wi.c revision 1.159 1 /* $NetBSD: wi.c,v 1.159 2004/03/26 06:43:25 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.159 2004/03/26 06:43:25 dyoung Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_llc.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95
96 #include <net80211/ieee80211_var.h>
97 #include <net80211/ieee80211_compat.h>
98 #include <net80211/ieee80211_ioctl.h>
99 #include <net80211/ieee80211_radiotap.h>
100 #include <net80211/ieee80211_rssadapt.h>
101
102 #if NBPFILTER > 0
103 #include <net/bpf.h>
104 #include <net/bpfdesc.h>
105 #endif
106
107 #include <machine/bus.h>
108
109 #include <dev/ic/wi_ieee.h>
110 #include <dev/ic/wireg.h>
111 #include <dev/ic/wivar.h>
112
113 static int wi_init(struct ifnet *);
114 static void wi_stop(struct ifnet *, int);
115 static void wi_start(struct ifnet *);
116 static int wi_reset(struct wi_softc *);
117 static void wi_watchdog(struct ifnet *);
118 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
119 static int wi_media_change(struct ifnet *);
120 static void wi_media_status(struct ifnet *, struct ifmediareq *);
121
122 static struct ieee80211_node *wi_node_alloc(struct ieee80211com *);
123 static void wi_node_copy(struct ieee80211com *, struct ieee80211_node *,
124 const struct ieee80211_node *);
125 static void wi_node_free(struct ieee80211com *, struct ieee80211_node *);
126
127 static void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
128 static void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
129 static void wi_choose_rate(struct ieee80211com *, struct ieee80211_node *,
130 struct ieee80211_frame *, u_int);
131 static void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *);
132 static void wi_rssadapt_updatestats(void *);
133
134 static void wi_rx_intr(struct wi_softc *);
135 static void wi_txalloc_intr(struct wi_softc *);
136 static void wi_tx_intr(struct wi_softc *);
137 static void wi_tx_ex_intr(struct wi_softc *);
138 static void wi_info_intr(struct wi_softc *);
139
140 static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
141 static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
142 static int wi_cfg_txrate(struct wi_softc *);
143 static int wi_write_txrate(struct wi_softc *, int);
144 static int wi_write_wep(struct wi_softc *);
145 static int wi_write_multi(struct wi_softc *);
146 static int wi_alloc_fid(struct wi_softc *, int, int *);
147 static void wi_read_nicid(struct wi_softc *);
148 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
149
150 static int wi_cmd(struct wi_softc *, int, int, int, int);
151 static int wi_seek_bap(struct wi_softc *, int, int);
152 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
153 static int wi_write_bap(struct wi_softc *, int, int, void *, int);
154 static int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
155 static int wi_read_rid(struct wi_softc *, int, void *, int *);
156 static int wi_write_rid(struct wi_softc *, int, void *, int);
157
158 static int wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
159 static int wi_set_tim(struct ieee80211com *, int, int);
160
161 static int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
162 static void wi_scan_result(struct wi_softc *, int, int);
163
164 static void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
165
166 static inline int
167 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
168 {
169
170 val = htole16(val);
171 return wi_write_rid(sc, rid, &val, sizeof(val));
172 }
173
174 static struct timeval lasttxerror; /* time of last tx error msg */
175 static int curtxeps = 0; /* current tx error msgs/sec */
176 static int wi_txerate = 0; /* tx error rate: max msgs/sec */
177
178 #ifdef WI_DEBUG
179 int wi_debug = 0;
180
181 #define DPRINTF(X) if (wi_debug) printf X
182 #define DPRINTF2(X) if (wi_debug > 1) printf X
183 #define IFF_DUMPPKTS(_ifp) \
184 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
185 #else
186 #define DPRINTF(X)
187 #define DPRINTF2(X)
188 #define IFF_DUMPPKTS(_ifp) 0
189 #endif
190
191 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \
192 WI_EV_TX | WI_EV_TX_EXC)
193
194 struct wi_card_ident
195 wi_card_ident[] = {
196 /* CARD_ID CARD_NAME FIRM_TYPE */
197 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
198 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
199 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
200 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
201 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
202 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
203 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
204 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
205 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
206 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
207 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
208 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
209 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
210 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
211 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
212 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
213 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
214 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
215 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
216 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
217 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
218 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
219 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
220 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
221 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
222 { 0, NULL, 0 },
223 };
224
225 int
226 wi_attach(struct wi_softc *sc)
227 {
228 struct ieee80211com *ic = &sc->sc_ic;
229 struct ifnet *ifp = &ic->ic_if;
230 int chan, nrate, buflen;
231 u_int16_t val, chanavail;
232 struct {
233 u_int16_t nrates;
234 char rates[IEEE80211_RATE_SIZE];
235 } ratebuf;
236 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
237 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
238 };
239 int s;
240
241 s = splnet();
242
243 /* Make sure interrupts are disabled. */
244 CSR_WRITE_2(sc, WI_INT_EN, 0);
245 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
246
247 sc->sc_invalid = 0;
248
249 /* Reset the NIC. */
250 if (wi_reset(sc) != 0) {
251 sc->sc_invalid = 1;
252 splx(s);
253 return 1;
254 }
255
256 buflen = IEEE80211_ADDR_LEN;
257 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
258 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
259 printf(" could not get mac address, attach failed\n");
260 splx(s);
261 return 1;
262 }
263
264 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
265
266 /* Read NIC identification */
267 wi_read_nicid(sc);
268
269 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
270 ifp->if_softc = sc;
271 ifp->if_start = wi_start;
272 ifp->if_ioctl = wi_ioctl;
273 ifp->if_watchdog = wi_watchdog;
274 ifp->if_init = wi_init;
275 ifp->if_stop = wi_stop;
276 ifp->if_flags =
277 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
278 IFQ_SET_READY(&ifp->if_snd);
279
280 ic->ic_phytype = IEEE80211_T_DS;
281 ic->ic_opmode = IEEE80211_M_STA;
282 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_AHDEMO;
283 ic->ic_state = IEEE80211_S_INIT;
284 ic->ic_max_aid = WI_MAX_AID;
285
286 /* Find available channel */
287 buflen = sizeof(chanavail);
288 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &chanavail, &buflen) != 0)
289 chanavail = htole16(0x1fff); /* assume 1-11 */
290 for (chan = 16; chan > 0; chan--) {
291 if (!isset((u_int8_t*)&chanavail, chan - 1))
292 continue;
293 ic->ic_ibss_chan = &ic->ic_channels[chan];
294 ic->ic_channels[chan].ic_freq =
295 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
296 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
297 }
298
299 /* Find default IBSS channel */
300 buflen = sizeof(val);
301 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0) {
302 chan = le16toh(val);
303 if (isset((u_int8_t*)&chanavail, chan - 1))
304 ic->ic_ibss_chan = &ic->ic_channels[chan];
305 }
306 if (ic->ic_ibss_chan == NULL)
307 panic("%s: no available channel\n", sc->sc_dev.dv_xname);
308
309 if (sc->sc_firmware_type == WI_LUCENT) {
310 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
311 } else {
312 buflen = sizeof(val);
313 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
314 wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0)
315 sc->sc_dbm_offset = le16toh(val);
316 else
317 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
318 }
319
320 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
321
322 /*
323 * Set flags based on firmware version.
324 */
325 switch (sc->sc_firmware_type) {
326 case WI_LUCENT:
327 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
328 #ifdef WI_HERMES_AUTOINC_WAR
329 /* XXX: not confirmed, but never seen for recent firmware */
330 if (sc->sc_sta_firmware_ver < 40000) {
331 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
332 }
333 #endif
334 if (sc->sc_sta_firmware_ver >= 60000)
335 sc->sc_flags |= WI_FLAGS_HAS_MOR;
336 if (sc->sc_sta_firmware_ver >= 60006) {
337 ic->ic_caps |= IEEE80211_C_IBSS;
338 ic->ic_caps |= IEEE80211_C_MONITOR;
339 }
340 sc->sc_ibss_port = 1;
341 break;
342
343 case WI_INTERSIL:
344 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
345 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
346 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
347 if (sc->sc_sta_firmware_ver > 10101)
348 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
349 if (sc->sc_sta_firmware_ver >= 800) {
350 if (sc->sc_sta_firmware_ver != 10402)
351 ic->ic_caps |= IEEE80211_C_HOSTAP;
352 ic->ic_caps |= IEEE80211_C_IBSS;
353 ic->ic_caps |= IEEE80211_C_MONITOR;
354 }
355 sc->sc_ibss_port = 0;
356 sc->sc_alt_retry = 2;
357 break;
358
359 case WI_SYMBOL:
360 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
361 if (sc->sc_sta_firmware_ver >= 20000)
362 ic->ic_caps |= IEEE80211_C_IBSS;
363 sc->sc_ibss_port = 4;
364 break;
365 }
366
367 /*
368 * Find out if we support WEP on this card.
369 */
370 buflen = sizeof(val);
371 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
372 val != htole16(0))
373 ic->ic_caps |= IEEE80211_C_WEP;
374
375 /* Find supported rates. */
376 buflen = sizeof(ratebuf);
377 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0) {
378 nrate = le16toh(ratebuf.nrates);
379 if (nrate > IEEE80211_RATE_SIZE)
380 nrate = IEEE80211_RATE_SIZE;
381 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates,
382 &ratebuf.rates[0], nrate);
383 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
384 }
385 buflen = sizeof(val);
386
387 sc->sc_max_datalen = 2304;
388 sc->sc_rts_thresh = 2347;
389 sc->sc_frag_thresh = 2346;
390 sc->sc_system_scale = 1;
391 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
392 sc->sc_roaming_mode = 1;
393
394 callout_init(&sc->sc_rssadapt_ch);
395
396 /*
397 * Call MI attach routines.
