wi.c revision 1.190 1 /* $NetBSD: wi.c,v 1.190 2004/12/13 17:21:35 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1997, 1998, 1999
41 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Bill Paul.
54 * 4. Neither the name of the author nor the names of any co-contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
68 * THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
73 *
74 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
81 * from Lucent. Unlike the older cards, the new ones are programmed
82 * entirely via a firmware-driven controller called the Hermes.
83 * Unfortunately, Lucent will not release the Hermes programming manual
84 * without an NDA (if at all). What they do release is an API library
85 * called the HCF (Hardware Control Functions) which is supposed to
86 * do the device-specific operations of a device driver for you. The
87 * publically available version of the HCF library (the 'HCF Light') is
88 * a) extremely gross, b) lacks certain features, particularly support
89 * for 802.11 frames, and c) is contaminated by the GNU Public License.
90 *
91 * This driver does not use the HCF or HCF Light at all. Instead, it
92 * programs the Hermes controller directly, using information gleaned
93 * from the HCF Light code and corresponding documentation.
94 *
95 * This driver supports both the PCMCIA and ISA versions of the
96 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
97 * anything of the sort: it's actually a PCMCIA bridge adapter
98 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
99 * inserted. Consequently, you need to use the pccard support for
100 * both the ISA and PCMCIA adapters.
101 */
102
103 /*
104 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
105 * Oslo IETF plenary meeting.
106 */
107
108 #include <sys/cdefs.h>
109 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.190 2004/12/13 17:21:35 dyoung Exp $");
110
111 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
112 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
113 #undef WI_HISTOGRAM
114 #undef WI_RING_DEBUG
115 #define STATIC static
116
117 #include "bpfilter.h"
118
119 #include <sys/param.h>
120 #include <sys/systm.h>
121 #include <sys/callout.h>
122 #include <sys/device.h>
123 #include <sys/socket.h>
124 #include <sys/mbuf.h>
125 #include <sys/ioctl.h>
126 #include <sys/kernel.h> /* for hz */
127 #include <sys/proc.h>
128
129 #include <net/if.h>
130 #include <net/if_dl.h>
131 #include <net/if_llc.h>
132 #include <net/if_media.h>
133 #include <net/if_ether.h>
134 #include <net/route.h>
135
136 #include <net80211/ieee80211_var.h>
137 #include <net80211/ieee80211_compat.h>
138 #include <net80211/ieee80211_ioctl.h>
139 #include <net80211/ieee80211_radiotap.h>
140 #include <net80211/ieee80211_rssadapt.h>
141
142 #if NBPFILTER > 0
143 #include <net/bpf.h>
144 #include <net/bpfdesc.h>
145 #endif
146
147 #include <machine/bus.h>
148
149 #include <dev/ic/wi_ieee.h>
150 #include <dev/ic/wireg.h>
151 #include <dev/ic/wivar.h>
152
153 STATIC int wi_init(struct ifnet *);
154 STATIC void wi_stop(struct ifnet *, int);
155 STATIC void wi_start(struct ifnet *);
156 STATIC int wi_reset(struct wi_softc *);
157 STATIC void wi_watchdog(struct ifnet *);
158 STATIC int wi_ioctl(struct ifnet *, u_long, caddr_t);
159 STATIC int wi_media_change(struct ifnet *);
160 STATIC void wi_media_status(struct ifnet *, struct ifmediareq *);
161
162 STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211com *);
163 STATIC void wi_node_copy(struct ieee80211com *, struct ieee80211_node *,
164 const struct ieee80211_node *);
165 STATIC void wi_node_free(struct ieee80211com *, struct ieee80211_node *);
166
167 STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
168 STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
169 STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *,
170 struct ieee80211_frame *, u_int);
171 STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *);
172 STATIC void wi_rssadapt_updatestats(void *);
173 STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *);
174 STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[],
175 wi_rssdescq_t *, u_int8_t (*)[]);
176 STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]);
177
178 STATIC void wi_rx_intr(struct wi_softc *);
179 STATIC void wi_txalloc_intr(struct wi_softc *);
180 STATIC void wi_cmd_intr(struct wi_softc *);
181 STATIC void wi_tx_intr(struct wi_softc *);
182 STATIC void wi_tx_ex_intr(struct wi_softc *);
