wi.c revision 1.160 1 /* $NetBSD: wi.c,v 1.160 2004/05/31 11:42:00 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.160 2004/05/31 11:42:00 dyoung Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_llc.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95
96 #include <net80211/ieee80211_var.h>
97 #include <net80211/ieee80211_compat.h>
98 #include <net80211/ieee80211_ioctl.h>
99 #include <net80211/ieee80211_radiotap.h>
100 #include <net80211/ieee80211_rssadapt.h>
101
102 #if NBPFILTER > 0
103 #include <net/bpf.h>
104 #include <net/bpfdesc.h>
105 #endif
106
107 #include <machine/bus.h>
108
109 #include <dev/ic/wi_ieee.h>
110 #include <dev/ic/wireg.h>
111 #include <dev/ic/wivar.h>
112
113 static int wi_init(struct ifnet *);
114 static void wi_stop(struct ifnet *, int);
115 static void wi_start(struct ifnet *);
116 static int wi_reset(struct wi_softc *);
117 static void wi_watchdog(struct ifnet *);
118 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
119 static int wi_media_change(struct ifnet *);
120 static void wi_media_status(struct ifnet *, struct ifmediareq *);
121
122 static struct ieee80211_node *wi_node_alloc(struct ieee80211com *);
123 static void wi_node_copy(struct ieee80211com *, struct ieee80211_node *,
124 const struct ieee80211_node *);
125 static void wi_node_free(struct ieee80211com *, struct ieee80211_node *);
126
127 static void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
128 static void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
129 static void wi_choose_rate(struct ieee80211com *, struct ieee80211_node *,
130 struct ieee80211_frame *, u_int);
131 static void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *);
132 static void wi_rssadapt_updatestats(void *);
133
134 static void wi_rx_intr(struct wi_softc *);
135 static void wi_txalloc_intr(struct wi_softc *);
136 static void wi_tx_intr(struct wi_softc *);
137 static void wi_tx_ex_intr(struct wi_softc *);
138 static void wi_info_intr(struct wi_softc *);
139
140 static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
141 static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
142 static int wi_cfg_txrate(struct wi_softc *);
143 static int wi_write_txrate(struct wi_softc *, int);
144 static int wi_write_wep(struct wi_softc *);
145 static int wi_write_multi(struct wi_softc *);
146 static int wi_alloc_fid(struct wi_softc *, int, int *);
147 static void wi_read_nicid(struct wi_softc *);
148 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
149
150 static int wi_cmd(struct wi_softc *, int, int, int, int);
151 static int wi_seek_bap(struct wi_softc *, int, int);
152 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
153 static int wi_write_bap(struct wi_softc *, int, int, void *, int);
154 static int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
155 static int wi_read_rid(struct wi_softc *, int, void *, int *);
156 static int wi_write_rid(struct wi_softc *, int, void *, int);
157
158 static int wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
159 static int wi_set_tim(struct ieee80211com *, int, int);
160
161 static int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
162 static void wi_scan_result(struct wi_softc *, int, int);
163
164 static void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
165
166 static inline int
167 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
168 {
169
170 val = htole16(val);
171 return wi_write_rid(sc, rid, &val, sizeof(val));
172 }
173
174 static struct timeval lasttxerror; /* time of last tx error msg */
175 static int curtxeps = 0; /* current tx error msgs/sec */
176 static int wi_txerate = 0; /* tx error rate: max msgs/sec */
177
178 #ifdef WI_DEBUG
179 int wi_debug = 0;
180
181 #define DPRINTF(X) if (wi_debug) printf X
182 #define DPRINTF2(X) if (wi_debug > 1) printf X
183 #define IFF_DUMPPKTS(_ifp) \
184 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
185 #else
186 #define DPRINTF(X)
187 #define DPRINTF2(X)
188 #define IFF_DUMPPKTS(_ifp) 0
189 #endif
190
191 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \
192 WI_EV_TX | WI_EV_TX_EXC)
193
194 struct wi_card_ident
195 wi_card_ident[] = {
196 /* CARD_ID CARD_NAME FIRM_TYPE */
197 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
198 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
199 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
200 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
201 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
202 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
203 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
204 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
205 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
206 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
207 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
208 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
209 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
210 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
211 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
212 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
213 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
214 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
215 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
216 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
217 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
218 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
219 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
220 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
221 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
222 { 0, NULL, 0 },
223 };
224
225 int
226 wi_attach(struct wi_softc *sc)
227 {
228 struct ieee80211com *ic = &sc->sc_ic;
229 struct ifnet *ifp = &ic->ic_if;
230 int chan, nrate, buflen;
231 u_int16_t val, chanavail;
232 struct {
233 u_int16_t nrates;
234 char rates[IEEE80211_RATE_SIZE];
235 } ratebuf;
236 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
237 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
238 };
239 int s;
240
241 s = splnet();
242
243 /* Make sure interrupts are disabled. */
244 CSR_WRITE_2(sc, WI_INT_EN, 0);
245 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
246
247 sc->sc_invalid = 0;
248
249 /* Reset the NIC. */
250 if (wi_reset(sc) != 0) {
251 sc->sc_invalid = 1;
252 splx(s);
253 return 1;
254 }
255
256 buflen = IEEE80211_ADDR_LEN;
257 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
258 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
259 printf(" could not get mac address, attach failed\n");
260 splx(s);
261 return 1;
262 }
263
264 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
265
266 /* Read NIC identification */
267 wi_read_nicid(sc);
268
269 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
270 ifp->if_softc = sc;
271 ifp->if_start = wi_start;
272 ifp->if_ioctl = wi_ioctl;
273 ifp->if_watchdog = wi_watchdog;
274 ifp->if_init = wi_init;
275 ifp->if_stop = wi_stop;
276 ifp->if_flags =
277 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
278 IFQ_SET_READY(&ifp->if_snd);
279
280 ic->ic_phytype = IEEE80211_T_DS;
281 ic->ic_opmode = IEEE80211_M_STA;
282 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_AHDEMO;
283 ic->ic_state = IEEE80211_S_INIT;
284 ic->ic_max_aid = WI_MAX_AID;
285
286 /* Find available channel */
287 buflen = sizeof(chanavail);
288 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &chanavail, &buflen) != 0)
289 chanavail = htole16(0x1fff); /* assume 1-11 */
290 for (chan = 16; chan > 0; chan--) {
291 if (!isset((u_int8_t*)&chanavail, chan - 1))
292 continue;
293 ic->ic_ibss_chan = &ic->ic_channels[chan];
294 ic->ic_channels[chan].ic_freq =
295 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
296 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
297 }
298
299 /* Find default IBSS channel */
300 buflen = sizeof(val);
301 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0) {
302 chan = le16toh(val);
303 if (isset((u_int8_t*)&chanavail, chan - 1))
304 ic->ic_ibss_chan = &ic->ic_channels[chan];
305 }
306 if (ic->ic_ibss_chan == NULL)
307 panic("%s: no available channel\n", sc->sc_dev.dv_xname);
308
309 if (sc->sc_firmware_type == WI_LUCENT) {
310 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
311 } else {
312 buflen = sizeof(val);
313 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
314 wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0)
315 sc->sc_dbm_offset = le16toh(val);
316 else
317 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
318 }
319
320 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
321
322 /*
323 * Set flags based on firmware version.
324 */
325 switch (sc->sc_firmware_type) {
326 case WI_LUCENT:
327 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
328 #ifdef WI_HERMES_AUTOINC_WAR
329 /* XXX: not confirmed, but never seen for recent firmware */
330 if (sc->sc_sta_firmware_ver < 40000) {
331 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
332 }
333 #endif
334 if (sc->sc_sta_firmware_ver >= 60000)
335 sc->sc_flags |= WI_FLAGS_HAS_MOR;
336 if (sc->sc_sta_firmware_ver >= 60006) {
337 ic->ic_caps |= IEEE80211_C_IBSS;
338 ic->ic_caps |= IEEE80211_C_MONITOR;
339 }
340 sc->sc_ibss_port = 1;
341 break;
342
343 case WI_INTERSIL:
344 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
345 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
346 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
347 if (sc->sc_sta_firmware_ver > 10101)
348 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
349 if (sc->sc_sta_firmware_ver >= 800) {
350 if (sc->sc_sta_firmware_ver != 10402)
351 ic->ic_caps |= IEEE80211_C_HOSTAP;
352 ic->ic_caps |= IEEE80211_C_IBSS;
353 ic->ic_caps |= IEEE80211_C_MONITOR;
354 }
355 sc->sc_ibss_port = 0;
356 sc->sc_alt_retry = 2;
357 break;
358
359 case WI_SYMBOL:
360 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
361 if (sc->sc_sta_firmware_ver >= 20000)
362 ic->ic_caps |= IEEE80211_C_IBSS;
363 sc->sc_ibss_port = 4;
364 break;
365 }
366
367 /*
368 * Find out if we support WEP on this card.
369 */
370 buflen = sizeof(val);
371 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
372 val != htole16(0))
373 ic->ic_caps |= IEEE80211_C_WEP;
374
375 /* Find supported rates. */
376 buflen = sizeof(ratebuf);
377 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0) {
378 nrate = le16toh(ratebuf.nrates);
379 if (nrate > IEEE80211_RATE_SIZE)
380 nrate = IEEE80211_RATE_SIZE;
381 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates,
382 &ratebuf.rates[0], nrate);
383 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
384 }
385 buflen = sizeof(val);
386
387 sc->sc_max_datalen = 2304;
388 sc->sc_rts_thresh = 2347;
389 sc->sc_frag_thresh = 2346;
390 sc->sc_system_scale = 1;
391 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
392 sc->sc_roaming_mode = 1;
393
394 callout_init(&sc->sc_rssadapt_ch);
395
396 /*
397 * Call MI attach routines.