398 */
399 if_attach(ifp);
400 ieee80211_ifattach(ifp);
401
402 sc->sc_newstate = ic->ic_newstate;
403 ic->ic_newstate = wi_newstate;
404 ic->ic_node_alloc = wi_node_alloc;
405 ic->ic_node_free = wi_node_free;
406 ic->ic_node_copy = wi_node_copy;
407 ic->ic_set_tim = wi_set_tim;
408
409 ieee80211_media_init(ifp, wi_media_change, wi_media_status);
410
411 #if NBPFILTER > 0
412 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
413 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
414 #endif
415
416 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
417 sc->sc_rxtap.wr_ihdr.it_len = sizeof(sc->sc_rxtapu);
418 sc->sc_rxtap.wr_ihdr.it_present = WI_RX_RADIOTAP_PRESENT;
419
420 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
421 sc->sc_txtap.wt_ihdr.it_len = sizeof(sc->sc_txtapu);
422 sc->sc_txtap.wt_ihdr.it_present = WI_TX_RADIOTAP_PRESENT;
423
424 /* Attach is successful. */
425 sc->sc_attached = 1;
426
427 splx(s);
428 return 0;
429 }
430
431 int
432 wi_detach(struct wi_softc *sc)
433 {
434 struct ifnet *ifp = &sc->sc_ic.ic_if;
435 int s;
436
437 if (!sc->sc_attached)
438 return 0;
439
440 s = splnet();
441
442 sc->sc_invalid = 1;
443 wi_stop(ifp, 1);
444
445 /* Delete all remaining media. */
446 ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY);
447
448 ieee80211_ifdetach(ifp);
449 if_detach(ifp);
450 splx(s);
451 return 0;
452 }
453
454 #ifdef __NetBSD__
455 int
456 wi_activate(struct device *self, enum devact act)
457 {
458 struct wi_softc *sc = (struct wi_softc *)self;
459 int rv = 0, s;
460
461 s = splnet();
462 switch (act) {
463 case DVACT_ACTIVATE:
464 rv = EOPNOTSUPP;
465 break;
466
467 case DVACT_DEACTIVATE:
468 if_deactivate(&sc->sc_ic.ic_if);
469 break;
470 }
471 splx(s);
472 return rv;
473 }
474
475 void
476 wi_power(struct wi_softc *sc, int why)
477 {
478 struct ifnet *ifp = &sc->sc_ic.ic_if;
479 int s;
480
481 s = splnet();
482 switch (why) {
483 case PWR_SUSPEND:
484 case PWR_STANDBY:
485 wi_stop(ifp, 1);
486 break;
487 case PWR_RESUME:
488 if (ifp->if_flags & IFF_UP) {
489 wi_init(ifp);
490 (void)wi_intr(sc);
491 }
492 break;
493 case PWR_SOFTSUSPEND:
494 case PWR_SOFTSTANDBY:
495 case PWR_SOFTRESUME:
496 break;
497 }
498 splx(s);
499 }
500 #endif /* __NetBSD__ */
501
502 void
503 wi_shutdown(struct wi_softc *sc)
504 {
505 struct ifnet *ifp = &sc->sc_ic.ic_if;
506
507 if (sc->sc_attached)
508 wi_stop(ifp, 1);
509 }
510
511 int
512 wi_intr(void *arg)
513 {
514 int i;
515 struct wi_softc *sc = arg;
516 struct ifnet *ifp = &sc->sc_ic.ic_if;
517 u_int16_t status;
518
519 if (sc->sc_enabled == 0 ||
520 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
521 (ifp->if_flags & IFF_RUNNING) == 0)
522 return 0;
523
524 if ((ifp->if_flags & IFF_UP) == 0) {
525 CSR_WRITE_2(sc, WI_INT_EN, 0);
526 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
527 return 1;
528 }
529
530 /* This is superfluous on Prism, but Lucent breaks if we
531 * do not disable interrupts.
532 */
533 CSR_WRITE_2(sc, WI_INT_EN, 0);
534
535 /* maximum 10 loops per interrupt */
536 for (i = 0; i < 10; i++) {
537 /*
538 * Only believe a status bit when we enter wi_intr, or when
539 * the bit was "off" the last time through the loop. This is
540 * my strategy to avoid racing the hardware/firmware if I
541 * can re-read the event status register more quickly than
542 * it is updated.
543 */
544 status = CSR_READ_2(sc, WI_EVENT_STAT);
545 if ((status & WI_INTRS) == 0)
546 break;
547
548 if (status & WI_EV_RX)
549 wi_rx_intr(sc);
550
551 if (status & WI_EV_ALLOC)
552 wi_txalloc_intr(sc);
553
554 if (status & WI_EV_TX)
555 wi_tx_intr(sc);
556
557 if (status & WI_EV_TX_EXC)
558 wi_tx_ex_intr(sc);
559
560 if (status & WI_EV_INFO)
561 wi_info_intr(sc);
562
563 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
564 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
565 !IFQ_IS_EMPTY(&ifp->if_snd))
566 wi_start(ifp);
567 }
568
569 /* re-enable interrupts */
570 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
571
572 return 1;
573 }
574
575 #define arraylen(a) (sizeof(a) / sizeof((a)[0]))
576
577 static void
578 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree)
579 {
580 int i;
581 SLIST_INIT(rssdfree);
582 for (i = 0; i < arraylen(*rssd); i++) {
583 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next);
584 }
585 }
586
587 static void
588 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS],
589 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE])
590 {
591 struct ieee80211_node *ni;
592 int i;
593 for (i = 0; i < arraylen(*rssd); i++) {
594 ni = (*rssd)[i].rd_desc.id_node;
595 (*rssd)[i].rd_desc.id_node = NULL;
596 if (ni != NULL && (ic->ic_if.if_flags & IFF_DEBUG) != 0)
597 printf("%s: cleaning outstanding rssadapt "
598 "descriptor for %s\n",
599 ic->ic_if.if_xname, ether_sprintf(ni->ni_macaddr));
600 if (ni != NULL && ni != ic->ic_bss)
601 ieee80211_free_node(ic, ni);
602 }
603 memset(*txpending, 0, sizeof(*txpending));
604 wi_rssdescs_init(rssd, rssdfree);
605 }
606
607 static int
608 wi_init(struct ifnet *ifp)
609 {
610 struct wi_softc *sc = ifp->if_softc;
611 struct ieee80211com *ic = &sc->sc_ic;
612 struct wi_joinreq join;
613 int i;
614 int error = 0, wasenabled;
615
616 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
617 wasenabled = sc->sc_enabled;
618 if (!sc->sc_enabled) {
619 if ((error = (*sc->sc_enable)(sc)) != 0)
620 goto out;
621 sc->sc_enabled = 1;
622 } else
623 wi_stop(ifp, 0);
624
625 /* Symbol firmware cannot be initialized more than once */
626 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled)
627 if ((error = wi_reset(sc)) != 0)
628 goto out;
629
630 /* common 802.11 configuration */
631 ic->ic_flags &= ~IEEE80211_F_IBSSON;
632 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
633 switch (ic->ic_opmode) {
634 case IEEE80211_M_STA:
635 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
636 break;
637 case IEEE80211_M_IBSS:
638 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
639 ic->ic_flags |= IEEE80211_F_IBSSON;
640 sc->sc_syn_timer = 5;
641 ifp->if_timer = 1;
642 break;
643 case IEEE80211_M_AHDEMO:
644 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
645 break;
646 case IEEE80211_M_HOSTAP:
647 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
648 break;
649 case IEEE80211_M_MONITOR:
650 if (sc->sc_firmware_type == WI_LUCENT)
651 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
652 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
653 break;
654 }
655
656 /* Intersil interprets this RID as joining ESS even in IBSS mode */
657 if (sc->sc_firmware_type == WI_LUCENT &&
658 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
659 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
660 else
661 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
662 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
663 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
664 ic->ic_des_esslen);
665 wi_write_val(sc, WI_RID_OWN_CHNL,
666 ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
667 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
668 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
669 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
670 wi_write_val(sc, WI_RID_PM_ENABLED,
671 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
672
673 /* not yet common 802.11 configuration */
674 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
675 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
676 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
677 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
678
679 /* driver specific 802.11 configuration */
680 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
681 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
682 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
683 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
684 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
685 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
686 wi_cfg_txrate(sc);
687 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
688
689 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
690 sc->sc_firmware_type == WI_INTERSIL) {
691 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
692 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
693 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
694 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
695 }
696
697 if (sc->sc_firmware_type == WI_INTERSIL)
698 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry);
699
700 /*
701 * Initialize promisc mode.
702 * Being in Host-AP mode causes a great
703 * deal of pain if promiscuous mode is set.
704 * Therefore we avoid confusing the firmware
705 * and always reset promisc mode in Host-AP
706 * mode. Host-AP sees all the packets anyway.
707 */
708 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
709 (ifp->if_flags & IFF_PROMISC) != 0) {
710 wi_write_val(sc, WI_RID_PROMISC, 1);
711 } else {
712 wi_write_val(sc, WI_RID_PROMISC, 0);
713 }
714
715 /* Configure WEP. */
716 if (ic->ic_caps & IEEE80211_C_WEP)
717 wi_write_wep(sc);
718
719 /* Set multicast filter. */
720 wi_write_multi(sc);
721
722 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
723 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
724 if (sc->sc_firmware_type == WI_SYMBOL)
725 sc->sc_buflen = 1585; /* XXX */
726 for (i = 0; i < WI_NTXBUF; i++) {
727 error = wi_alloc_fid(sc, sc->sc_buflen,
728 &sc->sc_txd[i].d_fid);
729 if (error) {
730 printf("%s: tx buffer allocation failed\n",
731 sc->sc_dev.dv_xname);
732 goto out;
733 }
734 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
735 sc->sc_txd[i].d_fid));
736 sc->sc_txd[i].d_len = 0;
737 }
738 }
739 sc->sc_txcur = sc->sc_txnext = 0;
740
741 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree);
742
743 /* Enable desired port */
744 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
745 ifp->if_flags |= IFF_RUNNING;
746 ifp->if_flags &= ~IFF_OACTIVE;
747 ic->ic_state = IEEE80211_S_INIT;
748
749 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
750 ic->ic_opmode == IEEE80211_M_MONITOR ||
751 ic->ic_opmode == IEEE80211_M_HOSTAP)
752 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
753
754 /* Enable interrupts */
755 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
756
757 if (!wasenabled &&
758 ic->ic_opmode == IEEE80211_M_HOSTAP &&
759 sc->sc_firmware_type == WI_INTERSIL) {
760 /* XXX: some card need to be re-enabled for hostap */
761 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
762 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
763 }
764
765 if (ic->ic_opmode == IEEE80211_M_STA &&
766 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
767 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
768 memset(&join, 0, sizeof(join));
769 if (ic->ic_flags & IEEE80211_F_DESBSSID)
770 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
771 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
772 join.wi_chan =
773 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan));
774 /* Lucent firmware does not support the JOIN RID. */
775 if (sc->sc_firmware_type != WI_LUCENT)
776 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
777 }
778
779 out:
780 if (error) {
781 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
782 wi_stop(ifp, 0);
783 }
784 DPRINTF(("wi_init: return %d\n", error));
785 return error;
786 }
787
788 static void
789 wi_stop(struct ifnet *ifp, int disable)
790 {
791 struct wi_softc *sc = ifp->if_softc;
792 struct ieee80211com *ic = &sc->sc_ic;
793 int s;
794
795 if (!sc->sc_enabled)
796 return;
797
798 s = splnet();
799
800 DPRINTF(("wi_stop: disable %d\n", disable));
801
802 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
803 if (!sc->sc_invalid) {
804 CSR_WRITE_2(sc, WI_INT_EN, 0);
805 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
806 }
807
808 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
809 &sc->sc_txpending);
810
811 sc->sc_tx_timer = 0;
812 sc->sc_scan_timer = 0;
813 sc->sc_syn_timer = 0;
814 sc->sc_false_syns = 0;
815 sc->sc_naps = 0;
816 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
817 ifp->if_timer = 0;
818
819 if (disable) {
820 if (sc->sc_disable)
821 (*sc->sc_disable)(sc);
822 sc->sc_enabled = 0;
823 }
824 splx(s);
825 }
826
827 /*
828 * Choose a data rate for a packet len bytes long that suits the packet
829 * type and the wireless conditions.
