof(val));
172 }
173
174 static struct timeval lasttxerror; /* time of last tx error msg */
175 static int curtxeps = 0; /* current tx error msgs/sec */
176 static int wi_txerate = 0; /* tx error rate: max msgs/sec */
177
178 #ifdef WI_DEBUG
179 int wi_debug = 0;
180
181 #define DPRINTF(X) if (wi_debug) printf X
182 #define DPRINTF2(X) if (wi_debug > 1) printf X
183 #define IFF_DUMPPKTS(_ifp) \
184 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
185 #else
186 #define DPRINTF(X)
187 #define DPRINTF2(X)
188 #define IFF_DUMPPKTS(_ifp) 0
189 #endif
190
191 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
192
193 struct wi_card_ident
194 wi_card_ident[] = {
195 /* CARD_ID CARD_NAME FIRM_TYPE */
196 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
197 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
198 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
199 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
200 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
201 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
202 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
203 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
204 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
205 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
206 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
207 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
208 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
209 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
210 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
211 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
212 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
213 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
214 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
215 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
216 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
217 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
218 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
219 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
220 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
221 { 0, NULL, 0 },
222 };
223
224 int
225 wi_attach(struct wi_softc *sc)
226 {
227 struct ieee80211com *ic = &sc->sc_ic;
228 struct ifnet *ifp = &ic->ic_if;
229 int chan, nrate, buflen;
230 u_int16_t val, chanavail;
231 struct {
232 u_int16_t nrates;
233 char rates[IEEE80211_RATE_SIZE];
234 } ratebuf;
235 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
236 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
237 };
238 int s;
239
240 s = splnet();
241
242 /* Make sure interrupts are disabled. */
243 CSR_WRITE_2(sc, WI_INT_EN, 0);
244 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
245
246 sc->sc_invalid = 0;
247
248 /* Reset the NIC. */
249 if (wi_reset(sc) != 0) {
250 sc->sc_invalid = 1;
251 splx(s);
252 return 1;
253 }
254
255 buflen = IEEE80211_ADDR_LEN;
256 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
257 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
258 printf(" could not get mac address, attach failed\n");
259 splx(s);
260 return 1;
261 }
262
263 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
264
265 /* Read NIC identification */
266 wi_read_nicid(sc);
267
268 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
269 ifp->if_softc = sc;
270 ifp->if_start = wi_start;
271 ifp->if_ioctl = wi_ioctl;
272 ifp->if_watchdog = wi_watchdog;
273 ifp->if_init = wi_init;
274 ifp->if_stop = wi_stop;
275 ifp->if_flags =
276 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
277 IFQ_SET_READY(&ifp->if_snd);
278
279 ic->ic_phytype = IEEE80211_T_DS;
280 ic->ic_opmode = IEEE80211_M_STA;
281 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_AHDEMO;
282 ic->ic_state = IEEE80211_S_INIT;
283 ic->ic_max_aid = WI_MAX_AID;
284
285 /* Find available channel */
286 buflen = sizeof(chanavail);
287 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &chanavail, &buflen) != 0)
288 chanavail = htole16(0x1fff); /* assume 1-11 */
289 for (chan = 16; chan > 0; chan--) {
290 if (!isset((u_int8_t*)&chanavail, chan - 1))
291 continue;
292 ic->ic_ibss_chan = &ic->ic_channels[chan];
293 ic->ic_channels[chan].ic_freq =
294 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
295 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
296 }
297
298 /* Find default IBSS channel */
299 buflen = sizeof(val);
300 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0) {
301 chan = le16toh(val);
302 if (isset((u_int8_t*)&chanavail, chan - 1))
303 ic->ic_ibss_chan = &ic->ic_channels[chan];
304 }
305 if (ic->ic_ibss_chan == NULL)
306 panic("%s: no available channel\n", sc->sc_dev.dv_xname);
307
308 if (sc->sc_firmware_type == WI_LUCENT) {
309 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
310 } else {
311 buflen = sizeof(val);
312 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
313 wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0)
314 sc->sc_dbm_offset = le16toh(val);
315 else
316 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
317 }
318
319 /*
320 * Set flags based on firmware version.
321 */
322 switch (sc->sc_firmware_type) {
323 case WI_LUCENT:
324 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
325 #ifdef WI_HERMES_AUTOINC_WAR
326 /* XXX: not confirmed, but never seen for recent firmware */
327 if (sc->sc_sta_firmware_ver < 40000) {
328 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
329 }
330 #endif
331 /* RSS rate-adaptation is known to cause STA f/w
332 * 8.42.1 to lock up. STA f/w 8.70.1 and 7.28.1
333 * appear to work. I suspect that most versions
334 * will work.
335 */
336 switch (sc->sc_sta_firmware_ver) {
337 case 0x084201:
338 sc->sc_flags &= ~WI_FLAGS_RSSADAPTSTA;
339 break;
340 case 0x087001:
341 case 0x072801:
342 default:
343 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
344 break;
345 }
346 if (sc->sc_sta_firmware_ver >= 60000)
347 sc->sc_flags |= WI_FLAGS_HAS_MOR;
348 if (sc->sc_sta_firmware_ver >= 60006) {
349 ic->ic_caps |= IEEE80211_C_IBSS;
350 ic->ic_caps |= IEEE80211_C_MONITOR;
351 }
352 sc->sc_ibss_port = 1;
353 break;
354
355 case WI_INTERSIL:
356 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
357 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
358 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
359 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
360 if (sc->sc_sta_firmware_ver > 10101)
361 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
362 if (sc->sc_sta_firmware_ver >= 800) {
363 if (sc->sc_sta_firmware_ver != 10402)
364 ic->ic_caps |= IEEE80211_C_HOSTAP;
365 ic->ic_caps |= IEEE80211_C_IBSS;
366 ic->ic_caps |= IEEE80211_C_MONITOR;
367 }
368 sc->sc_ibss_port = 0;
369 sc->sc_alt_retry = 2;
370 break;
371
372 case WI_SYMBOL:
373 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
374 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
375 if (sc->sc_sta_firmware_ver >= 20000)
376 ic->ic_caps |= IEEE80211_C_IBSS;
377 sc->sc_ibss_port = 4;
378 break;
379 }
380
381 /*
382 * Find out if we support WEP on this card.
383 */
384 buflen = sizeof(val);
385 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
386 val != htole16(0))
387 ic->ic_caps |= IEEE80211_C_WEP;
388
389 /* Find supported rates. */
390 buflen = sizeof(ratebuf);
391 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0) {
392 nrate = le16toh(ratebuf.nrates);
393 if (nrate > IEEE80211_RATE_SIZE)
394 nrate = IEEE80211_RATE_SIZE;
395 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates,
396 &ratebuf.rates[0], nrate);
397 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
398 }
399 buflen = sizeof(val);
400
401 sc->sc_max_datalen = 2304;
402 sc->sc_rts_thresh = 2347;
403 sc->sc_frag_thresh = 2346;
404 sc->sc_system_scale = 1;
405 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
406 sc->sc_roaming_mode = 1;
407
408 callout_init(&sc->sc_rssadapt_ch);
409
410 /*
411 * Call MI attach routines.
412 */
413 if_attach(ifp);
414 ieee80211_ifattach(ifp);
415
416 sc->sc_newstate = ic->ic_newstate;
417 ic->ic_newstate = wi_newstate;
418 ic->ic_node_alloc = wi_node_alloc;
419 ic->ic_node_free = wi_node_free;
420 ic->ic_node_copy = wi_node_copy;
421 ic->ic_set_tim = wi_set_tim;
422
423 ieee80211_media_init(ifp, wi_media_change, wi_media_status);
424
425 #if NBPFILTER > 0
426 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
427 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
428 #endif
429
430 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
431 sc->sc_rxtap.wr_ihdr.it_len = sizeof(sc->sc_rxtapu);
432 sc->sc_rxtap.wr_ihdr.it_present = WI_RX_RADIOTAP_PRESENT;
433
434 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
435 sc->sc_txtap.wt_ihdr.it_len = sizeof(sc->sc_txtapu);
436 sc->sc_txtap.wt_ihdr.it_present = WI_TX_RADIOTAP_PRESENT;
437
438 /* Attach is successful. */
439 sc->sc_attached = 1;
440
441 splx(s);
442 return 0;
443 }
444
445 int
446 wi_detach(struct wi_softc *sc)
447 {
448 struct ifnet *ifp = &sc->sc_ic.ic_if;
449 int s;
450
451 if (!sc->sc_attached)
452 return 0;
453
454 s = splnet();
455
456 sc->sc_invalid = 1;
457 wi_stop(ifp, 1);
458
459 /* Delete all remaining media. */
460 ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY);
461
462 ieee80211_ifdetach(ifp);
463 if_detach(ifp);
464 splx(s);
465 return 0;
466 }
467
468 #ifdef __NetBSD__
469 int
470 wi_activate(struct device *self, enum devact act)
471 {
472 struct wi_softc *sc = (struct wi_softc *)self;
473 int rv = 0, s;
474
475 s = splnet();
476 switch (act) {
477 case DVACT_ACTIVATE:
478 rv = EOPNOTSUPP;
479 break;
480
481 case DVACT_DEACTIVATE:
482 if_deactivate(&sc->sc_ic.ic_if);
483 break;
484 }
485 splx(s);
486 return rv;
487 }
488
489 void
490 wi_power(struct wi_softc *sc, int why)
491 {
492 struct ifnet *ifp = &sc->sc_ic.ic_if;
493 int s;
494
495 s = splnet();
496 switch (why) {
497 case PWR_SUSPEND:
498 case PWR_STANDBY:
499 wi_stop(ifp, 1);
500 break;
501 case PWR_RESUME:
502 if (ifp->if_flags & IFF_UP) {
503 wi_init(ifp);
504 (void)wi_intr(sc);
505 }
506 break;
507 case PWR_SOFTSUSPEND:
508 case PWR_SOFTSTANDBY:
509 case PWR_SOFTRESUME:
510 break;
511 }
512 splx(s);
513 }
514 #endif /* __NetBSD__ */
515
516 void
517 wi_shutdown(struct wi_softc *sc)
518 {
519 struct ifnet *ifp = &sc->sc_ic.ic_if;
520
521 if (sc->sc_attached)
522 wi_stop(ifp, 1);
523 }
524
525 int
526 wi_intr(void *arg)
527 {
528 int i;
529 struct wi_softc *sc = arg;
530 struct ifnet *ifp = &sc->sc_ic.ic_if;
531 u_int16_t status;
532
533 if (sc->sc_enabled == 0 ||
534 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
535 (ifp->if_flags & IFF_RUNNING) == 0)
536 return 0;
537
538 if ((ifp->if_flags & IFF_UP) == 0) {
539 CSR_WRITE_2(sc, WI_INT_EN, 0);
540 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
541 return 1;
542 }
543
544 /* This is superfluous on Prism, but Lucent breaks if we
545 * do not disable interrupts.
