wi.c revision 1.187 1 /* $NetBSD: wi.c,v 1.187 2004/09/28 00:42:11 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1997, 1998, 1999
41 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Bill Paul.
54 * 4. Neither the name of the author nor the names of any co-contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
68 * THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
73 *
74 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
81 * from Lucent. Unlike the older cards, the new ones are programmed
82 * entirely via a firmware-driven controller called the Hermes.
83 * Unfortunately, Lucent will not release the Hermes programming manual
84 * without an NDA (if at all). What they do release is an API library
85 * called the HCF (Hardware Control Functions) which is supposed to
86 * do the device-specific operations of a device driver for you. The
87 * publically available version of the HCF library (the 'HCF Light') is
88 * a) extremely gross, b) lacks certain features, particularly support
89 * for 802.11 frames, and c) is contaminated by the GNU Public License.
90 *
91 * This driver does not use the HCF or HCF Light at all. Instead, it
92 * programs the Hermes controller directly, using information gleaned
93 * from the HCF Light code and corresponding documentation.
94 *
95 * This driver supports both the PCMCIA and ISA versions of the
96 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
97 * anything of the sort: it's actually a PCMCIA bridge adapter
98 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
99 * inserted. Consequently, you need to use the pccard support for
100 * both the ISA and PCMCIA adapters.
101 */
102
103 /*
104 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
105 * Oslo IETF plenary meeting.
106 */
107
108 #include <sys/cdefs.h>
109 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.187 2004/09/28 00:42:11 dyoung Exp $");
110
111 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
112 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
113 #undef WI_HISTOGRAM
114 #undef WI_RING_DEBUG
115 #define STATIC static
116
117 #include "bpfilter.h"
118
119 #include <sys/param.h>
120 #include <sys/systm.h>
121 #include <sys/callout.h>
122 #include <sys/device.h>
123 #include <sys/socket.h>
124 #include <sys/mbuf.h>
125 #include <sys/ioctl.h>
126 #include <sys/kernel.h> /* for hz */
127 #include <sys/proc.h>
128
129 #include <net/if.h>
130 #include <net/if_dl.h>
131 #include <net/if_llc.h>
132 #include <net/if_media.h>
133 #include <net/if_ether.h>
134 #include <net/route.h>
135
136 #include <net80211/ieee80211_var.h>
137 #include <net80211/ieee80211_compat.h>
138 #include <net80211/ieee80211_ioctl.h>
139 #include <net80211/ieee80211_radiotap.h>
140 #include <net80211/ieee80211_rssadapt.h>
141
142 #if NBPFILTER > 0
143 #include <net/bpf.h>
144 #include <net/bpfdesc.h>
145 #endif
146
147 #include <machine/bus.h>
148
149 #include <dev/ic/wi_ieee.h>
150 #include <dev/ic/wireg.h>
151 #include <dev/ic/wivar.h>
152
153 STATIC int wi_init(struct ifnet *);
154 STATIC void wi_stop(struct ifnet *, int);
155 STATIC void wi_start(struct ifnet *);
156 STATIC int wi_reset(struct wi_softc *);
157 STATIC void wi_watchdog(struct ifnet *);
158 STATIC int wi_ioctl(struct ifnet *, u_long, caddr_t);
159 STATIC int wi_media_change(struct ifnet *);
160 STATIC void wi_media_status(struct ifnet *, struct ifmediareq *);
161
162 STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211com *);
163 STATIC void wi_node_copy(struct ieee80211com *, struct ieee80211_node *,
164 const struct ieee80211_node *);
165 STATIC void wi_node_free(struct ieee80211com *, struct ieee80211_node *);
166
167 STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
168 STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
169 STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *,
170 struct ieee80211_frame *, u_int);
171 STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *);
172 STATIC void wi_rssadapt_updatestats(void *);
173 STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *);
174 STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[],
175 wi_rssdescq_t *, u_int8_t (*)[]);
176 STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]);
177
178 STATIC void wi_rx_intr(struct wi_softc *);
179 STATIC void wi_txalloc_intr(struct wi_softc *);
180 STATIC void wi_cmd_intr(struct wi_softc *);
181 STATIC void wi_tx_intr(struct wi_softc *);
182 STATIC void wi_tx_ex_intr(struct wi_softc *);
183 STATIC void wi_info_intr(struct wi_softc *);
184
185 STATIC void wi_push_packet(struct wi_softc *);
186 STATIC int wi_get_cfg(struct ifnet *, u_long, caddr_t);
187 STATIC int wi_set_cfg(struct ifnet *, u_long, caddr_t);
188 STATIC int wi_cfg_txrate(struct wi_softc *);
189 STATIC int wi_write_txrate(struct wi_softc *, int);
190 STATIC int wi_write_wep(struct wi_softc *);
191 STATIC int wi_write_multi(struct wi_softc *);
192 STATIC int wi_alloc_fid(struct wi_softc *, int, int *);
193 STATIC void wi_read_nicid(struct wi_softc *);
194 STATIC int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
195
196 STATIC int wi_sendcmd(struct wi_softc *, int, int);
197 STATIC int wi_cmd(struct wi_softc *, int, int, int, int);
198 STATIC int wi_seek_bap(struct wi_softc *, int, int);
199 STATIC int wi_read_bap(struct wi_softc *, int, int, void *, int);
200 STATIC int wi_write_bap(struct wi_softc *, int, int, void *, int);
201 STATIC int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
202 STATIC int wi_read_rid(struct wi_softc *, int, void *, int *);
203 STATIC int wi_write_rid(struct wi_softc *, int, void *, int);
204
205 STATIC int wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
206 STATIC int wi_set_tim(struct ieee80211com *, int, int);
207
208 STATIC int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
209 STATIC void wi_scan_result(struct wi_softc *, int, int);
210
211 STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
212
213 static inline int
214 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
215 {
216
217 val = htole16(val);
218 return wi_write_rid(sc, rid, &val, sizeof(val));
219 }
220
221 static struct timeval lasttxerror; /* time of last tx error msg */
222 static int curtxeps = 0; /* current tx error msgs/sec */
223 static int wi_txerate = 0; /* tx error rate: max msgs/sec */
224
225 #ifdef WI_DEBUG
226 int wi_debug = 0;
227
228 #define DPRINTF(X) if (wi_debug) printf X
229 #define DPRINTF2(X) if (wi_debug > 1) printf X
230 #define IFF_DUMPPKTS(_ifp) \
231 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
232 #else
233 #define DPRINTF(X)
234 #define DPRINTF2(X)
235 #define IFF_DUMPPKTS(_ifp) 0
236 #endif
237
238 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \
239 WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD)
240
241 struct wi_card_ident
242 wi_card_ident[] = {
243 /* CARD_ID CARD_NAME FIRM_TYPE */
244 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
245 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
246 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
247 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
248 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
249 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
250 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
251 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
252 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
253 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
254 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
255 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
256 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
257 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
258 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
259 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
260 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
261 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
262 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
263 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
264 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
265 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
266 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
267 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
268 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
269 { 0, NULL, 0 },
270 };
271
272 int
273 wi_attach(struct wi_softc *sc, const u_int8_t *macaddr)
274 {
275 struct ieee80211com *ic = &sc->sc_ic;
276 struct ifnet *ifp = &ic->ic_if;
277 int chan, nrate, buflen;
278 u_int16_t val, chanavail;
279 struct {
280 u_int16_t nrates;
281 char rates[IEEE80211_RATE_SIZE];
282 } ratebuf;
283 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
284 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
285 };
286 int s;
287
288 s = splnet();
289
290 /* Make sure interrupts are disabled. */
291 CSR_WRITE_2(sc, WI_INT_EN, 0);
292 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
293
294 sc->sc_invalid = 0;
295
296 /* Reset the NIC. */
297 if (wi_reset(sc) != 0) {
298 sc->sc_invalid = 1;
299 splx(s);
300 return 1;
301 }
302
303 buflen = IEEE80211_ADDR_LEN;
304 if (!macaddr) {
305 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
306 buflen < IEEE80211_ADDR_LEN ||
307 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
308 printf(" could not get mac address, attach failed\n");
309 splx(s);
310 return 1;
311 }
312 } else
313 memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN);
314
315 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
316
317 /* Read NIC identification */
318 wi_read_nicid(sc);
319
320 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
321 ifp->if_softc = sc;
322 ifp->if_start = wi_start;
323 ifp->if_ioctl = wi_ioctl;
324 ifp->if_watchdog = wi_watchdog;
325 ifp->if_init = wi_init;
326 ifp->if_stop = wi_stop;
327 ifp->if_flags =
328 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
329 IFQ_SET_READY(&ifp->if_snd);
330
331 ic->ic_phytype = IEEE80211_T_DS;
332 ic->ic_opmode = IEEE80211_M_STA;
333 ic->ic_caps = IEEE80211_C_AHDEMO;
334 ic->ic_state = IEEE80211_S_INIT;
335 ic->ic_max_aid = WI_MAX_AID;
336
337 /* Find available channel */
338 buflen = sizeof(chanavail);
339 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &chanavail, &buflen) != 0 &&
340 buflen == sizeof(chanavail)) {
341 aprint_normal("%s: using default channel list\n", sc->sc_dev.dv_xname);
342 chanavail = htole16(0x1fff); /* assume 1-13 */
343 }
344 for (chan = 16; chan > 0; chan--) {
345 if (!isset((u_int8_t*)&chanavail, chan - 1))
346 continue;
347 ic->ic_ibss_chan = &ic->ic_channels[chan];
348 ic->ic_channels[chan].ic_freq =
349 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
350 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
351 }
352
353 /* Find default IBSS channel */
354 buflen = sizeof(val);
355 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0 &&
356 buflen == sizeof(val)) {
357 chan = le16toh(val);
358 if (isset((u_int8_t*)&chanavail, chan - 1))
359 ic->ic_ibss_chan = &ic->ic_channels[chan];
360 }
361 if (ic->ic_ibss_chan == NULL) {
362 aprint_error("%s: no available channel\n", sc->sc_dev.dv_xname);
363 return 1;
364 }
365
366 if (sc->sc_firmware_type == WI_LUCENT) {
367 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
368 } else {
369 buflen = sizeof(val);
370 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
371 wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0 &&
372 buflen == sizeof(val))
373 sc->sc_dbm_offset = le16toh(val);
374 else
375 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
376 }
377
378 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
379
380 /*
381 * Set flags based on firmware version.
382 */
383 switch (sc->sc_firmware_type) {
384 case WI_LUCENT:
385 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
386 #ifdef WI_HERMES_AUTOINC_WAR
387 /* XXX: not confirmed, but never seen for recent firmware */
388 if (sc->sc_sta_firmware_ver < 40000) {
389 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
390 }
391 #endif
392 if (sc->sc_sta_firmware_ver >= 60000)
393 sc->sc_flags |= WI_FLAGS_HAS_MOR;
394 if (sc->sc_sta_firmware_ver >= 60006) {
395 ic->ic_caps |= IEEE80211_C_IBSS;
396 ic->ic_caps |= IEEE80211_C_MONITOR;
397 }
398 ic->ic_caps |= IEEE80211_C_PMGT;
399 sc->sc_ibss_port = 1;
400 break;
401
402 case WI_INTERSIL:
403 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
404 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
405 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
406 if (sc->sc_sta_firmware_ver > 10101)
407 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
408 if (sc->sc_sta_firmware_ver >= 800) {
409 if (sc->sc_sta_firmware_ver != 10402)
410 ic->ic_caps |= IEEE80211_C_HOSTAP;
411 ic->ic_caps |= IEEE80211_C_IBSS;
412 ic->ic_caps |= IEEE80211_C_MONITOR;
413 }
414 ic->ic_caps |= IEEE80211_C_PMGT;
415 sc->sc_ibss_port = 0;
416 sc->sc_alt_retry = 2;
417 break;
418
419 case WI_SYMBOL:
420 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
421 if (sc->sc_sta_firmware_ver >= 20000)
422 ic->ic_caps |= IEEE80211_C_IBSS;
423 sc->sc_ibss_port = 4;
424 break;
425 }
426
427 /*
428 * Find out if we support WEP on this card.