830 *
831 * TBD Adapt fragmentation threshold.
832 */
833 static void
834 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni,
835 struct ieee80211_frame *wh, u_int len)
836 {
837 struct wi_softc *sc = ic->ic_if.if_softc;
838 struct wi_node *wn = (void*)ni;
839 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt;
840 int do_not_adapt, i, rateidx, s;
841
842 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) &&
843 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0;
844
845 s = splnet();
846
847 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len,
848 ic->ic_fixed_rate,
849 ((ic->ic_if.if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_if.if_xname,
850 do_not_adapt);
851
852 if (ic->ic_opmode != IEEE80211_M_HOSTAP) {
853 /* choose the slowest pending rate so that we don't
854 * accidentally send a packet on the MAC's queue
855 * too fast. TBD find out if the MAC labels Tx
856 * packets w/ rate when enqueued or dequeued.
857 */
858 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++);
859 ni->ni_txrate = i;
860 } else
861 ni->ni_txrate = rateidx;
862 splx(s);
863 return;
864 }
865
866 static void
867 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
868 {
869 struct wi_node *wn;
870 if (id->id_node == NULL)
871 return;
872
873 wn = (void*)id->id_node;
874 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id);
875 }
876
877 static void
878 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
879 {
880 struct ieee80211_node *ni;
881 struct wi_node *wn;
882 int s;
883
884 s = splnet();
885
886 if ((ni = id->id_node) == NULL) {
887 DPRINTF(("wi_lower_rate: missing node\n"));
888 goto out;
889 }
890
891 wn = (void *)ni;
892
893 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id);
894 out:
895 splx(s);
896 return;
897 }
898
899 static void
900 wi_start(struct ifnet *ifp)
901 {
902 struct wi_softc *sc = ifp->if_softc;
903 struct ieee80211com *ic = &sc->sc_ic;
904 struct ieee80211_node *ni;
905 struct ieee80211_frame *wh;
906 struct ieee80211_rateset *rs;
907 struct wi_rssdesc *rd;
908 struct ieee80211_rssdesc *id;
909 struct mbuf *m0;
910 struct wi_frame frmhdr;
911 int cur, fid, off;
912
913 if (!sc->sc_enabled || sc->sc_invalid)
914 return;
915 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
916 return;
917
918 memset(&frmhdr, 0, sizeof(frmhdr));
919 cur = sc->sc_txnext;
920 for (;;) {
921 ni = ic->ic_bss;
922 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
923 if (sc->sc_txd[cur].d_len != 0 ||
924 SLIST_EMPTY(&sc->sc_rssdfree)) {
925 ifp->if_flags |= IFF_OACTIVE;
926 break;
927 }
928 IF_DEQUEUE(&ic->ic_mgtq, m0);
929 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
930 (caddr_t)&frmhdr.wi_ehdr);
931 frmhdr.wi_ehdr.ether_type = 0;
932 wh = mtod(m0, struct ieee80211_frame *);
933 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
934 m0->m_pkthdr.rcvif = NULL;
935 } else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
936 struct llc *llc;
937
938 /*
939 * Should these packets be processed after the
940 * regular packets or before? Since they are being
941 * probed for, they are probably less time critical
942 * than other packets, but, on the other hand,
943 * we want the power saving nodes to go back to
944 * sleep as quickly as possible to save power...
945 */
946
947 if (ic->ic_state != IEEE80211_S_RUN)
948 break;
949
950 if (sc->sc_txd[cur].d_len != 0 ||
951 SLIST_EMPTY(&sc->sc_rssdfree)) {
952 ifp->if_flags |= IFF_OACTIVE;
953 break;
954 }
955 IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
956 wh = mtod(m0, struct ieee80211_frame *);
957 llc = (struct llc *) (wh + 1);
958 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
959 (caddr_t)&frmhdr.wi_ehdr);
960 frmhdr.wi_ehdr.ether_type = llc->llc_snap.ether_type;
961 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
962 m0->m_pkthdr.rcvif = NULL;
963 } else {
964 if (ic->ic_state != IEEE80211_S_RUN) {
965 break;
966 }
967 IFQ_POLL(&ifp->if_snd, m0);
968 if (m0 == NULL) {
969 break;
970 }
971 if (sc->sc_txd[cur].d_len != 0 ||
972 SLIST_EMPTY(&sc->sc_rssdfree)) {
973 ifp->if_flags |= IFF_OACTIVE;
974 break;
975 }
976 IFQ_DEQUEUE(&ifp->if_snd, m0);
977 ifp->if_opackets++;
978 m_copydata(m0, 0, ETHER_HDR_LEN,
979 (caddr_t)&frmhdr.wi_ehdr);
980 #if NBPFILTER > 0
981 if (ifp->if_bpf)
982 bpf_mtap(ifp->if_bpf, m0);
983 #endif
984
985 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
986 ifp->if_oerrors++;
987 continue;
988 }
989 wh = mtod(m0, struct ieee80211_frame *);
990 if (ic->ic_flags & IEEE80211_F_WEPON)
991 wh->i_fc[1] |= IEEE80211_FC1_WEP;
992 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
993 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
994 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
995 IEEE80211_FC0_TYPE_DATA) {
996 if (ni->ni_associd == 0) {
997 m_freem(m0);
998 ifp->if_oerrors++;
999 goto next;
1000 }
1001 if (ni->ni_pwrsave & IEEE80211_PS_SLEEP) {
1002 ieee80211_pwrsave(ic, ni, m0);
1003 continue; /* don't free node. */
1004 }
1005 }
1006 }
1007 #if NBPFILTER > 0
1008 if (ic->ic_rawbpf)
1009 bpf_mtap(ic->ic_rawbpf, m0);
1010 #endif
1011 frmhdr.wi_tx_ctl =
1012 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK);
1013 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1014 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
1015 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1016 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
1017 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
1018 ifp->if_oerrors++;
1019 goto next;
1020 }
1021 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
1022 }
1023
1024 wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len);
1025
1026 #if NBPFILTER > 0
1027 if (sc->sc_drvbpf) {
1028 struct mbuf mb;
1029
1030 struct wi_tx_radiotap_header *tap = &sc->sc_txtap;
1031
1032 tap->wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1033 tap->wt_chan_freq =
1034 htole16(ic->ic_bss->ni_chan->ic_freq);
1035 tap->wt_chan_flags =
1036 htole16(ic->ic_bss->ni_chan->ic_flags);
1037
1038 /* TBD tap->wt_flags */
1039
1040 M_COPY_PKTHDR(&mb, m0);
1041 mb.m_data = (caddr_t)tap;
1042 mb.m_len = tap->wt_ihdr.it_len;
1043 mb.m_next = m0;
1044 mb.m_pkthdr.len += mb.m_len;
1045 bpf_mtap(sc->sc_drvbpf, &mb);
1046 }
1047 #endif
1048 rs = &ni->ni_rates;
1049 rd = SLIST_FIRST(&sc->sc_rssdfree);
1050 id = &rd->rd_desc;
1051 id->id_len = m0->m_pkthdr.len;
1052 sc->sc_txd[cur].d_rate = id->id_rateidx = ni->ni_txrate;
1053 id->id_rssi = ni->ni_rssi;
1054
1055 frmhdr.wi_tx_idx = rd - sc->sc_rssd;
1056
1057 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1058 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[ni->ni_txrate] &
1059 IEEE80211_RATE_VAL);
1060 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA)
1061 (void)wi_write_txrate(sc, rs->rs_rates[ni->ni_txrate]);
1062
1063 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
1064 (caddr_t)&frmhdr.wi_whdr);
1065 m_adj(m0, sizeof(struct ieee80211_frame));
1066 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
1067 if (IFF_DUMPPKTS(ifp))
1068 wi_dump_pkt(&frmhdr, ni, -1);
1069 fid = sc->sc_txd[cur].d_fid;
1070 off = sizeof(frmhdr);
1071 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
1072 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
1073 ifp->if_oerrors++;
1074 m_freem(m0);
1075 goto next;
1076 }
1077 m_freem(m0);
1078 sc->sc_txd[cur].d_len = off;
1079 if (sc->sc_txcur == cur) {
1080 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
1081 printf("%s: xmit failed\n",
1082 sc->sc_dev.dv_xname);
1083 sc->sc_txd[cur].d_len = 0;
1084 goto next;
1085 }
1086 sc->sc_txpending[ni->ni_txrate]++;
1087 sc->sc_tx_timer = 5;
1088 ifp->if_timer = 1;
1089 }
1090 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF;
1091 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next);
1092 id->id_node = ni;
1093 continue;
1094 next:
1095 if (ni != NULL && ni != ic->ic_bss)
1096 ieee80211_free_node(ic, ni);
1097 }
1098 }
1099
1100
1101 static int
1102 wi_reset(struct wi_softc *sc)
1103 {
1104 int i, error;
1105
1106 DPRINTF(("wi_reset\n"));
1107
1108 if (sc->sc_reset)
1109 (*sc->sc_reset)(sc);
1110
1111 error = 0;
1112 for (i = 0; i < 5; i++) {
1113 DELAY(20*1000); /* XXX: way too long! */
1114 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
1115 break;
1116 }
1117 if (error) {
1118 printf("%s: init failed\n", sc->sc_dev.dv_xname);
1119 return error;
1120 }
1121 CSR_WRITE_2(sc, WI_INT_EN, 0);
1122 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
1123
1124 /* Calibrate timer. */
1125 wi_write_val(sc, WI_RID_TICK_TIME, 0);
1126 return 0;
1127 }
1128
1129 static void
1130 wi_watchdog(struct ifnet *ifp)
1131 {
1132 struct wi_softc *sc = ifp->if_softc;
1133 struct ieee80211com *ic = &sc->sc_ic;
1134
1135 ifp->if_timer = 0;
1136 if (!sc->sc_enabled)
1137 return;
1138
1139 if (sc->sc_tx_timer) {
1140 if (--sc->sc_tx_timer == 0) {
1141 printf("%s: device timeout\n", ifp->if_xname);
1142 ifp->if_oerrors++;
1143 wi_init(ifp);
1144 return;
1145 }
1146 ifp->if_timer = 1;
1147 }
1148
1149 if (sc->sc_scan_timer) {
1150 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
1151 sc->sc_firmware_type == WI_INTERSIL) {
1152 DPRINTF(("wi_watchdog: inquire scan\n"));
1153 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1154 }
1155 if (sc->sc_scan_timer)
1156 ifp->if_timer = 1;
1157 }
1158
1159 if (sc->sc_syn_timer) {
1160 if (--sc->sc_syn_timer == 0) {
1161 DPRINTF2(("%s: %d false syns\n",
1162 sc->sc_dev.dv_xname, sc->sc_false_syns));
1163 sc->sc_false_syns = 0;
1164 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1165 sc->sc_syn_timer = 5;
1166 }
1167 ifp->if_timer = 1;
1168 }
1169
1170 /* TODO: rate control */
1171 ieee80211_watchdog(ifp);
1172 }
1173
1174 static int
1175 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1176 {
1177 struct wi_softc *sc = ifp->if_softc;
1178 struct ieee80211com *ic = &sc->sc_ic;
1179 struct ifreq *ifr = (struct ifreq *)data;
1180 int s, error = 0;
1181
1182 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1183 return ENXIO;
1184
1185 s = splnet();
1186
1187 switch (cmd) {
1188 case SIOCSIFFLAGS:
1189 /*
1190 * Can't do promisc and hostap at the same time. If all that's
1191 * changing is the promisc flag, try to short-circuit a call to
1192 * wi_init() by just setting PROMISC in the hardware.