183 STATIC void wi_info_intr(struct wi_softc *);
184
185 STATIC void wi_push_packet(struct wi_softc *);
186 STATIC int wi_get_cfg(struct ifnet *, u_long, caddr_t);
187 STATIC int wi_set_cfg(struct ifnet *, u_long, caddr_t);
188 STATIC int wi_cfg_txrate(struct wi_softc *);
189 STATIC int wi_write_txrate(struct wi_softc *, int);
190 STATIC int wi_write_wep(struct wi_softc *);
191 STATIC int wi_write_multi(struct wi_softc *);
192 STATIC int wi_alloc_fid(struct wi_softc *, int, int *);
193 STATIC void wi_read_nicid(struct wi_softc *);
194 STATIC int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
195
196 STATIC int wi_sendcmd(struct wi_softc *, int, int);
197 STATIC int wi_cmd(struct wi_softc *, int, int, int, int);
198 STATIC int wi_seek_bap(struct wi_softc *, int, int);
199 STATIC int wi_read_bap(struct wi_softc *, int, int, void *, int);
200 STATIC int wi_write_bap(struct wi_softc *, int, int, void *, int);
201 STATIC int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
202 STATIC int wi_read_rid(struct wi_softc *, int, void *, int *);
203 STATIC int wi_write_rid(struct wi_softc *, int, void *, int);
204
205 STATIC int wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
206 STATIC int wi_set_tim(struct ieee80211com *, int, int);
207
208 STATIC int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
209 STATIC void wi_scan_result(struct wi_softc *, int, int);
210
211 STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
212
213 static inline int
214 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
215 {
216
217 val = htole16(val);
218 return wi_write_rid(sc, rid, &val, sizeof(val));
219 }
220
221 static struct timeval lasttxerror; /* time of last tx error msg */
222 static int curtxeps = 0; /* current tx error msgs/sec */
223 static int wi_txerate = 0; /* tx error rate: max msgs/sec */
224
225 #ifdef WI_DEBUG
226 int wi_debug = 0;
227
228 #define DPRINTF(X) if (wi_debug) printf X
229 #define DPRINTF2(X) if (wi_debug > 1) printf X
230 #define IFF_DUMPPKTS(_ifp) \
231 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
232 #else
233 #define DPRINTF(X)
234 #define DPRINTF2(X)
235 #define IFF_DUMPPKTS(_ifp) 0
236 #endif
237
238 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \
239 WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD)
240
241 struct wi_card_ident
242 wi_card_ident[] = {
243 /* CARD_ID CARD_NAME FIRM_TYPE */
244 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
245 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
246 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
247 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
248 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
249 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
250 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
251 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
252 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
253 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
254 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
255 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
256 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
257 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
258 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
259 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
260 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
261 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
262 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
263 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
264 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
265 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
266 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
267 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
268 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
269 { 0, NULL, 0 },
270 };
271
272 STATIC int
273 wi_read_xrid(struct wi_softc *sc, int rid, void *buf, int ebuflen)
274 {
275 int buflen, rc;
276
277 buflen = ebuflen;
278 if ((rc = wi_read_rid(sc, rid, buf, &buflen)) != 0)
279 return rc;
280
281 if (buflen < ebuflen) {
282 #ifdef WI_DEBUG
283 printf("%s: rid=%#04x read %d, expected %d\n", __func__,
284 rid, buflen, ebuflen);
285 #endif
286 return -1;
287 }
288 return 0;
289 }
290
291 int
292 wi_attach(struct wi_softc *sc, const u_int8_t *macaddr)
293 {
294 struct ieee80211com *ic = &sc->sc_ic;
295 struct ifnet *ifp = &ic->ic_if;
296 int chan, nrate, buflen;