429 */
430 buflen = sizeof(val);
431 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
432 buflen == sizeof(val) && val != htole16(0))
433 ic->ic_caps |= IEEE80211_C_WEP;
434
435 /* Find supported rates. */
436 buflen = sizeof(ratebuf);
437 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 &&
438 buflen > 2) {
439 nrate = le16toh(ratebuf.nrates);
440 if (nrate > IEEE80211_RATE_SIZE)
441 nrate = IEEE80211_RATE_SIZE;
442 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates,
443 &ratebuf.rates[0], nrate);
444 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
445 } else {
446 aprint_error("%s: no supported rate list\n", sc->sc_dev.dv_xname);
447 return 1;
448 }
449
450 sc->sc_max_datalen = 2304;
451 sc->sc_rts_thresh = 2347;
452 sc->sc_frag_thresh = 2346;
453 sc->sc_system_scale = 1;
454 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
455 sc->sc_roaming_mode = 1;
456
457 callout_init(&sc->sc_rssadapt_ch);
458
459 /*
460 * Call MI attach routines.
461 */
462 if_attach(ifp);
463 ieee80211_ifattach(ifp);
464
465 sc->sc_newstate = ic->ic_newstate;
466 ic->ic_newstate = wi_newstate;
467 ic->ic_node_alloc = wi_node_alloc;
468 ic->ic_node_free = wi_node_free;
469 ic->ic_node_copy = wi_node_copy;
470 ic->ic_set_tim = wi_set_tim;
471
472 ieee80211_media_init(ifp, wi_media_change, wi_media_status);
473
474 #if NBPFILTER > 0
475 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
476 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
477 #endif
478
479 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
480 sc->sc_rxtap.wr_ihdr.it_len = sizeof(sc->sc_rxtapu);
481 sc->sc_rxtap.wr_ihdr.it_present = WI_RX_RADIOTAP_PRESENT;
482
483 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
484 sc->sc_txtap.wt_ihdr.it_len = sizeof(sc->sc_txtapu);
485 sc->sc_txtap.wt_ihdr.it_present = WI_TX_RADIOTAP_PRESENT;
486
487 /* Attach is successful. */
488 sc->sc_attached = 1;
489
490 splx(s);
491 return 0;
492 }
493
494 int
495 wi_detach(struct wi_softc *sc)
496 {
497 struct ifnet *ifp = &sc->sc_ic.ic_if;
498 int s;
499
500 if (!sc->sc_attached)
501 return 0;
502
503 s = splnet();
504
505 sc->sc_invalid = 1;
506 wi_stop(ifp, 1);
507
508 /* Delete all remaining media. */
509 ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY);
510
511 ieee80211_ifdetach(ifp);
512 if_detach(ifp);
513 splx(s);
514 return 0;
515 }
516
517 #ifdef __NetBSD__
518 int
519 wi_activate(struct device *self, enum devact act)
520 {
521 struct wi_softc *sc = (struct wi_softc *)self;
522 int rv = 0, s;
523
524 s = splnet();
525 switch (act) {
526 case DVACT_ACTIVATE:
527 rv = EOPNOTSUPP;
528 break;
529
530 case DVACT_DEACTIVATE:
531 if_deactivate(&sc->sc_ic.ic_if);
532 break;
533 }
534 splx(s);
535 return rv;
536 }
537
538 void
539 wi_power(struct wi_softc *sc, int why)
540 {
541 struct ifnet *ifp = &sc->sc_ic.ic_if;
542 int s;
543
544 s = splnet();
545 switch (why) {
546 case PWR_SUSPEND:
547 case PWR_STANDBY:
548 wi_stop(ifp, 1);
549 break;
550 case PWR_RESUME:
551 if (ifp->if_flags & IFF_UP) {
552 wi_init(ifp);
553 (void)wi_intr(sc);
554 }
555 break;
556 case PWR_SOFTSUSPEND:
557 case PWR_SOFTSTANDBY:
558 case PWR_SOFTRESUME:
559 break;
560 }
561 splx(s);
562 }
563 #endif /* __NetBSD__ */
564
565 void
566 wi_shutdown(struct wi_softc *sc)
567 {
568 struct ifnet *ifp = &sc->sc_ic.ic_if;
569
570 if (sc->sc_attached)
571 wi_stop(ifp, 1);
572 }
573
574 int
575 wi_intr(void *arg)
576 {
577 int i;
578 struct wi_softc *sc = arg;
579 struct ifnet *ifp = &sc->sc_ic.ic_if;
580 u_int16_t status;
581
582 if (sc->sc_enabled == 0 ||
583 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
584 (ifp->if_flags & IFF_RUNNING) == 0)
585 return 0;
586
587 if ((ifp->if_flags & IFF_UP) == 0) {
588 CSR_WRITE_2(sc, WI_INT_EN, 0);
589 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
590 return 1;
591 }
592
593 /* This is superfluous on Prism, but Lucent breaks if we
594 * do not disable interrupts.
595 */
596 CSR_WRITE_2(sc, WI_INT_EN, 0);
597
598 /* maximum 10 loops per interrupt */
599 for (i = 0; i < 10; i++) {
600 /*
601 * Only believe a status bit when we enter wi_intr, or when
602 * the bit was "off" the last time through the loop. This is
603 * my strategy to avoid racing the hardware/firmware if I
604 * can re-read the event status register more quickly than
605 * it is updated.
606 */
607 status = CSR_READ_2(sc, WI_EVENT_STAT);
608 if ((status & WI_INTRS) == 0)
609 break;
610
611 if (status & WI_EV_RX)
612 wi_rx_intr(sc);
613
614 if (status & WI_EV_ALLOC)
615 wi_txalloc_intr(sc);
616
617 if (status & WI_EV_TX)
618 wi_tx_intr(sc);
619
620 if (status & WI_EV_TX_EXC)
621 wi_tx_ex_intr(sc);
622
623 if (status & WI_EV_INFO)
624 wi_info_intr(sc);
625
626 CSR_WRITE_2(sc, WI_EVENT_ACK, status);
627
628 if (status & WI_EV_CMD)
629 wi_cmd_intr(sc);
630
631 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
632 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
633 !IFQ_IS_EMPTY(&ifp->if_snd))
634 wi_start(ifp);
635 }
636
637 /* re-enable interrupts */
638 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
639
640 return 1;
641 }
642
643 #define arraylen(a) (sizeof(a) / sizeof((a)[0]))
644
645 STATIC void
646 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree)
647 {
648 int i;
649 SLIST_INIT(rssdfree);
650 for (i = 0; i < arraylen(*rssd); i++) {
651 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next);
652 }
653 }
654
655 STATIC void
656 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS],
657 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE])
658 {
659 struct ieee80211_node *ni;
660 int i;
661 for (i = 0; i < arraylen(*rssd); i++) {
662 ni = (*rssd)[i].rd_desc.id_node;
663 (*rssd)[i].rd_desc.id_node = NULL;
664 if (ni != NULL && (ic->ic_if.if_flags & IFF_DEBUG) != 0)
665 printf("%s: cleaning outstanding rssadapt "
666 "descriptor for %s\n",
667 ic->ic_if.if_xname, ether_sprintf(ni->ni_macaddr));
668 if (ni != NULL)
669 ieee80211_release_node(ic, ni);
670 }
671 memset(*txpending, 0, sizeof(*txpending));
672 wi_rssdescs_init(rssd, rssdfree);
673 }
674
675 STATIC int
676 wi_init(struct ifnet *ifp)
677 {
678 struct wi_softc *sc = ifp->if_softc;
679 struct ieee80211com *ic = &sc->sc_ic;
680 struct wi_joinreq join;
681 int i;
682 int error = 0, wasenabled;
683
684 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
685 wasenabled = sc->sc_enabled;
686 if (!sc->sc_enabled) {
687 if ((error = (*sc->sc_enable)(sc)) != 0)
688 goto out;
689 sc->sc_enabled = 1;
690 } else
691 wi_stop(ifp, 0);
692
693 /* Symbol firmware cannot be initialized more than once */
694 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled)
695 if ((error = wi_reset(sc)) != 0)
696 goto out;
697
698 /* common 802.11 configuration */
699 ic->ic_flags &= ~IEEE80211_F_IBSSON;
700 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
701 switch (ic->ic_opmode) {
702 case IEEE80211_M_STA:
703 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
704 break;
705 case IEEE80211_M_IBSS:
706 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
707 ic->ic_flags |= IEEE80211_F_IBSSON;
708 break;
709 case IEEE80211_M_AHDEMO:
710 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
711 break;
712 case IEEE80211_M_HOSTAP:
713 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
714 break;
715 case IEEE80211_M_MONITOR:
716 if (sc->sc_firmware_type == WI_LUCENT)
717 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
718 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
719 break;
720 }
721
722 /* Intersil interprets this RID as joining ESS even in IBSS mode */
723 if (sc->sc_firmware_type == WI_LUCENT &&
724 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
725 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
726 else
727 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
728 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
729 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
730 ic->ic_des_esslen);
731 wi_write_val(sc, WI_RID_OWN_CHNL,
732 ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
733 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
734 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
735 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
736 if (ic->ic_caps & IEEE80211_C_PMGT)
737 wi_write_val(sc, WI_RID_PM_ENABLED,
738 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
739
740 /* not yet common 802.11 configuration */
741 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
742 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
743 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
744 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
745
746 /* driver specific 802.11 configuration */
747 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
748 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
749 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
750 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
751 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
752 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
753 wi_cfg_txrate(sc);
754 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
755
756 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
757 sc->sc_firmware_type == WI_INTERSIL) {
758 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
759 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
760 }
761
762 if (sc->sc_firmware_type == WI_INTERSIL) {
763 struct ieee80211_rateset *rs =
764 &ic->ic_sup_rates[IEEE80211_MODE_11B];
765 u_int16_t basic = 0, supported = 0, rate;
766
767 for (i = 0; i < rs->rs_nrates; i++) {
768 switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
769 case 2:
770 rate = 1;
771 break;
772 case 4:
773 rate = 2;
774 break;
775 case 11:
776 rate = 4;
777 break;
778 case 22:
779 rate = 8;
780 break;
781 default:
782 rate = 0;
783 break;
784 }
785 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC)
786 basic |= rate;
787 supported |= rate;
788 }
789 wi_write_val(sc, WI_RID_BASIC_RATE, basic);
790 wi_write_val(sc, WI_RID_SUPPORT_RATE, supported);
791 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry);
792 }
793
794 /*
795 * Initialize promisc mode.
796 * Being in Host-AP mode causes a great
797 * deal of pain if promiscuous mode is set.
798 * Therefore we avoid confusing the firmware
799 * and always reset promisc mode in Host-AP
800 * mode. Host-AP sees all the packets anyway.