1193 */
1194 if (ifp->if_flags & IFF_UP) {
1195 if (sc->sc_enabled) {
1196 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1197 (ifp->if_flags & IFF_PROMISC) != 0)
1198 wi_write_val(sc, WI_RID_PROMISC, 1);
1199 else
1200 wi_write_val(sc, WI_RID_PROMISC, 0);
1201 } else
1202 error = wi_init(ifp);
1203 } else if (sc->sc_enabled)
1204 wi_stop(ifp, 1);
1205 break;
1206 case SIOCSIFMEDIA:
1207 case SIOCGIFMEDIA:
1208 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1209 break;
1210 case SIOCADDMULTI:
1211 case SIOCDELMULTI:
1212 error = (cmd == SIOCADDMULTI) ?
1213 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1214 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1215 if (error == ENETRESET) {
1216 if (sc->sc_enabled) {
1217 /* do not rescan */
1218 error = wi_write_multi(sc);
1219 } else
1220 error = 0;
1221 }
1222 break;
1223 case SIOCGIFGENERIC:
1224 error = wi_get_cfg(ifp, cmd, data);
1225 break;
1226 case SIOCSIFGENERIC:
1227 error = suser(curproc->p_ucred, &curproc->p_acflag);
1228 if (error)
1229 break;
1230 error = wi_set_cfg(ifp, cmd, data);
1231 if (error == ENETRESET) {
1232 if (sc->sc_enabled)
1233 error = wi_init(ifp);
1234 else
1235 error = 0;
1236 }
1237 break;
1238 case SIOCS80211BSSID:
1239 if (sc->sc_firmware_type == WI_LUCENT) {
1240 error = ENODEV;
1241 break;
1242 }
1243 /* fall through */
1244 default:
1245 error = ieee80211_ioctl(ifp, cmd, data);
1246 if (error == ENETRESET) {
1247 if (sc->sc_enabled)
1248 error = wi_init(ifp);
1249 else
1250 error = 0;
1251 }
1252 break;
1253 }
1254 splx(s);
1255 return error;
1256 }
1257
1258 /* TBD factor with ieee80211_media_change */
1259 static int
1260 wi_media_change(struct ifnet *ifp)
1261 {
1262 struct wi_softc *sc = ifp->if_softc;
1263 struct ieee80211com *ic = &sc->sc_ic;
1264 struct ifmedia_entry *ime;
1265 enum ieee80211_opmode newmode;
1266 int i, rate, error = 0;
1267
1268 ime = ic->ic_media.ifm_cur;
1269 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
1270 i = -1;
1271 } else {
1272 struct ieee80211_rateset *rs =
1273 &ic->ic_sup_rates[ieee80211_chan2mode(ic,
1274 ic->ic_bss->ni_chan)];
1275 rate = ieee80211_media2rate(ime->ifm_media);
1276 if (rate == 0)
1277 return EINVAL;
1278 for (i = 0; i < rs->rs_nrates; i++) {
1279 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate)
1280 break;
1281 }
1282 if (i == rs->rs_nrates)
1283 return EINVAL;
1284 }
1285 if (ic->ic_fixed_rate != i) {
1286 ic->ic_fixed_rate = i;
1287 error = ENETRESET;
1288 }
1289
1290 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
1291 (ime->ifm_media & IFM_FLAG0))
1292 newmode = IEEE80211_M_AHDEMO;
1293 else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
1294 newmode = IEEE80211_M_IBSS;
1295 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
1296 newmode = IEEE80211_M_HOSTAP;
1297 else if (ime->ifm_media & IFM_IEEE80211_MONITOR)
1298 newmode = IEEE80211_M_MONITOR;
1299 else
1300 newmode = IEEE80211_M_STA;
1301 if (ic->ic_opmode != newmode) {
1302 ic->ic_opmode = newmode;
1303 error = ENETRESET;
1304 }
1305 if (error == ENETRESET) {
1306 if (sc->sc_enabled)
1307 error = wi_init(ifp);
1308 else
1309 error = 0;
1310 }
1311 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1312
1313 return error;
1314 }
1315
1316 static void
1317 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1318 {
1319 struct wi_softc *sc = ifp->if_softc;
1320 struct ieee80211com *ic = &sc->sc_ic;
1321 u_int16_t val;
1322 int rate, len;
1323
1324 if (sc->sc_enabled == 0) {
1325 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1326 imr->ifm_status = 0;
1327 return;
1328 }
1329
1330 imr->ifm_status = IFM_AVALID;
1331 imr->ifm_active = IFM_IEEE80211;
1332 if (ic->ic_state == IEEE80211_S_RUN &&
1333 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1334 imr->ifm_status |= IFM_ACTIVE;
1335 len = sizeof(val);
1336 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1337 rate = 0;
1338 else {
1339 /* convert to 802.11 rate */
1340 val = le16toh(val);
1341 rate = val * 2;
1342 if (sc->sc_firmware_type == WI_LUCENT) {
1343 if (rate == 10)
1344 rate = 11; /* 5.5Mbps */
1345 } else {
1346 if (rate == 4*2)
1347 rate = 11; /* 5.5Mbps */
1348 else if (rate == 8*2)
1349 rate = 22; /* 11Mbps */
1350 }
1351 }
1352 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1353 switch (ic->ic_opmode) {
1354 case IEEE80211_M_STA:
1355 break;
1356 case IEEE80211_M_IBSS:
1357 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1358 break;
1359 case IEEE80211_M_AHDEMO:
1360 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1361 break;
1362 case IEEE80211_M_HOSTAP:
1363 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1364 break;
1365 case IEEE80211_M_MONITOR:
1366 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1367 break;
1368 }
1369 }
1370
1371 static struct ieee80211_node *
1372 wi_node_alloc(struct ieee80211com *ic)
1373 {
1374 struct wi_node *wn =
1375 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1376 return wn ? &wn->wn_node : NULL;
1377 }
1378
1379 static void
1380 wi_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1381 {
1382 struct wi_softc *sc = ic->ic_if.if_softc;
1383 int i;
1384
1385 for (i = 0; i < WI_NTXRSS; i++) {
1386 if (sc->sc_rssd[i].rd_desc.id_node == ni)
1387 sc->sc_rssd[i].rd_desc.id_node = NULL;
1388 }
1389 free(ni, M_DEVBUF);
1390 }
1391
1392 static void
1393 wi_node_copy(struct ieee80211com *ic, struct ieee80211_node *dst,
1394 const struct ieee80211_node *src)
1395 {
1396 *(struct wi_node *)dst = *(const struct wi_node *)src;
1397 }
1398
1399 static void
1400 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1401 {
1402 struct ieee80211com *ic = &sc->sc_ic;
1403 struct ieee80211_node *ni = ic->ic_bss;
1404 struct ifnet *ifp = &ic->ic_if;
1405
1406 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1407 return;
1408
1409 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
1410 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1411
1412 /* In promiscuous mode, the BSSID field is not a reliable
1413 * indicator of the firmware's BSSID. Damp spurious
1414 * change-of-BSSID indications.
1415 */
1416 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1417 sc->sc_false_syns >= WI_MAX_FALSE_SYNS)
1418 return;
1419
1420 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1421 }
1422
1423 static __inline void
1424 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni,
1425 struct ieee80211_frame *wh, int rssi)
1426 {
1427 struct wi_node *wn;
1428
1429 if (ni == NULL) {
1430 printf("%s: null node", __func__);
1431 return;
1432 }
1433
1434 wn = (void*)ni;
1435 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi);
1436 }
1437
1438 static void
1439 wi_rx_intr(struct wi_softc *sc)
1440 {
1441 struct ieee80211com *ic = &sc->sc_ic;
1442 struct ifnet *ifp = &ic->ic_if;
1443 struct ieee80211_node *ni;
1444 struct wi_frame frmhdr;
1445 struct mbuf *m;
1446 struct ieee80211_frame *wh;
1447 int fid, len, off, rssi;
1448 u_int8_t dir;
1449 u_int16_t status;
1450 u_int32_t rstamp;
1451
1452 fid = CSR_READ_2(sc, WI_RX_FID);
1453
1454 /* First read in the frame header */
1455 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1456 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1457 ifp->if_ierrors++;
1458 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1459 return;
1460 }
1461
1462 if (IFF_DUMPPKTS(ifp))
1463 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1464
1465 /*
1466 * Drop undecryptable or packets with receive errors here
1467 */
1468 status = le16toh(frmhdr.wi_status);
1469 if ((status & WI_STAT_ERRSTAT) != 0 &&
1470 ic->ic_opmode != IEEE80211_M_MONITOR) {
1471 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1472 ifp->if_ierrors++;
1473 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1474 return;
1475 }
1476 rssi = frmhdr.wi_rx_signal;
1477 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1478 le16toh(frmhdr.wi_rx_tstamp1);
1479
1480 len = le16toh(frmhdr.wi_dat_len);
1481 off = ALIGN(sizeof(struct ieee80211_frame));
1482
1483 /* Sometimes the PRISM2.x returns bogusly large frames. Except
1484 * in monitor mode, just throw them away.