398 */
399 if_attach(ifp);
400 ieee80211_ifattach(ifp);
401
402 sc->sc_newstate = ic->ic_newstate;
403 ic->ic_newstate = wi_newstate;
404 ic->ic_node_alloc = wi_node_alloc;
405 ic->ic_node_free = wi_node_free;
406 ic->ic_node_copy = wi_node_copy;
407 ic->ic_set_tim = wi_set_tim;
408
409 ieee80211_media_init(ifp, wi_media_change, wi_media_status);
410
411 #if NBPFILTER > 0
412 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
413 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
414 #endif
415
416 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
417 sc->sc_rxtap.wr_ihdr.it_len = sizeof(sc->sc_rxtapu);
418 sc->sc_rxtap.wr_ihdr.it_present = WI_RX_RADIOTAP_PRESENT;
419
420 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
421 sc->sc_txtap.wt_ihdr.it_len = sizeof(sc->sc_txtapu);
422 sc->sc_txtap.wt_ihdr.it_present = WI_TX_RADIOTAP_PRESENT;
423
424 /* Attach is successful. */
425 sc->sc_attached = 1;
426
427 splx(s);
428 return 0;
429 }
430
431 int
432 wi_detach(struct wi_softc *sc)
433 {
434 struct ifnet *ifp = &sc->sc_ic.ic_if;
435 int s;
436
437 if (!sc->sc_attached)
438 return 0;
439
440 s = splnet();
441
442 sc->sc_invalid = 1;
443 wi_stop(ifp, 1);
444
445 /* Delete all remaining media. */
446 ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY);
447
448 ieee80211_ifdetach(ifp);
449 if_detach(ifp);
450 splx(s);
451 return 0;
452 }
453
454 #ifdef __NetBSD__
455 int
456 wi_activate(struct device *self, enum devact act)
457 {
458 struct wi_softc *sc = (struct wi_softc *)self;
459 int rv = 0, s;
460
461 s = splnet();
462 switch (act) {
463 case DVACT_ACTIVATE:
464 rv = EOPNOTSUPP;
465 break;
466
467 case DVACT_DEACTIVATE:
468 if_deactivate(&sc->sc_ic.ic_if);
469 break;
470 }
471 splx(s);
472 return rv;
473 }
474
475 void
476 wi_power(struct wi_softc *sc, int why)
477 {
478 struct ifnet *ifp = &sc->sc_ic.ic_if;
479 int s;
480
481 s = splnet();
482 switch (why) {
483 case PWR_SUSPEND:
484 case PWR_STANDBY:
485 wi_stop(ifp, 1);
486 break;
487 case PWR_RESUME:
488 if (ifp->if_flags & IFF_UP) {
489 wi_init(ifp);
490 (void)wi_intr(sc);
491 }
492 break;
493 case PWR_SOFTSUSPEND:
494 case PWR_SOFTSTANDBY:
495 case PWR_SOFTRESUME:
496 break;
497 }
498 splx(s);
499 }
500 #endif /* __NetBSD__ */
501
502 void
503 wi_shutdown(struct wi_softc *sc)
504 {
505 struct ifnet *ifp = &sc->sc_ic.ic_if;
506
507 if (sc->sc_attached)
508 wi_stop(ifp, 1);
509 }
510
511 int
512 wi_intr(void *arg)
513 {
514 int i;
515 struct wi_softc *sc = arg;
516 struct ifnet *ifp = &sc->sc_ic.ic_if;
517 u_int16_t status;
518
519 if (sc->sc_enabled == 0 ||
520 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
521 (ifp->if_flags & IFF_RUNNING) == 0)
522 return 0;
523
524 if ((ifp->if_flags & IFF_UP) == 0) {
525 CSR_WRITE_2(sc, WI_INT_EN, 0);
526 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
527 return 1;
528 }
529
530 /* This is superfluous on Prism, but Lucent breaks if we
531 * do not disable interrupts.
532 */
533 CSR_WRITE_2(sc, WI_INT_EN, 0);
534
535 /* maximum 10 loops per interrupt */
536 for (i = 0; i < 10; i++) {
537 /*
538 * Only believe a status bit when we enter wi_intr, or when
539 * the bit was "off" the last time through the loop. This is
540 * my strategy to avoid racing the hardware/firmware if I
541 * can re-read the event status register more quickly than
542 * it is updated.
543 */
544 status = CSR_READ_2(sc, WI_EVENT_STAT);
545 if ((status & WI_INTRS) == 0)
546 break;
547
548 if (status & WI_EV_RX)
549 wi_rx_intr(sc);
550
551 if (status & WI_EV_ALLOC)
552 wi_txalloc_intr(sc);
553
554 if (status & WI_EV_TX)
555 wi_tx_intr(sc);
556
557 if (status & WI_EV_TX_EXC)
558 wi_tx_ex_intr(sc);
559
560 if (status & WI_EV_INFO)
561 wi_info_intr(sc);
562
563 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
564 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
565 !IFQ_IS_EMPTY(&ifp->if_snd))
566 wi_start(ifp);
567 }
568
569 /* re-enable interrupts */
570 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
571
572 return 1;
573 }
574
575 #define arraylen(a) (sizeof(a) / sizeof((a)[0]))
576
577 static void
578 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree)
579 {
580 int i;
581 SLIST_INIT(rssdfree);
582 for (i = 0; i < arraylen(*rssd); i++) {
583 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next);
584 }
585 }
586
587 static void
588 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS],
589 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE])
590 {
591 struct ieee80211_node *ni;
592 int i;
593 for (i = 0; i < arraylen(*rssd); i++) {
594 ni = (*rssd)[i].rd_desc.id_node;
595 (*rssd)[i].rd_desc.id_node = NULL;
596 if (ni != NULL && (ic->ic_if.if_flags & IFF_DEBUG) != 0)
597 printf("%s: cleaning outstanding rssadapt "
598 "descriptor for %s\n",
599 ic->ic_if.if_xname, ether_sprintf(ni->ni_macaddr));
600 if (ni != NULL && ni != ic->ic_bss)
601 ieee80211_free_node(ic, ni);
602 }
603 memset(*txpending, 0, sizeof(*txpending));
604 wi_rssdescs_init(rssd, rssdfree);
605 }
606
607 static int
608 wi_init(struct ifnet *ifp)
609 {
610 struct wi_softc *sc = ifp->if_softc;
611 struct ieee80211com *ic = &sc->sc_ic;
612 struct wi_joinreq join;
613 int i;
614 int error = 0, wasenabled;
615
616 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
617 wasenabled = sc->sc_enabled;
618 if (!sc->sc_enabled) {
619 if ((error = (*sc->sc_enable)(sc)) != 0)
620 goto out;
621 sc->sc_enabled = 1;
622 } else
623 wi_stop(ifp, 0);
624
625 /* Symbol firmware cannot be initialized more than once */
626 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled)
627 if ((error = wi_reset(sc)) != 0)
628 goto out;
629
630 /* common 802.11 configuration */
631 ic->ic_flags &= ~IEEE80211_F_IBSSON;
632 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
633 switch (ic->ic_opmode) {
634 case IEEE80211_M_STA:
635 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
636 break;
637 case IEEE80211_M_IBSS:
638 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
639 ic->ic_flags |= IEEE80211_F_IBSSON;
640 sc->sc_syn_timer = 5;
641 ifp->if_timer = 1;
642 break;
643 case IEEE80211_M_AHDEMO:
644 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
645 break;
646 case IEEE80211_M_HOSTAP:
647 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
648 break;
649 case IEEE80211_M_MONITOR:
650 if (sc->sc_firmware_type == WI_LUCENT)
651 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
652 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
653 break;
654 }
655
656 /* Intersil interprets this RID as joining ESS even in IBSS mode */
657 if (sc->sc_firmware_type == WI_LUCENT &&
658 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
659 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
660 else
661 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
662 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
663 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
664 ic->ic_des_esslen);
665 wi_write_val(sc, WI_RID_OWN_CHNL,
666 ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
667 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
668 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
669 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
670 wi_write_val(sc, WI_RID_PM_ENABLED,
671 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
672
673 /* not yet common 802.11 configuration */
674 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
675 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
676 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
677 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
678
679 /* driver specific 802.11 configuration */
680 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
681 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
682 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
683 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
684 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
685 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
686 wi_cfg_txrate(sc);
687 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
688
689 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
690 sc->sc_firmware_type == WI_INTERSIL) {
691 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
692 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
693 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
694 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
695 }
696
697 if (sc->sc_firmware_type == WI_INTERSIL)
698 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry);
699
700 /*
701 * Initialize promisc mode.
702 * Being in Host-AP mode causes a great
703 * deal of pain if promiscuous mode is set.
704 * Therefore we avoid confusing the firmware
705 * and always reset promisc mode in Host-AP
706 * mode. Host-AP sees all the packets anyway.
707 */
708 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
709 (ifp->if_flags & IFF_PROMISC) != 0) {
710 wi_write_val(sc, WI_RID_PROMISC, 1);
711 } else {
712 wi_write_val(sc, WI_RID_PROMISC, 0);
713 }
714
715 /* Configure WEP. */
716 if (ic->ic_caps & IEEE80211_C_WEP)
717 wi_write_wep(sc);
718
719 /* Set multicast filter. */
720 wi_write_multi(sc);
721
722 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
723 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
724 if (sc->sc_firmware_type == WI_SYMBOL)
725 sc->sc_buflen = 1585; /* XXX */
726 for (i = 0; i < WI_NTXBUF; i++) {
727 error = wi_alloc_fid(sc, sc->sc_buflen,
728 &sc->sc_txd[i].d_fid);
729 if (error) {
730 printf("%s: tx buffer allocation failed\n",
731 sc->sc_dev.dv_xname);
732 goto out;
733 }
734 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
735 sc->sc_txd[i].d_fid));
736 sc->sc_txd[i].d_len = 0;
737 }
738 }
739 sc->sc_txcur = sc->sc_txnext = 0;
740
741 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree);
742
743 /* Enable desired port */
744 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
745 ifp->if_flags |= IFF_RUNNING;
746 ifp->if_flags &= ~IFF_OACTIVE;
747 ic->ic_state = IEEE80211_S_INIT;
748
749 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
750 ic->ic_opmode == IEEE80211_M_MONITOR ||
751 ic->ic_opmode == IEEE80211_M_HOSTAP)
752 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
753
754 /* Enable interrupts */
755 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
756
757 if (!wasenabled &&
758 ic->ic_opmode == IEEE80211_M_HOSTAP &&
759 sc->sc_firmware_type == WI_INTERSIL) {
760 /* XXX: some card need to be re-enabled for hostap */
761 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
762 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
763 }
764
765 if (ic->ic_opmode == IEEE80211_M_STA &&
766 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
767 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
768 memset(&join, 0, sizeof(join));
769 if (ic->ic_flags & IEEE80211_F_DESBSSID)
770 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
771 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
772 join.wi_chan =
773 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan));
774 /* Lucent firmware does not support the JOIN RID. */
775 if (sc->sc_firmware_type != WI_LUCENT)
776 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
777 }
778
779 out:
780 if (error) {
781 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
782 wi_stop(ifp, 0);
783 }
784 DPRINTF(("wi_init: return %d\n", error));
785 return error;
786 }
787
788 static void
789 wi_stop(struct ifnet *ifp, int disable)
790 {
791 struct wi_softc *sc = ifp->if_softc;
792 struct ieee80211com *ic = &sc->sc_ic;
793 int s;
794
795 if (!sc->sc_enabled)
796 return;
797
798 s = splnet();
799
800 DPRINTF(("wi_stop: disable %d\n", disable));
801
802 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
803 if (!sc->sc_invalid) {
804 CSR_WRITE_2(sc, WI_INT_EN, 0);
805 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
806 }
807
808 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
809 &sc->sc_txpending);
810
811 sc->sc_tx_timer = 0;
812 sc->sc_scan_timer = 0;
813 sc->sc_syn_timer = 0;
814 sc->sc_false_syns = 0;
815 sc->sc_naps = 0;
816 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
817 ifp->if_timer = 0;
818
819 if (disable) {
820 if (sc->sc_disable)
821 (*sc->sc_disable)(sc);
822 sc->sc_enabled = 0;
823 }
824 splx(s);
825 }
826
827 /*
828 * Choose a data rate for a packet len bytes long that suits the packet
829 * type and the wireless conditions.