297 u_int16_t val, chanavail;
298 struct {
299 u_int16_t nrates;
300 char rates[IEEE80211_RATE_SIZE];
301 } ratebuf;
302 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
303 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
304 };
305 int s;
306
307 s = splnet();
308
309 /* Make sure interrupts are disabled. */
310 CSR_WRITE_2(sc, WI_INT_EN, 0);
311 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
312
313 sc->sc_invalid = 0;
314
315 /* Reset the NIC. */
316 if (wi_reset(sc) != 0) {
317 sc->sc_invalid = 1;
318 splx(s);
319 return 1;
320 }
321
322 if (!macaddr) {
323 if (wi_read_xrid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
324 IEEE80211_ADDR_LEN) != 0 ||
325 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
326 printf(" could not get mac address, attach failed\n");
327 splx(s);
328 return 1;
329 }
330 } else
331 memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN);
332
333 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
334
335 /* Read NIC identification */
336 wi_read_nicid(sc);
337
338 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
339 ifp->if_softc = sc;
340 ifp->if_start = wi_start;
341 ifp->if_ioctl = wi_ioctl;
342 ifp->if_watchdog = wi_watchdog;
343 ifp->if_init = wi_init;
344 ifp->if_stop = wi_stop;
345 ifp->if_flags =
346 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
347 IFQ_SET_READY(&ifp->if_snd);
348
349 ic->ic_phytype = IEEE80211_T_DS;
350 ic->ic_opmode = IEEE80211_M_STA;
351 ic->ic_caps = IEEE80211_C_AHDEMO;
352 ic->ic_state = IEEE80211_S_INIT;
353 ic->ic_max_aid = WI_MAX_AID;
354
355 /* Find available channel */
356 if (wi_read_xrid(sc, WI_RID_CHANNEL_LIST, &chanavail,
357 sizeof(chanavail)) != 0) {
358 aprint_normal("%s: using default channel list\n", sc->sc_dev.dv_xname);
359 chanavail = htole16(0x1fff); /* assume 1-13 */
360 }
361 for (chan = 16; chan > 0; chan--) {
362 if (!isset((u_int8_t*)&chanavail, chan - 1))
363 continue;
364 ic->ic_ibss_chan = &ic->ic_channels[chan];
365 ic->ic_channels[chan].ic_freq =
366 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
367 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
368 }
369
370 /* Find default IBSS channel */
371 if (wi_read_xrid(sc, WI_RID_OWN_CHNL, &val, sizeof(val)) == 0) {
372 chan = le16toh(val);
373 if (isset((u_int8_t*)&chanavail, chan - 1))
374 ic->ic_ibss_chan = &ic->ic_channels[chan];
375 }
376 if (ic->ic_ibss_chan == NULL) {
377 aprint_error("%s: no available channel\n", sc->sc_dev.dv_xname);
378 return 1;
379 }
380
381 if (sc->sc_firmware_type == WI_LUCENT) {
382 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
383 } else {
384 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
385 wi_read_xrid(sc, WI_RID_DBM_ADJUST, &val, sizeof(val)) == 0)
386 sc->sc_dbm_offset = le16toh(val);
387 else
388 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
389 }
390
391 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
392
393 /*
394 * Set flags based on firmware version.
395 */
396 switch (sc->sc_firmware_type) {
397 case WI_LUCENT:
398 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
399 #ifdef WI_HERMES_AUTOINC_WAR
400 /* XXX: not confirmed, but never seen for recent firmware */
401 if (sc->sc_sta_firmware_ver < 40000) {
402 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
403 }
404 #endif
405 if (sc->sc_sta_firmware_ver >= 60000)
406 sc->sc_flags |= WI_FLAGS_HAS_MOR;
407 if (sc->sc_sta_firmware_ver >= 60006) {
408 ic->ic_caps |= IEEE80211_C_IBSS;
409 ic->ic_caps |= IEEE80211_C_MONITOR;
410 }
411 ic->ic_caps |= IEEE80211_C_PMGT;
412 sc->sc_ibss_port = 1;
413 break;
414
415 case WI_INTERSIL:
416 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
417 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
418 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
419 if (sc->sc_sta_firmware_ver > 10101)
420 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
421 if (sc->sc_sta_firmware_ver >= 800) {
422 if (sc->sc_sta_firmware_ver != 10402)
423 ic->ic_caps |= IEEE80211_C_HOSTAP;
424 ic->ic_caps |= IEEE80211_C_IBSS;
425 ic->ic_caps |= IEEE80211_C_MONITOR;
426 }
427 ic->ic_caps |= IEEE80211_C_PMGT;
428 sc->sc_ibss_port = 0;
429 sc->sc_alt_retry = 2;
430 break;
431
432 case WI_SYMBOL:
433 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
434 if (sc->sc_sta_firmware_ver >= 20000)
435 ic->ic_caps |= IEEE80211_C_IBSS;
436 sc->sc_ibss_port = 4;
437 break;
438 }
439
440 /*
441 * Find out if we support WEP on this card.