1485 */
1486 if (off + len > MCLBYTES) {
1487 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1488 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1489 ifp->if_ierrors++;
1490 DPRINTF(("wi_rx_intr: oversized packet\n"));
1491 return;
1492 } else
1493 len = 0;
1494 }
1495
1496 MGETHDR(m, M_DONTWAIT, MT_DATA);
1497 if (m == NULL) {
1498 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1499 ifp->if_ierrors++;
1500 DPRINTF(("wi_rx_intr: MGET failed\n"));
1501 return;
1502 }
1503 if (off + len > MHLEN) {
1504 MCLGET(m, M_DONTWAIT);
1505 if ((m->m_flags & M_EXT) == 0) {
1506 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1507 m_freem(m);
1508 ifp->if_ierrors++;
1509 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1510 return;
1511 }
1512 }
1513
1514 m->m_data += off - sizeof(struct ieee80211_frame);
1515 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1516 wi_read_bap(sc, fid, sizeof(frmhdr),
1517 m->m_data + sizeof(struct ieee80211_frame), len);
1518 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1519 m->m_pkthdr.rcvif = ifp;
1520
1521 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1522
1523 #if NBPFILTER > 0
1524 if (sc->sc_drvbpf) {
1525 struct mbuf mb;
1526 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap;
1527
1528 tap->wr_rate = frmhdr.wi_rx_rate / 5;
1529 tap->wr_antsignal = WI_RSSI_TO_DBM(sc, frmhdr.wi_rx_signal);
1530 tap->wr_antnoise = WI_RSSI_TO_DBM(sc, frmhdr.wi_rx_silence);
1531
1532 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1533 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1534 if (frmhdr.wi_status & WI_STAT_PCF)
1535 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1536
1537 M_COPY_PKTHDR(&mb, m);
1538 mb.m_data = (caddr_t)tap;
1539 mb.m_len = tap->wr_ihdr.it_len;
1540 mb.m_next = m;
1541 mb.m_pkthdr.len += mb.m_len;
1542 bpf_mtap(sc->sc_drvbpf, &mb);
1543 }
1544 #endif
1545 wh = mtod(m, struct ieee80211_frame *);
1546 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1547 /*
1548 * WEP is decrypted by hardware. Clear WEP bit
1549 * header for ieee80211_input().
1550 */
1551 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1552 }
1553
1554 /* synchronize driver's BSSID with firmware's BSSID */
1555 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1556 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1557 wi_sync_bssid(sc, wh->i_addr3);
1558
1559 ni = ieee80211_find_rxnode(ic, wh);
1560
1561 ieee80211_input(ifp, m, ni, rssi, rstamp);
1562
1563 wi_rssadapt_input(ic, ni, wh, rssi);
1564
1565 /*
1566 * The frame may have caused the node to be marked for
1567 * reclamation (e.g. in response to a DEAUTH message)
1568 * so use free_node here instead of unref_node.
1569 */
1570 if (ni == ic->ic_bss)
1571 ieee80211_unref_node(&ni);
1572 else
1573 ieee80211_free_node(ic, ni);
1574 }
1575
1576 static void
1577 wi_tx_ex_intr(struct wi_softc *sc)
1578 {
1579 struct ieee80211com *ic = &sc->sc_ic;
1580 struct ifnet *ifp = &ic->ic_if;
1581 struct ieee80211_node *ni;
1582 struct ieee80211_rssdesc *id;
1583 struct wi_rssdesc *rssd;
1584 struct wi_frame frmhdr;
1585 int fid;
1586 u_int16_t status;
1587
1588 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1589 /* Read in the frame header */
1590 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1591 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1592 __func__, fid);
1593 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1594 &sc->sc_txpending);
1595 goto out;
1596 }
1597
1598 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1599 printf("%s: %s bad idx %02x\n",
1600 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1601 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1602 &sc->sc_txpending);
1603 goto out;
1604 }
1605
1606 status = le16toh(frmhdr.wi_status);
1607
1608 /*
1609 * Spontaneous station disconnects appear as xmit
1610 * errors. Don't announce them and/or count them
1611 * as an output error.
1612 */
1613 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1614 printf("%s: tx failed", sc->sc_dev.dv_xname);
1615 if (status & WI_TXSTAT_RET_ERR)
1616 printf(", retry limit exceeded");
1617 if (status & WI_TXSTAT_AGED_ERR)
1618 printf(", max transmit lifetime exceeded");
1619 if (status & WI_TXSTAT_DISCONNECT)
1620 printf(", port disconnected");
1621 if (status & WI_TXSTAT_FORM_ERR)
1622 printf(", invalid format (data len %u src %s)",
1623 le16toh(frmhdr.wi_dat_len),
1624 ether_sprintf(frmhdr.wi_ehdr.ether_shost));
1625 if (status & ~0xf)
1626 printf(", status=0x%x", status);
1627 printf("\n");
1628 }
1629 ifp->if_oerrors++;
1630 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1631 id = &rssd->rd_desc;
1632 if ((status & WI_TXSTAT_RET_ERR) != 0)
1633 wi_lower_rate(ic, id);
1634
1635 ni = id->id_node;
1636 id->id_node = NULL;
1637
1638 if (ni == NULL) {
1639 printf("%s: %s null node, rssdesc %02x\n",
1640 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1641 goto out;
1642 }
1643
1644 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1645 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1646 __func__, id->id_rateidx);
1647 sc->sc_txpending[id->id_rateidx] = 0;
1648 }
1649 if (ni != NULL && ni != ic->ic_bss)
1650 ieee80211_free_node(ic, ni);
1651 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1652 out:
1653 ifp->if_flags &= ~IFF_OACTIVE;
1654 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
1655 }
1656
1657 static void
1658 wi_txalloc_intr(struct wi_softc *sc)
1659 {
1660 struct ieee80211com *ic = &sc->sc_ic;
1661 struct ifnet *ifp = &ic->ic_if;
1662 int fid, cur;
1663
1664 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1665 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1666
1667 cur = sc->sc_txcur;
1668 if (sc->sc_txd[cur].d_fid != fid) {
1669 printf("%s: bad alloc %x != %x, cur %d nxt %d\n",
1670 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1671 sc->sc_txnext);
1672 return;
1673 }
1674 sc->sc_tx_timer = 0;
1675 sc->sc_txd[cur].d_len = 0;
1676 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF;
1677 if (sc->sc_txd[cur].d_len == 0)
1678 ifp->if_flags &= ~IFF_OACTIVE;
1679 else {
1680 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1681 0, 0)) {
1682 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1683 sc->sc_txd[cur].d_len = 0;
1684 } else {
1685 sc->sc_txpending[sc->sc_txd[cur].d_rate]++;
1686 sc->sc_tx_timer = 5;
1687 ifp->if_timer = 1;
1688 }
1689 }
1690 }
1691
1692 static void
1693 wi_tx_intr(struct wi_softc *sc)
1694 {
1695 struct ieee80211com *ic = &sc->sc_ic;
1696 struct ifnet *ifp = &ic->ic_if;
1697 struct ieee80211_node *ni;
1698 struct ieee80211_rssdesc *id;
1699 struct wi_rssdesc *rssd;
1700 struct wi_frame frmhdr;
1701 int fid;
1702
1703 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1704 /* Read in the frame header */
1705 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1706 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1707 __func__, fid);
1708 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1709 &sc->sc_txpending);
1710 goto out;
1711 }
1712
1713 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1714 printf("%s: %s bad idx %02x\n",
1715 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1716 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1717 &sc->sc_txpending);
1718 goto out;
1719 }
1720
1721 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1722 id = &rssd->rd_desc;
1723 wi_raise_rate(ic, id);
1724
1725 ni = id->id_node;
1726 id->id_node = NULL;
1727
1728 if (ni == NULL) {
1729 printf("%s: %s null node, rssdesc %02x\n",
1730 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1731 goto out;
1732 }
1733
1734 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1735 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1736 __func__, id->id_rateidx);
1737 sc->sc_txpending[id->id_rateidx] = 0;
1738 }
1739 if (ni != NULL && ni != ic->ic_bss)
1740 ieee80211_free_node(ic, ni);
1741 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1742 out:
1743 ifp->if_flags &= ~IFF_OACTIVE;
1744 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
1745 }
1746
1747 static void
1748 wi_info_intr(struct wi_softc *sc)
1749 {
1750 struct ieee80211com *ic = &sc->sc_ic;
1751 struct ifnet *ifp = &ic->ic_if;
1752 int i, fid, len, off;
1753 u_int16_t ltbuf[2];
1754 u_int16_t stat;
1755 u_int32_t *ptr;
1756
1757 fid = CSR_READ_2(sc, WI_INFO_FID);
1758 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1759
1760 switch (le16toh(ltbuf[1])) {
1761
1762 case WI_INFO_LINK_STAT:
1763 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1764 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1765 switch (le16toh(stat)) {
1766 case CONNECTED:
1767 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1768 if (ic->ic_state == IEEE80211_S_RUN &&
1769 ic->ic_opmode != IEEE80211_M_IBSS)
1770 break;
1771 /* FALLTHROUGH */
1772 case AP_CHANGE:
1773 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1774 break;
1775 case AP_IN_RANGE:
1776 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1777 break;
1778 case AP_OUT_OF_RANGE:
1779 if (sc->sc_firmware_type == WI_SYMBOL &&
1780 sc->sc_scan_timer > 0) {
1781 if (wi_cmd(sc, WI_CMD_INQUIRE,
1782 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1783 sc->sc_scan_timer = 0;
1784 break;
1785 }
1786 if (ic->ic_opmode == IEEE80211_M_STA)
1787 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1788 break;
1789 case DISCONNECTED:
1790 case ASSOC_FAILED:
1791 if (ic->ic_opmode == IEEE80211_M_STA)
1792 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1793 break;
1794 }
1795 break;
1796
1797 case WI_INFO_COUNTERS:
1798 /* some card versions have a larger stats structure */
1799 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1800 ptr = (u_int32_t *)&sc->sc_stats;
1801 off = sizeof(ltbuf);
1802 for (i = 0; i < len; i++, off += 2, ptr++) {
1803 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1804 stat = le16toh(stat);
1805 #ifdef WI_HERMES_STATS_WAR
1806 if (stat & 0xf000)
1807 stat = ~stat;
1808 #endif
1809 *ptr += stat;
1810 }
1811 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1812 sc->sc_stats.wi_tx_multi_retries +
1813 sc->sc_stats.wi_tx_retry_limit;
1814 break;
1815
1816 case WI_INFO_SCAN_RESULTS:
1817 case WI_INFO_HOST_SCAN_RESULTS:
1818 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1819 break;
1820
1821 default:
1822 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1823 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1824 break;
1825 }
1826 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1827 }
1828
1829 static int
1830 wi_write_multi(struct wi_softc *sc)
1831 {
1832 struct ifnet *ifp = &sc->sc_ic.ic_if;
1833 int n;
1834 struct wi_mcast mlist;
1835 struct ether_multi *enm;
1836 struct ether_multistep estep;
1837
1838 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1839 allmulti:
1840 ifp->if_flags |= IFF_ALLMULTI;
1841 memset(&mlist, 0, sizeof(mlist));
1842 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1843 sizeof(mlist));
1844 }
1845
1846 n = 0;
1847 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1848 while (enm != NULL) {
1849 /* Punt on ranges or too many multicast addresses. */
1850 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1851 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1852 goto allmulti;
1853
1854 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1855 n++;
1856 ETHER_NEXT_MULTI(estep, enm);
1857 }
1858 ifp->if_flags &= ~IFF_ALLMULTI;