830 *
831 * TBD Adapt fragmentation threshold.
832 */
833 static void
834 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni,
835 struct ieee80211_frame *wh, u_int len)
836 {
837 struct wi_softc *sc = ic->ic_if.if_softc;
838 struct wi_node *wn = (void*)ni;
839 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt;
840 int do_not_adapt, i, rateidx, s;
841
842 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) &&
843 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0;
844
845 s = splnet();
846
847 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len,
848 ic->ic_fixed_rate,
849 ((ic->ic_if.if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_if.if_xname,
850 do_not_adapt);
851
852 if (ic->ic_opmode != IEEE80211_M_HOSTAP) {
853 /* choose the slowest pending rate so that we don't
854 * accidentally send a packet on the MAC's queue
855 * too fast. TBD find out if the MAC labels Tx
856 * packets w/ rate when enqueued or dequeued.
857 */
858 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++);
859 ni->ni_txrate = i;
860 } else
861 ni->ni_txrate = rateidx;
862 splx(s);
863 return;
864 }
865
866 static void
867 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
868 {
869 struct wi_node *wn;
870 if (id->id_node == NULL)
871 return;
872
873 wn = (void*)id->id_node;
874 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id);
875 }
876
877 static void
878 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
879 {
880 struct ieee80211_node *ni;
881 struct wi_node *wn;
882 int s;
883
884 s = splnet();
885
886 if ((ni = id->id_node) == NULL) {
887 DPRINTF(("wi_lower_rate: missing node\n"));
888 goto out;
889 }
890
891 wn = (void *)ni;
892
893 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id);
894 out:
895 splx(s);
896 return;
897 }
898
899 static void
900 wi_start(struct ifnet *ifp)
901 {
902 struct wi_softc *sc = ifp->if_softc;
903 struct ieee80211com *ic = &sc->sc_ic;
904 struct ieee80211_node *ni;
905 struct ieee80211_frame *wh;
906 struct ieee80211_rateset *rs;
907 struct wi_rssdesc *rd;
908 struct ieee80211_rssdesc *id;
909 struct mbuf *m0;
910 struct wi_frame frmhdr;
911 int cur, fid, off;
912
913 if (!sc->sc_enabled || sc->sc_invalid)
914 return;
915 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
916 return;
917
918 memset(&frmhdr, 0, sizeof(frmhdr));
919 cur = sc->sc_txnext;
920 for (;;) {
921 ni = ic->ic_bss;
922 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
923 if (sc->sc_txd[cur].d_len != 0 ||
924 SLIST_EMPTY(&sc->sc_rssdfree)) {
925 ifp->if_flags |= IFF_OACTIVE;
926 break;
927 }
928 IF_DEQUEUE(&ic->ic_mgtq, m0);
929 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
930 (caddr_t)&frmhdr.wi_ehdr);
931 frmhdr.wi_ehdr.ether_type = 0;
932 wh = mtod(m0, struct ieee80211_frame *);
933 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
934 m0->m_pkthdr.rcvif = NULL;
935 } else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
936 struct llc *llc;
937
938 /*
939 * Should these packets be processed after the
940 * regular packets or before? Since they are being
941 * probed for, they are probably less time critical
942 * than other packets, but, on the other hand,
943 * we want the power saving nodes to go back to
944 * sleep as quickly as possible to save power...
945 */
946
947 if (ic->ic_state != IEEE80211_S_RUN)
948 break;
949
950 if (sc->sc_txd[cur].d_len != 0 ||
951 SLIST_EMPTY(&sc->sc_rssdfree)) {
952 ifp->if_flags |= IFF_OACTIVE;
953 break;
954 }
955 IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
956 wh = mtod(m0, struct ieee80211_frame *);
957 llc = (struct llc *) (wh + 1);
958 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
959 (caddr_t)&frmhdr.wi_ehdr);
960 frmhdr.wi_ehdr.ether_type = llc->llc_snap.ether_type;
961 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
962 m0->m_pkthdr.rcvif = NULL;
963 } else {
964 if (ic->ic_state != IEEE80211_S_RUN) {
965 break;
966 }
967 IFQ_POLL(&ifp->if_snd, m0);
968 if (m0 == NULL) {
969 break;
970 }
971 if (sc->sc_txd[cur].d_len != 0 ||
972 SLIST_EMPTY(&sc->sc_rssdfree)) {
973 ifp->if_flags |= IFF_OACTIVE;
974 break;
975 }
976 IFQ_DEQUEUE(&ifp->if_snd, m0);
977 ifp->if_opackets++;
978 m_copydata(m0, 0, ETHER_HDR_LEN,
979 (caddr_t)&frmhdr.wi_ehdr);
980 #if NBPFILTER > 0
981 if (ifp->if_bpf)
982 bpf_mtap(ifp->if_bpf, m0);
983 #endif
984
985 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
986 ifp->if_oerrors++;
987 continue;
988 }
989 wh = mtod(m0, struct ieee80211_frame *);
990 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
991 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
992 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
993 IEEE80211_FC0_TYPE_DATA) {
994 if (ni->ni_associd == 0) {
995 m_freem(m0);
996 ifp->if_oerrors++;
997 goto next;
998 }
999 if (ni->ni_pwrsave & IEEE80211_PS_SLEEP) {
1000 ieee80211_pwrsave(ic, ni, m0);
1001 continue; /* don't free node. */
1002 }
1003 }
1004 }
1005 #if NBPFILTER > 0
1006 if (ic->ic_rawbpf)
1007 bpf_mtap(ic->ic_rawbpf, m0);
1008 #endif
1009 frmhdr.wi_tx_ctl =
1010 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK);
1011 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1012 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
1013 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1014 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
1015 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
1016 ifp->if_oerrors++;
1017 goto next;
1018 }
1019 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
1020 }
1021
1022 wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len);
1023
1024 #if NBPFILTER > 0
1025 if (sc->sc_drvbpf) {
1026 struct mbuf mb;
1027
1028 struct wi_tx_radiotap_header *tap = &sc->sc_txtap;
1029
1030 tap->wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1031 tap->wt_chan_freq =
1032 htole16(ic->ic_bss->ni_chan->ic_freq);
1033 tap->wt_chan_flags =
1034 htole16(ic->ic_bss->ni_chan->ic_flags);
1035
1036 /* TBD tap->wt_flags */
1037
1038 M_COPY_PKTHDR(&mb, m0);
1039 mb.m_data = (caddr_t)tap;
1040 mb.m_len = tap->wt_ihdr.it_len;
1041 mb.m_next = m0;
1042 mb.m_pkthdr.len += mb.m_len;
1043 bpf_mtap(sc->sc_drvbpf, &mb);
1044 }
1045 #endif
1046 rs = &ni->ni_rates;
1047 rd = SLIST_FIRST(&sc->sc_rssdfree);
1048 id = &rd->rd_desc;
1049 id->id_len = m0->m_pkthdr.len;
1050 sc->sc_txd[cur].d_rate = id->id_rateidx = ni->ni_txrate;
1051 id->id_rssi = ni->ni_rssi;
1052
1053 frmhdr.wi_tx_idx = rd - sc->sc_rssd;
1054
1055 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1056 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[ni->ni_txrate] &
1057 IEEE80211_RATE_VAL);
1058 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA)
1059 (void)wi_write_txrate(sc, rs->rs_rates[ni->ni_txrate]);
1060
1061 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
1062 (caddr_t)&frmhdr.wi_whdr);
1063 m_adj(m0, sizeof(struct ieee80211_frame));
1064 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
1065 if (IFF_DUMPPKTS(ifp))
1066 wi_dump_pkt(&frmhdr, ni, -1);
1067 fid = sc->sc_txd[cur].d_fid;
1068 off = sizeof(frmhdr);
1069 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
1070 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
1071 ifp->if_oerrors++;
1072 m_freem(m0);
1073 goto next;
1074 }
1075 m_freem(m0);
1076 sc->sc_txd[cur].d_len = off;
1077 if (sc->sc_txcur == cur) {
1078 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
1079 printf("%s: xmit failed\n",
1080 sc->sc_dev.dv_xname);
1081 sc->sc_txd[cur].d_len = 0;
1082 goto next;
1083 }
1084 sc->sc_txpending[ni->ni_txrate]++;
1085 sc->sc_tx_timer = 5;
1086 ifp->if_timer = 1;
1087 }
1088 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF;
1089 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next);
1090 id->id_node = ni;
1091 continue;
1092 next:
1093 if (ni != NULL && ni != ic->ic_bss)
1094 ieee80211_free_node(ic, ni);
1095 }
1096 }
1097
1098
1099 static int
1100 wi_reset(struct wi_softc *sc)
1101 {
1102 int i, error;
1103
1104 DPRINTF(("wi_reset\n"));
1105
1106 if (sc->sc_reset)
1107 (*sc->sc_reset)(sc);
1108
1109 error = 0;
1110 for (i = 0; i < 5; i++) {
1111 DELAY(20*1000); /* XXX: way too long! */
1112 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
1113 break;
1114 }
1115 if (error) {
1116 printf("%s: init failed\n", sc->sc_dev.dv_xname);
1117 return error;
1118 }
1119 CSR_WRITE_2(sc, WI_INT_EN, 0);
1120 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
1121
1122 /* Calibrate timer. */
1123 wi_write_val(sc, WI_RID_TICK_TIME, 0);
1124 return 0;
1125 }
1126
1127 static void
1128 wi_watchdog(struct ifnet *ifp)
1129 {
1130 struct wi_softc *sc = ifp->if_softc;
1131 struct ieee80211com *ic = &sc->sc_ic;
1132
1133 ifp->if_timer = 0;
1134 if (!sc->sc_enabled)
1135 return;
1136
1137 if (sc->sc_tx_timer) {
1138 if (--sc->sc_tx_timer == 0) {
1139 printf("%s: device timeout\n", ifp->if_xname);
1140 ifp->if_oerrors++;
1141 wi_init(ifp);
1142 return;
1143 }
1144 ifp->if_timer = 1;
1145 }
1146
1147 if (sc->sc_scan_timer) {
1148 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
1149 sc->sc_firmware_type == WI_INTERSIL) {
1150 DPRINTF(("wi_watchdog: inquire scan\n"));
1151 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1152 }
1153 if (sc->sc_scan_timer)
1154 ifp->if_timer = 1;
1155 }
1156
1157 if (sc->sc_syn_timer) {
1158 if (--sc->sc_syn_timer == 0) {
1159 DPRINTF2(("%s: %d false syns\n",
1160 sc->sc_dev.dv_xname, sc->sc_false_syns));
1161 sc->sc_false_syns = 0;
1162 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1163 sc->sc_syn_timer = 5;
1164 }
1165 ifp->if_timer = 1;
1166 }
1167
1168 /* TODO: rate control */
1169 ieee80211_watchdog(ifp);
1170 }
1171
1172 static int
1173 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1174 {
1175 struct wi_softc *sc = ifp->if_softc;
1176 struct ieee80211com *ic = &sc->sc_ic;
1177 struct ifreq *ifr = (struct ifreq *)data;
1178 int s, error = 0;
1179
1180 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1181 return ENXIO;
1182
1183 s = splnet();
1184
1185 switch (cmd) {
1186 case SIOCSIFFLAGS:
1187 /*
1188 * Can't do promisc and hostap at the same time. If all that's
1189 * changing is the promisc flag, try to short-circuit a call to
1190 * wi_init() by just setting PROMISC in the hardware.