442 */
443 if (wi_read_xrid(sc, WI_RID_WEP_AVAIL, &val, sizeof(val)) == 0 &&
444 val != htole16(0))
445 ic->ic_caps |= IEEE80211_C_WEP;
446
447 /* Find supported rates. */
448 buflen = sizeof(ratebuf);
449 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 &&
450 buflen > 2) {
451 nrate = le16toh(ratebuf.nrates);
452 if (nrate > IEEE80211_RATE_SIZE)
453 nrate = IEEE80211_RATE_SIZE;
454 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates,
455 &ratebuf.rates[0], nrate);
456 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
457 } else {
458 aprint_error("%s: no supported rate list\n", sc->sc_dev.dv_xname);
459 return 1;
460 }
461
462 sc->sc_max_datalen = 2304;
463 sc->sc_rts_thresh = 2347;
464 sc->sc_frag_thresh = 2346;
465 sc->sc_system_scale = 1;
466 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
467 sc->sc_roaming_mode = 1;
468
469 callout_init(&sc->sc_rssadapt_ch);
470
471 /*
472 * Call MI attach routines.
473 */
474 if_attach(ifp);
475 ieee80211_ifattach(ifp);
476
477 sc->sc_newstate = ic->ic_newstate;
478 ic->ic_newstate = wi_newstate;
479 ic->ic_node_alloc = wi_node_alloc;
480 ic->ic_node_free = wi_node_free;
481 ic->ic_node_copy = wi_node_copy;
482 ic->ic_set_tim = wi_set_tim;
483
484 ieee80211_media_init(ifp, wi_media_change, wi_media_status);
485
486 #if NBPFILTER > 0
487 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
488 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
489 #endif
490
491 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
492 sc->sc_rxtap.wr_ihdr.it_len = sizeof(sc->sc_rxtapu);
493 sc->sc_rxtap.wr_ihdr.it_present = WI_RX_RADIOTAP_PRESENT;
494
495 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
496 sc->sc_txtap.wt_ihdr.it_len = sizeof(sc->sc_txtapu);
497 sc->sc_txtap.wt_ihdr.it_present = WI_TX_RADIOTAP_PRESENT;
498
499 /* Attach is successful. */
500 sc->sc_attached = 1;
501
502 splx(s);
503 return 0;
504 }
505
506 int
507 wi_detach(struct wi_softc *sc)
508 {
509 struct ifnet *ifp = &sc->sc_ic.ic_if;
510 int s;
511
512 if (!sc->sc_attached)
513 return 0;
514
515 s = splnet();
516
517 sc->sc_invalid = 1;
518 wi_stop(ifp, 1);
519
520 /* Delete all remaining media. */
521 ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY);
522
523 ieee80211_ifdetach(ifp);
524 if_detach(ifp);
525 splx(s);
526 return 0;
527 }
528
529 #ifdef __NetBSD__
530 int
531 wi_activate(struct device *self, enum devact act)
532 {
533 struct wi_softc *sc = (struct wi_softc *)self;
534 int rv = 0, s;
535
536 s = splnet();
537 switch (act) {
538 case DVACT_ACTIVATE:
539 rv = EOPNOTSUPP;
540 break;
541
542 case DVACT_DEACTIVATE:
543 if_deactivate(&sc->sc_ic.ic_if);
544 break;
545 }
546 splx(s);
547 return rv;
548 }
549
550 void
551 wi_power(struct wi_softc *sc, int why)
552 {
553 struct ifnet *ifp = &sc->sc_ic.ic_if;
554 int s;
555
556 s = splnet();
557 switch (why) {
558 case PWR_SUSPEND:
559 case PWR_STANDBY:
560 wi_stop(ifp, 1);
561 break;
562 case PWR_RESUME:
563 if (ifp->if_flags & IFF_UP) {
564 wi_init(ifp);
565 (void)wi_intr(sc);
566 }
567 break;
568 case PWR_SOFTSUSPEND:
569 case PWR_SOFTSTANDBY:
570 case PWR_SOFTRESUME:
571 break;
572 }
573 splx(s);
574 }
575 #endif /* __NetBSD__ */
576
577 void
578 wi_shutdown(struct wi_softc *sc)
579 {
580 struct ifnet *ifp = &sc->sc_ic.ic_if;
581
582 if (sc->sc_attached)
583 wi_stop(ifp, 1);
584 }
585
586 int
587 wi_intr(void *arg)
588 {
589 int i;
590 struct wi_softc *sc = arg;
591 struct ifnet *ifp = &sc->sc_ic.ic_if;
592 u_int16_t status;
593
594 if (sc->sc_enabled == 0 ||
595 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
596 (ifp->if_flags & IFF_RUNNING) == 0)
597 return 0;
598
599 if ((ifp->if_flags & IFF_UP) == 0) {
600 CSR_WRITE_2(sc, WI_INT_EN, 0);
601 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
602 return 1;
603 }
604
605 /* This is superfluous on Prism, but Lucent breaks if we
606 * do not disable interrupts.