801 */
802 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
803 (ifp->if_flags & IFF_PROMISC) != 0) {
804 wi_write_val(sc, WI_RID_PROMISC, 1);
805 } else {
806 wi_write_val(sc, WI_RID_PROMISC, 0);
807 }
808
809 /* Configure WEP. */
810 if (ic->ic_caps & IEEE80211_C_WEP)
811 wi_write_wep(sc);
812
813 /* Set multicast filter. */
814 wi_write_multi(sc);
815
816 sc->sc_txalloc = 0;
817 sc->sc_txalloced = 0;
818 sc->sc_txqueue = 0;
819 sc->sc_txqueued = 0;
820 sc->sc_txstart = 0;
821 sc->sc_txstarted = 0;
822
823 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
824 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
825 if (sc->sc_firmware_type == WI_SYMBOL)
826 sc->sc_buflen = 1585; /* XXX */
827 for (i = 0; i < WI_NTXBUF; i++) {
828 error = wi_alloc_fid(sc, sc->sc_buflen,
829 &sc->sc_txd[i].d_fid);
830 if (error) {
831 printf("%s: tx buffer allocation failed\n",
832 sc->sc_dev.dv_xname);
833 goto out;
834 }
835 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
836 sc->sc_txd[i].d_fid));
837 ++sc->sc_txalloced;
838 }
839 }
840
841 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree);
842
843 /* Enable desired port */
844 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
845 ifp->if_flags |= IFF_RUNNING;
846 ifp->if_flags &= ~IFF_OACTIVE;
847 ic->ic_state = IEEE80211_S_INIT;
848
849 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
850 ic->ic_opmode == IEEE80211_M_MONITOR ||
851 ic->ic_opmode == IEEE80211_M_HOSTAP)
852 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
853
854 /* Enable interrupts */
855 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
856
857 if (!wasenabled &&
858 ic->ic_opmode == IEEE80211_M_HOSTAP &&
859 sc->sc_firmware_type == WI_INTERSIL) {
860 /* XXX: some card need to be re-enabled for hostap */
861 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
862 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
863 }
864
865 if (ic->ic_opmode == IEEE80211_M_STA &&
866 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
867 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
868 memset(&join, 0, sizeof(join));
869 if (ic->ic_flags & IEEE80211_F_DESBSSID)
870 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
871 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
872 join.wi_chan =
873 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan));
874 /* Lucent firmware does not support the JOIN RID. */
875 if (sc->sc_firmware_type != WI_LUCENT)
876 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
877 }
878
879 out:
880 if (error) {
881 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
882 wi_stop(ifp, 0);
883 }
884 DPRINTF(("wi_init: return %d\n", error));
885 return error;
886 }
887
888 STATIC void
889 wi_stop(struct ifnet *ifp, int disable)
890 {
891 struct wi_softc *sc = ifp->if_softc;
892 struct ieee80211com *ic = &sc->sc_ic;
893 int s;
894
895 if (!sc->sc_enabled)
896 return;
897
898 s = splnet();
899
900 DPRINTF(("wi_stop: disable %d\n", disable));
901
902 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
903 if (!sc->sc_invalid) {
904 CSR_WRITE_2(sc, WI_INT_EN, 0);
905 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
906 }
907
908 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
909 &sc->sc_txpending);
910
911 sc->sc_tx_timer = 0;
912 sc->sc_scan_timer = 0;
913 sc->sc_false_syns = 0;
914 sc->sc_naps = 0;
915 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
916 ifp->if_timer = 0;
917
918 if (disable) {
919 if (sc->sc_disable)
920 (*sc->sc_disable)(sc);
921 sc->sc_enabled = 0;
922 }
923 splx(s);
924 }
925
926 /*
927 * Choose a data rate for a packet len bytes long that suits the packet
928 * type and the wireless conditions.
929 *
930 * TBD Adapt fragmentation threshold.
931 */
932 STATIC int
933 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni,
934 struct ieee80211_frame *wh, u_int len)
935 {
936 struct wi_softc *sc = ic->ic_if.if_softc;
937 struct wi_node *wn = (void*)ni;
938 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt;
939 int do_not_adapt, i, rateidx, s;
940
941 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) &&
942 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0;
943
944 s = splnet();
945
946 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len,
947 ic->ic_fixed_rate,
948 ((ic->ic_if.if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_if.if_xname,
949 do_not_adapt);
950
951 ni->ni_txrate = rateidx;
952
953 if (ic->ic_opmode != IEEE80211_M_HOSTAP) {
954 /* choose the slowest pending rate so that we don't
955 * accidentally send a packet on the MAC's queue
956 * too fast. TBD find out if the MAC labels Tx
957 * packets w/ rate when enqueued or dequeued.
958 */
959 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++);
960 rateidx = i;
961 }
962
963 splx(s);
964 return (rateidx);
965 }
966
967 STATIC void
968 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
969 {
970 struct wi_node *wn;
971 if (id->id_node == NULL)
972 return;
973
974 wn = (void*)id->id_node;
975 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id);
976 }
977
978 STATIC void
979 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
980 {
981 struct ieee80211_node *ni;
982 struct wi_node *wn;
983 int s;
984
985 s = splnet();
986
987 if ((ni = id->id_node) == NULL) {
988 DPRINTF(("wi_lower_rate: missing node\n"));
989 goto out;
990 }
991
992 wn = (void *)ni;
993
994 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id);
995 out:
996 splx(s);
997 return;
998 }
999
1000 STATIC void
1001 wi_start(struct ifnet *ifp)
1002 {
1003 struct wi_softc *sc = ifp->if_softc;
1004 struct ieee80211com *ic = &sc->sc_ic;
1005 struct ieee80211_node *ni;
1006 struct ieee80211_frame *wh;
1007 struct ieee80211_rateset *rs;
1008 struct wi_rssdesc *rd;
1009 struct ieee80211_rssdesc *id;
1010 struct mbuf *m0;
1011 struct wi_frame frmhdr;
1012 int cur, fid, off, rateidx;
1013
1014 if (!sc->sc_enabled || sc->sc_invalid)
1015 return;
1016 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
1017 return;
1018
1019 memset(&frmhdr, 0, sizeof(frmhdr));
1020 cur = sc->sc_txqueue;
1021 for (;;) {
1022 ni = ic->ic_bss;
1023 if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) {
1024 ifp->if_flags |= IFF_OACTIVE;
1025 break;
1026 }
1027 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
1028 IF_DEQUEUE(&ic->ic_mgtq, m0);
1029 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
1030 (caddr_t)&frmhdr.wi_ehdr);
1031 frmhdr.wi_ehdr.ether_type = 0;
1032 wh = mtod(m0, struct ieee80211_frame *);
1033 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1034 m0->m_pkthdr.rcvif = NULL;
1035 } else if (ic->ic_state != IEEE80211_S_RUN)
1036 break;
1037 else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
1038 struct llc *llc;
1039
1040 /*
1041 * Should these packets be processed after the
1042 * regular packets or before? Since they are being
1043 * probed for, they are probably less time critical
1044 * than other packets, but, on the other hand,
1045 * we want the power saving nodes to go back to
1046 * sleep as quickly as possible to save power...
1047 */
1048
1049 IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
1050 wh = mtod(m0, struct ieee80211_frame *);
1051 llc = (struct llc *) (wh + 1);
1052 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
1053 (caddr_t)&frmhdr.wi_ehdr);
1054 frmhdr.wi_ehdr.ether_type = llc->llc_snap.ether_type;
1055 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1056 m0->m_pkthdr.rcvif = NULL;
1057 } else {
1058 IFQ_POLL(&ifp->if_snd, m0);
1059 if (m0 == NULL) {
1060 break;
1061 }
1062 IFQ_DEQUEUE(&ifp->if_snd, m0);
1063 ifp->if_opackets++;
1064 m_copydata(m0, 0, ETHER_HDR_LEN,
1065 (caddr_t)&frmhdr.wi_ehdr);
1066 #if NBPFILTER > 0
1067 if (ifp->if_bpf)
1068 bpf_mtap(ifp->if_bpf, m0);
1069 #endif
1070
1071 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
1072 ifp->if_oerrors++;
1073 continue;
1074 }
1075 wh = mtod(m0, struct ieee80211_frame *);
1076 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1077 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1078 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1079 IEEE80211_FC0_TYPE_DATA) {
1080 if (ni->ni_associd == 0) {
1081 m_freem(m0);
1082 ifp->if_oerrors++;
1083 goto next;
1084 }
1085 if (ni->ni_pwrsave & IEEE80211_PS_SLEEP) {
1086 ieee80211_pwrsave(ic, ni, m0);
1087 continue; /* don't free node. */
1088 }
1089 }
1090 }
1091 #if NBPFILTER > 0
1092 if (ic->ic_rawbpf)
1093 bpf_mtap(ic->ic_rawbpf, m0);
1094 #endif
1095 frmhdr.wi_tx_ctl =
1096 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK);
1097 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1098 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
1099 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1100 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
1101 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
1102 ifp->if_oerrors++;
1103 goto next;
1104 }
1105 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
1106 }
1107
1108 rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len);
1109 rs = &ni->ni_rates;
1110
1111 #if NBPFILTER > 0
1112 if (sc->sc_drvbpf) {
1113 struct wi_tx_radiotap_header *tap = &sc->sc_txtap;
1114
1115 tap->wt_rate = rs->rs_rates[rateidx];
1116 tap->wt_chan_freq =
1117 htole16(ic->ic_bss->ni_chan->ic_freq);
1118 tap->wt_chan_flags =
1119 htole16(ic->ic_bss->ni_chan->ic_flags);
1120 /* TBD tap->wt_flags */
1121
1122 bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0);
1123 }
1124 #endif
1125
1126 rd = SLIST_FIRST(&sc->sc_rssdfree);
1127 id = &rd->rd_desc;
1128 id->id_len = m0->m_pkthdr.len;
1129 id->id_rateidx = ni->ni_txrate;
1130 id->id_rssi = ni->ni_rssi;
1131
1132 frmhdr.wi_tx_idx = rd - sc->sc_rssd;
1133
1134 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1135 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] &
1136 IEEE80211_RATE_VAL);
1137 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA)
1138 (void)wi_write_txrate(sc, rs->rs_rates[rateidx]);
1139
1140 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
1141 (caddr_t)&frmhdr.wi_whdr);
1142 m_adj(m0, sizeof(struct ieee80211_frame));
1143 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
1144 if (IFF_DUMPPKTS(ifp))
1145 wi_dump_pkt(&frmhdr, ni, -1);
1146 fid = sc->sc_txd[cur].d_fid;
1147 off = sizeof(frmhdr);
1148 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
1149 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
1150 printf("%s: %s write fid %x failed\n",
1151 sc->sc_dev.dv_xname, __func__, fid);
1152 ifp->if_oerrors++;
1153 m_freem(m0);
1154 goto next;
1155 }
1156 m_freem(m0);
1157 sc->sc_txpending[ni->ni_txrate]++;
1158 --sc->sc_txalloced;
1159 if (sc->sc_txqueued++ == 0) {
1160 #ifdef DIAGNOSTIC
1161 if (cur != sc->sc_txstart)
1162 printf("%s: ring is desynchronized\n",
1163 sc->sc_dev.dv_xname);
1164 #endif
1165 wi_push_packet(sc);
1166 } else {
1167 #ifdef WI_RING_DEBUG
1168 printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1169 sc->sc_dev.dv_xname, fid,
1170 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1171 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1172 #endif
1173 }
1174 sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF;
1175 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next);
1176 id->id_node = ni;
1177 continue;
1178 next:
1179 if (ni != NULL)
1180 ieee80211_release_node(ic, ni);
1181 }
1182 }
1183
1184
1185 STATIC int
1186 wi_reset(struct wi_softc *sc)
1187 {
1188 int i, error;
1189
1190 DPRINTF(("wi_reset\n"));
1191
1192 if (sc->sc_reset)
1193 (*sc->sc_reset)(sc);
1194
1195 error = 0;
1196 for (i = 0; i < 5; i++) {
1197 DELAY(20*1000); /* XXX: way too long! */
1198 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
1199 break;
1200 }
1201 if (error) {
1202 printf("%s: init failed\n", sc->sc_dev.dv_xname);
1203 return error;
1204 }
1205 CSR_WRITE_2(sc, WI_INT_EN, 0);
1206 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
1207
1208 /* Calibrate timer. */
1209 wi_write_val(sc, WI_RID_TICK_TIME, 0);
1210 return 0;
1211 }
1212
1213 STATIC void
1214 wi_watchdog(struct ifnet *ifp)
1215 {
1216 struct wi_softc *sc = ifp->if_softc;
1217
1218 ifp->if_timer = 0;
1219 if (!sc->sc_enabled)
1220 return;
1221
1222 if (sc->sc_tx_timer) {
1223 if (--sc->sc_tx_timer == 0) {
1224 printf("%s: device timeout\n", ifp->if_xname);
1225 ifp->if_oerrors++;
1226 wi_init(ifp);
1227 return;
1228 }
1229 ifp->if_timer = 1;
1230 }
1231
1232 if (sc->sc_scan_timer) {
1233 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
1234 sc->sc_firmware_type == WI_INTERSIL) {
1235 DPRINTF(("wi_watchdog: inquire scan\n"));
1236 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1237 }
1238 if (sc->sc_scan_timer)
1239 ifp->if_timer = 1;
1240 }
1241
1242 /* TODO: rate control */
1243 ieee80211_watchdog(ifp);
1244 }
1245
1246 STATIC int
1247 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1248 {
1249 struct wi_softc *sc = ifp->if_softc;
1250 struct ieee80211com *ic = &sc->sc_ic;
1251 struct ifreq *ifr = (struct ifreq *)data;
1252 int s, error = 0;
1253
1254 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1255 return ENXIO;
1256
1257 s = splnet();
1258
1259 switch (cmd) {
1260 case SIOCSIFFLAGS:
1261 /*
1262 * Can't do promisc and hostap at the same time. If all that's
1263 * changing is the promisc flag, try to short-circuit a call to
1264 * wi_init() by just setting PROMISC in the hardware.