1191 */
1192 if (ifp->if_flags & IFF_UP) {
1193 if (sc->sc_enabled) {
1194 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1195 (ifp->if_flags & IFF_PROMISC) != 0)
1196 wi_write_val(sc, WI_RID_PROMISC, 1);
1197 else
1198 wi_write_val(sc, WI_RID_PROMISC, 0);
1199 } else
1200 error = wi_init(ifp);
1201 } else if (sc->sc_enabled)
1202 wi_stop(ifp, 1);
1203 break;
1204 case SIOCSIFMEDIA:
1205 case SIOCGIFMEDIA:
1206 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1207 break;
1208 case SIOCADDMULTI:
1209 case SIOCDELMULTI:
1210 error = (cmd == SIOCADDMULTI) ?
1211 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1212 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1213 if (error == ENETRESET) {
1214 if (sc->sc_enabled) {
1215 /* do not rescan */
1216 error = wi_write_multi(sc);
1217 } else
1218 error = 0;
1219 }
1220 break;
1221 case SIOCGIFGENERIC:
1222 error = wi_get_cfg(ifp, cmd, data);
1223 break;
1224 case SIOCSIFGENERIC:
1225 error = suser(curproc->p_ucred, &curproc->p_acflag);
1226 if (error)
1227 break;
1228 error = wi_set_cfg(ifp, cmd, data);
1229 if (error == ENETRESET) {
1230 if (sc->sc_enabled)
1231 error = wi_init(ifp);
1232 else
1233 error = 0;
1234 }
1235 break;
1236 case SIOCS80211BSSID:
1237 if (sc->sc_firmware_type == WI_LUCENT) {
1238 error = ENODEV;
1239 break;
1240 }
1241 /* fall through */
1242 default:
1243 error = ieee80211_ioctl(ifp, cmd, data);
1244 if (error == ENETRESET) {
1245 if (sc->sc_enabled)
1246 error = wi_init(ifp);
1247 else
1248 error = 0;
1249 }
1250 break;
1251 }
1252 splx(s);
1253 return error;
1254 }
1255
1256 /* TBD factor with ieee80211_media_change */
1257 static int
1258 wi_media_change(struct ifnet *ifp)
1259 {
1260 struct wi_softc *sc = ifp->if_softc;
1261 struct ieee80211com *ic = &sc->sc_ic;
1262 struct ifmedia_entry *ime;
1263 enum ieee80211_opmode newmode;
1264 int i, rate, error = 0;
1265
1266 ime = ic->ic_media.ifm_cur;
1267 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
1268 i = -1;
1269 } else {
1270 struct ieee80211_rateset *rs =
1271 &ic->ic_sup_rates[ieee80211_chan2mode(ic,
1272 ic->ic_bss->ni_chan)];
1273 rate = ieee80211_media2rate(ime->ifm_media);
1274 if (rate == 0)
1275 return EINVAL;
1276 for (i = 0; i < rs->rs_nrates; i++) {
1277 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate)
1278 break;
1279 }
1280 if (i == rs->rs_nrates)
1281 return EINVAL;
1282 }
1283 if (ic->ic_fixed_rate != i) {
1284 ic->ic_fixed_rate = i;
1285 error = ENETRESET;
1286 }
1287
1288 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
1289 (ime->ifm_media & IFM_FLAG0))
1290 newmode = IEEE80211_M_AHDEMO;
1291 else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
1292 newmode = IEEE80211_M_IBSS;
1293 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
1294 newmode = IEEE80211_M_HOSTAP;
1295 else if (ime->ifm_media & IFM_IEEE80211_MONITOR)
1296 newmode = IEEE80211_M_MONITOR;
1297 else
1298 newmode = IEEE80211_M_STA;
1299 if (ic->ic_opmode != newmode) {
1300 ic->ic_opmode = newmode;
1301 error = ENETRESET;
1302 }
1303 if (error == ENETRESET) {
1304 if (sc->sc_enabled)
1305 error = wi_init(ifp);
1306 else
1307 error = 0;
1308 }
1309 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1310
1311 return error;
1312 }
1313
1314 static void
1315 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1316 {
1317 struct wi_softc *sc = ifp->if_softc;
1318 struct ieee80211com *ic = &sc->sc_ic;
1319 u_int16_t val;
1320 int rate, len;
1321
1322 if (sc->sc_enabled == 0) {
1323 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1324 imr->ifm_status = 0;
1325 return;
1326 }
1327
1328 imr->ifm_status = IFM_AVALID;
1329 imr->ifm_active = IFM_IEEE80211;
1330 if (ic->ic_state == IEEE80211_S_RUN &&
1331 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1332 imr->ifm_status |= IFM_ACTIVE;
1333 len = sizeof(val);
1334 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1335 rate = 0;
1336 else {
1337 /* convert to 802.11 rate */
1338 val = le16toh(val);
1339 rate = val * 2;
1340 if (sc->sc_firmware_type == WI_LUCENT) {
1341 if (rate == 10)
1342 rate = 11; /* 5.5Mbps */
1343 } else {
1344 if (rate == 4*2)
1345 rate = 11; /* 5.5Mbps */
1346 else if (rate == 8*2)
1347 rate = 22; /* 11Mbps */
1348 }
1349 }
1350 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1351 switch (ic->ic_opmode) {
1352 case IEEE80211_M_STA:
1353 break;
1354 case IEEE80211_M_IBSS:
1355 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1356 break;
1357 case IEEE80211_M_AHDEMO:
1358 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1359 break;
1360 case IEEE80211_M_HOSTAP:
1361 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1362 break;
1363 case IEEE80211_M_MONITOR:
1364 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1365 break;
1366 }
1367 }
1368
1369 static struct ieee80211_node *
1370 wi_node_alloc(struct ieee80211com *ic)
1371 {
1372 struct wi_node *wn =
1373 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1374 return wn ? &wn->wn_node : NULL;
1375 }
1376
1377 static void
1378 wi_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1379 {
1380 struct wi_softc *sc = ic->ic_if.if_softc;
1381 int i;
1382
1383 for (i = 0; i < WI_NTXRSS; i++) {
1384 if (sc->sc_rssd[i].rd_desc.id_node == ni)
1385 sc->sc_rssd[i].rd_desc.id_node = NULL;
1386 }
1387 free(ni, M_DEVBUF);
1388 }
1389
1390 static void
1391 wi_node_copy(struct ieee80211com *ic, struct ieee80211_node *dst,
1392 const struct ieee80211_node *src)
1393 {
1394 *(struct wi_node *)dst = *(const struct wi_node *)src;
1395 }
1396
1397 static void
1398 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1399 {
1400 struct ieee80211com *ic = &sc->sc_ic;
1401 struct ieee80211_node *ni = ic->ic_bss;
1402 struct ifnet *ifp = &ic->ic_if;
1403
1404 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1405 return;
1406
1407 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
1408 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1409
1410 /* In promiscuous mode, the BSSID field is not a reliable
1411 * indicator of the firmware's BSSID. Damp spurious
1412 * change-of-BSSID indications.
1413 */
1414 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1415 sc->sc_false_syns >= WI_MAX_FALSE_SYNS)
1416 return;
1417
1418 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1419 }
1420
1421 static __inline void
1422 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni,
1423 struct ieee80211_frame *wh, int rssi)
1424 {
1425 struct wi_node *wn;
1426
1427 if (ni == NULL) {
1428 printf("%s: null node", __func__);
1429 return;
1430 }
1431
1432 wn = (void*)ni;
1433 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi);
1434 }
1435
1436 static void
1437 wi_rx_intr(struct wi_softc *sc)
1438 {
1439 struct ieee80211com *ic = &sc->sc_ic;
1440 struct ifnet *ifp = &ic->ic_if;
1441 struct ieee80211_node *ni;
1442 struct wi_frame frmhdr;
1443 struct mbuf *m;
1444 struct ieee80211_frame *wh;
1445 int fid, len, off, rssi;
1446 u_int8_t dir;
1447 u_int16_t status;
1448 u_int32_t rstamp;
1449
1450 fid = CSR_READ_2(sc, WI_RX_FID);
1451
1452 /* First read in the frame header */
1453 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1454 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1455 ifp->if_ierrors++;
1456 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1457 return;
1458 }
1459
1460 if (IFF_DUMPPKTS(ifp))
1461 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1462
1463 /*
1464 * Drop undecryptable or packets with receive errors here
1465 */
1466 status = le16toh(frmhdr.wi_status);
1467 if ((status & WI_STAT_ERRSTAT) != 0 &&
1468 ic->ic_opmode != IEEE80211_M_MONITOR) {
1469 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1470 ifp->if_ierrors++;
1471 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1472 return;
1473 }
1474 rssi = frmhdr.wi_rx_signal;
1475 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1476 le16toh(frmhdr.wi_rx_tstamp1);
1477
1478 len = le16toh(frmhdr.wi_dat_len);
1479 off = ALIGN(sizeof(struct ieee80211_frame));
1480
1481 /* Sometimes the PRISM2.x returns bogusly large frames. Except
1482 * in monitor mode, just throw them away.