607 */
608 CSR_WRITE_2(sc, WI_INT_EN, 0);
609
610 /* maximum 10 loops per interrupt */
611 for (i = 0; i < 10; i++) {
612 /*
613 * Only believe a status bit when we enter wi_intr, or when
614 * the bit was "off" the last time through the loop. This is
615 * my strategy to avoid racing the hardware/firmware if I
616 * can re-read the event status register more quickly than
617 * it is updated.
618 */
619 status = CSR_READ_2(sc, WI_EVENT_STAT);
620 if ((status & WI_INTRS) == 0)
621 break;
622
623 if (status & WI_EV_RX)
624 wi_rx_intr(sc);
625
626 if (status & WI_EV_ALLOC)
627 wi_txalloc_intr(sc);
628
629 if (status & WI_EV_TX)
630 wi_tx_intr(sc);
631
632 if (status & WI_EV_TX_EXC)
633 wi_tx_ex_intr(sc);
634
635 if (status & WI_EV_INFO)
636 wi_info_intr(sc);
637
638 CSR_WRITE_2(sc, WI_EVENT_ACK, status);
639
640 if (status & WI_EV_CMD)
641 wi_cmd_intr(sc);
642
643 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
644 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
645 !IFQ_IS_EMPTY(&ifp->if_snd))
646 wi_start(ifp);
647 }
648
649 /* re-enable interrupts */
650 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
651
652 return 1;
653 }
654
655 #define arraylen(a) (sizeof(a) / sizeof((a)[0]))
656
657 STATIC void
658 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree)
659 {
660 int i;
661 SLIST_INIT(rssdfree);
662 for (i = 0; i < arraylen(*rssd); i++) {
663 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next);
664 }
665 }
666
667 STATIC void
668 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS],
669 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE])
670 {
671 struct ieee80211_node *ni;
672 int i;
673 for (i = 0; i < arraylen(*rssd); i++) {
674 ni = (*rssd)[i].rd_desc.id_node;
675 (*rssd)[i].rd_desc.id_node = NULL;
676 if (ni != NULL && (ic->ic_if.if_flags & IFF_DEBUG) != 0)
677 printf("%s: cleaning outstanding rssadapt "
678 "descriptor for %s\n",
679 ic->ic_if.if_xname, ether_sprintf(ni->ni_macaddr));
680 if (ni != NULL)
681 ieee80211_release_node(ic, ni);
682 }
683 memset(*txpending, 0, sizeof(*txpending));
684 wi_rssdescs_init(rssd, rssdfree);
685 }
686
687 STATIC int
688 wi_init(struct ifnet *ifp)
689 {
690 struct wi_softc *sc = ifp->if_softc;
691 struct ieee80211com *ic = &sc->sc_ic;
692 struct wi_joinreq join;
693 int i;
694 int error = 0, wasenabled;
695
696 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
697 wasenabled = sc->sc_enabled;
698 if (!sc->sc_enabled) {
699 if ((error = (*sc->sc_enable)(sc)) != 0)
700 goto out;
701 sc->sc_enabled = 1;
702 } else
703 wi_stop(ifp, 0);
704
705 /* Symbol firmware cannot be initialized more than once */
706 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled)
707 if ((error = wi_reset(sc)) != 0)
708 goto out;
709
710 /* common 802.11 configuration */
711 ic->ic_flags &= ~IEEE80211_F_IBSSON;
712 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
713 switch (ic->ic_opmode) {
714 case IEEE80211_M_STA:
715 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
716 break;
717 case IEEE80211_M_IBSS:
718 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
719 ic->ic_flags |= IEEE80211_F_IBSSON;
720 break;
721 case IEEE80211_M_AHDEMO:
722 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
723 break;
724 case IEEE80211_M_HOSTAP:
725 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
726 break;
727 case IEEE80211_M_MONITOR:
728 if (sc->sc_firmware_type == WI_LUCENT)
729 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
730 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
731 break;
732 }
733
734 /* Intersil interprets this RID as joining ESS even in IBSS mode */
735 if (sc->sc_firmware_type == WI_LUCENT &&
736 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
737 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
738 else
739 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
740 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
741 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
742 ic->ic_des_esslen);
743 wi_write_val(sc, WI_RID_OWN_CHNL,
744 ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
745 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
746 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
747 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
748 if (ic->ic_caps & IEEE80211_C_PMGT)
749 wi_write_val(sc, WI_RID_PM_ENABLED,
750 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
751
752 /* not yet common 802.11 configuration */
753 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
754 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
755 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
756 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
757
758 /* driver specific 802.11 configuration */
759 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
760 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
761 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
762 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
763 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
764 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
765 wi_cfg_txrate(sc);
766 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
767
768 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
769 sc->sc_firmware_type == WI_INTERSIL) {
770 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
771 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
772 }
773
774 if (sc->sc_firmware_type == WI_INTERSIL) {
775 struct ieee80211_rateset *rs =
776 &ic->ic_sup_rates[IEEE80211_MODE_11B];
777 u_int16_t basic = 0, supported = 0, rate;
778
779 for (i = 0; i < rs->rs_nrates; i++) {
780 switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
781 case 2:
782 rate = 1;
783 break;
784 case 4:
785 rate = 2;
786 break;
787 case 11:
788 rate = 4;
789 break;
790 case 22:
791 rate = 8;
792 break;
793 default:
794 rate = 0;
795 break;
796 }
797 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC)
798 basic |= rate;
799 supported |= rate;
800 }
801 wi_write_val(sc, WI_RID_BASIC_RATE, basic);
802 wi_write_val(sc, WI_RID_SUPPORT_RATE, supported);
803 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry);
804 }
805
806 /*
807 * Initialize promisc mode.