546 */
547 CSR_WRITE_2(sc, WI_INT_EN, 0);
548
549 /* maximum 10 loops per interrupt */
550 for (i = 0; i < 10; i++) {
551 /*
552 * Only believe a status bit when we enter wi_intr, or when
553 * the bit was "off" the last time through the loop. This is
554 * my strategy to avoid racing the hardware/firmware if I
555 * can re-read the event status register more quickly than
556 * it is updated.
557 */
558 status = CSR_READ_2(sc, WI_EVENT_STAT);
559 if ((status & WI_INTRS) == 0)
560 break;
561
562 if (status & WI_EV_RX)
563 wi_rx_intr(sc);
564
565 if (status & WI_EV_ALLOC)
566 wi_txalloc_intr(sc);
567
568 if (status & WI_EV_TX)
569 wi_tx_intr(sc);
570
571 if (status & WI_EV_TX_EXC)
572 wi_tx_ex_intr(sc);
573
574 if (status & WI_EV_INFO)
575 wi_info_intr(sc);
576
577 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
578 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
579 !IFQ_IS_EMPTY(&ifp->if_snd))
580 wi_start(ifp);
581 }
582
583 /* re-enable interrupts */
584 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
585
586 return 1;
587 }
588
589 #define arraylen(a) (sizeof(a) / sizeof((a)[0]))
590
591 static void
592 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree)
593 {
594 int i;
595 SLIST_INIT(rssdfree);
596 for (i = 0; i < arraylen(*rssd); i++) {
597 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next);
598 }
599 }
600
601 static void
602 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS],
603 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE])
604 {
605 struct ieee80211_node *ni;
606 int i;
607 for (i = 0; i < arraylen(*rssd); i++) {
608 ni = (*rssd)[i].rd_desc.id_node;
609 (*rssd)[i].rd_desc.id_node = NULL;
610 if (ni != NULL && (ic->ic_if.if_flags & IFF_DEBUG) != 0)
611 printf("%s: cleaning outstanding rssadapt "
612 "descriptor for %s\n",
613 ic->ic_if.if_xname, ether_sprintf(ni->ni_macaddr));
614 if (ni != NULL && ni != ic->ic_bss)
615 ieee80211_free_node(ic, ni);
616 }
617 memset(*txpending, 0, sizeof(*txpending));
618 wi_rssdescs_init(rssd, rssdfree);
619 }
620
621 static int
622 wi_init(struct ifnet *ifp)
623 {
624 struct wi_softc *sc = ifp->if_softc;
625 struct ieee80211com *ic = &sc->sc_ic;
626 struct wi_joinreq join;
627 int i;
628 int error = 0, wasenabled;
629
630 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
631 wasenabled = sc->sc_enabled;
632 if (!sc->sc_enabled) {
633 if ((error = (*sc->sc_enable)(sc)) != 0)
634 goto out;
635 sc->sc_enabled = 1;
636 } else
637 wi_stop(ifp, 0);
638
639 /* Symbol firmware cannot be initialized more than once */
640 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled)
641 if ((error = wi_reset(sc)) != 0)
642 goto out;
643
644 /* common 802.11 configuration */
645 ic->ic_flags &= ~IEEE80211_F_IBSSON;
646 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
647 switch (ic->ic_opmode) {
648 case IEEE80211_M_STA:
649 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
650 break;
651 case IEEE80211_M_IBSS:
652 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
653 ic->ic_flags |= IEEE80211_F_IBSSON;
654 sc->sc_syn_timer = 5;
655 ifp->if_timer = 1;
656 break;
657 case IEEE80211_M_AHDEMO:
658 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
659 break;
660 case IEEE80211_M_HOSTAP:
661 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
662 break;
663 case IEEE80211_M_MONITOR:
664 if (sc->sc_firmware_type == WI_LUCENT)
665 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
666 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
667 break;
668 }
669
670 /* Intersil interprets this RID as joining ESS even in IBSS mode */
671 if (sc->sc_firmware_type == WI_LUCENT &&
672 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
673 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
674 else
675 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
676 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
677 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
678 ic->ic_des_esslen);
679 wi_write_val(sc, WI_RID_OWN_CHNL,
680 ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
681 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
682 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
683 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
684 wi_write_val(sc, WI_RID_PM_ENABLED,
685 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
686
687 /* not yet common 802.11 configuration */
688 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
689 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
690 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
691 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
692
693 /* driver specific 802.11 configuration */
694 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
695 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
696 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
697 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
698 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
699 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
700 wi_cfg_txrate(sc);
701 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
702
703 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
704 sc->sc_firmware_type == WI_INTERSIL) {
705 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
706 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
707 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
708 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
709 }
710
711 if (sc->sc_firmware_type == WI_INTERSIL)
712 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry);
713
714 /*
715 * Initialize promisc mode.
716 * Being in Host-AP mode causes a great
717 * deal of pain if promiscuous mode is set.
718 * Therefore we avoid confusing the firmware
719 * and always reset promisc mode in Host-AP
720 * mode. Host-AP sees all the packets anyway.
721 */
722 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
723 (ifp->if_flags & IFF_PROMISC) != 0) {
724 wi_write_val(sc, WI_RID_PROMISC, 1);
725 } else {
726 wi_write_val(sc, WI_RID_PROMISC, 0);
727 }
728
729 /* Configure WEP. */
730 if (ic->ic_caps & IEEE80211_C_WEP)
731 wi_write_wep(sc);
732
733 /* Set multicast filter. */
734 wi_write_multi(sc);
735
736 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
737 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
738 if (sc->sc_firmware_type == WI_SYMBOL)
739 sc->sc_buflen = 1585; /* XXX */
740 for (i = 0; i < WI_NTXBUF; i++) {
741 error = wi_alloc_fid(sc, sc->sc_buflen,
742 &sc->sc_txd[i].d_fid);
743 if (error) {
744 printf("%s: tx buffer allocation failed\n",
745 sc->sc_dev.dv_xname);
746 goto out;
747 }
748 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
749 sc->sc_txd[i].d_fid));
750 sc->sc_txd[i].d_len = 0;
751 }
752 }
753 sc->sc_txcur = sc->sc_txnext = 0;
754
755 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree);
756
757 /* Enable desired port */
758 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
759 ifp->if_flags |= IFF_RUNNING;
760 ifp->if_flags &= ~IFF_OACTIVE;
761 ic->ic_state = IEEE80211_S_INIT;
762
763 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
764 ic->ic_opmode == IEEE80211_M_MONITOR ||
765 ic->ic_opmode == IEEE80211_M_HOSTAP)
766 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
767
768 /* Enable interrupts */
769 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
770
771 if (!wasenabled &&
772 ic->ic_opmode == IEEE80211_M_HOSTAP &&
773 sc->sc_firmware_type == WI_INTERSIL) {
774 /* XXX: some card need to be re-enabled for hostap */
775 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
776 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
777 }
778
779 if (ic->ic_opmode == IEEE80211_M_STA &&
780 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
781 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
782 memset(&join, 0, sizeof(join));
783 if (ic->ic_flags & IEEE80211_F_DESBSSID)
784 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
785 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
786 join.wi_chan =
787 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan));
788 /* Lucent firmware does not support the JOIN RID. */
789 if (sc->sc_firmware_type != WI_LUCENT)
790 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
791 }
792
793 out:
794 if (error) {
795 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
796 wi_stop(ifp, 0);
797 }
798 DPRINTF(("wi_init: return %d\n", error));
799 return error;
800 }
801
802 static void
803 wi_stop(struct ifnet *ifp, int disable)
804 {
805 struct wi_softc *sc = ifp->if_softc;
806 struct ieee80211com *ic = &sc->sc_ic;
807 int s;
808
809 if (!sc->sc_enabled)
810 return;
811
812 s = splnet();
813
814 DPRINTF(("wi_stop: disable %d\n", disable));
815
816 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
817 if (!sc->sc_invalid) {
818 CSR_WRITE_2(sc, WI_INT_EN, 0);
819 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
820 }
821
822 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
823 &sc->sc_txpending);
824
825 sc->sc_tx_timer = 0;
826 sc->sc_scan_timer = 0;
827 sc->sc_syn_timer = 0;
828 sc->sc_false_syns = 0;
829 sc->sc_naps = 0;
830 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
831 ifp->if_timer = 0;
832
833 if (disable) {
834 if (sc->sc_disable)
835 (*sc->sc_disable)(sc);
836 sc->sc_enabled = 0;
837 }
838 splx(s);
839 }
840
841 /*
842 * Choose a data rate for a packet len bytes long that suits the packet
843 * type and the wireless conditions.
844 *
845 * TBD Adapt fragmentation threshold.
846 */
847 static void
848 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni,
849 struct ieee80211_frame *wh, u_int len)
850 {
851 struct wi_softc *sc = ic->ic_if.if_softc;
852 struct ieee80211_rssadapt *ra;
853 u_int16_t (*thrs)[IEEE80211_RATE_SIZE];
854 struct wi_node *wn;
855 int flags = 0, i, rateidx = 0, s, thridx, top;
856 struct ieee80211_rateset *rs;
857
858 s = splnet();
859
860 wn = (void*)ni;
861 ra = &wn->wn_rssadapt;
862 rs = &ni->ni_rates;
863
864 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL)
865 flags |= IEEE80211_RATE_BASIC;
866
867 for (i = 0, top = IEEE80211_RSSADAPT_BKT0;
868 i < IEEE80211_RSSADAPT_BKTS;
869 i++, top <<= IEEE80211_RSSADAPT_BKTPOWER) {
870 thridx = i;
871 if (len <= top)
872 break;
873 }
874
875 thrs = &ra->ra_rate_thresh[thridx];
876
877 if (ic->ic_fixed_rate != -1) {
878 if ((rs->rs_rates[ic->ic_fixed_rate] & flags) == flags) {
879 ni->ni_txrate = ic->ic_fixed_rate;
880 return;
881 }
882 flags |= IEEE80211_RATE_BASIC;
883 i = ic->ic_fixed_rate;
884 } else
885 i = rs->rs_nrates;
886
887 while (--i >= 0) {
888 rateidx = i;
889 if ((rs->rs_rates[i] & flags) != flags)
890 continue;
891 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
892 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0)
893 break;
894 if ((*thrs)[i] < ra->ra_avg_rssi)
895 break;
896 }
897
898 if (ic->ic_if.if_flags & IFF_DEBUG)
899 printf("%s: dst %s threshold[%d, %d.%d] %d < %d\n",
900 ic->ic_if.if_xname, ether_sprintf(wh->i_addr1), len,
901 (rs->rs_rates[rateidx] & IEEE80211_RATE_VAL) / 2,
902 (rs->rs_rates[rateidx] & IEEE80211_RATE_VAL) * 5 % 10,
903 (*thrs)[rateidx], ra->ra_avg_rssi);
904 if (ic->ic_opmode != IEEE80211_M_HOSTAP) {
905 /* choose the slowest pending rate so that we don't
906 * accidentally send a packet on the MAC's queue
907 * too fast. TBD find out if the MAC labels Tx
908 * packets w/ rate when enqueued or dequeued.