1483 */
1484 if (off + len > MCLBYTES) {
1485 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1486 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1487 ifp->if_ierrors++;
1488 DPRINTF(("wi_rx_intr: oversized packet\n"));
1489 return;
1490 } else
1491 len = 0;
1492 }
1493
1494 MGETHDR(m, M_DONTWAIT, MT_DATA);
1495 if (m == NULL) {
1496 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1497 ifp->if_ierrors++;
1498 DPRINTF(("wi_rx_intr: MGET failed\n"));
1499 return;
1500 }
1501 if (off + len > MHLEN) {
1502 MCLGET(m, M_DONTWAIT);
1503 if ((m->m_flags & M_EXT) == 0) {
1504 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1505 m_freem(m);
1506 ifp->if_ierrors++;
1507 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1508 return;
1509 }
1510 }
1511
1512 m->m_data += off - sizeof(struct ieee80211_frame);
1513 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1514 wi_read_bap(sc, fid, sizeof(frmhdr),
1515 m->m_data + sizeof(struct ieee80211_frame), len);
1516 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1517 m->m_pkthdr.rcvif = ifp;
1518
1519 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1520
1521 #if NBPFILTER > 0
1522 if (sc->sc_drvbpf) {
1523 struct mbuf mb;
1524 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap;
1525
1526 tap->wr_rate = frmhdr.wi_rx_rate / 5;
1527 tap->wr_antsignal = WI_RSSI_TO_DBM(sc, frmhdr.wi_rx_signal);
1528 tap->wr_antnoise = WI_RSSI_TO_DBM(sc, frmhdr.wi_rx_silence);
1529
1530 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1531 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1532 if (frmhdr.wi_status & WI_STAT_PCF)
1533 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1534
1535 M_COPY_PKTHDR(&mb, m);
1536 mb.m_data = (caddr_t)tap;
1537 mb.m_len = tap->wr_ihdr.it_len;
1538 mb.m_next = m;
1539 mb.m_pkthdr.len += mb.m_len;
1540 bpf_mtap(sc->sc_drvbpf, &mb);
1541 }
1542 #endif
1543 wh = mtod(m, struct ieee80211_frame *);
1544 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1545 /*
1546 * WEP is decrypted by hardware. Clear WEP bit
1547 * header for ieee80211_input().
1548 */
1549 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1550 }
1551
1552 /* synchronize driver's BSSID with firmware's BSSID */
1553 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1554 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1555 wi_sync_bssid(sc, wh->i_addr3);
1556
1557 ni = ieee80211_find_rxnode(ic, wh);
1558
1559 ieee80211_input(ifp, m, ni, rssi, rstamp);
1560
1561 wi_rssadapt_input(ic, ni, wh, rssi);
1562
1563 /*
1564 * The frame may have caused the node to be marked for
1565 * reclamation (e.g. in response to a DEAUTH message)
1566 * so use free_node here instead of unref_node.
1567 */
1568 if (ni == ic->ic_bss)
1569 ieee80211_unref_node(&ni);
1570 else
1571 ieee80211_free_node(ic, ni);
1572 }
1573
1574 static void
1575 wi_tx_ex_intr(struct wi_softc *sc)
1576 {
1577 struct ieee80211com *ic = &sc->sc_ic;
1578 struct ifnet *ifp = &ic->ic_if;
1579 struct ieee80211_node *ni;
1580 struct ieee80211_rssdesc *id;
1581 struct wi_rssdesc *rssd;
1582 struct wi_frame frmhdr;
1583 int fid;
1584 u_int16_t status;
1585
1586 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1587 /* Read in the frame header */
1588 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1589 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1590 __func__, fid);
1591 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1592 &sc->sc_txpending);
1593 goto out;
1594 }
1595
1596 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1597 printf("%s: %s bad idx %02x\n",
1598 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1599 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1600 &sc->sc_txpending);
1601 goto out;
1602 }
1603
1604 status = le16toh(frmhdr.wi_status);
1605
1606 /*
1607 * Spontaneous station disconnects appear as xmit
1608 * errors. Don't announce them and/or count them
1609 * as an output error.
1610 */
1611 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1612 printf("%s: tx failed", sc->sc_dev.dv_xname);
1613 if (status & WI_TXSTAT_RET_ERR)
1614 printf(", retry limit exceeded");
1615 if (status & WI_TXSTAT_AGED_ERR)
1616 printf(", max transmit lifetime exceeded");
1617 if (status & WI_TXSTAT_DISCONNECT)
1618 printf(", port disconnected");
1619 if (status & WI_TXSTAT_FORM_ERR)
1620 printf(", invalid format (data len %u src %s)",
1621 le16toh(frmhdr.wi_dat_len),
1622 ether_sprintf(frmhdr.wi_ehdr.ether_shost));
1623 if (status & ~0xf)
1624 printf(", status=0x%x", status);
1625 printf("\n");
1626 }
1627 ifp->if_oerrors++;
1628 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1629 id = &rssd->rd_desc;
1630 if ((status & WI_TXSTAT_RET_ERR) != 0)
1631 wi_lower_rate(ic, id);
1632
1633 ni = id->id_node;
1634 id->id_node = NULL;
1635
1636 if (ni == NULL) {
1637 printf("%s: %s null node, rssdesc %02x\n",
1638 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1639 goto out;
1640 }
1641
1642 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1643 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1644 __func__, id->id_rateidx);
1645 sc->sc_txpending[id->id_rateidx] = 0;
1646 }
1647 if (ni != NULL && ni != ic->ic_bss)
1648 ieee80211_free_node(ic, ni);
1649 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1650 out:
1651 ifp->if_flags &= ~IFF_OACTIVE;
1652 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
1653 }
1654
1655 static void
1656 wi_txalloc_intr(struct wi_softc *sc)
1657 {
1658 struct ieee80211com *ic = &sc->sc_ic;
1659 struct ifnet *ifp = &ic->ic_if;
1660 int fid, cur;
1661
1662 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1663 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1664
1665 cur = sc->sc_txcur;
1666 if (sc->sc_txd[cur].d_fid != fid) {
1667 printf("%s: bad alloc %x != %x, cur %d nxt %d\n",
1668 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1669 sc->sc_txnext);
1670 return;
1671 }
1672 sc->sc_tx_timer = 0;
1673 sc->sc_txd[cur].d_len = 0;
1674 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF;
1675 if (sc->sc_txd[cur].d_len == 0)
1676 ifp->if_flags &= ~IFF_OACTIVE;
1677 else {
1678 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1679 0, 0)) {
1680 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1681 sc->sc_txd[cur].d_len = 0;
1682 } else {
1683 sc->sc_txpending[sc->sc_txd[cur].d_rate]++;
1684 sc->sc_tx_timer = 5;
1685 ifp->if_timer = 1;
1686 }
1687 }
1688 }
1689
1690 static void
1691 wi_tx_intr(struct wi_softc *sc)
1692 {
1693 struct ieee80211com *ic = &sc->sc_ic;
1694 struct ifnet *ifp = &ic->ic_if;
1695 struct ieee80211_node *ni;
1696 struct ieee80211_rssdesc *id;
1697 struct wi_rssdesc *rssd;
1698 struct wi_frame frmhdr;
1699 int fid;
1700
1701 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1702 /* Read in the frame header */
1703 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1704 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1705 __func__, fid);
1706 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1707 &sc->sc_txpending);
1708 goto out;
1709 }
1710
1711 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1712 printf("%s: %s bad idx %02x\n",
1713 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1714 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1715 &sc->sc_txpending);
1716 goto out;
1717 }
1718
1719 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1720 id = &rssd->rd_desc;
1721 wi_raise_rate(ic, id);
1722
1723 ni = id->id_node;
1724 id->id_node = NULL;
1725
1726 if (ni == NULL) {
1727 printf("%s: %s null node, rssdesc %02x\n",
1728 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1729 goto out;
1730 }
1731
1732 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1733 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1734 __func__, id->id_rateidx);
1735 sc->sc_txpending[id->id_rateidx] = 0;
1736 }
1737 if (ni != NULL && ni != ic->ic_bss)
1738 ieee80211_free_node(ic, ni);
1739 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1740 out:
1741 ifp->if_flags &= ~IFF_OACTIVE;
1742 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
1743 }
1744
1745 static void
1746 wi_info_intr(struct wi_softc *sc)
1747 {
1748 struct ieee80211com *ic = &sc->sc_ic;
1749 struct ifnet *ifp = &ic->ic_if;
1750 int i, fid, len, off;
1751 u_int16_t ltbuf[2];
1752 u_int16_t stat;
1753 u_int32_t *ptr;
1754
1755 fid = CSR_READ_2(sc, WI_INFO_FID);
1756 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1757
1758 switch (le16toh(ltbuf[1])) {
1759
1760 case WI_INFO_LINK_STAT:
1761 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1762 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1763 switch (le16toh(stat)) {
1764 case CONNECTED:
1765 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1766 if (ic->ic_state == IEEE80211_S_RUN &&
1767 ic->ic_opmode != IEEE80211_M_IBSS)
1768 break;
1769 /* FALLTHROUGH */
1770 case AP_CHANGE:
1771 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1772 break;
1773 case AP_IN_RANGE:
1774 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1775 break;
1776 case AP_OUT_OF_RANGE:
1777 if (sc->sc_firmware_type == WI_SYMBOL &&
1778 sc->sc_scan_timer > 0) {
1779 if (wi_cmd(sc, WI_CMD_INQUIRE,
1780 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1781 sc->sc_scan_timer = 0;
1782 break;
1783 }
1784 if (ic->ic_opmode == IEEE80211_M_STA)
1785 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1786 break;
1787 case DISCONNECTED:
1788 case ASSOC_FAILED:
1789 if (ic->ic_opmode == IEEE80211_M_STA)
1790 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1791 break;
1792 }
1793 break;
1794
1795 case WI_INFO_COUNTERS:
1796 /* some card versions have a larger stats structure */
1797 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1798 ptr = (u_int32_t *)&sc->sc_stats;
1799 off = sizeof(ltbuf);
1800 for (i = 0; i < len; i++, off += 2, ptr++) {
1801 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1802 stat = le16toh(stat);
1803 #ifdef WI_HERMES_STATS_WAR
1804 if (stat & 0xf000)
1805 stat = ~stat;
1806 #endif
1807 *ptr += stat;
1808 }
1809 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1810 sc->sc_stats.wi_tx_multi_retries +
1811 sc->sc_stats.wi_tx_retry_limit;
1812 break;
1813
1814 case WI_INFO_SCAN_RESULTS:
1815 case WI_INFO_HOST_SCAN_RESULTS:
1816 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1817 break;
1818
1819 default:
1820 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1821 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1822 break;
1823 }
1824 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1825 }
1826
1827 static int
1828 wi_write_multi(struct wi_softc *sc)
1829 {
1830 struct ifnet *ifp = &sc->sc_ic.ic_if;
1831 int n;
1832 struct wi_mcast mlist;
1833 struct ether_multi *enm;
1834 struct ether_multistep estep;
1835
1836 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1837 allmulti:
1838 ifp->if_flags |= IFF_ALLMULTI;
1839 memset(&mlist, 0, sizeof(mlist));
1840 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1841 sizeof(mlist));
1842 }
1843
1844 n = 0;
1845 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1846 while (enm != NULL) {
1847 /* Punt on ranges or too many multicast addresses. */
1848 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1849 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1850 goto allmulti;
1851
1852 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1853 n++;
1854 ETHER_NEXT_MULTI(estep, enm);
1855 }
1856 ifp->if_flags &= ~IFF_ALLMULTI;