1859 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1860 IEEE80211_ADDR_LEN * n);
1861 }
1862
1863
1864 static void
1865 wi_read_nicid(struct wi_softc *sc)
1866 {
1867 struct wi_card_ident *id;
1868 char *p;
1869 int len;
1870 u_int16_t ver[4];
1871
1872 /* getting chip identity */
1873 memset(ver, 0, sizeof(ver));
1874 len = sizeof(ver);
1875 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1876 printf("%s: using ", sc->sc_dev.dv_xname);
1877 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1878
1879 sc->sc_firmware_type = WI_NOTYPE;
1880 for (id = wi_card_ident; id->card_name != NULL; id++) {
1881 if (le16toh(ver[0]) == id->card_id) {
1882 printf("%s", id->card_name);
1883 sc->sc_firmware_type = id->firm_type;
1884 break;
1885 }
1886 }
1887 if (sc->sc_firmware_type == WI_NOTYPE) {
1888 if (le16toh(ver[0]) & 0x8000) {
1889 printf("Unknown PRISM2 chip");
1890 sc->sc_firmware_type = WI_INTERSIL;
1891 } else {
1892 printf("Unknown Lucent chip");
1893 sc->sc_firmware_type = WI_LUCENT;
1894 }
1895 }
1896
1897 /* get primary firmware version (Only Prism chips) */
1898 if (sc->sc_firmware_type != WI_LUCENT) {
1899 memset(ver, 0, sizeof(ver));
1900 len = sizeof(ver);
1901 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1902 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1903 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1904 }
1905
1906 /* get station firmware version */
1907 memset(ver, 0, sizeof(ver));
1908 len = sizeof(ver);
1909 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1910 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1911 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1912 if (sc->sc_firmware_type == WI_INTERSIL &&
1913 (sc->sc_sta_firmware_ver == 10102 ||
1914 sc->sc_sta_firmware_ver == 20102)) {
1915 char ident[12];
1916 memset(ident, 0, sizeof(ident));
1917 len = sizeof(ident);
1918 /* value should be the format like "V2.00-11" */
1919 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1920 *(p = (char *)ident) >= 'A' &&
1921 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1922 sc->sc_firmware_type = WI_SYMBOL;
1923 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1924 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1925 (p[6] - '0') * 10 + (p[7] - '0');
1926 }
1927 }
1928
1929 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1930 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1931 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1932 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1933 printf("Primary (%u.%u.%u), ",
1934 sc->sc_pri_firmware_ver / 10000,
1935 (sc->sc_pri_firmware_ver % 10000) / 100,
1936 sc->sc_pri_firmware_ver % 100);
1937 printf("Station (%u.%u.%u)\n",
1938 sc->sc_sta_firmware_ver / 10000,
1939 (sc->sc_sta_firmware_ver % 10000) / 100,
1940 sc->sc_sta_firmware_ver % 100);
1941 }
1942
1943 static int
1944 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1945 {
1946 struct wi_ssid ssid;
1947
1948 if (buflen > IEEE80211_NWID_LEN)
1949 return ENOBUFS;
1950 memset(&ssid, 0, sizeof(ssid));
1951 ssid.wi_len = htole16(buflen);
1952 memcpy(ssid.wi_ssid, buf, buflen);
1953 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
1954 }
1955
1956 static int
1957 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1958 {
1959 struct wi_softc *sc = ifp->if_softc;
1960 struct ieee80211com *ic = &sc->sc_ic;
1961 struct ifreq *ifr = (struct ifreq *)data;
1962 struct wi_req wreq;
1963 int len, n, error;
1964
1965 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1966 if (error)
1967 return error;
1968 len = (wreq.wi_len - 1) * 2;
1969 if (len < sizeof(u_int16_t))
1970 return ENOSPC;
1971 if (len > sizeof(wreq.wi_val))
1972 len = sizeof(wreq.wi_val);
1973
1974 switch (wreq.wi_type) {
1975
1976 case WI_RID_IFACE_STATS:
1977 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1978 if (len < sizeof(sc->sc_stats))
1979 error = ENOSPC;
1980 else
1981 len = sizeof(sc->sc_stats);
1982 break;
1983
1984 case WI_RID_ENCRYPTION:
1985 case WI_RID_TX_CRYPT_KEY:
1986 case WI_RID_DEFLT_CRYPT_KEYS:
1987 case WI_RID_TX_RATE:
1988 return ieee80211_cfgget(ifp, cmd, data);
1989
1990 case WI_RID_MICROWAVE_OVEN:
1991 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1992 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1993 &len);
1994 break;
1995 }
1996 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1997 len = sizeof(u_int16_t);
1998 break;
1999
2000 case WI_RID_DBM_ADJUST:
2001 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
2002 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2003 &len);
2004 break;
2005 }
2006 wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
2007 len = sizeof(u_int16_t);
2008 break;
2009
2010 case WI_RID_ROAMING_MODE:
2011 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
2012 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2013 &len);
2014 break;
2015 }
2016 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
2017 len = sizeof(u_int16_t);
2018 break;
2019
2020 case WI_RID_SYSTEM_SCALE:
2021 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
2022 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2023 &len);
2024 break;
2025 }
2026 wreq.wi_val[0] = htole16(sc->sc_system_scale);
2027 len = sizeof(u_int16_t);
2028 break;
2029
2030 case WI_RID_FRAG_THRESH:
2031 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
2032 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2033 &len);
2034 break;
2035 }
2036 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2037 len = sizeof(u_int16_t);
2038 break;
2039
2040 case WI_RID_READ_APS:
2041 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2042 return ieee80211_cfgget(ifp, cmd, data);
2043 if (sc->sc_scan_timer > 0) {
2044 error = EINPROGRESS;
2045 break;
2046 }
2047 n = sc->sc_naps;
2048 if (len < sizeof(n)) {
2049 error = ENOSPC;
2050 break;
2051 }
2052 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
2053 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
2054 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
2055 memcpy(wreq.wi_val, &n, sizeof(n));
2056 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
2057 sizeof(struct wi_apinfo) * n);
2058 break;
2059
2060 default:
2061 if (sc->sc_enabled) {
2062 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2063 &len);
2064 break;
2065 }
2066 switch (wreq.wi_type) {
2067 case WI_RID_MAX_DATALEN:
2068 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
2069 len = sizeof(u_int16_t);
2070 break;
2071 case WI_RID_FRAG_THRESH:
2072 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2073 len = sizeof(u_int16_t);
2074 break;
2075 case WI_RID_RTS_THRESH:
2076 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
2077 len = sizeof(u_int16_t);
2078 break;
2079 case WI_RID_CNFAUTHMODE:
2080 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
2081 len = sizeof(u_int16_t);
2082 break;
2083 case WI_RID_NODENAME:
2084 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
2085 error = ENOSPC;
2086 break;
2087 }
2088 len = sc->sc_nodelen + sizeof(u_int16_t);
2089 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
2090 memcpy(&wreq.wi_val[1], sc->sc_nodename,
2091 sc->sc_nodelen);
2092 break;
2093 default:
2094 return ieee80211_cfgget(ifp, cmd, data);
2095 }
2096 break;
2097 }
2098 if (error)
2099 return error;
2100 wreq.wi_len = (len + 1) / 2 + 1;
2101 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
2102 }
2103
2104 static int
2105 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2106 {
2107 struct wi_softc *sc = ifp->if_softc;
2108 struct ieee80211com *ic = &sc->sc_ic;
2109 struct ifreq *ifr = (struct ifreq *)data;
2110 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2111 struct wi_req wreq;
2112 struct mbuf *m;
2113 int i, len, error;
2114
2115 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2116 if (error)
2117 return error;
2118 len = (wreq.wi_len - 1) * 2;
2119 switch (wreq.wi_type) {
2120 case WI_RID_DBM_ADJUST:
2121 return ENODEV;
2122
2123 case WI_RID_NODENAME:
2124 if (le16toh(wreq.wi_val[0]) * 2 > len ||
2125 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
2126 error = ENOSPC;
2127 break;
2128 }
2129 if (sc->sc_enabled) {
2130 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2131 len);
2132 if (error)
2133 break;
2134 }
2135 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
2136 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
2137 break;
2138
2139 case WI_RID_MICROWAVE_OVEN:
2140 case WI_RID_ROAMING_MODE:
2141 case WI_RID_SYSTEM_SCALE:
2142 case WI_RID_FRAG_THRESH:
2143 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
2144 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
2145 break;
2146 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
2147 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
2148 break;
2149 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
2150 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
2151 break;
2152 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
2153 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
2154 break;
2155 /* FALLTHROUGH */
2156 case WI_RID_RTS_THRESH:
2157 case WI_RID_CNFAUTHMODE:
2158 case WI_RID_MAX_DATALEN:
2159 if (sc->sc_enabled) {
2160 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2161 sizeof(u_int16_t));
2162 if (error)
2163 break;
2164 }
2165 switch (wreq.wi_type) {
2166 case WI_RID_FRAG_THRESH:
2167 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
2168 break;
2169 case WI_RID_RTS_THRESH:
2170 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
2171 break;
2172 case WI_RID_MICROWAVE_OVEN:
2173 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
2174 break;
2175 case WI_RID_ROAMING_MODE:
2176 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
2177 break;
2178 case WI_RID_SYSTEM_SCALE:
2179 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
2180 break;
2181 case WI_RID_CNFAUTHMODE:
2182 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
2183 break;
2184 case WI_RID_MAX_DATALEN:
2185 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
2186 break;
2187 }
2188 break;
2189
2190 case WI_RID_TX_RATE:
2191 switch (le16toh(wreq.wi_val[0])) {
2192 case 3:
2193 ic->ic_fixed_rate = -1;
2194 break;
2195 default:
2196 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2197 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
2198 / 2 == le16toh(wreq.wi_val[0]))
2199 break;
2200 }
2201 if (i == IEEE80211_RATE_SIZE)
2202 return EINVAL;
2203 ic->ic_fixed_rate = i;
2204 }
2205 if (sc->sc_enabled)
2206 error = wi_cfg_txrate(sc);
2207 break;
2208
2209 case WI_RID_SCAN_APS:
2210 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2211 error = wi_scan_ap(sc, 0x3fff, 0x000f);
2212 break;
2213
2214 case WI_RID_MGMT_XMIT:
2215 if (!sc->sc_enabled) {
2216 error = ENETDOWN;
2217 break;
2218 }
2219 if (ic->ic_mgtq.ifq_len > 5) {
2220 error = EAGAIN;
2221 break;
2222 }
2223 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
2224 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
2225 if (m == NULL) {
2226 error = ENOMEM;
2227 break;
2228 }
2229 IF_ENQUEUE(&ic->ic_mgtq, m);
2230 break;
2231
2232 default:
2233 if (sc->sc_enabled) {
2234 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2235 len);
2236 if (error)
2237 break;
2238 }
2239 error = ieee80211_cfgset(ifp, cmd, data);
2240 break;
2241 }
2242 return error;
2243 }
2244
2245 /* Rate is 0 for hardware auto-select, otherwise rate is
2246 * 2, 4, 11, or 22 (units of 500Kbps).