909 */
910 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++);
911 ni->ni_txrate = i;
912 } else
913 ni->ni_txrate = rateidx;
914 splx(s);
915 return;
916 }
917
918 static void
919 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
920 {
921 struct wi_node *wn;
922 if (id->id_node == NULL)
923 return;
924
925 wn = (void*)id->id_node;
926 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id);
927 }
928
929 static void
930 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
931 {
932 struct ieee80211_node *ni;
933 struct wi_node *wn;
934 int s;
935
936 s = splnet();
937
938 if ((ni = id->id_node) == NULL) {
939 DPRINTF(("wi_lower_rate: missing node\n"));
940 goto out;
941 }
942
943 wn = (void *)ni;
944
945 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id);
946 out:
947 splx(s);
948 return;
949 }
950
951 static void
952 wi_start(struct ifnet *ifp)
953 {
954 struct wi_softc *sc = ifp->if_softc;
955 struct ieee80211com *ic = &sc->sc_ic;
956 struct ieee80211_node *ni;
957 struct ieee80211_frame *wh;
958 struct ieee80211_rateset *rs;
959 struct wi_rssdesc *rd;
960 struct ieee80211_rssdesc *id;
961 struct mbuf *m0;
962 struct wi_frame frmhdr;
963 int cur, fid, off;
964
965 if (!sc->sc_enabled || sc->sc_invalid)
966 return;
967 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
968 return;
969
970 memset(&frmhdr, 0, sizeof(frmhdr));
971 cur = sc->sc_txnext;
972 for (;;) {
973 ni = ic->ic_bss;
974 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
975 if (sc->sc_txd[cur].d_len != 0 ||
976 SLIST_EMPTY(&sc->sc_rssdfree)) {
977 ifp->if_flags |= IFF_OACTIVE;
978 break;
979 }
980 IF_DEQUEUE(&ic->ic_mgtq, m0);
981 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
982 (caddr_t)&frmhdr.wi_ehdr);
983 frmhdr.wi_ehdr.ether_type = 0;
984 wh = mtod(m0, struct ieee80211_frame *);
985 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
986 m0->m_pkthdr.rcvif = NULL;
987 } else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
988 struct llc *llc;
989
990 /*
991 * Should these packets be processed after the
992 * regular packets or before? Since they are being
993 * probed for, they are probably less time critical
994 * than other packets, but, on the other hand,
995 * we want the power saving nodes to go back to
996 * sleep as quickly as possible to save power...
997 */
998
999 if (ic->ic_state != IEEE80211_S_RUN)
1000 break;
1001
1002 if (sc->sc_txd[cur].d_len != 0 ||
1003 SLIST_EMPTY(&sc->sc_rssdfree)) {
1004 ifp->if_flags |= IFF_OACTIVE;
1005 break;
1006 }
1007 IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
1008 wh = mtod(m0, struct ieee80211_frame *);
1009 llc = (struct llc *) (wh + 1);
1010 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
1011 (caddr_t)&frmhdr.wi_ehdr);
1012 frmhdr.wi_ehdr.ether_type = llc->llc_snap.ether_type;
1013 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1014 m0->m_pkthdr.rcvif = NULL;
1015 } else {
1016 if (ic->ic_state != IEEE80211_S_RUN) {
1017 break;
1018 }
1019 IFQ_POLL(&ifp->if_snd, m0);
1020 if (m0 == NULL) {
1021 break;
1022 }
1023 if (sc->sc_txd[cur].d_len != 0 ||
1024 SLIST_EMPTY(&sc->sc_rssdfree)) {
1025 ifp->if_flags |= IFF_OACTIVE;
1026 break;
1027 }
1028 IFQ_DEQUEUE(&ifp->if_snd, m0);
1029 ifp->if_opackets++;
1030 m_copydata(m0, 0, ETHER_HDR_LEN,
1031 (caddr_t)&frmhdr.wi_ehdr);
1032 #if NBPFILTER > 0
1033 if (ifp->if_bpf)
1034 bpf_mtap(ifp->if_bpf, m0);
1035 #endif
1036
1037 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
1038 ifp->if_oerrors++;
1039 continue;
1040 }
1041 wh = mtod(m0, struct ieee80211_frame *);
1042 if (ic->ic_flags & IEEE80211_F_WEPON)
1043 wh->i_fc[1] |= IEEE80211_FC1_WEP;
1044 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1045 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1046 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1047 IEEE80211_FC0_TYPE_DATA) {
1048 if (ni->ni_associd == 0) {
1049 m_freem(m0);
1050 ifp->if_oerrors++;
1051 goto next;
1052 }
1053 if (ni->ni_pwrsave & IEEE80211_PS_SLEEP) {
1054 ieee80211_pwrsave(ic, ni, m0);
1055 continue; /* don't free node. */
1056 }
1057 }
1058 }
1059 #if NBPFILTER > 0
1060 if (ic->ic_rawbpf)
1061 bpf_mtap(ic->ic_rawbpf, m0);
1062 #endif
1063 frmhdr.wi_tx_ctl =
1064 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK);
1065 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1066 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
1067 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1068 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
1069 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
1070 ifp->if_oerrors++;
1071 goto next;
1072 }
1073 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
1074 }
1075
1076 wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len);
1077
1078 #if NBPFILTER > 0
1079 if (sc->sc_drvbpf) {
1080 struct mbuf mb;
1081
1082 struct wi_tx_radiotap_header *tap = &sc->sc_txtap;
1083
1084 tap->wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1085 tap->wt_chan_freq =
1086 htole16(ic->ic_bss->ni_chan->ic_freq);
1087 tap->wt_chan_flags =
1088 htole16(ic->ic_bss->ni_chan->ic_flags);
1089
1090 /* TBD tap->wt_flags */
1091
1092 M_COPY_PKTHDR(&mb, m0);
1093 mb.m_data = (caddr_t)tap;
1094 mb.m_len = tap->wt_ihdr.it_len;
1095 mb.m_next = m0;
1096 mb.m_pkthdr.len += mb.m_len;
1097 bpf_mtap(sc->sc_drvbpf, &mb);
1098 }
1099 #endif
1100 rs = &ni->ni_rates;
1101 rd = SLIST_FIRST(&sc->sc_rssdfree);
1102 id = &rd->rd_desc;
1103 id->id_len = m0->m_pkthdr.len;
1104 sc->sc_txd[cur].d_rate = id->id_rateidx = ni->ni_txrate;
1105 id->id_rssi = ni->ni_rssi;
1106
1107 frmhdr.wi_tx_idx = rd - sc->sc_rssd;
1108
1109 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1110 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[ni->ni_txrate] &
1111 IEEE80211_RATE_VAL);
1112 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA)
1113 (void)wi_write_txrate(sc, rs->rs_rates[ni->ni_txrate]);
1114
1115 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
1116 (caddr_t)&frmhdr.wi_whdr);
1117 m_adj(m0, sizeof(struct ieee80211_frame));
1118 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
1119 if (IFF_DUMPPKTS(ifp))
1120 wi_dump_pkt(&frmhdr, ni, -1);
1121 fid = sc->sc_txd[cur].d_fid;
1122 off = sizeof(frmhdr);
1123 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
1124 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
1125 ifp->if_oerrors++;
1126 m_freem(m0);
1127 goto next;
1128 }
1129 m_freem(m0);
1130 sc->sc_txd[cur].d_len = off;
1131 if (sc->sc_txcur == cur) {
1132 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
1133 printf("%s: xmit failed\n",
1134 sc->sc_dev.dv_xname);
1135 sc->sc_txd[cur].d_len = 0;
1136 goto next;
1137 }
1138 sc->sc_txpending[ni->ni_txrate]++;
1139 sc->sc_tx_timer = 5;
1140 ifp->if_timer = 1;
1141 }
1142 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF;
1143 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next);
1144 id->id_node = ni;
1145 continue;
1146 next:
1147 if (ni != NULL && ni != ic->ic_bss)
1148 ieee80211_free_node(ic, ni);
1149 }
1150 }
1151
1152
1153 static int
1154 wi_reset(struct wi_softc *sc)
1155 {
1156 int i, error;
1157
1158 DPRINTF(("wi_reset\n"));
1159
1160 if (sc->sc_reset)
1161 (*sc->sc_reset)(sc);
1162
1163 error = 0;
1164 for (i = 0; i < 5; i++) {
1165 DELAY(20*1000); /* XXX: way too long! */
1166 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
1167 break;
1168 }
1169 if (error) {
1170 printf("%s: init failed\n", sc->sc_dev.dv_xname);
1171 return error;
1172 }
1173 CSR_WRITE_2(sc, WI_INT_EN, 0);
1174 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
1175
1176 /* Calibrate timer. */
1177 wi_write_val(sc, WI_RID_TICK_TIME, 0);
1178 return 0;
1179 }
1180
1181 static void
1182 wi_watchdog(struct ifnet *ifp)
1183 {
1184 struct wi_softc *sc = ifp->if_softc;
1185 struct ieee80211com *ic = &sc->sc_ic;
1186
1187 ifp->if_timer = 0;
1188 if (!sc->sc_enabled)
1189 return;
1190
1191 if (sc->sc_tx_timer) {
1192 if (--sc->sc_tx_timer == 0) {
1193 printf("%s: device timeout\n", ifp->if_xname);
1194 ifp->if_oerrors++;
1195 wi_init(ifp);
1196 return;
1197 }
1198 ifp->if_timer = 1;
1199 }
1200
1201 if (sc->sc_scan_timer) {
1202 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
1203 sc->sc_firmware_type == WI_INTERSIL) {
1204 DPRINTF(("wi_watchdog: inquire scan\n"));
1205 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1206 }
1207 if (sc->sc_scan_timer)
1208 ifp->if_timer = 1;
1209 }
1210
1211 if (sc->sc_syn_timer) {
1212 if (--sc->sc_syn_timer == 0) {
1213 DPRINTF2(("%s: %d false syns\n",
1214 sc->sc_dev.dv_xname, sc->sc_false_syns));
1215 sc->sc_false_syns = 0;
1216 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1217 sc->sc_syn_timer = 5;
1218 }
1219 ifp->if_timer = 1;
1220 }
1221
1222 /* TODO: rate control */
1223 ieee80211_watchdog(ifp);
1224 }
1225
1226 static int
1227 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1228 {
1229 struct wi_softc *sc = ifp->if_softc;
1230 struct ieee80211com *ic = &sc->sc_ic;
1231 struct ifreq *ifr = (struct ifreq *)data;
1232 int s, error = 0;
1233
1234 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1235 return ENXIO;
1236
1237 s = splnet();
1238
1239 switch (cmd) {
1240 case SIOCSIFFLAGS:
1241 /*
1242 * Can't do promisc and hostap at the same time. If all that's
1243 * changing is the promisc flag, try to short-circuit a call to
1244 * wi_init() by just setting PROMISC in the hardware.