1857 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1858 IEEE80211_ADDR_LEN * n);
1859 }
1860
1861
1862 static void
1863 wi_read_nicid(struct wi_softc *sc)
1864 {
1865 struct wi_card_ident *id;
1866 char *p;
1867 int len;
1868 u_int16_t ver[4];
1869
1870 /* getting chip identity */
1871 memset(ver, 0, sizeof(ver));
1872 len = sizeof(ver);
1873 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1874 printf("%s: using ", sc->sc_dev.dv_xname);
1875 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1876
1877 sc->sc_firmware_type = WI_NOTYPE;
1878 for (id = wi_card_ident; id->card_name != NULL; id++) {
1879 if (le16toh(ver[0]) == id->card_id) {
1880 printf("%s", id->card_name);
1881 sc->sc_firmware_type = id->firm_type;
1882 break;
1883 }
1884 }
1885 if (sc->sc_firmware_type == WI_NOTYPE) {
1886 if (le16toh(ver[0]) & 0x8000) {
1887 printf("Unknown PRISM2 chip");
1888 sc->sc_firmware_type = WI_INTERSIL;
1889 } else {
1890 printf("Unknown Lucent chip");
1891 sc->sc_firmware_type = WI_LUCENT;
1892 }
1893 }
1894
1895 /* get primary firmware version (Only Prism chips) */
1896 if (sc->sc_firmware_type != WI_LUCENT) {
1897 memset(ver, 0, sizeof(ver));
1898 len = sizeof(ver);
1899 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1900 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1901 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1902 }
1903
1904 /* get station firmware version */
1905 memset(ver, 0, sizeof(ver));
1906 len = sizeof(ver);
1907 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1908 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1909 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1910 if (sc->sc_firmware_type == WI_INTERSIL &&
1911 (sc->sc_sta_firmware_ver == 10102 ||
1912 sc->sc_sta_firmware_ver == 20102)) {
1913 char ident[12];
1914 memset(ident, 0, sizeof(ident));
1915 len = sizeof(ident);
1916 /* value should be the format like "V2.00-11" */
1917 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1918 *(p = (char *)ident) >= 'A' &&
1919 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1920 sc->sc_firmware_type = WI_SYMBOL;
1921 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1922 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1923 (p[6] - '0') * 10 + (p[7] - '0');
1924 }
1925 }
1926
1927 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1928 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1929 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1930 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1931 printf("Primary (%u.%u.%u), ",
1932 sc->sc_pri_firmware_ver / 10000,
1933 (sc->sc_pri_firmware_ver % 10000) / 100,
1934 sc->sc_pri_firmware_ver % 100);
1935 printf("Station (%u.%u.%u)\n",
1936 sc->sc_sta_firmware_ver / 10000,
1937 (sc->sc_sta_firmware_ver % 10000) / 100,
1938 sc->sc_sta_firmware_ver % 100);
1939 }
1940
1941 static int
1942 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1943 {
1944 struct wi_ssid ssid;
1945
1946 if (buflen > IEEE80211_NWID_LEN)
1947 return ENOBUFS;
1948 memset(&ssid, 0, sizeof(ssid));
1949 ssid.wi_len = htole16(buflen);
1950 memcpy(ssid.wi_ssid, buf, buflen);
1951 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
1952 }
1953
1954 static int
1955 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1956 {
1957 struct wi_softc *sc = ifp->if_softc;
1958 struct ieee80211com *ic = &sc->sc_ic;
1959 struct ifreq *ifr = (struct ifreq *)data;
1960 struct wi_req wreq;
1961 int len, n, error;
1962
1963 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1964 if (error)
1965 return error;
1966 len = (wreq.wi_len - 1) * 2;
1967 if (len < sizeof(u_int16_t))
1968 return ENOSPC;
1969 if (len > sizeof(wreq.wi_val))
1970 len = sizeof(wreq.wi_val);
1971
1972 switch (wreq.wi_type) {
1973
1974 case WI_RID_IFACE_STATS:
1975 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1976 if (len < sizeof(sc->sc_stats))
1977 error = ENOSPC;
1978 else
1979 len = sizeof(sc->sc_stats);
1980 break;
1981
1982 case WI_RID_ENCRYPTION:
1983 case WI_RID_TX_CRYPT_KEY:
1984 case WI_RID_DEFLT_CRYPT_KEYS:
1985 case WI_RID_TX_RATE:
1986 return ieee80211_cfgget(ifp, cmd, data);
1987
1988 case WI_RID_MICROWAVE_OVEN:
1989 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1990 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1991 &len);
1992 break;
1993 }
1994 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1995 len = sizeof(u_int16_t);
1996 break;
1997
1998 case WI_RID_DBM_ADJUST:
1999 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
2000 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2001 &len);
2002 break;
2003 }
2004 wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
2005 len = sizeof(u_int16_t);
2006 break;
2007
2008 case WI_RID_ROAMING_MODE:
2009 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
2010 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2011 &len);
2012 break;
2013 }
2014 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
2015 len = sizeof(u_int16_t);
2016 break;
2017
2018 case WI_RID_SYSTEM_SCALE:
2019 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
2020 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2021 &len);
2022 break;
2023 }
2024 wreq.wi_val[0] = htole16(sc->sc_system_scale);
2025 len = sizeof(u_int16_t);
2026 break;
2027
2028 case WI_RID_FRAG_THRESH:
2029 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
2030 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2031 &len);
2032 break;
2033 }
2034 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2035 len = sizeof(u_int16_t);
2036 break;
2037
2038 case WI_RID_READ_APS:
2039 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2040 return ieee80211_cfgget(ifp, cmd, data);
2041 if (sc->sc_scan_timer > 0) {
2042 error = EINPROGRESS;
2043 break;
2044 }
2045 n = sc->sc_naps;
2046 if (len < sizeof(n)) {
2047 error = ENOSPC;
2048 break;
2049 }
2050 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
2051 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
2052 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
2053 memcpy(wreq.wi_val, &n, sizeof(n));
2054 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
2055 sizeof(struct wi_apinfo) * n);
2056 break;
2057
2058 default:
2059 if (sc->sc_enabled) {
2060 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2061 &len);
2062 break;
2063 }
2064 switch (wreq.wi_type) {
2065 case WI_RID_MAX_DATALEN:
2066 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
2067 len = sizeof(u_int16_t);
2068 break;
2069 case WI_RID_FRAG_THRESH:
2070 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2071 len = sizeof(u_int16_t);
2072 break;
2073 case WI_RID_RTS_THRESH:
2074 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
2075 len = sizeof(u_int16_t);
2076 break;
2077 case WI_RID_CNFAUTHMODE:
2078 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
2079 len = sizeof(u_int16_t);
2080 break;
2081 case WI_RID_NODENAME:
2082 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
2083 error = ENOSPC;
2084 break;
2085 }
2086 len = sc->sc_nodelen + sizeof(u_int16_t);
2087 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
2088 memcpy(&wreq.wi_val[1], sc->sc_nodename,
2089 sc->sc_nodelen);
2090 break;
2091 default:
2092 return ieee80211_cfgget(ifp, cmd, data);
2093 }
2094 break;
2095 }
2096 if (error)
2097 return error;
2098 wreq.wi_len = (len + 1) / 2 + 1;
2099 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
2100 }
2101
2102 static int
2103 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2104 {
2105 struct wi_softc *sc = ifp->if_softc;
2106 struct ieee80211com *ic = &sc->sc_ic;
2107 struct ifreq *ifr = (struct ifreq *)data;
2108 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2109 struct wi_req wreq;
2110 struct mbuf *m;
2111 int i, len, error;
2112
2113 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2114 if (error)
2115 return error;
2116 len = (wreq.wi_len - 1) * 2;
2117 switch (wreq.wi_type) {
2118 case WI_RID_DBM_ADJUST:
2119 return ENODEV;
2120
2121 case WI_RID_NODENAME:
2122 if (le16toh(wreq.wi_val[0]) * 2 > len ||
2123 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
2124 error = ENOSPC;
2125 break;
2126 }
2127 if (sc->sc_enabled) {
2128 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2129 len);
2130 if (error)
2131 break;
2132 }
2133 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
2134 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
2135 break;
2136
2137 case WI_RID_MICROWAVE_OVEN:
2138 case WI_RID_ROAMING_MODE:
2139 case WI_RID_SYSTEM_SCALE:
2140 case WI_RID_FRAG_THRESH:
2141 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
2142 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
2143 break;
2144 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
2145 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
2146 break;
2147 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
2148 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
2149 break;
2150 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
2151 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
2152 break;
2153 /* FALLTHROUGH */
2154 case WI_RID_RTS_THRESH:
2155 case WI_RID_CNFAUTHMODE:
2156 case WI_RID_MAX_DATALEN:
2157 if (sc->sc_enabled) {
2158 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2159 sizeof(u_int16_t));
2160 if (error)
2161 break;
2162 }
2163 switch (wreq.wi_type) {
2164 case WI_RID_FRAG_THRESH:
2165 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
2166 break;
2167 case WI_RID_RTS_THRESH:
2168 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
2169 break;
2170 case WI_RID_MICROWAVE_OVEN:
2171 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
2172 break;
2173 case WI_RID_ROAMING_MODE:
2174 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
2175 break;
2176 case WI_RID_SYSTEM_SCALE:
2177 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
2178 break;
2179 case WI_RID_CNFAUTHMODE:
2180 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
2181 break;
2182 case WI_RID_MAX_DATALEN:
2183 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
2184 break;
2185 }
2186 break;
2187
2188 case WI_RID_TX_RATE:
2189 switch (le16toh(wreq.wi_val[0])) {
2190 case 3:
2191 ic->ic_fixed_rate = -1;
2192 break;
2193 default:
2194 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2195 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
2196 / 2 == le16toh(wreq.wi_val[0]))
2197 break;
2198 }
2199 if (i == IEEE80211_RATE_SIZE)
2200 return EINVAL;
2201 ic->ic_fixed_rate = i;
2202 }
2203 if (sc->sc_enabled)
2204 error = wi_cfg_txrate(sc);
2205 break;
2206
2207 case WI_RID_SCAN_APS:
2208 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2209 error = wi_scan_ap(sc, 0x3fff, 0x000f);
2210 break;
2211
2212 case WI_RID_MGMT_XMIT:
2213 if (!sc->sc_enabled) {
2214 error = ENETDOWN;
2215 break;
2216 }
2217 if (ic->ic_mgtq.ifq_len > 5) {
2218 error = EAGAIN;
2219 break;
2220 }
2221 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
2222 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
2223 if (m == NULL) {
2224 error = ENOMEM;
2225 break;
2226 }
2227 IF_ENQUEUE(&ic->ic_mgtq, m);
2228 break;
2229
2230 default:
2231 if (sc->sc_enabled) {
2232 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2233 len);
2234 if (error)
2235 break;
2236 }
2237 error = ieee80211_cfgset(ifp, cmd, data);
2238 break;
2239 }
2240 return error;
2241 }
2242
2243 /* Rate is 0 for hardware auto-select, otherwise rate is
2244 * 2, 4, 11, or 22 (units of 500Kbps).