808 * Being in Host-AP mode causes a great
809 * deal of pain if promiscuous mode is set.
810 * Therefore we avoid confusing the firmware
811 * and always reset promisc mode in Host-AP
812 * mode. Host-AP sees all the packets anyway.
813 */
814 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
815 (ifp->if_flags & IFF_PROMISC) != 0) {
816 wi_write_val(sc, WI_RID_PROMISC, 1);
817 } else {
818 wi_write_val(sc, WI_RID_PROMISC, 0);
819 }
820
821 /* Configure WEP. */
822 if (ic->ic_caps & IEEE80211_C_WEP)
823 wi_write_wep(sc);
824
825 /* Set multicast filter. */
826 wi_write_multi(sc);
827
828 sc->sc_txalloc = 0;
829 sc->sc_txalloced = 0;
830 sc->sc_txqueue = 0;
831 sc->sc_txqueued = 0;
832 sc->sc_txstart = 0;
833 sc->sc_txstarted = 0;
834
835 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
836 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
837 if (sc->sc_firmware_type == WI_SYMBOL)
838 sc->sc_buflen = 1585; /* XXX */
839 for (i = 0; i < WI_NTXBUF; i++) {
840 error = wi_alloc_fid(sc, sc->sc_buflen,
841 &sc->sc_txd[i].d_fid);
842 if (error) {
843 printf("%s: tx buffer allocation failed\n",
844 sc->sc_dev.dv_xname);
845 goto out;
846 }
847 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
848 sc->sc_txd[i].d_fid));
849 ++sc->sc_txalloced;
850 }
851 }
852
853 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree);
854
855 /* Enable desired port */
856 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
857 ifp->if_flags |= IFF_RUNNING;
858 ifp->if_flags &= ~IFF_OACTIVE;
859 ic->ic_state = IEEE80211_S_INIT;
860
861 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
862 ic->ic_opmode == IEEE80211_M_MONITOR ||
863 ic->ic_opmode == IEEE80211_M_HOSTAP)
864 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
865
866 /* Enable interrupts */
867 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
868
869 if (!wasenabled &&
870 ic->ic_opmode == IEEE80211_M_HOSTAP &&
871 sc->sc_firmware_type == WI_INTERSIL) {
872 /* XXX: some card need to be re-enabled for hostap */
873 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
874 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
875 }
876
877 if (ic->ic_opmode == IEEE80211_M_STA &&
878 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
879 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
880 memset(&join, 0, sizeof(join));
881 if (ic->ic_flags & IEEE80211_F_DESBSSID)
882 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
883 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
884 join.wi_chan =
885 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan));
886 /* Lucent firmware does not support the JOIN RID. */
887 if (sc->sc_firmware_type != WI_LUCENT)
888 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
889 }
890
891 out:
892 if (error) {
893 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
894 wi_stop(ifp, 0);
895 }
896 DPRINTF(("wi_init: return %d\n", error));
897 return error;
898 }
899
900 STATIC void
901 wi_stop(struct ifnet *ifp, int disable)
902 {
903 struct wi_softc *sc = ifp->if_softc;
904 struct ieee80211com *ic = &sc->sc_ic;
905 int s;
906
907 if (!sc->sc_enabled)
908 return;
909
910 s = splnet();
911
912 DPRINTF(("wi_stop: disable %d\n", disable));
913
914 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
915 if (!sc->sc_invalid) {
916 CSR_WRITE_2(sc, WI_INT_EN, 0);
917 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
918 }
919
920 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
921 &sc->sc_txpending);
922
923 sc->sc_tx_timer = 0;
924 sc->sc_scan_timer = 0;
925 sc->sc_false_syns = 0;
926 sc->sc_naps = 0;
927 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
928 ifp->if_timer = 0;
929
930 if (disable) {
931 if (sc->sc_disable)
932 (*sc->sc_disable)(sc);
933 sc->sc_enabled = 0;
934 }
935 splx(s);
936 }
937
938 /*
939 * Choose a data rate for a packet len bytes long that suits the packet
940 * type and the wireless conditions.