1245 */
1246 if (ifp->if_flags & IFF_UP) {
1247 if (sc->sc_enabled) {
1248 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1249 (ifp->if_flags & IFF_PROMISC) != 0)
1250 wi_write_val(sc, WI_RID_PROMISC, 1);
1251 else
1252 wi_write_val(sc, WI_RID_PROMISC, 0);
1253 } else
1254 error = wi_init(ifp);
1255 } else if (sc->sc_enabled)
1256 wi_stop(ifp, 1);
1257 break;
1258 case SIOCSIFMEDIA:
1259 case SIOCGIFMEDIA:
1260 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1261 break;
1262 case SIOCADDMULTI:
1263 case SIOCDELMULTI:
1264 error = (cmd == SIOCADDMULTI) ?
1265 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1266 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1267 if (error == ENETRESET) {
1268 if (sc->sc_enabled) {
1269 /* do not rescan */
1270 error = wi_write_multi(sc);
1271 } else
1272 error = 0;
1273 }
1274 break;
1275 case SIOCGIFGENERIC:
1276 error = wi_get_cfg(ifp, cmd, data);
1277 break;
1278 case SIOCSIFGENERIC:
1279 error = suser(curproc->p_ucred, &curproc->p_acflag);
1280 if (error)
1281 break;
1282 error = wi_set_cfg(ifp, cmd, data);
1283 if (error == ENETRESET) {
1284 if (sc->sc_enabled)
1285 error = wi_init(ifp);
1286 else
1287 error = 0;
1288 }
1289 break;
1290 case SIOCS80211BSSID:
1291 if (sc->sc_firmware_type == WI_LUCENT) {
1292 error = ENODEV;
1293 break;
1294 }
1295 /* fall through */
1296 default:
1297 error = ieee80211_ioctl(ifp, cmd, data);
1298 if (error == ENETRESET) {
1299 if (sc->sc_enabled)
1300 error = wi_init(ifp);
1301 else
1302 error = 0;
1303 }
1304 break;
1305 }
1306 splx(s);
1307 return error;
1308 }
1309
1310 /* TBD factor with ieee80211_media_change */
1311 static int
1312 wi_media_change(struct ifnet *ifp)
1313 {
1314 struct wi_softc *sc = ifp->if_softc;
1315 struct ieee80211com *ic = &sc->sc_ic;
1316 struct ifmedia_entry *ime;
1317 enum ieee80211_opmode newmode;
1318 int i, rate, error = 0;
1319
1320 ime = ic->ic_media.ifm_cur;
1321 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
1322 i = -1;
1323 } else {
1324 struct ieee80211_rateset *rs =
1325 &ic->ic_sup_rates[ieee80211_chan2mode(ic,
1326 ic->ic_bss->ni_chan)];
1327 rate = ieee80211_media2rate(ime->ifm_media);
1328 if (rate == 0)
1329 return EINVAL;
1330 for (i = 0; i < rs->rs_nrates; i++) {
1331 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate)
1332 break;
1333 }
1334 if (i == rs->rs_nrates)
1335 return EINVAL;
1336 }
1337 if (ic->ic_fixed_rate != i) {
1338 ic->ic_fixed_rate = i;
1339 error = ENETRESET;
1340 }
1341
1342 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
1343 (ime->ifm_media & IFM_FLAG0))
1344 newmode = IEEE80211_M_AHDEMO;
1345 else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
1346 newmode = IEEE80211_M_IBSS;
1347 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
1348 newmode = IEEE80211_M_HOSTAP;
1349 else if (ime->ifm_media & IFM_IEEE80211_MONITOR)
1350 newmode = IEEE80211_M_MONITOR;
1351 else
1352 newmode = IEEE80211_M_STA;
1353 if (ic->ic_opmode != newmode) {
1354 ic->ic_opmode = newmode;
1355 error = ENETRESET;
1356 }
1357 if (error == ENETRESET) {
1358 if (sc->sc_enabled)
1359 error = wi_init(ifp);
1360 else
1361 error = 0;
1362 }
1363 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1364
1365 return error;
1366 }
1367
1368 static void
1369 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1370 {
1371 struct wi_softc *sc = ifp->if_softc;
1372 struct ieee80211com *ic = &sc->sc_ic;
1373 u_int16_t val;
1374 int rate, len;
1375
1376 if (sc->sc_enabled == 0) {
1377 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1378 imr->ifm_status = 0;
1379 return;
1380 }
1381
1382 imr->ifm_status = IFM_AVALID;
1383 imr->ifm_active = IFM_IEEE80211;
1384 if (ic->ic_state == IEEE80211_S_RUN &&
1385 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1386 imr->ifm_status |= IFM_ACTIVE;
1387 len = sizeof(val);
1388 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1389 rate = 0;
1390 else {
1391 /* convert to 802.11 rate */
1392 val = le16toh(val);
1393 rate = val * 2;
1394 if (sc->sc_firmware_type == WI_LUCENT) {
1395 if (rate == 10)
1396 rate = 11; /* 5.5Mbps */
1397 } else {
1398 if (rate == 4*2)
1399 rate = 11; /* 5.5Mbps */
1400 else if (rate == 8*2)
1401 rate = 22; /* 11Mbps */
1402 }
1403 }
1404 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1405 switch (ic->ic_opmode) {
1406 case IEEE80211_M_STA:
1407 break;
1408 case IEEE80211_M_IBSS:
1409 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1410 break;
1411 case IEEE80211_M_AHDEMO:
1412 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1413 break;
1414 case IEEE80211_M_HOSTAP:
1415 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1416 break;
1417 case IEEE80211_M_MONITOR:
1418 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1419 break;
1420 }
1421 }
1422
1423 static struct ieee80211_node *
1424 wi_node_alloc(struct ieee80211com *ic)
1425 {
1426 struct wi_node *wn =
1427 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1428 return wn ? &wn->wn_node : NULL;
1429 }
1430
1431 static void
1432 wi_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1433 {
1434 struct wi_softc *sc = ic->ic_if.if_softc;
1435 int i;
1436
1437 for (i = 0; i < WI_NTXRSS; i++) {
1438 if (sc->sc_rssd[i].rd_desc.id_node == ni)
1439 sc->sc_rssd[i].rd_desc.id_node = NULL;
1440 }
1441 free(ni, M_DEVBUF);
1442 }
1443
1444 static void
1445 wi_node_copy(struct ieee80211com *ic, struct ieee80211_node *dst,
1446 const struct ieee80211_node *src)
1447 {
1448 *(struct wi_node *)dst = *(const struct wi_node *)src;
1449 }
1450
1451 static void
1452 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1453 {
1454 struct ieee80211com *ic = &sc->sc_ic;
1455 struct ieee80211_node *ni = ic->ic_bss;
1456 struct ifnet *ifp = &ic->ic_if;
1457
1458 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1459 return;
1460
1461 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
1462 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1463
1464 /* In promiscuous mode, the BSSID field is not a reliable
1465 * indicator of the firmware's BSSID. Damp spurious
1466 * change-of-BSSID indications.
1467 */
1468 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1469 sc->sc_false_syns >= WI_MAX_FALSE_SYNS)
1470 return;
1471
1472 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1473 }
1474
1475 static __inline void
1476 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni,
1477 struct ieee80211_frame *wh, int rssi)
1478 {
1479 struct wi_node *wn;
1480
1481 if (ni == NULL) {
1482 printf("%s: null node", __func__);
1483 return;
1484 }
1485
1486 wn = (void*)ni;
1487 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi);
1488 }
1489
1490 static void
1491 wi_rx_intr(struct wi_softc *sc)
1492 {
1493 struct ieee80211com *ic = &sc->sc_ic;
1494 struct ifnet *ifp = &ic->ic_if;
1495 struct ieee80211_node *ni;
1496 struct wi_frame frmhdr;
1497 struct mbuf *m;
1498 struct ieee80211_frame *wh;
1499 int fid, len, off, rssi;
1500 u_int8_t dir;
1501 u_int16_t status;
1502 u_int32_t rstamp;
1503
1504 fid = CSR_READ_2(sc, WI_RX_FID);
1505
1506 /* First read in the frame header */
1507 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1508 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1509 ifp->if_ierrors++;
1510 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1511 return;
1512 }
1513
1514 if (IFF_DUMPPKTS(ifp))
1515 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1516
1517 /*
1518 * Drop undecryptable or packets with receive errors here
1519 */
1520 status = le16toh(frmhdr.wi_status);
1521 if ((status & WI_STAT_ERRSTAT) != 0 &&
1522 ic->ic_opmode != IEEE80211_M_MONITOR) {
1523 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1524 ifp->if_ierrors++;
1525 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1526 return;
1527 }
1528 rssi = frmhdr.wi_rx_signal;
1529 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1530 le16toh(frmhdr.wi_rx_tstamp1);
1531
1532 len = le16toh(frmhdr.wi_dat_len);
1533 off = ALIGN(sizeof(struct ieee80211_frame));
1534
1535 /* Sometimes the PRISM2.x returns bogusly large frames. Except
1536 * in monitor mode, just throw them away.