1265 */
1266 if (ifp->if_flags & IFF_UP) {
1267 if (sc->sc_enabled) {
1268 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1269 (ifp->if_flags & IFF_PROMISC) != 0)
1270 wi_write_val(sc, WI_RID_PROMISC, 1);
1271 else
1272 wi_write_val(sc, WI_RID_PROMISC, 0);
1273 } else
1274 error = wi_init(ifp);
1275 } else if (sc->sc_enabled)
1276 wi_stop(ifp, 1);
1277 break;
1278 case SIOCSIFMEDIA:
1279 case SIOCGIFMEDIA:
1280 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1281 break;
1282 case SIOCADDMULTI:
1283 case SIOCDELMULTI:
1284 error = (cmd == SIOCADDMULTI) ?
1285 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1286 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1287 if (error == ENETRESET) {
1288 if (sc->sc_enabled) {
1289 /* do not rescan */
1290 error = wi_write_multi(sc);
1291 } else
1292 error = 0;
1293 }
1294 break;
1295 case SIOCGIFGENERIC:
1296 error = wi_get_cfg(ifp, cmd, data);
1297 break;
1298 case SIOCSIFGENERIC:
1299 error = suser(curproc->p_ucred, &curproc->p_acflag);
1300 if (error)
1301 break;
1302 error = wi_set_cfg(ifp, cmd, data);
1303 if (error == ENETRESET) {
1304 if (sc->sc_enabled)
1305 error = wi_init(ifp);
1306 else
1307 error = 0;
1308 }
1309 break;
1310 case SIOCS80211BSSID:
1311 if (sc->sc_firmware_type == WI_LUCENT) {
1312 error = ENODEV;
1313 break;
1314 }
1315 /* fall through */
1316 default:
1317 error = ieee80211_ioctl(ifp, cmd, data);
1318 if (error == ENETRESET) {
1319 if (sc->sc_enabled)
1320 error = wi_init(ifp);
1321 else
1322 error = 0;
1323 }
1324 break;
1325 }
1326 splx(s);
1327 return error;
1328 }
1329
1330 STATIC int
1331 wi_media_change(struct ifnet *ifp)
1332 {
1333 struct wi_softc *sc = ifp->if_softc;
1334 struct ieee80211com *ic = &sc->sc_ic;
1335 int error;
1336
1337 error = ieee80211_media_change(ifp);
1338 if (error == ENETRESET) {
1339 if (sc->sc_enabled)
1340 error = wi_init(ifp);
1341 else
1342 error = 0;
1343 }
1344 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1345
1346 return error;
1347 }
1348
1349 STATIC void
1350 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1351 {
1352 struct wi_softc *sc = ifp->if_softc;
1353 struct ieee80211com *ic = &sc->sc_ic;
1354 u_int16_t val;
1355 int rate, len;
1356
1357 if (sc->sc_enabled == 0) {
1358 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1359 imr->ifm_status = 0;
1360 return;
1361 }
1362
1363 imr->ifm_status = IFM_AVALID;
1364 imr->ifm_active = IFM_IEEE80211;
1365 if (ic->ic_state == IEEE80211_S_RUN &&
1366 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1367 imr->ifm_status |= IFM_ACTIVE;
1368 len = sizeof(val);
1369 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) == 0 &&
1370 len == sizeof(val)) {
1371 /* convert to 802.11 rate */
1372 val = le16toh(val);
1373 rate = val * 2;
1374 if (sc->sc_firmware_type == WI_LUCENT) {
1375 if (rate == 10)
1376 rate = 11; /* 5.5Mbps */
1377 } else {
1378 if (rate == 4*2)
1379 rate = 11; /* 5.5Mbps */
1380 else if (rate == 8*2)
1381 rate = 22; /* 11Mbps */
1382 }
1383 } else
1384 rate = 0;
1385 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1386 switch (ic->ic_opmode) {
1387 case IEEE80211_M_STA:
1388 break;
1389 case IEEE80211_M_IBSS:
1390 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1391 break;
1392 case IEEE80211_M_AHDEMO:
1393 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1394 break;
1395 case IEEE80211_M_HOSTAP:
1396 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1397 break;
1398 case IEEE80211_M_MONITOR:
1399 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1400 break;
1401 }
1402 }
1403
1404 STATIC struct ieee80211_node *
1405 wi_node_alloc(struct ieee80211com *ic)
1406 {
1407 struct wi_node *wn =
1408 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1409 return wn ? &wn->wn_node : NULL;
1410 }
1411
1412 STATIC void
1413 wi_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1414 {
1415 struct wi_softc *sc = ic->ic_if.if_softc;
1416 int i;
1417
1418 for (i = 0; i < WI_NTXRSS; i++) {
1419 if (sc->sc_rssd[i].rd_desc.id_node == ni)
1420 sc->sc_rssd[i].rd_desc.id_node = NULL;
1421 }
1422 free(ni, M_DEVBUF);
1423 }
1424
1425 STATIC void
1426 wi_node_copy(struct ieee80211com *ic, struct ieee80211_node *dst,
1427 const struct ieee80211_node *src)
1428 {
1429 *(struct wi_node *)dst = *(const struct wi_node *)src;
1430 }
1431
1432 STATIC void
1433 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1434 {
1435 struct ieee80211com *ic = &sc->sc_ic;
1436 struct ieee80211_node *ni = ic->ic_bss;
1437 struct ifnet *ifp = &ic->ic_if;
1438
1439 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1440 return;
1441
1442 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
1443 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1444
1445 /* In promiscuous mode, the BSSID field is not a reliable
1446 * indicator of the firmware's BSSID. Damp spurious
1447 * change-of-BSSID indications.
1448 */
1449 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1450 !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns,
1451 WI_MAX_FALSE_SYNS))
1452 return;
1453
1454 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1455 }
1456
1457 static __inline void
1458 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni,
1459 struct ieee80211_frame *wh, int rssi)
1460 {
1461 struct wi_node *wn;
1462
1463 if (ni == NULL) {
1464 printf("%s: null node", __func__);
1465 return;
1466 }
1467
1468 wn = (void*)ni;
1469 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi);
1470 }
1471
1472 STATIC void
1473 wi_rx_intr(struct wi_softc *sc)
1474 {
1475 struct ieee80211com *ic = &sc->sc_ic;
1476 struct ifnet *ifp = &ic->ic_if;
1477 struct ieee80211_node *ni;
1478 struct wi_frame frmhdr;
1479 struct mbuf *m;
1480 struct ieee80211_frame *wh;
1481 int fid, len, off, rssi;
1482 u_int8_t dir;
1483 u_int16_t status;
1484 u_int32_t rstamp;
1485
1486 fid = CSR_READ_2(sc, WI_RX_FID);
1487
1488 /* First read in the frame header */
1489 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1490 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1491 __func__, fid);
1492 ifp->if_ierrors++;
1493 return;
1494 }
1495
1496 if (IFF_DUMPPKTS(ifp))
1497 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1498
1499 /*
1500 * Drop undecryptable or packets with receive errors here
1501 */
1502 status = le16toh(frmhdr.wi_status);
1503 if ((status & WI_STAT_ERRSTAT) != 0 &&
1504 ic->ic_opmode != IEEE80211_M_MONITOR) {
1505 ifp->if_ierrors++;
1506 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1507 return;
1508 }
1509 rssi = frmhdr.wi_rx_signal;
1510 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1511 le16toh(frmhdr.wi_rx_tstamp1);
1512
1513 len = le16toh(frmhdr.wi_dat_len);
1514 off = ALIGN(sizeof(struct ieee80211_frame));
1515
1516 /* Sometimes the PRISM2.x returns bogusly large frames. Except
1517 * in monitor mode, just throw them away.
1518 */
1519 if (off + len > MCLBYTES) {
1520 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1521 ifp->if_ierrors++;
1522 DPRINTF(("wi_rx_intr: oversized packet\n"));
1523 return;
1524 } else
1525 len = 0;
1526 }
1527
1528 MGETHDR(m, M_DONTWAIT, MT_DATA);
1529 if (m == NULL) {
1530 ifp->if_ierrors++;
1531 DPRINTF(("wi_rx_intr: MGET failed\n"));
1532 return;
1533 }
1534 if (off + len > MHLEN) {
1535 MCLGET(m, M_DONTWAIT);
1536 if ((m->m_flags & M_EXT) == 0) {
1537 m_freem(m);
1538 ifp->if_ierrors++;
1539 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1540 return;
1541 }
1542 }
1543
1544 m->m_data += off - sizeof(struct ieee80211_frame);
1545 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1546 wi_read_bap(sc, fid, sizeof(frmhdr),
1547 m->m_data + sizeof(struct ieee80211_frame), len);
1548 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1549 m->m_pkthdr.rcvif = ifp;
1550
1551 #if NBPFILTER > 0
1552 if (sc->sc_drvbpf) {
1553 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap;
1554
1555 tap->wr_rate = frmhdr.wi_rx_rate / 5;
1556 tap->wr_antsignal = frmhdr.wi_rx_signal;
1557 tap->wr_antnoise = frmhdr.wi_rx_silence;
1558 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1559 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1560 if (frmhdr.wi_status & WI_STAT_PCF)
1561 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1562
1563 bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m);
1564 }
1565 #endif
1566 wh = mtod(m, struct ieee80211_frame *);
1567 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1568 /*
1569 * WEP is decrypted by hardware. Clear WEP bit
1570 * header for ieee80211_input().