2245 */
2246 static int
2247 wi_write_txrate(struct wi_softc *sc, int rate)
2248 {
2249 u_int16_t hwrate;
2250 int i;
2251
2252 rate = (rate & IEEE80211_RATE_VAL) / 2;
2253
2254 /* rate: 0, 1, 2, 5, 11 */
2255 switch (sc->sc_firmware_type) {
2256 case WI_LUCENT:
2257 switch (rate) {
2258 case 0:
2259 hwrate = 3; /* auto */
2260 break;
2261 case 5:
2262 hwrate = 4;
2263 break;
2264 case 11:
2265 hwrate = 5;
2266 break;
2267 default:
2268 hwrate = rate;
2269 break;
2270 }
2271 break;
2272 default:
2273 /* Choose a bit according to this table.
2274 *
2275 * bit | data rate
2276 * ----+-------------------
2277 * 0 | 1Mbps
2278 * 1 | 2Mbps
2279 * 2 | 5.5Mbps
2280 * 3 | 11Mbps
2281 */
2282 for (i = 8; i > 0; i >>= 1) {
2283 if (rate >= i)
2284 break;
2285 }
2286 if (i == 0)
2287 hwrate = 0xf; /* auto */
2288 else
2289 hwrate = i;
2290 break;
2291 }
2292
2293 if (sc->sc_tx_rate == hwrate)
2294 return 0;
2295
2296 if (sc->sc_if.if_flags & IFF_DEBUG)
2297 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate,
2298 hwrate, rate);
2299
2300 sc->sc_tx_rate = hwrate;
2301
2302 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate);
2303 }
2304
2305 static int
2306 wi_cfg_txrate(struct wi_softc *sc)
2307 {
2308 struct ieee80211com *ic = &sc->sc_ic;
2309 struct ieee80211_rateset *rs;
2310 int rate;
2311
2312 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2313
2314 sc->sc_tx_rate = 0; /* force write to RID */
2315
2316 if (ic->ic_fixed_rate < 0)
2317 rate = 0; /* auto */
2318 else
2319 rate = rs->rs_rates[ic->ic_fixed_rate];
2320
2321 return wi_write_txrate(sc, rate);
2322 }
2323
2324 static int
2325 wi_write_wep(struct wi_softc *sc)
2326 {
2327 struct ieee80211com *ic = &sc->sc_ic;
2328 int error = 0;
2329 int i, keylen;
2330 u_int16_t val;
2331 struct wi_key wkey[IEEE80211_WEP_NKID];
2332
2333 switch (sc->sc_firmware_type) {
2334 case WI_LUCENT:
2335 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
2336 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2337 if (error)
2338 break;
2339 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
2340 if (error)
2341 break;
2342 memset(wkey, 0, sizeof(wkey));
2343 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2344 keylen = ic->ic_nw_keys[i].wk_len;
2345 wkey[i].wi_keylen = htole16(keylen);
2346 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2347 keylen);
2348 }
2349 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2350 wkey, sizeof(wkey));
2351 break;
2352
2353 case WI_INTERSIL:
2354 case WI_SYMBOL:
2355 if (ic->ic_flags & IEEE80211_F_WEPON) {
2356 /*
2357 * ONLY HWB3163 EVAL-CARD Firmware version
2358 * less than 0.8 variant2
2359 *
2360 * If promiscuous mode disable, Prism2 chip
2361 * does not work with WEP .
2362 * It is under investigation for details.
2363 * (ichiro (at) NetBSD.org)
2364 */
2365 if (sc->sc_firmware_type == WI_INTERSIL &&
2366 sc->sc_sta_firmware_ver < 802 ) {
2367 /* firm ver < 0.8 variant 2 */
2368 wi_write_val(sc, WI_RID_PROMISC, 1);
2369 }
2370 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2371 sc->sc_cnfauthmode);
2372 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
2373 /*
2374 * Encryption firmware has a bug for HostAP mode.
2375 */
2376 if (sc->sc_firmware_type == WI_INTERSIL &&
2377 ic->ic_opmode == IEEE80211_M_HOSTAP)
2378 val |= HOST_ENCRYPT;
2379 } else {
2380 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2381 IEEE80211_AUTH_OPEN);
2382 val = HOST_ENCRYPT | HOST_DECRYPT;
2383 }
2384 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2385 if (error)
2386 break;
2387 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2388 ic->ic_wep_txkey);
2389 if (error)
2390 break;
2391 /*
2392 * It seems that the firmware accept 104bit key only if
2393 * all the keys have 104bit length. We get the length of
2394 * the transmit key and use it for all other keys.
2395 * Perhaps we should use software WEP for such situation.
2396 */
2397 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
2398 if (keylen > IEEE80211_WEP_KEYLEN)
2399 keylen = 13; /* 104bit keys */
2400 else
2401 keylen = IEEE80211_WEP_KEYLEN;
2402 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2403 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2404 ic->ic_nw_keys[i].wk_key, keylen);
2405 if (error)
2406 break;
2407 }
2408 break;
2409 }
2410 return error;
2411 }
2412
2413 /* Must be called at proper protection level! */
2414 static int
2415 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2416 {
2417 int i, status;
2418
2419 /* wait for the busy bit to clear */
2420 for (i = 500; i > 0; i--) { /* 5s */
2421 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2422 break;
2423 DELAY(10*1000); /* 10 m sec */
2424 }
2425 if (i == 0) {
2426 printf("%s: wi_cmd: busy bit won't clear.\n",
2427 sc->sc_dev.dv_xname);
2428 return(ETIMEDOUT);
2429 }
2430 CSR_WRITE_2(sc, WI_PARAM0, val0);
2431 CSR_WRITE_2(sc, WI_PARAM1, val1);
2432 CSR_WRITE_2(sc, WI_PARAM2, val2);
2433 CSR_WRITE_2(sc, WI_COMMAND, cmd);
2434
2435 if (cmd == WI_CMD_INI) {
2436 /* XXX: should sleep here. */
2437 DELAY(100*1000);
2438 }
2439 /* wait for the cmd completed bit */
2440 for (i = 0; i < WI_TIMEOUT; i++) {
2441 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
2442 break;
2443 DELAY(WI_DELAY);
2444 }
2445
2446 status = CSR_READ_2(sc, WI_STATUS);
2447
2448 /* Ack the command */
2449 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2450
2451 if (i == WI_TIMEOUT) {
2452 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
2453 sc->sc_dev.dv_xname, cmd, val0);
2454 return ETIMEDOUT;
2455 }
2456
2457 if (status & WI_STAT_CMD_RESULT) {
2458 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
2459 sc->sc_dev.dv_xname, cmd, val0);
2460 return EIO;
2461 }
2462 return 0;
2463 }
2464
2465 static int
2466 wi_seek_bap(struct wi_softc *sc, int id, int off)
2467 {
2468 int i, status;
2469
2470 CSR_WRITE_2(sc, WI_SEL0, id);
2471 CSR_WRITE_2(sc, WI_OFF0, off);
2472
2473 for (i = 0; ; i++) {
2474 status = CSR_READ_2(sc, WI_OFF0);
2475 if ((status & WI_OFF_BUSY) == 0)
2476 break;
2477 if (i == WI_TIMEOUT) {
2478 printf("%s: timeout in wi_seek to %x/%x\n",
2479 sc->sc_dev.dv_xname, id, off);
2480 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2481 return ETIMEDOUT;
2482 }
2483 DELAY(1);
2484 }
2485 if (status & WI_OFF_ERR) {
2486 printf("%s: failed in wi_seek to %x/%x\n",
2487 sc->sc_dev.dv_xname, id, off);
2488 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2489 return EIO;
2490 }
2491 sc->sc_bap_id = id;
2492 sc->sc_bap_off = off;
2493 return 0;
2494 }
2495
2496 static int
2497 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2498 {
2499 int error, cnt;
2500
2501 if (buflen == 0)
2502 return 0;
2503 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2504 if ((error = wi_seek_bap(sc, id, off)) != 0)
2505 return error;
2506 }
2507 cnt = (buflen + 1) / 2;
2508 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2509 sc->sc_bap_off += cnt * 2;
2510 return 0;
2511 }
2512
2513 static int
2514 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2515 {
2516 int error, cnt;
2517
2518 if (buflen == 0)
2519 return 0;
2520
2521 #ifdef WI_HERMES_AUTOINC_WAR
2522 again:
2523 #endif
2524 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2525 if ((error = wi_seek_bap(sc, id, off)) != 0)
2526 return error;
2527 }
2528 cnt = (buflen + 1) / 2;
2529 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2530 sc->sc_bap_off += cnt * 2;
2531
2532 #ifdef WI_HERMES_AUTOINC_WAR
2533 /*
2534 * According to the comments in the HCF Light code, there is a bug
2535 * in the Hermes (or possibly in certain Hermes firmware revisions)
2536 * where the chip's internal autoincrement counter gets thrown off
2537 * during data writes: the autoincrement is missed, causing one
2538 * data word to be overwritten and subsequent words to be written to
2539 * the wrong memory locations. The end result is that we could end
2540 * up transmitting bogus frames without realizing it. The workaround
2541 * for this is to write a couple of extra guard words after the end
2542 * of the transfer, then attempt to read then back. If we fail to
2543 * locate the guard words where we expect them, we preform the
2544 * transfer over again.