1537 */
1538 if (off + len > MCLBYTES) {
1539 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1540 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1541 ifp->if_ierrors++;
1542 DPRINTF(("wi_rx_intr: oversized packet\n"));
1543 return;
1544 } else
1545 len = 0;
1546 }
1547
1548 MGETHDR(m, M_DONTWAIT, MT_DATA);
1549 if (m == NULL) {
1550 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1551 ifp->if_ierrors++;
1552 DPRINTF(("wi_rx_intr: MGET failed\n"));
1553 return;
1554 }
1555 if (off + len > MHLEN) {
1556 MCLGET(m, M_DONTWAIT);
1557 if ((m->m_flags & M_EXT) == 0) {
1558 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1559 m_freem(m);
1560 ifp->if_ierrors++;
1561 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1562 return;
1563 }
1564 }
1565
1566 m->m_data += off - sizeof(struct ieee80211_frame);
1567 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1568 wi_read_bap(sc, fid, sizeof(frmhdr),
1569 m->m_data + sizeof(struct ieee80211_frame), len);
1570 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1571 m->m_pkthdr.rcvif = ifp;
1572
1573 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1574
1575 #if NBPFILTER > 0
1576 if (sc->sc_drvbpf) {
1577 struct mbuf mb;
1578 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap;
1579
1580 tap->wr_rate = frmhdr.wi_rx_rate / 5;
1581 tap->wr_antsignal = WI_RSSI_TO_DBM(sc, frmhdr.wi_rx_signal);
1582 tap->wr_antnoise = WI_RSSI_TO_DBM(sc, frmhdr.wi_rx_silence);
1583
1584 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1585 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1586 if (frmhdr.wi_status & WI_STAT_PCF)
1587 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1588
1589 M_COPY_PKTHDR(&mb, m);
1590 mb.m_data = (caddr_t)tap;
1591 mb.m_len = tap->wr_ihdr.it_len;
1592 mb.m_next = m;
1593 mb.m_pkthdr.len += mb.m_len;
1594 bpf_mtap(sc->sc_drvbpf, &mb);
1595 }
1596 #endif
1597 wh = mtod(m, struct ieee80211_frame *);
1598 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1599 /*
1600 * WEP is decrypted by hardware. Clear WEP bit
1601 * header for ieee80211_input().
1602 */
1603 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1604 }
1605
1606 /* synchronize driver's BSSID with firmware's BSSID */
1607 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1608 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1609 wi_sync_bssid(sc, wh->i_addr3);
1610
1611 ni = ieee80211_find_rxnode(ic, wh);
1612
1613 ieee80211_input(ifp, m, ni, rssi, rstamp);
1614
1615 wi_rssadapt_input(ic, ni, wh, rssi);
1616
1617 /*
1618 * The frame may have caused the node to be marked for
1619 * reclamation (e.g. in response to a DEAUTH message)
1620 * so use free_node here instead of unref_node.
1621 */
1622 if (ni == ic->ic_bss)
1623 ieee80211_unref_node(&ni);
1624 else
1625 ieee80211_free_node(ic, ni);
1626 }
1627
1628 static void
1629 wi_tx_ex_intr(struct wi_softc *sc)
1630 {
1631 struct ieee80211com *ic = &sc->sc_ic;
1632 struct ifnet *ifp = &ic->ic_if;
1633 struct ieee80211_node *ni;
1634 struct ieee80211_rssdesc *id;
1635 struct wi_rssdesc *rssd;
1636 struct wi_frame frmhdr;
1637 int fid;
1638 u_int16_t status;
1639
1640 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1641 /* Read in the frame header */
1642 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1643 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1644 __func__, fid);
1645 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1646 &sc->sc_txpending);
1647 goto out;
1648 }
1649
1650 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1651 printf("%s: %s bad idx %02x\n",
1652 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1653 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1654 &sc->sc_txpending);
1655 goto out;
1656 }
1657
1658 status = le16toh(frmhdr.wi_status);
1659
1660 /*
1661 * Spontaneous station disconnects appear as xmit
1662 * errors. Don't announce them and/or count them
1663 * as an output error.
1664 */
1665 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1666 printf("%s: tx failed", sc->sc_dev.dv_xname);
1667 if (status & WI_TXSTAT_RET_ERR)
1668 printf(", retry limit exceeded");
1669 if (status & WI_TXSTAT_AGED_ERR)
1670 printf(", max transmit lifetime exceeded");
1671 if (status & WI_TXSTAT_DISCONNECT)
1672 printf(", port disconnected");
1673 if (status & WI_TXSTAT_FORM_ERR)
1674 printf(", invalid format (data len %u src %s)",
1675 le16toh(frmhdr.wi_dat_len),
1676 ether_sprintf(frmhdr.wi_ehdr.ether_shost));
1677 if (status & ~0xf)
1678 printf(", status=0x%x", status);
1679 printf("\n");
1680 }
1681 ifp->if_oerrors++;
1682 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1683 id = &rssd->rd_desc;
1684 if ((status & WI_TXSTAT_RET_ERR) != 0)
1685 wi_lower_rate(ic, id);
1686
1687 ni = id->id_node;
1688 id->id_node = NULL;
1689
1690 if (ni == NULL) {
1691 printf("%s: %s null node, rssdesc %02x\n",
1692 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1693 goto out;
1694 }
1695
1696 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1697 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1698 __func__, id->id_rateidx);
1699 sc->sc_txpending[id->id_rateidx] = 0;
1700 }
1701 if (ni != NULL && ni != ic->ic_bss)
1702 ieee80211_free_node(ic, ni);
1703 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1704 out:
1705 ifp->if_flags &= ~IFF_OACTIVE;
1706 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
1707 }
1708
1709 static void
1710 wi_txalloc_intr(struct wi_softc *sc)
1711 {
1712 struct ieee80211com *ic = &sc->sc_ic;
1713 struct ifnet *ifp = &ic->ic_if;
1714 int fid, cur;
1715
1716 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1717 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1718
1719 cur = sc->sc_txcur;
1720 if (sc->sc_txd[cur].d_fid != fid) {
1721 printf("%s: bad alloc %x != %x, cur %d nxt %d\n",
1722 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1723 sc->sc_txnext);
1724 return;
1725 }
1726 sc->sc_tx_timer = 0;
1727 sc->sc_txd[cur].d_len = 0;
1728 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF;
1729 if (sc->sc_txd[cur].d_len == 0)
1730 ifp->if_flags &= ~IFF_OACTIVE;
1731 else {
1732 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1733 0, 0)) {
1734 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1735 sc->sc_txd[cur].d_len = 0;
1736 } else {
1737 sc->sc_txpending[sc->sc_txd[cur].d_rate]++;
1738 sc->sc_tx_timer = 5;
1739 ifp->if_timer = 1;
1740 }
1741 }
1742 }
1743
1744 static void
1745 wi_tx_intr(struct wi_softc *sc)
1746 {
1747 struct ieee80211com *ic = &sc->sc_ic;
1748 struct ifnet *ifp = &ic->ic_if;
1749 struct ieee80211_node *ni;
1750 struct ieee80211_rssdesc *id;
1751 struct wi_rssdesc *rssd;
1752 struct wi_frame frmhdr;
1753 int fid;
1754
1755 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1756 /* Read in the frame header */
1757 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1758 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1759 __func__, fid);
1760 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1761 &sc->sc_txpending);
1762 goto out;
1763 }
1764
1765 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1766 printf("%s: %s bad idx %02x\n",
1767 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1768 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1769 &sc->sc_txpending);
1770 goto out;
1771 }
1772
1773 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1774 id = &rssd->rd_desc;
1775 wi_raise_rate(ic, id);
1776
1777 ni = id->id_node;
1778 id->id_node = NULL;
1779
1780 if (ni == NULL) {
1781 printf("%s: %s null node, rssdesc %02x\n",
1782 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1783 goto out;
1784 }
1785
1786 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1787 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1788 __func__, id->id_rateidx);
1789 sc->sc_txpending[id->id_rateidx] = 0;
1790 }
1791 if (ni != NULL && ni != ic->ic_bss)
1792 ieee80211_free_node(ic, ni);
1793 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1794 out:
1795 ifp->if_flags &= ~IFF_OACTIVE;
1796 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
1797 }
1798
1799 static void
1800 wi_info_intr(struct wi_softc *sc)
1801 {
1802 struct ieee80211com *ic = &sc->sc_ic;
1803 struct ifnet *ifp = &ic->ic_if;
1804 int i, fid, len, off;
1805 u_int16_t ltbuf[2];
1806 u_int16_t stat;
1807 u_int32_t *ptr;
1808
1809 fid = CSR_READ_2(sc, WI_INFO_FID);
1810 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1811
1812 switch (le16toh(ltbuf[1])) {
1813
1814 case WI_INFO_LINK_STAT:
1815 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1816 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1817 switch (le16toh(stat)) {
1818 case CONNECTED:
1819 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1820 if (ic->ic_state == IEEE80211_S_RUN &&
1821 ic->ic_opmode != IEEE80211_M_IBSS)
1822 break;
1823 /* FALLTHROUGH */
1824 case AP_CHANGE:
1825 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1826 break;
1827 case AP_IN_RANGE:
1828 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1829 break;
1830 case AP_OUT_OF_RANGE:
1831 if (sc->sc_firmware_type == WI_SYMBOL &&
1832 sc->sc_scan_timer > 0) {
1833 if (wi_cmd(sc, WI_CMD_INQUIRE,
1834 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1835 sc->sc_scan_timer = 0;
1836 break;
1837 }
1838 if (ic->ic_opmode == IEEE80211_M_STA)
1839 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1840 break;
1841 case DISCONNECTED:
1842 case ASSOC_FAILED:
1843 if (ic->ic_opmode == IEEE80211_M_STA)
1844 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1845 break;
1846 }
1847 break;
1848
1849 case WI_INFO_COUNTERS:
1850 /* some card versions have a larger stats structure */
1851 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1852 ptr = (u_int32_t *)&sc->sc_stats;
1853 off = sizeof(ltbuf);
1854 for (i = 0; i < len; i++, off += 2, ptr++) {
1855 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1856 stat = le16toh(stat);
1857 #ifdef WI_HERMES_STATS_WAR
1858 if (stat & 0xf000)
1859 stat = ~stat;
1860 #endif
1861 *ptr += stat;
1862 }
1863 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1864 sc->sc_stats.wi_tx_multi_retries +
1865 sc->sc_stats.wi_tx_retry_limit;
1866 break;
1867
1868 case WI_INFO_SCAN_RESULTS:
1869 case WI_INFO_HOST_SCAN_RESULTS:
1870 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1871 break;
1872
1873 default:
1874 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1875 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1876 break;
1877 }
1878 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1879 }
1880
1881 static int
1882 wi_write_multi(struct wi_softc *sc)
1883 {
1884 struct ifnet *ifp = &sc->sc_ic.ic_if;
1885 int n;
1886 struct wi_mcast mlist;
1887 struct ether_multi *enm;
1888 struct ether_multistep estep;
1889
1890 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1891 allmulti:
1892 ifp->if_flags |= IFF_ALLMULTI;
1893 memset(&mlist, 0, sizeof(mlist));
1894 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1895 sizeof(mlist));
1896 }
1897
1898 n = 0;
1899 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1900 while (enm != NULL) {
1901 /* Punt on ranges or too many multicast addresses. */
1902 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1903 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1904 goto allmulti;
1905
1906 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1907 n++;
1908 ETHER_NEXT_MULTI(estep, enm);
1909 }
1910 ifp->if_flags &= ~IFF_ALLMULTI;