1571 */
1572 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1573 }
1574
1575 /* synchronize driver's BSSID with firmware's BSSID */
1576 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1577 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1578 wi_sync_bssid(sc, wh->i_addr3);
1579
1580 ni = ieee80211_find_rxnode(ic, wh);
1581
1582 ieee80211_input(ifp, m, ni, rssi, rstamp);
1583
1584 wi_rssadapt_input(ic, ni, wh, rssi);
1585
1586 /*
1587 * The frame may have caused the node to be marked for
1588 * reclamation (e.g. in response to a DEAUTH message)
1589 * so use release_node here instead of unref_node.
1590 */
1591 ieee80211_release_node(ic, ni);
1592 }
1593
1594 STATIC void
1595 wi_tx_ex_intr(struct wi_softc *sc)
1596 {
1597 struct ieee80211com *ic = &sc->sc_ic;
1598 struct ifnet *ifp = &ic->ic_if;
1599 struct ieee80211_node *ni;
1600 struct ieee80211_rssdesc *id;
1601 struct wi_rssdesc *rssd;
1602 struct wi_frame frmhdr;
1603 int fid;
1604 u_int16_t status;
1605
1606 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1607 /* Read in the frame header */
1608 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1609 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1610 __func__, fid);
1611 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1612 &sc->sc_txpending);
1613 goto out;
1614 }
1615
1616 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1617 printf("%s: %s bad idx %02x\n",
1618 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1619 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1620 &sc->sc_txpending);
1621 goto out;
1622 }
1623
1624 status = le16toh(frmhdr.wi_status);
1625
1626 /*
1627 * Spontaneous station disconnects appear as xmit
1628 * errors. Don't announce them and/or count them
1629 * as an output error.
1630 */
1631 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1632 printf("%s: tx failed", sc->sc_dev.dv_xname);
1633 if (status & WI_TXSTAT_RET_ERR)
1634 printf(", retry limit exceeded");
1635 if (status & WI_TXSTAT_AGED_ERR)
1636 printf(", max transmit lifetime exceeded");
1637 if (status & WI_TXSTAT_DISCONNECT)
1638 printf(", port disconnected");
1639 if (status & WI_TXSTAT_FORM_ERR)
1640 printf(", invalid format (data len %u src %s)",
1641 le16toh(frmhdr.wi_dat_len),
1642 ether_sprintf(frmhdr.wi_ehdr.ether_shost));
1643 if (status & ~0xf)
1644 printf(", status=0x%x", status);
1645 printf("\n");
1646 }
1647 ifp->if_oerrors++;
1648 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1649 id = &rssd->rd_desc;
1650 if ((status & WI_TXSTAT_RET_ERR) != 0)
1651 wi_lower_rate(ic, id);
1652
1653 ni = id->id_node;
1654 id->id_node = NULL;
1655
1656 if (ni == NULL) {
1657 printf("%s: %s null node, rssdesc %02x\n",
1658 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1659 goto out;
1660 }
1661
1662 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1663 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1664 __func__, id->id_rateidx);
1665 sc->sc_txpending[id->id_rateidx] = 0;
1666 }
1667 if (ni != NULL)
1668 ieee80211_release_node(ic, ni);
1669 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1670 out:
1671 ifp->if_flags &= ~IFF_OACTIVE;
1672 }
1673
1674 STATIC void
1675 wi_txalloc_intr(struct wi_softc *sc)
1676 {
1677 int fid, cur;
1678
1679 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1680
1681 cur = sc->sc_txalloc;
1682 #ifdef DIAGNOSTIC
1683 if (sc->sc_txstarted == 0) {
1684 printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1685 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1686 sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1687 return;
1688 }
1689 #endif
1690 --sc->sc_txstarted;
1691 ++sc->sc_txalloced;
1692 sc->sc_txd[cur].d_fid = fid;
1693 sc->sc_txalloc = (cur + 1) % WI_NTXBUF;
1694 #ifdef WI_RING_DEBUG
1695 printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1696 sc->sc_dev.dv_xname, fid,
1697 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1698 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1699 #endif
1700 }
1701
1702 STATIC void
1703 wi_cmd_intr(struct wi_softc *sc)
1704 {
1705 struct ieee80211com *ic = &sc->sc_ic;
1706 struct ifnet *ifp = &ic->ic_if;
1707
1708 if (--sc->sc_txqueued == 0) {
1709 sc->sc_tx_timer = 0;
1710 ifp->if_flags &= ~IFF_OACTIVE;
1711 #ifdef WI_RING_DEBUG
1712 printf("%s: cmd , alloc %d queue %d start %d alloced %d queued %d started %d\n",
1713 sc->sc_dev.dv_xname,
1714 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1715 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1716 #endif
1717 } else
1718 wi_push_packet(sc);
1719 }
1720
1721 STATIC void
1722 wi_push_packet(struct wi_softc *sc)
1723 {
1724 struct ieee80211com *ic = &sc->sc_ic;
1725 struct ifnet *ifp = &ic->ic_if;
1726 int cur, fid;
1727
1728 cur = sc->sc_txstart;
1729 fid = sc->sc_txd[cur].d_fid;
1730 if (wi_sendcmd(sc, WI_CMD_TX | WI_RECLAIM, fid)) {
1731 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1732 /* XXX ring might have a hole */
1733 }
1734 ++sc->sc_txstarted;
1735 #ifdef DIAGNOSTIC
1736 if (sc->sc_txstarted > WI_NTXBUF)
1737 printf("%s: too many buffers started\n", sc->sc_dev.dv_xname);
1738 #endif
1739 sc->sc_txstart = (cur + 1) % WI_NTXBUF;
1740 sc->sc_tx_timer = 5;
1741 ifp->if_timer = 1;
1742 #ifdef WI_RING_DEBUG
1743 printf("%s: push %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1744 sc->sc_dev.dv_xname, fid,
1745 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1746 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1747 #endif
1748 }
1749
1750 STATIC void
1751 wi_tx_intr(struct wi_softc *sc)
1752 {
1753 struct ieee80211com *ic = &sc->sc_ic;
1754 struct ifnet *ifp = &ic->ic_if;
1755 struct ieee80211_node *ni;
1756 struct ieee80211_rssdesc *id;
1757 struct wi_rssdesc *rssd;
1758 struct wi_frame frmhdr;
1759 int fid;
1760
1761 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1762 /* Read in the frame header */
1763 if (wi_read_bap(sc, fid, 8, &frmhdr.wi_rx_rate, 2) != 0) {
1764 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1765 __func__, fid);
1766 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1767 &sc->sc_txpending);
1768 goto out;
1769 }
1770
1771 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1772 printf("%s: %s bad idx %02x\n",
1773 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1774 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1775 &sc->sc_txpending);
1776 goto out;
1777 }
1778
1779 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1780 id = &rssd->rd_desc;
1781 wi_raise_rate(ic, id);
1782
1783 ni = id->id_node;
1784 id->id_node = NULL;
1785
1786 if (ni == NULL) {
1787 printf("%s: %s null node, rssdesc %02x\n",
1788 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1789 goto out;
1790 }
1791
1792 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1793 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1794 __func__, id->id_rateidx);
1795 sc->sc_txpending[id->id_rateidx] = 0;
1796 }
1797 if (ni != NULL)
1798 ieee80211_release_node(ic, ni);
1799 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1800 out:
1801 ifp->if_flags &= ~IFF_OACTIVE;
1802 }
1803
1804 STATIC void
1805 wi_info_intr(struct wi_softc *sc)
1806 {
1807 struct ieee80211com *ic = &sc->sc_ic;
1808 struct ifnet *ifp = &ic->ic_if;
1809 int i, fid, len, off;
1810 u_int16_t ltbuf[2];
1811 u_int16_t stat;
1812 u_int32_t *ptr;
1813
1814 fid = CSR_READ_2(sc, WI_INFO_FID);
1815 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1816
1817 switch (le16toh(ltbuf[1])) {
1818
1819 case WI_INFO_LINK_STAT:
1820 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1821 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1822 switch (le16toh(stat)) {
1823 case CONNECTED:
1824 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1825 if (ic->ic_state == IEEE80211_S_RUN &&
1826 ic->ic_opmode != IEEE80211_M_IBSS)
1827 break;
1828 /* FALLTHROUGH */
1829 case AP_CHANGE:
1830 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1831 break;
1832 case AP_IN_RANGE:
1833 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1834 break;
1835 case AP_OUT_OF_RANGE:
1836 if (sc->sc_firmware_type == WI_SYMBOL &&
1837 sc->sc_scan_timer > 0) {
1838 if (wi_cmd(sc, WI_CMD_INQUIRE,
1839 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1840 sc->sc_scan_timer = 0;
1841 break;
1842 }
1843 if (ic->ic_opmode == IEEE80211_M_STA)
1844 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1845 break;
1846 case DISCONNECTED:
1847 case ASSOC_FAILED:
1848 if (ic->ic_opmode == IEEE80211_M_STA)
1849 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1850 break;
1851 }
1852 break;
1853
1854 case WI_INFO_COUNTERS:
1855 /* some card versions have a larger stats structure */
1856 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1857 ptr = (u_int32_t *)&sc->sc_stats;
1858 off = sizeof(ltbuf);
1859 for (i = 0; i < len; i++, off += 2, ptr++) {
1860 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1861 stat = le16toh(stat);
1862 #ifdef WI_HERMES_STATS_WAR
1863 if (stat & 0xf000)
1864 stat = ~stat;
1865 #endif
1866 *ptr += stat;
1867 }
1868 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1869 sc->sc_stats.wi_tx_multi_retries +
1870 sc->sc_stats.wi_tx_retry_limit;
1871 break;
1872
1873 case WI_INFO_SCAN_RESULTS:
1874 case WI_INFO_HOST_SCAN_RESULTS:
1875 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1876 break;
1877
1878 default:
1879 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1880 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1881 break;
1882 }
1883 }
1884
1885 STATIC int
1886 wi_write_multi(struct wi_softc *sc)
1887 {
1888 struct ifnet *ifp = &sc->sc_ic.ic_if;
1889 int n;
1890 struct wi_mcast mlist;
1891 struct ether_multi *enm;
1892 struct ether_multistep estep;
1893
1894 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1895 allmulti:
1896 ifp->if_flags |= IFF_ALLMULTI;
1897 memset(&mlist, 0, sizeof(mlist));
1898 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1899 sizeof(mlist));
1900 }
1901
1902 n = 0;
1903 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1904 while (enm != NULL) {
1905 /* Punt on ranges or too many multicast addresses. */
1906 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1907 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1908 goto allmulti;
1909
1910 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1911 n++;
1912 ETHER_NEXT_MULTI(estep, enm);
1913 }
1914 ifp->if_flags &= ~IFF_ALLMULTI;
1915 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1916 IEEE80211_ADDR_LEN * n);
1917 }
1918
1919
1920 STATIC void
1921 wi_read_nicid(struct wi_softc *sc)
1922 {
1923 struct wi_card_ident *id;
1924 char *p;
1925 int len;
1926 u_int16_t ver[4];
1927
1928 /* getting chip identity */
1929 memset(ver, 0, sizeof(ver));
1930 len = sizeof(ver);
1931 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1932 printf("%s: using ", sc->sc_dev.dv_xname);
1933 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1934