2247 */
2248 static int
2249 wi_write_txrate(struct wi_softc *sc, int rate)
2250 {
2251 u_int16_t hwrate;
2252 int i;
2253
2254 rate = (rate & IEEE80211_RATE_VAL) / 2;
2255
2256 /* rate: 0, 1, 2, 5, 11 */
2257 switch (sc->sc_firmware_type) {
2258 case WI_LUCENT:
2259 switch (rate) {
2260 case 0:
2261 hwrate = 3; /* auto */
2262 break;
2263 case 5:
2264 hwrate = 4;
2265 break;
2266 case 11:
2267 hwrate = 5;
2268 break;
2269 default:
2270 hwrate = rate;
2271 break;
2272 }
2273 break;
2274 default:
2275 /* Choose a bit according to this table.
2276 *
2277 * bit | data rate
2278 * ----+-------------------
2279 * 0 | 1Mbps
2280 * 1 | 2Mbps
2281 * 2 | 5.5Mbps
2282 * 3 | 11Mbps
2283 */
2284 for (i = 8; i > 0; i >>= 1) {
2285 if (rate >= i)
2286 break;
2287 }
2288 if (i == 0)
2289 hwrate = 0xf; /* auto */
2290 else
2291 hwrate = i;
2292 break;
2293 }
2294
2295 if (sc->sc_tx_rate == hwrate)
2296 return 0;
2297
2298 if (sc->sc_if.if_flags & IFF_DEBUG)
2299 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate,
2300 hwrate, rate);
2301
2302 sc->sc_tx_rate = hwrate;
2303
2304 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate);
2305 }
2306
2307 static int
2308 wi_cfg_txrate(struct wi_softc *sc)
2309 {
2310 struct ieee80211com *ic = &sc->sc_ic;
2311 struct ieee80211_rateset *rs;
2312 int rate;
2313
2314 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2315
2316 sc->sc_tx_rate = 0; /* force write to RID */
2317
2318 if (ic->ic_fixed_rate < 0)
2319 rate = 0; /* auto */
2320 else
2321 rate = rs->rs_rates[ic->ic_fixed_rate];
2322
2323 return wi_write_txrate(sc, rate);
2324 }
2325
2326 static int
2327 wi_write_wep(struct wi_softc *sc)
2328 {
2329 struct ieee80211com *ic = &sc->sc_ic;
2330 int error = 0;
2331 int i, keylen;
2332 u_int16_t val;
2333 struct wi_key wkey[IEEE80211_WEP_NKID];
2334
2335 switch (sc->sc_firmware_type) {
2336 case WI_LUCENT:
2337 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
2338 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2339 if (error)
2340 break;
2341 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
2342 if (error)
2343 break;
2344 memset(wkey, 0, sizeof(wkey));
2345 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2346 keylen = ic->ic_nw_keys[i].wk_len;
2347 wkey[i].wi_keylen = htole16(keylen);
2348 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2349 keylen);
2350 }
2351 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2352 wkey, sizeof(wkey));
2353 break;
2354
2355 case WI_INTERSIL:
2356 case WI_SYMBOL:
2357 if (ic->ic_flags & IEEE80211_F_WEPON) {
2358 /*
2359 * ONLY HWB3163 EVAL-CARD Firmware version
2360 * less than 0.8 variant2
2361 *
2362 * If promiscuous mode disable, Prism2 chip
2363 * does not work with WEP .
2364 * It is under investigation for details.
2365 * (ichiro (at) NetBSD.org)
2366 */
2367 if (sc->sc_firmware_type == WI_INTERSIL &&
2368 sc->sc_sta_firmware_ver < 802 ) {
2369 /* firm ver < 0.8 variant 2 */
2370 wi_write_val(sc, WI_RID_PROMISC, 1);
2371 }
2372 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2373 sc->sc_cnfauthmode);
2374 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
2375 /*
2376 * Encryption firmware has a bug for HostAP mode.
2377 */
2378 if (sc->sc_firmware_type == WI_INTERSIL &&
2379 ic->ic_opmode == IEEE80211_M_HOSTAP)
2380 val |= HOST_ENCRYPT;
2381 } else {
2382 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2383 IEEE80211_AUTH_OPEN);
2384 val = HOST_ENCRYPT | HOST_DECRYPT;
2385 }
2386 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2387 if (error)
2388 break;
2389 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2390 ic->ic_wep_txkey);
2391 if (error)
2392 break;
2393 /*
2394 * It seems that the firmware accept 104bit key only if
2395 * all the keys have 104bit length. We get the length of
2396 * the transmit key and use it for all other keys.
2397 * Perhaps we should use software WEP for such situation.
2398 */
2399 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
2400 if (keylen > IEEE80211_WEP_KEYLEN)
2401 keylen = 13; /* 104bit keys */
2402 else
2403 keylen = IEEE80211_WEP_KEYLEN;
2404 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2405 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2406 ic->ic_nw_keys[i].wk_key, keylen);
2407 if (error)
2408 break;
2409 }
2410 break;
2411 }
2412 return error;
2413 }
2414
2415 /* Must be called at proper protection level! */
2416 static int
2417 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2418 {
2419 int i, status;
2420
2421 /* wait for the busy bit to clear */
2422 for (i = 500; i > 0; i--) { /* 5s */
2423 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2424 break;
2425 DELAY(10*1000); /* 10 m sec */
2426 }
2427 if (i == 0) {
2428 printf("%s: wi_cmd: busy bit won't clear.\n",
2429 sc->sc_dev.dv_xname);
2430 return(ETIMEDOUT);
2431 }
2432 CSR_WRITE_2(sc, WI_PARAM0, val0);
2433 CSR_WRITE_2(sc, WI_PARAM1, val1);
2434 CSR_WRITE_2(sc, WI_PARAM2, val2);
2435 CSR_WRITE_2(sc, WI_COMMAND, cmd);
2436
2437 if (cmd == WI_CMD_INI) {
2438 /* XXX: should sleep here. */
2439 DELAY(100*1000);
2440 }
2441 /* wait for the cmd completed bit */
2442 for (i = 0; i < WI_TIMEOUT; i++) {
2443 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
2444 break;
2445 DELAY(WI_DELAY);
2446 }
2447
2448 status = CSR_READ_2(sc, WI_STATUS);
2449
2450 /* Ack the command */
2451 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2452
2453 if (i == WI_TIMEOUT) {
2454 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
2455 sc->sc_dev.dv_xname, cmd, val0);
2456 return ETIMEDOUT;
2457 }
2458
2459 if (status & WI_STAT_CMD_RESULT) {
2460 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
2461 sc->sc_dev.dv_xname, cmd, val0);
2462 return EIO;
2463 }
2464 return 0;
2465 }
2466
2467 static int
2468 wi_seek_bap(struct wi_softc *sc, int id, int off)
2469 {
2470 int i, status;
2471
2472 CSR_WRITE_2(sc, WI_SEL0, id);
2473 CSR_WRITE_2(sc, WI_OFF0, off);
2474
2475 for (i = 0; ; i++) {
2476 status = CSR_READ_2(sc, WI_OFF0);
2477 if ((status & WI_OFF_BUSY) == 0)
2478 break;
2479 if (i == WI_TIMEOUT) {
2480 printf("%s: timeout in wi_seek to %x/%x\n",
2481 sc->sc_dev.dv_xname, id, off);
2482 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2483 return ETIMEDOUT;
2484 }
2485 DELAY(1);
2486 }
2487 if (status & WI_OFF_ERR) {
2488 printf("%s: failed in wi_seek to %x/%x\n",
2489 sc->sc_dev.dv_xname, id, off);
2490 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2491 return EIO;
2492 }
2493 sc->sc_bap_id = id;
2494 sc->sc_bap_off = off;
2495 return 0;
2496 }
2497
2498 static int
2499 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2500 {
2501 int error, cnt;
2502
2503 if (buflen == 0)
2504 return 0;
2505 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2506 if ((error = wi_seek_bap(sc, id, off)) != 0)
2507 return error;
2508 }
2509 cnt = (buflen + 1) / 2;
2510 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2511 sc->sc_bap_off += cnt * 2;
2512 return 0;
2513 }
2514
2515 static int
2516 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2517 {
2518 int error, cnt;
2519
2520 if (buflen == 0)
2521 return 0;
2522
2523 #ifdef WI_HERMES_AUTOINC_WAR
2524 again:
2525 #endif
2526 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2527 if ((error = wi_seek_bap(sc, id, off)) != 0)
2528 return error;
2529 }
2530 cnt = (buflen + 1) / 2;
2531 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2532 sc->sc_bap_off += cnt * 2;
2533
2534 #ifdef WI_HERMES_AUTOINC_WAR
2535 /*
2536 * According to the comments in the HCF Light code, there is a bug
2537 * in the Hermes (or possibly in certain Hermes firmware revisions)
2538 * where the chip's internal autoincrement counter gets thrown off
2539 * during data writes: the autoincrement is missed, causing one
2540 * data word to be overwritten and subsequent words to be written to
2541 * the wrong memory locations. The end result is that we could end
2542 * up transmitting bogus frames without realizing it. The workaround
2543 * for this is to write a couple of extra guard words after the end
2544 * of the transfer, then attempt to read then back. If we fail to
2545 * locate the guard words where we expect them, we preform the
2546 * transfer over again.