1911 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1912 IEEE80211_ADDR_LEN * n);
1913 }
1914
1915
1916 static void
1917 wi_read_nicid(struct wi_softc *sc)
1918 {
1919 struct wi_card_ident *id;
1920 char *p;
1921 int len;
1922 u_int16_t ver[4];
1923
1924 /* getting chip identity */
1925 memset(ver, 0, sizeof(ver));
1926 len = sizeof(ver);
1927 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1928 printf("%s: using ", sc->sc_dev.dv_xname);
1929 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1930
1931 sc->sc_firmware_type = WI_NOTYPE;
1932 for (id = wi_card_ident; id->card_name != NULL; id++) {
1933 if (le16toh(ver[0]) == id->card_id) {
1934 printf("%s", id->card_name);
1935 sc->sc_firmware_type = id->firm_type;
1936 break;
1937 }
1938 }
1939 if (sc->sc_firmware_type == WI_NOTYPE) {
1940 if (le16toh(ver[0]) & 0x8000) {
1941 printf("Unknown PRISM2 chip");
1942 sc->sc_firmware_type = WI_INTERSIL;
1943 } else {
1944 printf("Unknown Lucent chip");
1945 sc->sc_firmware_type = WI_LUCENT;
1946 }
1947 }
1948
1949 /* get primary firmware version (Only Prism chips) */
1950 if (sc->sc_firmware_type != WI_LUCENT) {
1951 memset(ver, 0, sizeof(ver));
1952 len = sizeof(ver);
1953 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1954 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1955 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1956 }
1957
1958 /* get station firmware version */
1959 memset(ver, 0, sizeof(ver));
1960 len = sizeof(ver);
1961 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1962 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1963 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1964 if (sc->sc_firmware_type == WI_INTERSIL &&
1965 (sc->sc_sta_firmware_ver == 10102 ||
1966 sc->sc_sta_firmware_ver == 20102)) {
1967 char ident[12];
1968 memset(ident, 0, sizeof(ident));
1969 len = sizeof(ident);
1970 /* value should be the format like "V2.00-11" */
1971 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1972 *(p = (char *)ident) >= 'A' &&
1973 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1974 sc->sc_firmware_type = WI_SYMBOL;
1975 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1976 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1977 (p[6] - '0') * 10 + (p[7] - '0');
1978 }
1979 }
1980
1981 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1982 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1983 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1984 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1985 printf("Primary (%u.%u.%u), ",
1986 sc->sc_pri_firmware_ver / 10000,
1987 (sc->sc_pri_firmware_ver % 10000) / 100,
1988 sc->sc_pri_firmware_ver % 100);
1989 printf("Station (%u.%u.%u)\n",
1990 sc->sc_sta_firmware_ver / 10000,
1991 (sc->sc_sta_firmware_ver % 10000) / 100,
1992 sc->sc_sta_firmware_ver % 100);
1993 }
1994
1995 static int
1996 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1997 {
1998 struct wi_ssid ssid;
1999
2000 if (buflen > IEEE80211_NWID_LEN)
2001 return ENOBUFS;
2002 memset(&ssid, 0, sizeof(ssid));
2003 ssid.wi_len = htole16(buflen);
2004 memcpy(ssid.wi_ssid, buf, buflen);
2005 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
2006 }
2007
2008 static int
2009 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2010 {
2011 struct wi_softc *sc = ifp->if_softc;
2012 struct ieee80211com *ic = &sc->sc_ic;
2013 struct ifreq *ifr = (struct ifreq *)data;
2014 struct wi_req wreq;
2015 int len, n, error;
2016
2017 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2018 if (error)
2019 return error;
2020 len = (wreq.wi_len - 1) * 2;
2021 if (len < sizeof(u_int16_t))
2022 return ENOSPC;
2023 if (len > sizeof(wreq.wi_val))
2024 len = sizeof(wreq.wi_val);
2025
2026 switch (wreq.wi_type) {
2027
2028 case WI_RID_IFACE_STATS:
2029 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
2030 if (len < sizeof(sc->sc_stats))
2031 error = ENOSPC;
2032 else
2033 len = sizeof(sc->sc_stats);
2034 break;
2035
2036 case WI_RID_ENCRYPTION:
2037 case WI_RID_TX_CRYPT_KEY:
2038 case WI_RID_DEFLT_CRYPT_KEYS:
2039 case WI_RID_TX_RATE:
2040 return ieee80211_cfgget(ifp, cmd, data);
2041
2042 case WI_RID_MICROWAVE_OVEN:
2043 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
2044 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2045 &len);
2046 break;
2047 }
2048 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
2049 len = sizeof(u_int16_t);
2050 break;
2051
2052 case WI_RID_DBM_ADJUST:
2053 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
2054 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2055 &len);
2056 break;
2057 }
2058 wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
2059 len = sizeof(u_int16_t);
2060 break;
2061
2062 case WI_RID_ROAMING_MODE:
2063 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
2064 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2065 &len);
2066 break;
2067 }
2068 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
2069 len = sizeof(u_int16_t);
2070 break;
2071
2072 case WI_RID_SYSTEM_SCALE:
2073 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
2074 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2075 &len);
2076 break;
2077 }
2078 wreq.wi_val[0] = htole16(sc->sc_system_scale);
2079 len = sizeof(u_int16_t);
2080 break;
2081
2082 case WI_RID_FRAG_THRESH:
2083 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
2084 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2085 &len);
2086 break;
2087 }
2088 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2089 len = sizeof(u_int16_t);
2090 break;
2091
2092 case WI_RID_READ_APS:
2093 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2094 return ieee80211_cfgget(ifp, cmd, data);
2095 if (sc->sc_scan_timer > 0) {
2096 error = EINPROGRESS;
2097 break;
2098 }
2099 n = sc->sc_naps;
2100 if (len < sizeof(n)) {
2101 error = ENOSPC;
2102 break;
2103 }
2104 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
2105 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
2106 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
2107 memcpy(wreq.wi_val, &n, sizeof(n));
2108 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
2109 sizeof(struct wi_apinfo) * n);
2110 break;
2111
2112 default:
2113 if (sc->sc_enabled) {
2114 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2115 &len);
2116 break;
2117 }
2118 switch (wreq.wi_type) {
2119 case WI_RID_MAX_DATALEN:
2120 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
2121 len = sizeof(u_int16_t);
2122 break;
2123 case WI_RID_FRAG_THRESH:
2124 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2125 len = sizeof(u_int16_t);
2126 break;
2127 case WI_RID_RTS_THRESH:
2128 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
2129 len = sizeof(u_int16_t);
2130 break;
2131 case WI_RID_CNFAUTHMODE:
2132 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
2133 len = sizeof(u_int16_t);
2134 break;
2135 case WI_RID_NODENAME:
2136 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
2137 error = ENOSPC;
2138 break;
2139 }
2140 len = sc->sc_nodelen + sizeof(u_int16_t);
2141 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
2142 memcpy(&wreq.wi_val[1], sc->sc_nodename,
2143 sc->sc_nodelen);
2144 break;
2145 default:
2146 return ieee80211_cfgget(ifp, cmd, data);
2147 }
2148 break;
2149 }
2150 if (error)
2151 return error;
2152 wreq.wi_len = (len + 1) / 2 + 1;
2153 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
2154 }
2155
2156 static int
2157 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2158 {
2159 struct wi_softc *sc = ifp->if_softc;
2160 struct ieee80211com *ic = &sc->sc_ic;
2161 struct ifreq *ifr = (struct ifreq *)data;
2162 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2163 struct wi_req wreq;
2164 struct mbuf *m;
2165 int i, len, error;
2166
2167 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2168 if (error)
2169 return error;
2170 len = (wreq.wi_len - 1) * 2;
2171 switch (wreq.wi_type) {
2172 case WI_RID_DBM_ADJUST:
2173 return ENODEV;
2174
2175 case WI_RID_NODENAME:
2176 if (le16toh(wreq.wi_val[0]) * 2 > len ||
2177 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
2178 error = ENOSPC;
2179 break;
2180 }
2181 if (sc->sc_enabled) {
2182 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2183 len);
2184 if (error)
2185 break;
2186 }
2187 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
2188 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
2189 break;
2190
2191 case WI_RID_MICROWAVE_OVEN:
2192 case WI_RID_ROAMING_MODE:
2193 case WI_RID_SYSTEM_SCALE:
2194 case WI_RID_FRAG_THRESH:
2195 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
2196 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
2197 break;
2198 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
2199 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
2200 break;
2201 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
2202 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
2203 break;
2204 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
2205 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
2206 break;
2207 /* FALLTHROUGH */
2208 case WI_RID_RTS_THRESH:
2209 case WI_RID_CNFAUTHMODE:
2210 case WI_RID_MAX_DATALEN:
2211 if (sc->sc_enabled) {
2212 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2213 sizeof(u_int16_t));
2214 if (error)
2215 break;
2216 }
2217 switch (wreq.wi_type) {
2218 case WI_RID_FRAG_THRESH:
2219 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
2220 break;
2221 case WI_RID_RTS_THRESH:
2222 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
2223 break;
2224 case WI_RID_MICROWAVE_OVEN:
2225 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
2226 break;
2227 case WI_RID_ROAMING_MODE:
2228 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
2229 break;
2230 case WI_RID_SYSTEM_SCALE:
2231 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
2232 break;
2233 case WI_RID_CNFAUTHMODE:
2234 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
2235 break;
2236 case WI_RID_MAX_DATALEN:
2237 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
2238 break;
2239 }
2240 break;
2241
2242 case WI_RID_TX_RATE:
2243 switch (le16toh(wreq.wi_val[0])) {
2244 case 3:
2245 ic->ic_fixed_rate = -1;
2246 break;
2247 default:
2248 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2249 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
2250 / 2 == le16toh(wreq.wi_val[0]))
2251 break;
2252 }
2253 if (i == IEEE80211_RATE_SIZE)
2254 return EINVAL;
2255 ic->ic_fixed_rate = i;
2256 }
2257 if (sc->sc_enabled)
2258 error = wi_cfg_txrate(sc);
2259 break;
2260
2261 case WI_RID_SCAN_APS:
2262 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2263 error = wi_scan_ap(sc, 0x3fff, 0x000f);
2264 break;
2265
2266 case WI_RID_MGMT_XMIT:
2267 if (!sc->sc_enabled) {
2268 error = ENETDOWN;
2269 break;
2270 }
2271 if (ic->ic_mgtq.ifq_len > 5) {
2272 error = EAGAIN;
2273 break;
2274 }
2275 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
2276 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
2277 if (m == NULL) {
2278 error = ENOMEM;
2279 break;
2280 }
2281 IF_ENQUEUE(&ic->ic_mgtq, m);
2282 break;
2283
2284 default:
2285 if (sc->sc_enabled) {
2286 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2287 len);
2288 if (error)
2289 break;
2290 }
2291 error = ieee80211_cfgset(ifp, cmd, data);
2292 break;
2293 }
2294 return error;
2295 }
2296
2297 /* Rate is 0 for hardware auto-select, otherwise rate is
2298 * 2, 4, 11, or 22 (units of 500Kbps).