1935 sc->sc_firmware_type = WI_NOTYPE;
1936 for (id = wi_card_ident; id->card_name != NULL; id++) {
1937 if (le16toh(ver[0]) == id->card_id) {
1938 printf("%s", id->card_name);
1939 sc->sc_firmware_type = id->firm_type;
1940 break;
1941 }
1942 }
1943 if (sc->sc_firmware_type == WI_NOTYPE) {
1944 if (le16toh(ver[0]) & 0x8000) {
1945 printf("Unknown PRISM2 chip");
1946 sc->sc_firmware_type = WI_INTERSIL;
1947 } else {
1948 printf("Unknown Lucent chip");
1949 sc->sc_firmware_type = WI_LUCENT;
1950 }
1951 }
1952
1953 /* get primary firmware version (Only Prism chips) */
1954 if (sc->sc_firmware_type != WI_LUCENT) {
1955 memset(ver, 0, sizeof(ver));
1956 len = sizeof(ver);
1957 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1958 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1959 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1960 }
1961
1962 /* get station firmware version */
1963 memset(ver, 0, sizeof(ver));
1964 len = sizeof(ver);
1965 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1966 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1967 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1968 if (sc->sc_firmware_type == WI_INTERSIL &&
1969 (sc->sc_sta_firmware_ver == 10102 ||
1970 sc->sc_sta_firmware_ver == 20102)) {
1971 char ident[12];
1972 memset(ident, 0, sizeof(ident));
1973 len = sizeof(ident);
1974 /* value should be the format like "V2.00-11" */
1975 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1976 *(p = (char *)ident) >= 'A' &&
1977 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1978 sc->sc_firmware_type = WI_SYMBOL;
1979 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1980 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1981 (p[6] - '0') * 10 + (p[7] - '0');
1982 }
1983 }
1984
1985 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1986 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1987 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1988 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1989 printf("Primary (%u.%u.%u), ",
1990 sc->sc_pri_firmware_ver / 10000,
1991 (sc->sc_pri_firmware_ver % 10000) / 100,
1992 sc->sc_pri_firmware_ver % 100);
1993 printf("Station (%u.%u.%u)\n",
1994 sc->sc_sta_firmware_ver / 10000,
1995 (sc->sc_sta_firmware_ver % 10000) / 100,
1996 sc->sc_sta_firmware_ver % 100);
1997 }
1998
1999 STATIC int
2000 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
2001 {
2002 struct wi_ssid ssid;
2003
2004 if (buflen > IEEE80211_NWID_LEN)
2005 return ENOBUFS;
2006 memset(&ssid, 0, sizeof(ssid));
2007 ssid.wi_len = htole16(buflen);
2008 memcpy(ssid.wi_ssid, buf, buflen);
2009 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
2010 }
2011
2012 STATIC int
2013 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2014 {
2015 struct wi_softc *sc = ifp->if_softc;
2016 struct ieee80211com *ic = &sc->sc_ic;
2017 struct ifreq *ifr = (struct ifreq *)data;
2018 struct wi_req wreq;
2019 int len, n, error;
2020
2021 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2022 if (error)
2023 return error;
2024 len = (wreq.wi_len - 1) * 2;
2025 if (len < sizeof(u_int16_t))
2026 return ENOSPC;
2027 if (len > sizeof(wreq.wi_val))
2028 len = sizeof(wreq.wi_val);
2029
2030 switch (wreq.wi_type) {
2031
2032 case WI_RID_IFACE_STATS:
2033 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
2034 if (len < sizeof(sc->sc_stats))
2035 error = ENOSPC;
2036 else
2037 len = sizeof(sc->sc_stats);
2038 break;
2039
2040 case WI_RID_ENCRYPTION:
2041 case WI_RID_TX_CRYPT_KEY:
2042 case WI_RID_DEFLT_CRYPT_KEYS:
2043 case WI_RID_TX_RATE:
2044 return ieee80211_cfgget(ifp, cmd, data);
2045
2046 case WI_RID_MICROWAVE_OVEN:
2047 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
2048 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2049 &len);
2050 break;
2051 }
2052 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
2053 len = sizeof(u_int16_t);
2054 break;
2055
2056 case WI_RID_DBM_ADJUST:
2057 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
2058 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2059 &len);
2060 break;
2061 }
2062 wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
2063 len = sizeof(u_int16_t);
2064 break;
2065
2066 case WI_RID_ROAMING_MODE:
2067 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
2068 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2069 &len);
2070 break;
2071 }
2072 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
2073 len = sizeof(u_int16_t);
2074 break;
2075
2076 case WI_RID_SYSTEM_SCALE:
2077 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
2078 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2079 &len);
2080 break;
2081 }
2082 wreq.wi_val[0] = htole16(sc->sc_system_scale);
2083 len = sizeof(u_int16_t);
2084 break;
2085
2086 case WI_RID_FRAG_THRESH:
2087 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
2088 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2089 &len);
2090 break;
2091 }
2092 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2093 len = sizeof(u_int16_t);
2094 break;
2095
2096 case WI_RID_READ_APS:
2097 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2098 return ieee80211_cfgget(ifp, cmd, data);
2099 if (sc->sc_scan_timer > 0) {
2100 error = EINPROGRESS;
2101 break;
2102 }
2103 n = sc->sc_naps;
2104 if (len < sizeof(n)) {
2105 error = ENOSPC;
2106 break;
2107 }
2108 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
2109 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
2110 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
2111 memcpy(wreq.wi_val, &n, sizeof(n));
2112 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
2113 sizeof(struct wi_apinfo) * n);
2114 break;
2115
2116 default:
2117 if (sc->sc_enabled) {
2118 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2119 &len);
2120 break;
2121 }
2122 switch (wreq.wi_type) {
2123 case WI_RID_MAX_DATALEN:
2124 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
2125 len = sizeof(u_int16_t);
2126 break;
2127 case WI_RID_FRAG_THRESH:
2128 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2129 len = sizeof(u_int16_t);
2130 break;
2131 case WI_RID_RTS_THRESH:
2132 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
2133 len = sizeof(u_int16_t);
2134 break;
2135 case WI_RID_CNFAUTHMODE:
2136 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
2137 len = sizeof(u_int16_t);
2138 break;
2139 case WI_RID_NODENAME:
2140 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
2141 error = ENOSPC;
2142 break;
2143 }
2144 len = sc->sc_nodelen + sizeof(u_int16_t);
2145 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
2146 memcpy(&wreq.wi_val[1], sc->sc_nodename,
2147 sc->sc_nodelen);
2148 break;
2149 default:
2150 return ieee80211_cfgget(ifp, cmd, data);
2151 }
2152 break;
2153 }
2154 if (error)
2155 return error;
2156 wreq.wi_len = (len + 1) / 2 + 1;
2157 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
2158 }
2159
2160 STATIC int
2161 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2162 {
2163 struct wi_softc *sc = ifp->if_softc;
2164 struct ieee80211com *ic = &sc->sc_ic;
2165 struct ifreq *ifr = (struct ifreq *)data;
2166 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2167 struct wi_req wreq;
2168 struct mbuf *m;
2169 int i, len, error;
2170
2171 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2172 if (error)
2173 return error;
2174 len = (wreq.wi_len - 1) * 2;
2175 switch (wreq.wi_type) {
2176 case WI_RID_DBM_ADJUST:
2177 return ENODEV;
2178
2179 case WI_RID_NODENAME:
2180 if (le16toh(wreq.wi_val[0]) * 2 > len ||
2181 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
2182 error = ENOSPC;
2183 break;
2184 }
2185 if (sc->sc_enabled) {
2186 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2187 len);
2188 if (error)
2189 break;
2190 }
2191 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
2192 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
2193 break;
2194
2195 case WI_RID_MICROWAVE_OVEN:
2196 case WI_RID_ROAMING_MODE:
2197 case WI_RID_SYSTEM_SCALE:
2198 case WI_RID_FRAG_THRESH:
2199 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
2200 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
2201 break;
2202 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
2203 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
2204 break;
2205 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
2206 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
2207 break;
2208 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
2209 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
2210 break;
2211 /* FALLTHROUGH */
2212 case WI_RID_RTS_THRESH:
2213 case WI_RID_CNFAUTHMODE:
2214 case WI_RID_MAX_DATALEN:
2215 if (sc->sc_enabled) {
2216 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2217 sizeof(u_int16_t));
2218 if (error)
2219 break;
2220 }
2221 switch (wreq.wi_type) {
2222 case WI_RID_FRAG_THRESH:
2223 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
2224 break;
2225 case WI_RID_RTS_THRESH:
2226 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
2227 break;
2228 case WI_RID_MICROWAVE_OVEN:
2229 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
2230 break;
2231 case WI_RID_ROAMING_MODE:
2232 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
2233 break;
2234 case WI_RID_SYSTEM_SCALE:
2235 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
2236 break;
2237 case WI_RID_CNFAUTHMODE:
2238 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
2239 break;
2240 case WI_RID_MAX_DATALEN:
2241 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
2242 break;
2243 }
2244 break;
2245
2246 case WI_RID_TX_RATE:
2247 switch (le16toh(wreq.wi_val[0])) {
2248 case 3:
2249 ic->ic_fixed_rate = -1;
2250 break;
2251 default:
2252 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2253 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
2254 / 2 == le16toh(wreq.wi_val[0]))
2255 break;
2256 }
2257 if (i == IEEE80211_RATE_SIZE)
2258 return EINVAL;
2259 ic->ic_fixed_rate = i;
2260 }
2261 if (sc->sc_enabled)
2262 error = wi_cfg_txrate(sc);
2263 break;
2264
2265 case WI_RID_SCAN_APS:
2266 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2267 error = wi_scan_ap(sc, 0x3fff, 0x000f);
2268 break;
2269
2270 case WI_RID_MGMT_XMIT:
2271 if (!sc->sc_enabled) {
2272 error = ENETDOWN;
2273 break;
2274 }
2275 if (ic->ic_mgtq.ifq_len > 5) {
2276 error = EAGAIN;
2277 break;
2278 }
2279 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
2280 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
2281 if (m == NULL) {
2282 error = ENOMEM;
2283 break;
2284 }
2285 IF_ENQUEUE(&ic->ic_mgtq, m);
2286 break;
2287
2288 default:
2289 if (sc->sc_enabled) {
2290 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2291 len);
2292 if (error)
2293 break;
2294 }
2295 error = ieee80211_cfgset(ifp, cmd, data);
2296 break;
2297 }
2298 return error;
2299 }
2300
2301 /* Rate is 0 for hardware auto-select, otherwise rate is
2302 * 2, 4, 11, or 22 (units of 500Kbps).