941 *
942 * TBD Adapt fragmentation threshold.
943 */
944 STATIC int
945 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni,
946 struct ieee80211_frame *wh, u_int len)
947 {
948 struct wi_softc *sc = ic->ic_if.if_softc;
949 struct wi_node *wn = (void*)ni;
950 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt;
951 int do_not_adapt, i, rateidx, s;
952
953 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) &&
954 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0;
955
956 s = splnet();
957
958 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len,
959 ic->ic_fixed_rate,
960 ((ic->ic_if.if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_if.if_xname,
961 do_not_adapt);
962
963 ni->ni_txrate = rateidx;
964
965 if (ic->ic_opmode != IEEE80211_M_HOSTAP) {
966 /* choose the slowest pending rate so that we don't
967 * accidentally send a packet on the MAC's queue
968 * too fast. TBD find out if the MAC labels Tx
969 * packets w/ rate when enqueued or dequeued.
970 */
971 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++);
972 rateidx = i;
973 }
974
975 splx(s);
976 return (rateidx);
977 }
978
979 STATIC void
980 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
981 {
982 struct wi_node *wn;
983 if (id->id_node == NULL)
984 return;
985
986 wn = (void*)id->id_node;
987 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id);
988 }
989
990 STATIC void
991 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
992 {
993 struct ieee80211_node *ni;
994 struct wi_node *wn;
995 int s;
996
997 s = splnet();
998
999 if ((ni = id->id_node) == NULL) {
1000 DPRINTF(("wi_lower_rate: missing node\n"));
1001 goto out;
1002 }
1003
1004 wn = (void *)ni;
1005
1006 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id);
1007 out:
1008 splx(s);
1009 return;
1010 }
1011
1012 STATIC void
1013 wi_start(struct ifnet *ifp)
1014 {
1015 struct wi_softc *sc = ifp->if_softc;
1016 struct ieee80211com *ic = &sc->sc_ic;
1017 struct ieee80211_node *ni;
1018 struct ieee80211_frame *wh;
1019 struct ieee80211_rateset *rs;
1020 struct wi_rssdesc *rd;
1021 struct ieee80211_rssdesc *id;
1022 struct mbuf *m0;
1023 struct wi_frame frmhdr;
1024 int cur, fid, off, rateidx;
1025
1026 if (!sc->sc_enabled || sc->sc_invalid)
1027 return;
1028 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
1029 return;
1030
1031 memset(&frmhdr, 0, sizeof(frmhdr));
1032 cur = sc->sc_txqueue;
1033 for (;;) {
1034 ni = ic->ic_bss;
1035 if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) {
1036 ifp->if_flags |= IFF_OACTIVE;
1037 break;
1038 }
1039 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
1040 IF_DEQUEUE(&ic->ic_mgtq, m0);
1041 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
1042 (caddr_t)&frmhdr.wi_ehdr);
1043 frmhdr.wi_ehdr.ether_type = 0;
1044 wh = mtod(m0, struct ieee80211_frame *);
1045 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1046 m0->m_pkthdr.rcvif = NULL;
1047 } else if (ic->ic_state != IEEE80211_S_RUN)
1048 break;
1049 else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
1050 struct llc *llc;
1051
1052 /*
1053 * Should these packets be processed after the
1054 * regular packets or before? Since they are being
1055 * probed for, they are probably less time critical
1056 * than other packets, but, on the other hand,
1057 * we want the power saving nodes to go back to
1058 * sleep as quickly as possible to save power...