2547 */
2548 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2549 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2550 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2551 wi_seek_bap(sc, id, sc->sc_bap_off);
2552 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2553 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2554 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2555 printf("%s: detect auto increment bug, try again\n",
2556 sc->sc_dev.dv_xname);
2557 goto again;
2558 }
2559 }
2560 #endif
2561 return 0;
2562 }
2563
2564 static int
2565 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2566 {
2567 int error, len;
2568 struct mbuf *m;
2569
2570 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2571 if (m->m_len == 0)
2572 continue;
2573
2574 len = min(m->m_len, totlen);
2575
2576 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2577 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2578 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2579 totlen);
2580 }
2581
2582 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2583 return error;
2584
2585 off += m->m_len;
2586 totlen -= len;
2587 }
2588 return 0;
2589 }
2590
2591 static int
2592 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2593 {
2594 int i;
2595
2596 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2597 printf("%s: failed to allocate %d bytes on NIC\n",
2598 sc->sc_dev.dv_xname, len);
2599 return ENOMEM;
2600 }
2601
2602 for (i = 0; i < WI_TIMEOUT; i++) {
2603 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2604 break;
2605 if (i == WI_TIMEOUT) {
2606 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
2607 return ETIMEDOUT;
2608 }
2609 DELAY(1);
2610 }
2611 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
2612 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2613 return 0;
2614 }
2615
2616 static int
2617 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2618 {
2619 int error, len;
2620 u_int16_t ltbuf[2];
2621
2622 /* Tell the NIC to enter record read mode. */
2623 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2624 if (error)
2625 return error;
2626
2627 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2628 if (error)
2629 return error;
2630
2631 if (le16toh(ltbuf[1]) != rid) {
2632 printf("%s: record read mismatch, rid=%x, got=%x\n",
2633 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
2634 return EIO;
2635 }
2636 len = max(0, le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
2637 if (*buflenp < len) {
2638 printf("%s: record buffer is too small, "
2639 "rid=%x, size=%d, len=%d\n",
2640 sc->sc_dev.dv_xname, rid, *buflenp, len);
2641 return ENOSPC;
2642 }
2643 *buflenp = len;
2644 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2645 }
2646
2647 static int
2648 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2649 {
2650 int error;
2651 u_int16_t ltbuf[2];
2652
2653 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
2654 ltbuf[1] = htole16(rid);
2655
2656 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2657 if (error)
2658 return error;
2659 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2660 if (error)
2661 return error;
2662
2663 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2664 }
2665
2666 static void
2667 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni)
2668 {
2669 struct wi_node *wn = (void*)ni;
2670 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt);
2671 }
2672
2673 static void
2674 wi_rssadapt_updatestats(void *arg)
2675 {
2676 struct wi_softc *sc = arg;
2677 struct ieee80211com *ic = &sc->sc_ic;
2678 ieee80211_iterate_nodes(ic, wi_rssadapt_updatestats_cb, arg);
2679 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2680 ic->ic_state == IEEE80211_S_RUN)
2681 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
2682 wi_rssadapt_updatestats, arg);
2683 }
2684
2685 static int
2686 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2687 {
2688 struct wi_softc *sc = ic->ic_softc;
2689 struct ieee80211_node *ni = ic->ic_bss;
2690 int buflen;
2691 u_int16_t val;
2692 struct wi_ssid ssid;
2693 struct wi_macaddr bssid, old_bssid;
2694 enum ieee80211_state ostate;
2695 #ifdef WI_DEBUG
2696 static const char *stname[] =
2697 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
2698 #endif /* WI_DEBUG */
2699
2700 ostate = ic->ic_state;
2701 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
2702
2703 switch (nstate) {
2704 case IEEE80211_S_INIT:
2705 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2706 callout_stop(&sc->sc_rssadapt_ch);
2707 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2708 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2709 return (*sc->sc_newstate)(ic, nstate, arg);
2710
2711 case IEEE80211_S_RUN:
2712 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2713 buflen = IEEE80211_ADDR_LEN;
2714 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid);
2715 wi_read_rid(sc, WI_RID_CURRENT_BSSID, &bssid, &buflen);
2716 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid);
2717 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid);
2718 buflen = sizeof(val);
2719 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
2720 if (!isset(ic->ic_chan_avail, le16toh(val)))
2721 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname,
2722 le16toh(val));
2723 ni->ni_chan = &ic->ic_channels[le16toh(val)];
2724
2725 if (IEEE80211_ADDR_EQ(old_bssid.wi_mac_addr, ni->ni_bssid))
2726 sc->sc_false_syns++;
2727 else
2728 sc->sc_false_syns = 0;
2729
2730 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2731 ni->ni_esslen = ic->ic_des_esslen;
2732 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2733 ni->ni_rates = ic->ic_sup_rates[
2734 ieee80211_chan2mode(ic, ni->ni_chan)];
2735 ni->ni_intval = ic->ic_lintval;
2736 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2737 if (ic->ic_flags & IEEE80211_F_WEPON)
2738 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2739 } else {
2740 buflen = sizeof(ssid);
2741 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2742 ni->ni_esslen = le16toh(ssid.wi_len);
2743 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2744 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2745 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2746 ni->ni_rates = ic->ic_sup_rates[
2747 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/
2748 }
2749 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2750 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
2751 wi_rssadapt_updatestats, sc);
2752 break;
2753
2754 case IEEE80211_S_SCAN:
2755 case IEEE80211_S_AUTH:
2756 case IEEE80211_S_ASSOC:
2757 break;
2758 }
2759
2760 ic->ic_state = nstate;
2761 /* skip standard ieee80211 handling */
2762 return 0;
2763 }
2764
2765 static int
2766 wi_set_tim(struct ieee80211com *ic, int aid, int which)
2767 {
2768 struct wi_softc *sc = ic->ic_softc;
2769
2770 aid &= ~0xc000;
2771 if (which)
2772 aid |= 0x8000;
2773
2774 return wi_write_val(sc, WI_RID_SET_TIM, aid);
2775 }
2776
2777 static int
2778 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
2779 {
2780 int error = 0;
2781 u_int16_t val[2];
2782
2783 if (!sc->sc_enabled)
2784 return ENXIO;
2785 switch (sc->sc_firmware_type) {
2786 case WI_LUCENT:
2787 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2788 break;
2789 case WI_INTERSIL:
2790 val[0] = htole16(chanmask); /* channel */
2791 val[1] = htole16(txrate); /* tx rate */
2792 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2793 break;
2794 case WI_SYMBOL:
2795 /*
2796 * XXX only supported on 3.x ?
2797 */
2798 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2799 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2800 val, sizeof(val[0]));
2801 break;
2802 }
2803 if (error == 0) {
2804 sc->sc_scan_timer = WI_SCAN_WAIT;
2805 sc->sc_ic.ic_if.if_timer = 1;
2806 DPRINTF(("wi_scan_ap: start scanning, "
2807 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate));
2808 }
2809 return error;
2810 }
2811
2812 static void
2813 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2814 {
2815 #define N(a) (sizeof (a) / sizeof (a[0]))
2816 int i, naps, off, szbuf;
2817 struct wi_scan_header ws_hdr; /* Prism2 header */
2818 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2819 struct wi_apinfo *ap;
2820
2821 off = sizeof(u_int16_t) * 2;
2822 memset(&ws_hdr, 0, sizeof(ws_hdr));
2823 switch (sc->sc_firmware_type) {
2824 case WI_INTERSIL:
2825 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2826 off += sizeof(ws_hdr);
2827 szbuf = sizeof(struct wi_scan_data_p2);
2828 break;
2829 case WI_SYMBOL:
2830 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2831 break;
2832 case WI_LUCENT:
2833 szbuf = sizeof(struct wi_scan_data);
2834 break;
2835 default:
2836 printf("%s: wi_scan_result: unknown firmware type %u\n",
2837 sc->sc_dev.dv_xname, sc->sc_firmware_type);
2838 naps = 0;
2839 goto done;
2840 }
2841 naps = (cnt * 2 + 2 - off) / szbuf;
2842 if (naps > N(sc->sc_aps))
2843 naps = N(sc->sc_aps);
2844 sc->sc_naps = naps;
2845 /* Read Data */
2846 ap = sc->sc_aps;
2847 memset(&ws_dat, 0, sizeof(ws_dat));
2848 for (i = 0; i < naps; i++, ap++) {
2849 wi_read_bap(sc, fid, off, &ws_dat,
2850 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2851 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
2852 ether_sprintf(ws_dat.wi_bssid)));
2853 off += szbuf;
2854 ap->scanreason = le16toh(ws_hdr.wi_reason);
2855 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2856 ap->channel = le16toh(ws_dat.wi_chid);
2857 ap->signal = le16toh(ws_dat.wi_signal);
2858 ap->noise = le16toh(ws_dat.wi_noise);
2859 ap->quality = ap->signal - ap->noise;
2860 ap->capinfo = le16toh(ws_dat.wi_capinfo);
2861 ap->interval = le16toh(ws_dat.wi_interval);
2862 ap->rate = le16toh(ws_dat.wi_rate);
2863 ap->namelen = le16toh(ws_dat.wi_namelen);
2864 if (ap->namelen > sizeof(ap->name))
2865 ap->namelen = sizeof(ap->name);
2866 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2867 }
2868 done:
2869 /* Done scanning */
2870 sc->sc_scan_timer = 0;
2871 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
2872 #undef N
2873 }
2874
2875 static void
2876 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
2877 {
2878 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
2879 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL
2880 : -1,
2881 rssi);
2882 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
2883 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
2884 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
2885 printf(" rx_signal %u rx_rate %u rx_flow %u\n",
2886 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
2887 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
2888 wh->wi_tx_rtry, wh->wi_tx_rate,
2889 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
2890 printf(" ehdr dst %s src %s type 0x%x\n",
2891 ether_sprintf(wh->wi_ehdr.ether_dhost),
2892 ether_sprintf(wh->wi_ehdr.ether_shost),
2893 wh->wi_ehdr.ether_type);
2894 }
2895