2303 */
2304 STATIC int
2305 wi_write_txrate(struct wi_softc *sc, int rate)
2306 {
2307 u_int16_t hwrate;
2308
2309 /* rate: 0, 2, 4, 11, 22 */
2310 switch (sc->sc_firmware_type) {
2311 case WI_LUCENT:
2312 switch (rate & IEEE80211_RATE_VAL) {
2313 case 2:
2314 hwrate = 1;
2315 break;
2316 case 4:
2317 hwrate = 2;
2318 break;
2319 default:
2320 hwrate = 3; /* auto */
2321 break;
2322 case 11:
2323 hwrate = 4;
2324 break;
2325 case 22:
2326 hwrate = 5;
2327 break;
2328 }
2329 break;
2330 default:
2331 switch (rate & IEEE80211_RATE_VAL) {
2332 case 2:
2333 hwrate = 1;
2334 break;
2335 case 4:
2336 hwrate = 2;
2337 break;
2338 case 11:
2339 hwrate = 4;
2340 break;
2341 case 22:
2342 hwrate = 8;
2343 break;
2344 default:
2345 hwrate = 15; /* auto */
2346 break;
2347 }
2348 break;
2349 }
2350
2351 if (sc->sc_tx_rate == hwrate)
2352 return 0;
2353
2354 if (sc->sc_if.if_flags & IFF_DEBUG)
2355 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate,
2356 hwrate, rate);
2357
2358 sc->sc_tx_rate = hwrate;
2359
2360 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate);
2361 }
2362
2363 STATIC int
2364 wi_cfg_txrate(struct wi_softc *sc)
2365 {
2366 struct ieee80211com *ic = &sc->sc_ic;
2367 struct ieee80211_rateset *rs;
2368 int rate;
2369
2370 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2371
2372 sc->sc_tx_rate = 0; /* force write to RID */
2373
2374 if (ic->ic_fixed_rate < 0)
2375 rate = 0; /* auto */
2376 else
2377 rate = rs->rs_rates[ic->ic_fixed_rate];
2378
2379 return wi_write_txrate(sc, rate);
2380 }
2381
2382 STATIC int
2383 wi_write_wep(struct wi_softc *sc)
2384 {
2385 struct ieee80211com *ic = &sc->sc_ic;
2386 int error = 0;
2387 int i, keylen;
2388 u_int16_t val;
2389 struct wi_key wkey[IEEE80211_WEP_NKID];
2390
2391 switch (sc->sc_firmware_type) {
2392 case WI_LUCENT:
2393 val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0;
2394 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2395 if (error)
2396 break;
2397 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
2398 if (error)
2399 break;
2400 memset(wkey, 0, sizeof(wkey));
2401 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2402 keylen = ic->ic_nw_keys[i].wk_len;
2403 wkey[i].wi_keylen = htole16(keylen);
2404 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2405 keylen);
2406 }
2407 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2408 wkey, sizeof(wkey));
2409 break;
2410
2411 case WI_INTERSIL:
2412 case WI_SYMBOL:
2413 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2414 /*
2415 * ONLY HWB3163 EVAL-CARD Firmware version
2416 * less than 0.8 variant2
2417 *
2418 * If promiscuous mode disable, Prism2 chip
2419 * does not work with WEP .
2420 * It is under investigation for details.
2421 * (ichiro (at) NetBSD.org)
2422 */
2423 if (sc->sc_firmware_type == WI_INTERSIL &&
2424 sc->sc_sta_firmware_ver < 802 ) {
2425 /* firm ver < 0.8 variant 2 */
2426 wi_write_val(sc, WI_RID_PROMISC, 1);
2427 }
2428 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2429 sc->sc_cnfauthmode);
2430 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
2431 /*
2432 * Encryption firmware has a bug for HostAP mode.
2433 */
2434 if (sc->sc_firmware_type == WI_INTERSIL &&
2435 ic->ic_opmode == IEEE80211_M_HOSTAP)
2436 val |= HOST_ENCRYPT;
2437 } else {
2438 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2439 IEEE80211_AUTH_OPEN);
2440 val = HOST_ENCRYPT | HOST_DECRYPT;
2441 }
2442 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2443 if (error)
2444 break;
2445 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2446 ic->ic_wep_txkey);
2447 if (error)
2448 break;
2449 /*
2450 * It seems that the firmware accept 104bit key only if
2451 * all the keys have 104bit length. We get the length of
2452 * the transmit key and use it for all other keys.
2453 * Perhaps we should use software WEP for such situation.
2454 */
2455 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
2456 if (keylen > IEEE80211_WEP_KEYLEN)
2457 keylen = 13; /* 104bit keys */
2458 else
2459 keylen = IEEE80211_WEP_KEYLEN;
2460 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2461 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2462 ic->ic_nw_keys[i].wk_key, keylen);
2463 if (error)
2464 break;
2465 }
2466 break;
2467 }
2468 return error;
2469 }
2470
2471 /* Must be called at proper protection level! */
2472 STATIC int
2473 wi_sendcmd(struct wi_softc *sc, int cmd, int val0)
2474 {
2475 #ifdef WI_HISTOGRAM
2476 static int hist3[11];
2477 static int hist3count;
2478 #endif
2479 int i;
2480
2481 /* wait for the busy bit to clear */
2482 for (i = 500; i > 0; i--) { /* 5s */
2483 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2484 break;
2485 DELAY(1000); /* 1 m sec */
2486 }
2487 if (i == 0) {
2488 printf("%s: wi_sendcmd: busy bit won't clear.\n",
2489 sc->sc_dev.dv_xname);
2490 return(ETIMEDOUT);
2491 }
2492 #ifdef WI_HISTOGRAM
2493 if (i > 490)
2494 hist3[500 - i]++;
2495 else
2496 hist3[10]++;
2497 if (++hist3count == 1000) {
2498 hist3count = 0;
2499 printf("%s: hist3: %d %d %d %d %d %d %d %d %d %d %d\n",
2500 sc->sc_dev.dv_xname,
2501 hist3[0], hist3[1], hist3[2], hist3[3], hist3[4],
2502 hist3[5], hist3[6], hist3[7], hist3[8], hist3[9],
2503 hist3[10]);
2504 }
2505 #endif
2506 CSR_WRITE_2(sc, WI_PARAM0, val0);
2507 CSR_WRITE_2(sc, WI_PARAM1, 0);
2508 CSR_WRITE_2(sc, WI_PARAM2, 0);
2509 CSR_WRITE_2(sc, WI_COMMAND, cmd);
2510
2511 return 0;
2512 }
2513
2514 STATIC int
2515 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2516 {
2517 #ifdef WI_HISTOGRAM
2518 static int hist1[11];
2519 static int hist1count;
2520 static int hist2[11];
2521 static int hist2count;
2522 #endif
2523 int i, status;
2524
2525 /* wait for the busy bit to clear */
2526 for (i = 500; i > 0; i--) { /* 5s */
2527 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2528 break;
2529 DELAY(1000); /* 1 m sec */
2530 }
2531 if (i == 0) {
2532 printf("%s: wi_cmd: busy bit won't clear.\n",
2533 sc->sc_dev.dv_xname);
2534 return(ETIMEDOUT);
2535 }
2536 #ifdef WI_HISTOGRAM
2537 if (i > 490)
2538 hist1[500 - i]++;
2539 else
2540 hist1[10]++;
2541 if (++hist1count == 1000) {
2542 hist1count = 0;
2543 printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n",
2544 sc->sc_dev.dv_xname,
2545 hist1[0], hist1[1], hist1[2], hist1[3], hist1[4],
2546 hist1[5], hist1[6], hist1[7], hist1[8], hist1[9],
2547 hist1[10]);
2548 }
2549 #endif
2550 CSR_WRITE_2(sc, WI_PARAM0, val0);
2551 CSR_WRITE_2(sc, WI_PARAM1, val1);
2552 CSR_WRITE_2(sc, WI_PARAM2, val2);
2553 CSR_WRITE_2(sc, WI_COMMAND, cmd);
2554
2555 if (cmd == WI_CMD_INI) {
2556 /* XXX: should sleep here. */
2557 DELAY(100*1000);
2558 }
2559 /* wait for the cmd completed bit */
2560 for (i = 0; i < WI_TIMEOUT; i++) {
2561 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
2562 break;
2563 DELAY(WI_DELAY);
2564 }
2565 #ifdef WI_HISTOGRAM
2566 if (i < 100)
2567 hist2[i/10]++;
2568 else
2569 hist2[10]++;
2570 if (++hist2count == 1000) {
2571 hist2count = 0;
2572 printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n",
2573 sc->sc_dev.dv_xname,
2574 hist2[0], hist2[1], hist2[2], hist2[3], hist2[4],
2575 hist2[5], hist2[6], hist2[7], hist2[8], hist2[9],
2576 hist2[10]);
2577 }
2578 #endif
2579
2580 status = CSR_READ_2(sc, WI_STATUS);
2581
2582 /* Ack the command */
2583 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2584
2585 if (i == WI_TIMEOUT) {
2586 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
2587 sc->sc_dev.dv_xname, cmd, val0);
2588 return ETIMEDOUT;
2589 }
2590
2591 if (status & WI_STAT_CMD_RESULT) {
2592 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
2593 sc->sc_dev.dv_xname, cmd, val0);
2594 return EIO;
2595 }
2596 return 0;
2597 }
2598
2599 STATIC int
2600 wi_seek_bap(struct wi_softc *sc, int id, int off)
2601 {
2602 #ifdef WI_HISTOGRAM
2603 static int hist4[11];
2604 static int hist4count;
2605 #endif
2606 int i, status;
2607
2608 CSR_WRITE_2(sc, WI_SEL0, id);
2609 CSR_WRITE_2(sc, WI_OFF0, off);
2610
2611 for (i = 0; ; i++) {
2612 status = CSR_READ_2(sc, WI_OFF0);
2613 if ((status & WI_OFF_BUSY) == 0)
2614 break;
2615 if (i == WI_TIMEOUT) {
2616 printf("%s: timeout in wi_seek to %x/%x\n",
2617 sc->sc_dev.dv_xname, id, off);
2618 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2619 return ETIMEDOUT;
2620 }
2621 DELAY(2);
2622 }
2623 #ifdef WI_HISTOGRAM
2624 if (i < 100)
2625 hist4[i/10]++;
2626 else
2627 hist4[10]++;
2628 if (++hist4count == 2500) {
2629 hist4count = 0;
2630 printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n",
2631 sc->sc_dev.dv_xname,
2632 hist4[0], hist4[1], hist4[2], hist4[3], hist4[4],
2633 hist4[5], hist4[6], hist4[7], hist4[8], hist4[9],
2634 hist4[10]);
2635 }
2636 #endif
2637 if (status & WI_OFF_ERR) {
2638 printf("%s: failed in wi_seek to %x/%x\n",
2639 sc->sc_dev.dv_xname, id, off);
2640 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2641 return EIO;
2642 }
2643 sc->sc_bap_id = id;
2644 sc->sc_bap_off = off;
2645 return 0;
2646 }
2647
2648 STATIC int
2649 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2650 {
2651 int error, cnt;
2652
2653 if (buflen == 0)
2654 return 0;
2655 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2656 if ((error = wi_seek_bap(sc, id, off)) != 0)
2657 return error;
2658 }
2659 cnt = (buflen + 1) / 2;
2660 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2661 sc->sc_bap_off += cnt * 2;
2662 return 0;
2663 }
2664
2665 STATIC int
2666 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2667 {
2668 int error, cnt;
2669
2670 if (buflen == 0)
2671 return 0;
2672
2673 #ifdef WI_HERMES_AUTOINC_WAR
2674 again:
2675 #endif
2676 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2677 if ((error = wi_seek_bap(sc, id, off)) != 0)
2678 return error;
2679 }
2680 cnt = (buflen + 1) / 2;
2681 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2682 sc->sc_bap_off += cnt * 2;
2683
2684 #ifdef WI_HERMES_AUTOINC_WAR
2685 /*
2686 * According to the comments in the HCF Light code, there is a bug
2687 * in the Hermes (or possibly in certain Hermes firmware revisions)
2688 * where the chip's internal autoincrement counter gets thrown off
2689 * during data writes: the autoincrement is missed, causing one
2690 * data word to be overwritten and subsequent words to be written to
2691 * the wrong memory locations. The end result is that we could end
2692 * up transmitting bogus frames without realizing it. The workaround
2693 * for this is to write a couple of extra guard words after the end
2694 * of the transfer, then attempt to read then back. If we fail to
2695 * locate the guard words where we expect them, we preform the
2696 * transfer over again.