2299 */
2300 static int
2301 wi_write_txrate(struct wi_softc *sc, int rate)
2302 {
2303 u_int16_t hwrate;
2304 int i;
2305
2306 rate = (rate & IEEE80211_RATE_VAL) / 2;
2307
2308 /* rate: 0, 1, 2, 5, 11 */
2309 switch (sc->sc_firmware_type) {
2310 case WI_LUCENT:
2311 switch (rate) {
2312 case 0:
2313 hwrate = 3; /* auto */
2314 break;
2315 case 5:
2316 hwrate = 4;
2317 break;
2318 case 11:
2319 hwrate = 5;
2320 break;
2321 default:
2322 hwrate = rate;
2323 break;
2324 }
2325 break;
2326 default:
2327 /* Choose a bit according to this table.
2328 *
2329 * bit | data rate
2330 * ----+-------------------
2331 * 0 | 1Mbps
2332 * 1 | 2Mbps
2333 * 2 | 5.5Mbps
2334 * 3 | 11Mbps
2335 */
2336 for (i = 8; i > 0; i >>= 1) {
2337 if (rate >= i)
2338 break;
2339 }
2340 if (i == 0)
2341 hwrate = 0xf; /* auto */
2342 else
2343 hwrate = i;
2344 break;
2345 }
2346
2347 if (sc->sc_tx_rate == hwrate)
2348 return 0;
2349
2350 if (sc->sc_if.if_flags & IFF_DEBUG)
2351 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate,
2352 hwrate, rate);
2353
2354 sc->sc_tx_rate = hwrate;
2355
2356 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate);
2357 }
2358
2359 static int
2360 wi_cfg_txrate(struct wi_softc *sc)
2361 {
2362 struct ieee80211com *ic = &sc->sc_ic;
2363 struct ieee80211_rateset *rs;
2364 int rate;
2365
2366 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2367
2368 sc->sc_tx_rate = 0; /* force write to RID */
2369
2370 if (ic->ic_fixed_rate < 0)
2371 rate = 0; /* auto */
2372 else
2373 rate = rs->rs_rates[ic->ic_fixed_rate];
2374
2375 return wi_write_txrate(sc, rate);
2376 }
2377
2378 static int
2379 wi_write_wep(struct wi_softc *sc)
2380 {
2381 struct ieee80211com *ic = &sc->sc_ic;
2382 int error = 0;
2383 int i, keylen;
2384 u_int16_t val;
2385 struct wi_key wkey[IEEE80211_WEP_NKID];
2386
2387 switch (sc->sc_firmware_type) {
2388 case WI_LUCENT:
2389 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
2390 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2391 if (error)
2392 break;
2393 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
2394 if (error)
2395 break;
2396 memset(wkey, 0, sizeof(wkey));
2397 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2398 keylen = ic->ic_nw_keys[i].wk_len;
2399 wkey[i].wi_keylen = htole16(keylen);
2400 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2401 keylen);
2402 }
2403 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2404 wkey, sizeof(wkey));
2405 break;
2406
2407 case WI_INTERSIL:
2408 case WI_SYMBOL:
2409 if (ic->ic_flags & IEEE80211_F_WEPON) {
2410 /*
2411 * ONLY HWB3163 EVAL-CARD Firmware version
2412 * less than 0.8 variant2
2413 *
2414 * If promiscuous mode disable, Prism2 chip
2415 * does not work with WEP .
2416 * It is under investigation for details.
2417 * (ichiro (at) NetBSD.org)
2418 */
2419 if (sc->sc_firmware_type == WI_INTERSIL &&
2420 sc->sc_sta_firmware_ver < 802 ) {
2421 /* firm ver < 0.8 variant 2 */
2422 wi_write_val(sc, WI_RID_PROMISC, 1);
2423 }
2424 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2425 sc->sc_cnfauthmode);
2426 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
2427 /*
2428 * Encryption firmware has a bug for HostAP mode.
2429 */
2430 if (sc->sc_firmware_type == WI_INTERSIL &&
2431 ic->ic_opmode == IEEE80211_M_HOSTAP)
2432 val |= HOST_ENCRYPT;
2433 } else {
2434 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2435 IEEE80211_AUTH_OPEN);
2436 val = HOST_ENCRYPT | HOST_DECRYPT;
2437 }
2438 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2439 if (error)
2440 break;
2441 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2442 ic->ic_wep_txkey);
2443 if (error)
2444 break;
2445 /*
2446 * It seems that the firmware accept 104bit key only if
2447 * all the keys have 104bit length. We get the length of
2448 * the transmit key and use it for all other keys.
2449 * Perhaps we should use software WEP for such situation.
2450 */
2451 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
2452 if (keylen > IEEE80211_WEP_KEYLEN)
2453 keylen = 13; /* 104bit keys */
2454 else
2455 keylen = IEEE80211_WEP_KEYLEN;
2456 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2457 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2458 ic->ic_nw_keys[i].wk_key, keylen);
2459 if (error)
2460 break;
2461 }
2462 break;
2463 }
2464 return error;
2465 }
2466
2467 /* Must be called at proper protection level! */
2468 static int
2469 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2470 {
2471 int i, status;
2472
2473 /* wait for the busy bit to clear */
2474 for (i = 500; i > 0; i--) { /* 5s */
2475 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2476 break;
2477 DELAY(10*1000); /* 10 m sec */
2478 }
2479 if (i == 0) {
2480 printf("%s: wi_cmd: busy bit won't clear.\n",
2481 sc->sc_dev.dv_xname);
2482 return(ETIMEDOUT);
2483 }
2484 CSR_WRITE_2(sc, WI_PARAM0, val0);
2485 CSR_WRITE_2(sc, WI_PARAM1, val1);
2486 CSR_WRITE_2(sc, WI_PARAM2, val2);
2487 CSR_WRITE_2(sc, WI_COMMAND, cmd);
2488
2489 if (cmd == WI_CMD_INI) {
2490 /* XXX: should sleep here. */
2491 DELAY(100*1000);
2492 }
2493 /* wait for the cmd completed bit */
2494 for (i = 0; i < WI_TIMEOUT; i++) {
2495 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
2496 break;
2497 DELAY(WI_DELAY);
2498 }
2499
2500 status = CSR_READ_2(sc, WI_STATUS);
2501
2502 /* Ack the command */
2503 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2504
2505 if (i == WI_TIMEOUT) {
2506 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
2507 sc->sc_dev.dv_xname, cmd, val0);
2508 return ETIMEDOUT;
2509 }
2510
2511 if (status & WI_STAT_CMD_RESULT) {
2512 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
2513 sc->sc_dev.dv_xname, cmd, val0);
2514 return EIO;
2515 }
2516 return 0;
2517 }
2518
2519 static int
2520 wi_seek_bap(struct wi_softc *sc, int id, int off)
2521 {
2522 int i, status;
2523
2524 CSR_WRITE_2(sc, WI_SEL0, id);
2525 CSR_WRITE_2(sc, WI_OFF0, off);
2526
2527 for (i = 0; ; i++) {
2528 status = CSR_READ_2(sc, WI_OFF0);
2529 if ((status & WI_OFF_BUSY) == 0)
2530 break;
2531 if (i == WI_TIMEOUT) {
2532 printf("%s: timeout in wi_seek to %x/%x\n",
2533 sc->sc_dev.dv_xname, id, off);
2534 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2535 return ETIMEDOUT;
2536 }
2537 DELAY(1);
2538 }
2539 if (status & WI_OFF_ERR) {
2540 printf("%s: failed in wi_seek to %x/%x\n",
2541 sc->sc_dev.dv_xname, id, off);
2542 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2543 return EIO;
2544 }
2545 sc->sc_bap_id = id;
2546 sc->sc_bap_off = off;
2547 return 0;
2548 }
2549
2550 static int
2551 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2552 {
2553 int error, cnt;
2554
2555 if (buflen == 0)
2556 return 0;
2557 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2558 if ((error = wi_seek_bap(sc, id, off)) != 0)
2559 return error;
2560 }
2561 cnt = (buflen + 1) / 2;
2562 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2563 sc->sc_bap_off += cnt * 2;
2564 return 0;
2565 }
2566
2567 static int
2568 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2569 {
2570 int error, cnt;
2571
2572 if (buflen == 0)
2573 return 0;
2574
2575 #ifdef WI_HERMES_AUTOINC_WAR
2576 again:
2577 #endif
2578 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2579 if ((error = wi_seek_bap(sc, id, off)) != 0)
2580 return error;
2581 }
2582 cnt = (buflen + 1) / 2;
2583 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2584 sc->sc_bap_off += cnt * 2;
2585
2586 #ifdef WI_HERMES_AUTOINC_WAR
2587 /*
2588 * According to the comments in the HCF Light code, there is a bug
2589 * in the Hermes (or possibly in certain Hermes firmware revisions)
2590 * where the chip's internal autoincrement counter gets thrown off
2591 * during data writes: the autoincrement is missed, causing one
2592 * data word to be overwritten and subsequent words to be written to
2593 * the wrong memory locations. The end result is that we could end
2594 * up transmitting bogus frames without realizing it. The workaround
2595 * for this is to write a couple of extra guard words after the end
2596 * of the transfer, then attempt to read then back. If we fail to
2597 * locate the guard words where we expect them, we preform the
2598 * transfer over again.