2545 */
2546 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2547 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2548 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2549 wi_seek_bap(sc, id, sc->sc_bap_off);
2550 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2551 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2552 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2553 printf("%s: detect auto increment bug, try again\n",
2554 sc->sc_dev.dv_xname);
2555 goto again;
2556 }
2557 }
2558 #endif
2559 return 0;
2560 }
2561
2562 static int
2563 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2564 {
2565 int error, len;
2566 struct mbuf *m;
2567
2568 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2569 if (m->m_len == 0)
2570 continue;
2571
2572 len = min(m->m_len, totlen);
2573
2574 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2575 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2576 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2577 totlen);
2578 }
2579
2580 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2581 return error;
2582
2583 off += m->m_len;
2584 totlen -= len;
2585 }
2586 return 0;
2587 }
2588
2589 static int
2590 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2591 {
2592 int i;
2593
2594 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2595 printf("%s: failed to allocate %d bytes on NIC\n",
2596 sc->sc_dev.dv_xname, len);
2597 return ENOMEM;
2598 }
2599
2600 for (i = 0; i < WI_TIMEOUT; i++) {
2601 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2602 break;
2603 if (i == WI_TIMEOUT) {
2604 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
2605 return ETIMEDOUT;
2606 }
2607 DELAY(1);
2608 }
2609 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
2610 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2611 return 0;
2612 }
2613
2614 static int
2615 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2616 {
2617 int error, len;
2618 u_int16_t ltbuf[2];
2619
2620 /* Tell the NIC to enter record read mode. */
2621 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2622 if (error)
2623 return error;
2624
2625 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2626 if (error)
2627 return error;
2628
2629 if (le16toh(ltbuf[1]) != rid) {
2630 printf("%s: record read mismatch, rid=%x, got=%x\n",
2631 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
2632 return EIO;
2633 }
2634 len = max(0, le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
2635 if (*buflenp < len) {
2636 printf("%s: record buffer is too small, "
2637 "rid=%x, size=%d, len=%d\n",
2638 sc->sc_dev.dv_xname, rid, *buflenp, len);
2639 return ENOSPC;
2640 }
2641 *buflenp = len;
2642 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2643 }
2644
2645 static int
2646 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2647 {
2648 int error;
2649 u_int16_t ltbuf[2];
2650
2651 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
2652 ltbuf[1] = htole16(rid);
2653
2654 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2655 if (error)
2656 return error;
2657 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2658 if (error)
2659 return error;
2660
2661 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2662 }
2663
2664 static void
2665 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni)
2666 {
2667 struct wi_node *wn = (void*)ni;
2668 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt);
2669 }
2670
2671 static void
2672 wi_rssadapt_updatestats(void *arg)
2673 {
2674 struct wi_softc *sc = arg;
2675 struct ieee80211com *ic = &sc->sc_ic;
2676 ieee80211_iterate_nodes(ic, wi_rssadapt_updatestats_cb, arg);
2677 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2678 ic->ic_state == IEEE80211_S_RUN)
2679 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
2680 wi_rssadapt_updatestats, arg);
2681 }
2682
2683 static int
2684 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2685 {
2686 struct wi_softc *sc = ic->ic_softc;
2687 struct ieee80211_node *ni = ic->ic_bss;
2688 int buflen;
2689 u_int16_t val;
2690 struct wi_ssid ssid;
2691 struct wi_macaddr bssid, old_bssid;
2692 enum ieee80211_state ostate;
2693 #ifdef WI_DEBUG
2694 static const char *stname[] =
2695 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
2696 #endif /* WI_DEBUG */
2697
2698 ostate = ic->ic_state;
2699 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
2700
2701 switch (nstate) {
2702 case IEEE80211_S_INIT:
2703 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2704 callout_stop(&sc->sc_rssadapt_ch);
2705 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2706 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2707 return (*sc->sc_newstate)(ic, nstate, arg);
2708
2709 case IEEE80211_S_RUN:
2710 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2711 buflen = IEEE80211_ADDR_LEN;
2712 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid);
2713 wi_read_rid(sc, WI_RID_CURRENT_BSSID, &bssid, &buflen);
2714 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid);
2715 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid);
2716 buflen = sizeof(val);
2717 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
2718 if (!isset(ic->ic_chan_avail, le16toh(val)))
2719 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname,
2720 le16toh(val));
2721 ni->ni_chan = &ic->ic_channels[le16toh(val)];
2722
2723 if (IEEE80211_ADDR_EQ(old_bssid.wi_mac_addr, ni->ni_bssid))
2724 sc->sc_false_syns++;
2725 else
2726 sc->sc_false_syns = 0;
2727
2728 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2729 ni->ni_esslen = ic->ic_des_esslen;
2730 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2731 ni->ni_rates = ic->ic_sup_rates[
2732 ieee80211_chan2mode(ic, ni->ni_chan)];
2733 ni->ni_intval = ic->ic_lintval;
2734 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2735 if (ic->ic_flags & IEEE80211_F_WEPON)
2736 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2737 } else {
2738 buflen = sizeof(ssid);
2739 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2740 ni->ni_esslen = le16toh(ssid.wi_len);
2741 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2742 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2743 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2744 ni->ni_rates = ic->ic_sup_rates[
2745 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/
2746 }
2747 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2748 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
2749 wi_rssadapt_updatestats, sc);
2750 break;
2751
2752 case IEEE80211_S_SCAN:
2753 case IEEE80211_S_AUTH:
2754 case IEEE80211_S_ASSOC:
2755 break;
2756 }
2757
2758 ic->ic_state = nstate;
2759 /* skip standard ieee80211 handling */
2760 return 0;
2761 }
2762
2763 static int
2764 wi_set_tim(struct ieee80211com *ic, int aid, int which)
2765 {
2766 struct wi_softc *sc = ic->ic_softc;
2767
2768 aid &= ~0xc000;
2769 if (which)
2770 aid |= 0x8000;
2771
2772 return wi_write_val(sc, WI_RID_SET_TIM, aid);
2773 }
2774
2775 static int
2776 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
2777 {
2778 int error = 0;
2779 u_int16_t val[2];
2780
2781 if (!sc->sc_enabled)
2782 return ENXIO;
2783 switch (sc->sc_firmware_type) {
2784 case WI_LUCENT:
2785 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2786 break;
2787 case WI_INTERSIL:
2788 val[0] = htole16(chanmask); /* channel */
2789 val[1] = htole16(txrate); /* tx rate */
2790 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2791 break;
2792 case WI_SYMBOL:
2793 /*
2794 * XXX only supported on 3.x ?
2795 */
2796 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2797 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2798 val, sizeof(val[0]));
2799 break;
2800 }
2801 if (error == 0) {
2802 sc->sc_scan_timer = WI_SCAN_WAIT;
2803 sc->sc_ic.ic_if.if_timer = 1;
2804 DPRINTF(("wi_scan_ap: start scanning, "
2805 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate));
2806 }
2807 return error;
2808 }
2809
2810 static void
2811 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2812 {
2813 #define N(a) (sizeof (a) / sizeof (a[0]))
2814 int i, naps, off, szbuf;
2815 struct wi_scan_header ws_hdr; /* Prism2 header */
2816 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2817 struct wi_apinfo *ap;
2818
2819 off = sizeof(u_int16_t) * 2;
2820 memset(&ws_hdr, 0, sizeof(ws_hdr));
2821 switch (sc->sc_firmware_type) {
2822 case WI_INTERSIL:
2823 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2824 off += sizeof(ws_hdr);
2825 szbuf = sizeof(struct wi_scan_data_p2);
2826 break;
2827 case WI_SYMBOL:
2828 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2829 break;
2830 case WI_LUCENT:
2831 szbuf = sizeof(struct wi_scan_data);
2832 break;
2833 default:
2834 printf("%s: wi_scan_result: unknown firmware type %u\n",
2835 sc->sc_dev.dv_xname, sc->sc_firmware_type);
2836 naps = 0;
2837 goto done;
2838 }
2839 naps = (cnt * 2 + 2 - off) / szbuf;
2840 if (naps > N(sc->sc_aps))
2841 naps = N(sc->sc_aps);
2842 sc->sc_naps = naps;
2843 /* Read Data */
2844 ap = sc->sc_aps;
2845 memset(&ws_dat, 0, sizeof(ws_dat));
2846 for (i = 0; i < naps; i++, ap++) {
2847 wi_read_bap(sc, fid, off, &ws_dat,
2848 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2849 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
2850 ether_sprintf(ws_dat.wi_bssid)));
2851 off += szbuf;
2852 ap->scanreason = le16toh(ws_hdr.wi_reason);
2853 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2854 ap->channel = le16toh(ws_dat.wi_chid);
2855 ap->signal = le16toh(ws_dat.wi_signal);
2856 ap->noise = le16toh(ws_dat.wi_noise);
2857 ap->quality = ap->signal - ap->noise;
2858 ap->capinfo = le16toh(ws_dat.wi_capinfo);
2859 ap->interval = le16toh(ws_dat.wi_interval);
2860 ap->rate = le16toh(ws_dat.wi_rate);
2861 ap->namelen = le16toh(ws_dat.wi_namelen);
2862 if (ap->namelen > sizeof(ap->name))
2863 ap->namelen = sizeof(ap->name);
2864 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2865 }
2866 done:
2867 /* Done scanning */
2868 sc->sc_scan_timer = 0;
2869 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
2870 #undef N
2871 }
2872
2873 static void
2874 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
2875 {
2876 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
2877 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL
2878 : -1,
2879 rssi);
2880 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
2881 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
2882 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
2883 printf(" rx_signal %u rx_rate %u rx_flow %u\n",
2884 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
2885 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
2886 wh->wi_tx_rtry, wh->wi_tx_rate,
2887 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
2888 printf(" ehdr dst %s src %s type 0x%x\n",
2889 ether_sprintf(wh->wi_ehdr.ether_dhost),
2890 ether_sprintf(wh->wi_ehdr.ether_shost),
2891 wh->wi_ehdr.ether_type);
2892 }
2893