2697 */
2698 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2699 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2700 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2701 wi_seek_bap(sc, id, sc->sc_bap_off);
2702 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2703 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2704 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2705 printf("%s: detect auto increment bug, try again\n",
2706 sc->sc_dev.dv_xname);
2707 goto again;
2708 }
2709 }
2710 #endif
2711 return 0;
2712 }
2713
2714 STATIC int
2715 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2716 {
2717 int error, len;
2718 struct mbuf *m;
2719
2720 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2721 if (m->m_len == 0)
2722 continue;
2723
2724 len = min(m->m_len, totlen);
2725
2726 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2727 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2728 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2729 totlen);
2730 }
2731
2732 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2733 return error;
2734
2735 off += m->m_len;
2736 totlen -= len;
2737 }
2738 return 0;
2739 }
2740
2741 STATIC int
2742 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2743 {
2744 int i;
2745
2746 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2747 printf("%s: failed to allocate %d bytes on NIC\n",
2748 sc->sc_dev.dv_xname, len);
2749 return ENOMEM;
2750 }
2751
2752 for (i = 0; i < WI_TIMEOUT; i++) {
2753 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2754 break;
2755 if (i == WI_TIMEOUT) {
2756 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
2757 return ETIMEDOUT;
2758 }
2759 DELAY(1);
2760 }
2761 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
2762 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2763 return 0;
2764 }
2765
2766 STATIC int
2767 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2768 {
2769 int error, len;
2770 u_int16_t ltbuf[2];
2771
2772 /* Tell the NIC to enter record read mode. */
2773 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2774 if (error)
2775 return error;
2776
2777 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2778 if (error)
2779 return error;
2780
2781 if (le16toh(ltbuf[0]) == 0)
2782 return EOPNOTSUPP;
2783 if (le16toh(ltbuf[1]) != rid) {
2784 printf("%s: record read mismatch, rid=%x, got=%x\n",
2785 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
2786 return EIO;
2787 }
2788 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
2789 if (*buflenp < len) {
2790 printf("%s: record buffer is too small, "
2791 "rid=%x, size=%d, len=%d\n",
2792 sc->sc_dev.dv_xname, rid, *buflenp, len);
2793 return ENOSPC;
2794 }
2795 *buflenp = len;
2796 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2797 }
2798
2799 STATIC int
2800 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2801 {
2802 int error;
2803 u_int16_t ltbuf[2];
2804
2805 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
2806 ltbuf[1] = htole16(rid);
2807
2808 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2809 if (error)
2810 return error;
2811 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2812 if (error)
2813 return error;
2814
2815 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2816 }
2817
2818 STATIC void
2819 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni)
2820 {
2821 struct wi_node *wn = (void*)ni;
2822 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt);
2823 }
2824
2825 STATIC void
2826 wi_rssadapt_updatestats(void *arg)
2827 {
2828 struct wi_softc *sc = arg;
2829 struct ieee80211com *ic = &sc->sc_ic;
2830 ieee80211_iterate_nodes(ic, wi_rssadapt_updatestats_cb, arg);
2831 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2832 ic->ic_state == IEEE80211_S_RUN)
2833 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
2834 wi_rssadapt_updatestats, arg);
2835 }
2836
2837 STATIC int
2838 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2839 {
2840 struct ifnet *ifp = &ic->ic_if;
2841 struct wi_softc *sc = ic->ic_softc;
2842 struct ieee80211_node *ni = ic->ic_bss;
2843 int buflen, linkstate = LINK_STATE_DOWN, s;
2844 u_int16_t val;
2845 struct wi_ssid ssid;
2846 struct wi_macaddr bssid, old_bssid;
2847 enum ieee80211_state ostate;
2848 #ifdef WI_DEBUG
2849 static const char *stname[] =
2850 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
2851 #endif /* WI_DEBUG */
2852
2853 ostate = ic->ic_state;
2854 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
2855
2856 switch (nstate) {
2857 case IEEE80211_S_INIT:
2858 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2859 callout_stop(&sc->sc_rssadapt_ch);
2860 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2861 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2862 return (*sc->sc_newstate)(ic, nstate, arg);
2863
2864 case IEEE80211_S_RUN:
2865 linkstate = LINK_STATE_UP;
2866 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2867 buflen = IEEE80211_ADDR_LEN;
2868 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid);
2869 wi_read_rid(sc, WI_RID_CURRENT_BSSID, &bssid, &buflen);
2870 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid);
2871 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid);
2872 buflen = sizeof(val);
2873 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
2874 if (!isset(ic->ic_chan_avail, le16toh(val)))
2875 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname,
2876 le16toh(val));
2877 ni->ni_chan = &ic->ic_channels[le16toh(val)];
2878
2879 /* If not equal, then discount a false synchronization. */
2880 if (!IEEE80211_ADDR_EQ(old_bssid.wi_mac_addr, ni->ni_bssid))
2881 sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1);
2882
2883 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2884 ni->ni_esslen = ic->ic_des_esslen;
2885 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2886 ni->ni_rates = ic->ic_sup_rates[
2887 ieee80211_chan2mode(ic, ni->ni_chan)];
2888 ni->ni_intval = ic->ic_lintval;
2889 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2890 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2891 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2892 } else {
2893 buflen = sizeof(ssid);
2894 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2895 ni->ni_esslen = le16toh(ssid.wi_len);
2896 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2897 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2898 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2899 ni->ni_rates = ic->ic_sup_rates[
2900 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/
2901 }
2902 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2903 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
2904 wi_rssadapt_updatestats, sc);
2905 break;
2906
2907 case IEEE80211_S_SCAN:
2908 case IEEE80211_S_AUTH:
2909 case IEEE80211_S_ASSOC:
2910 break;
2911 }
2912
2913 if (ifp->if_link_state != linkstate) {
2914 ifp->if_link_state = linkstate;
2915 s = splnet();
2916 rt_ifmsg(ifp);
2917 splx(s);
2918 }
2919 ic->ic_state = nstate;
2920 /* skip standard ieee80211 handling */
2921 return 0;
2922 }
2923
2924 STATIC int
2925 wi_set_tim(struct ieee80211com *ic, int aid, int which)
2926 {
2927 struct wi_softc *sc = ic->ic_softc;
2928
2929 aid &= ~0xc000;
2930 if (which)
2931 aid |= 0x8000;
2932
2933 return wi_write_val(sc, WI_RID_SET_TIM, aid);
2934 }
2935
2936 STATIC int
2937 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
2938 {
2939 int error = 0;
2940 u_int16_t val[2];
2941
2942 if (!sc->sc_enabled)
2943 return ENXIO;
2944 switch (sc->sc_firmware_type) {
2945 case WI_LUCENT:
2946 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2947 break;
2948 case WI_INTERSIL:
2949 val[0] = htole16(chanmask); /* channel */
2950 val[1] = htole16(txrate); /* tx rate */
2951 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2952 break;
2953 case WI_SYMBOL:
2954 /*
2955 * XXX only supported on 3.x ?
2956 */
2957 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2958 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2959 val, sizeof(val[0]));
2960 break;
2961 }
2962 if (error == 0) {
2963 sc->sc_scan_timer = WI_SCAN_WAIT;
2964 sc->sc_ic.ic_if.if_timer = 1;
2965 DPRINTF(("wi_scan_ap: start scanning, "
2966 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate));
2967 }
2968 return error;
2969 }
2970
2971 STATIC void
2972 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2973 {
2974 #define N(a) (sizeof (a) / sizeof (a[0]))
2975 int i, naps, off, szbuf;
2976 struct wi_scan_header ws_hdr; /* Prism2 header */
2977 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2978 struct wi_apinfo *ap;
2979
2980 off = sizeof(u_int16_t) * 2;
2981 memset(&ws_hdr, 0, sizeof(ws_hdr));
2982 switch (sc->sc_firmware_type) {
2983 case WI_INTERSIL:
2984 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2985 off += sizeof(ws_hdr);
2986 szbuf = sizeof(struct wi_scan_data_p2);
2987 break;
2988 case WI_SYMBOL:
2989 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2990 break;
2991 case WI_LUCENT:
2992 szbuf = sizeof(struct wi_scan_data);
2993 break;
2994 default:
2995 printf("%s: wi_scan_result: unknown firmware type %u\n",
2996 sc->sc_dev.dv_xname, sc->sc_firmware_type);
2997 naps = 0;
2998 goto done;
2999 }
3000 naps = (cnt * 2 + 2 - off) / szbuf;
3001 if (naps > N(sc->sc_aps))
3002 naps = N(sc->sc_aps);
3003 sc->sc_naps = naps;
3004 /* Read Data */
3005 ap = sc->sc_aps;
3006 memset(&ws_dat, 0, sizeof(ws_dat));
3007 for (i = 0; i < naps; i++, ap++) {
3008 wi_read_bap(sc, fid, off, &ws_dat,
3009 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
3010 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
3011 ether_sprintf(ws_dat.wi_bssid)));
3012 off += szbuf;
3013 ap->scanreason = le16toh(ws_hdr.wi_reason);
3014 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
3015 ap->channel = le16toh(ws_dat.wi_chid);
3016 ap->signal = le16toh(ws_dat.wi_signal);
3017 ap->noise = le16toh(ws_dat.wi_noise);
3018 ap->quality = ap->signal - ap->noise;
3019 ap->capinfo = le16toh(ws_dat.wi_capinfo);
3020 ap->interval = le16toh(ws_dat.wi_interval);
3021 ap->rate = le16toh(ws_dat.wi_rate);
3022 ap->namelen = le16toh(ws_dat.wi_namelen);
3023 if (ap->namelen > sizeof(ap->name))
3024 ap->namelen = sizeof(ap->name);
3025 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
3026 }
3027 done:
3028 /* Done scanning */
3029 sc->sc_scan_timer = 0;
3030 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
3031 #undef N
3032 }
3033
3034 STATIC void
3035 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
3036 {
3037 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
3038 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL
3039 : -1,
3040 rssi);
3041 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
3042 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
3043 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
3044 printf(" rx_signal %u rx_rate %u rx_flow %u\n",
3045 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
3046 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
3047 wh->wi_tx_rtry, wh->wi_tx_rate,
3048 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
3049 printf(" ehdr dst %s src %s type 0x%x\n",
3050 ether_sprintf(wh->wi_ehdr.ether_dhost),
3051 ether_sprintf(wh->wi_ehdr.ether_shost),
3052 wh->wi_ehdr.ether_type);
3053 }
3054