2599 */
2600 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2601 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2602 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2603 wi_seek_bap(sc, id, sc->sc_bap_off);
2604 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2605 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2606 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2607 printf("%s: detect auto increment bug, try again\n",
2608 sc->sc_dev.dv_xname);
2609 goto again;
2610 }
2611 }
2612 #endif
2613 return 0;
2614 }
2615
2616 static int
2617 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2618 {
2619 int error, len;
2620 struct mbuf *m;
2621
2622 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2623 if (m->m_len == 0)
2624 continue;
2625
2626 len = min(m->m_len, totlen);
2627
2628 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2629 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2630 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2631 totlen);
2632 }
2633
2634 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2635 return error;
2636
2637 off += m->m_len;
2638 totlen -= len;
2639 }
2640 return 0;
2641 }
2642
2643 static int
2644 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2645 {
2646 int i;
2647
2648 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2649 printf("%s: failed to allocate %d bytes on NIC\n",
2650 sc->sc_dev.dv_xname, len);
2651 return ENOMEM;
2652 }
2653
2654 for (i = 0; i < WI_TIMEOUT; i++) {
2655 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2656 break;
2657 if (i == WI_TIMEOUT) {
2658 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
2659 return ETIMEDOUT;
2660 }
2661 DELAY(1);
2662 }
2663 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
2664 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2665 return 0;
2666 }
2667
2668 static int
2669 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2670 {
2671 int error, len;
2672 u_int16_t ltbuf[2];
2673
2674 /* Tell the NIC to enter record read mode. */
2675 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2676 if (error)
2677 return error;
2678
2679 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2680 if (error)
2681 return error;
2682
2683 if (le16toh(ltbuf[1]) != rid) {
2684 printf("%s: record read mismatch, rid=%x, got=%x\n",
2685 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
2686 return EIO;
2687 }
2688 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
2689 if (*buflenp < len) {
2690 printf("%s: record buffer is too small, "
2691 "rid=%x, size=%d, len=%d\n",
2692 sc->sc_dev.dv_xname, rid, *buflenp, len);
2693 return ENOSPC;
2694 }
2695 *buflenp = len;
2696 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2697 }
2698
2699 static int
2700 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2701 {
2702 int error;
2703 u_int16_t ltbuf[2];
2704
2705 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
2706 ltbuf[1] = htole16(rid);
2707
2708 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2709 if (error)
2710 return error;
2711 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2712 if (error)
2713 return error;
2714
2715 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2716 }
2717
2718 static void
2719 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni)
2720 {
2721 struct wi_node *wn = (void*)ni;
2722 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt);
2723 }
2724
2725 static void
2726 wi_rssadapt_updatestats(void *arg)
2727 {
2728 struct wi_softc *sc = arg;
2729 struct ieee80211com *ic = &sc->sc_ic;
2730 ieee80211_iterate_nodes(ic, wi_rssadapt_updatestats_cb, arg);
2731 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2732 ic->ic_state == IEEE80211_S_RUN)
2733 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
2734 wi_rssadapt_updatestats, arg);
2735 }
2736
2737 static int
2738 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2739 {
2740 struct wi_softc *sc = ic->ic_softc;
2741 struct ieee80211_node *ni = ic->ic_bss;
2742 int buflen;
2743 u_int16_t val;
2744 struct wi_ssid ssid;
2745 struct wi_macaddr bssid, old_bssid;
2746 enum ieee80211_state ostate;
2747 #ifdef WI_DEBUG
2748 static const char *stname[] =
2749 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
2750 #endif /* WI_DEBUG */
2751
2752 ostate = ic->ic_state;
2753 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
2754
2755 switch (nstate) {
2756 case IEEE80211_S_INIT:
2757 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2758 callout_stop(&sc->sc_rssadapt_ch);
2759 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2760 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2761 return (*sc->sc_newstate)(ic, nstate, arg);
2762
2763 case IEEE80211_S_RUN:
2764 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2765 buflen = IEEE80211_ADDR_LEN;
2766 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid);
2767 wi_read_rid(sc, WI_RID_CURRENT_BSSID, &bssid, &buflen);
2768 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid);
2769 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid);
2770 buflen = sizeof(val);
2771 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
2772 if (!isset(ic->ic_chan_avail, le16toh(val)))
2773 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname,
2774 le16toh(val));
2775 ni->ni_chan = &ic->ic_channels[le16toh(val)];
2776
2777 if (IEEE80211_ADDR_EQ(old_bssid.wi_mac_addr, ni->ni_bssid))
2778 sc->sc_false_syns++;
2779 else
2780 sc->sc_false_syns = 0;
2781
2782 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2783 ni->ni_esslen = ic->ic_des_esslen;
2784 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2785 ni->ni_rates = ic->ic_sup_rates[
2786 ieee80211_chan2mode(ic, ni->ni_chan)];
2787 ni->ni_intval = ic->ic_lintval;
2788 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2789 if (ic->ic_flags & IEEE80211_F_WEPON)
2790 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2791 } else {
2792 buflen = sizeof(ssid);
2793 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2794 ni->ni_esslen = le16toh(ssid.wi_len);
2795 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2796 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2797 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2798 ni->ni_rates = ic->ic_sup_rates[
2799 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/
2800 }
2801 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2802 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
2803 wi_rssadapt_updatestats, sc);
2804 break;
2805
2806 case IEEE80211_S_SCAN:
2807 case IEEE80211_S_AUTH:
2808 case IEEE80211_S_ASSOC:
2809 break;
2810 }
2811
2812 ic->ic_state = nstate;
2813 /* skip standard ieee80211 handling */
2814 return 0;
2815 }
2816
2817 static int
2818 wi_set_tim(struct ieee80211com *ic, int aid, int which)
2819 {
2820 struct wi_softc *sc = ic->ic_softc;
2821
2822 aid &= ~0xc000;
2823 if (which)
2824 aid |= 0x8000;
2825
2826 return wi_write_val(sc, WI_RID_SET_TIM, aid);
2827 }
2828
2829 static int
2830 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
2831 {
2832 int error = 0;
2833 u_int16_t val[2];
2834
2835 if (!sc->sc_enabled)
2836 return ENXIO;
2837 switch (sc->sc_firmware_type) {
2838 case WI_LUCENT:
2839 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2840 break;
2841 case WI_INTERSIL:
2842 val[0] = htole16(chanmask); /* channel */
2843 val[1] = htole16(txrate); /* tx rate */
2844 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2845 break;
2846 case WI_SYMBOL:
2847 /*
2848 * XXX only supported on 3.x ?
2849 */
2850 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2851 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2852 val, sizeof(val[0]));
2853 break;
2854 }
2855 if (error == 0) {
2856 sc->sc_scan_timer = WI_SCAN_WAIT;
2857 sc->sc_ic.ic_if.if_timer = 1;
2858 DPRINTF(("wi_scan_ap: start scanning, "
2859 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate));
2860 }
2861 return error;
2862 }
2863
2864 static void
2865 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2866 {
2867 #define N(a) (sizeof (a) / sizeof (a[0]))
2868 int i, naps, off, szbuf;
2869 struct wi_scan_header ws_hdr; /* Prism2 header */
2870 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2871 struct wi_apinfo *ap;
2872
2873 off = sizeof(u_int16_t) * 2;
2874 memset(&ws_hdr, 0, sizeof(ws_hdr));
2875 switch (sc->sc_firmware_type) {
2876 case WI_INTERSIL:
2877 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2878 off += sizeof(ws_hdr);
2879 szbuf = sizeof(struct wi_scan_data_p2);
2880 break;
2881 case WI_SYMBOL:
2882 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2883 break;
2884 case WI_LUCENT:
2885 szbuf = sizeof(struct wi_scan_data);
2886 break;
2887 default:
2888 printf("%s: wi_scan_result: unknown firmware type %u\n",
2889 sc->sc_dev.dv_xname, sc->sc_firmware_type);
2890 naps = 0;
2891 goto done;
2892 }
2893 naps = (cnt * 2 + 2 - off) / szbuf;
2894 if (naps > N(sc->sc_aps))
2895 naps = N(sc->sc_aps);
2896 sc->sc_naps = naps;
2897 /* Read Data */
2898 ap = sc->sc_aps;
2899 memset(&ws_dat, 0, sizeof(ws_dat));
2900 for (i = 0; i < naps; i++, ap++) {
2901 wi_read_bap(sc, fid, off, &ws_dat,
2902 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2903 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
2904 ether_sprintf(ws_dat.wi_bssid)));
2905 off += szbuf;
2906 ap->scanreason = le16toh(ws_hdr.wi_reason);
2907 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2908 ap->channel = le16toh(ws_dat.wi_chid);
2909 ap->signal = le16toh(ws_dat.wi_signal);
2910 ap->noise = le16toh(ws_dat.wi_noise);
2911 ap->quality = ap->signal - ap->noise;
2912 ap->capinfo = le16toh(ws_dat.wi_capinfo);
2913 ap->interval = le16toh(ws_dat.wi_interval);
2914 ap->rate = le16toh(ws_dat.wi_rate);
2915 ap->namelen = le16toh(ws_dat.wi_namelen);
2916 if (ap->namelen > sizeof(ap->name))
2917 ap->namelen = sizeof(ap->name);
2918 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2919 }
2920 done:
2921 /* Done scanning */
2922 sc->sc_scan_timer = 0;
2923 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
2924 #undef N
2925 }
2926
2927 static void
2928 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
2929 {
2930 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
2931 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL
2932 : -1,
2933 rssi);
2934 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
2935 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
2936 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
2937 printf(" rx_signal %u rx_rate %u rx_flow %u\n",
2938 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
2939 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
2940 wh->wi_tx_rtry, wh->wi_tx_rate,
2941 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
2942 printf(" ehdr dst %s src %s type 0x%x\n",
2943 ether_sprintf(wh->wi_ehdr.ether_dhost),
2944 ether_sprintf(wh->wi_ehdr.ether_shost),
2945 wh->wi_ehdr.ether_type);
2946 }
2947