1059 */
1060
1061 IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
1062 wh = mtod(m0, struct ieee80211_frame *);
1063 llc = (struct llc *) (wh + 1);
1064 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
1065 (caddr_t)&frmhdr.wi_ehdr);
1066 frmhdr.wi_ehdr.ether_type = llc->llc_snap.ether_type;
1067 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1068 m0->m_pkthdr.rcvif = NULL;
1069 } else {
1070 IFQ_POLL(&ifp->if_snd, m0);
1071 if (m0 == NULL) {
1072 break;
1073 }
1074 IFQ_DEQUEUE(&ifp->if_snd, m0);
1075 ifp->if_opackets++;
1076 m_copydata(m0, 0, ETHER_HDR_LEN,
1077 (caddr_t)&frmhdr.wi_ehdr);
1078 #if NBPFILTER > 0
1079 if (ifp->if_bpf)
1080 bpf_mtap(ifp->if_bpf, m0);
1081 #endif
1082
1083 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
1084 ifp->if_oerrors++;
1085 continue;
1086 }
1087 wh = mtod(m0, struct ieee80211_frame *);
1088 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1089 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1090 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1091 IEEE80211_FC0_TYPE_DATA) {
1092 if (ni->ni_associd == 0) {
1093 m_freem(m0);
1094 ifp->if_oerrors++;
1095 goto next;
1096 }
1097 if (ni->ni_pwrsave & IEEE80211_PS_SLEEP) {
1098 ieee80211_pwrsave(ic, ni, m0);
1099 continue; /* don't free node. */
1100 }
1101 }
1102 }
1103 #if NBPFILTER > 0
1104 if (ic->ic_rawbpf)
1105 bpf_mtap(ic->ic_rawbpf, m0);
1106 #endif
1107 frmhdr.wi_tx_ctl =
1108 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK);
1109 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1110 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
1111 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1112 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
1113 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
1114 ifp->if_oerrors++;
1115 goto next;
1116 }
1117 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
1118 }
1119
1120 rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len);
1121 rs = &ni->ni_rates;
1122
1123 #if NBPFILTER > 0
1124 if (sc->sc_drvbpf) {
1125 struct wi_tx_radiotap_header *tap = &sc->sc_txtap;
1126
1127 tap->wt_rate = rs->rs_rates[rateidx];
1128 tap->wt_chan_freq =
1129 htole16(ic->ic_bss->ni_chan->ic_freq);
1130 tap->wt_chan_flags =
1131 htole16(ic->ic_bss->ni_chan->ic_flags);
1132 /* TBD tap->wt_flags */
1133
1134 bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0);
1135 }
1136 #endif
1137
1138 rd = SLIST_FIRST(&sc->sc_rssdfree);
1139 id = &rd->rd_desc;
1140 id->id_len = m0->m_pkthdr.len;
1141 id->id_rateidx = ni->ni_txrate;
1142 id->id_rssi = ni->ni_rssi;
1143
1144 frmhdr.wi_tx_idx = rd - sc->sc_rssd;
1145
1146 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1147 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] &
1148 IEEE80211_RATE_VAL);
1149 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA)
1150 (void)wi_write_txrate(sc, rs->rs_rates[rateidx]);
1151
1152 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
1153 (caddr_t)&frmhdr.wi_whdr);
1154 m_adj(m0, sizeof(struct ieee80211_frame));
1155 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
1156 if (IFF_DUMPPKTS(ifp))
1157 wi_dump_pkt(&frmhdr, ni, -1);
1158 fid = sc->sc_txd[cur].d_fid;
1159 off = sizeof(frmhdr);
1160 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
1161 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
1162 printf("%s: %s write fid %x failed\n",
1163 sc->sc_dev.dv_xname, __func__, fid);
1164 ifp->if_oerrors++;
1165 m_freem(m0);
1166 goto next;
1167 }
1168 m_freem(m0);
1169 sc->sc_txpending[ni->ni_txrate]++;
1170 --sc->sc_txalloced;
1171 if (sc->sc_txqueued++ == 0) {
1172 #ifdef DIAGNOSTIC
1173 if (cur != sc->sc_txstart)
1174 printf("%s: ring is desynchronized\n",
1175 sc->sc_dev.dv_xname);
1176 #endif
1177 wi_push_packet(sc);
1178 } else {
1179 #ifdef WI_RING_DEBUG
1180 printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1181 sc->sc_dev.dv_xname, fid,
1182 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1183 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1184 #endif
1185 }
1186 sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF;
1187 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next);
1188 id->id_node = ni;
1189 continue;
1190 next:
1191 if (ni != NULL)
1192 ieee80211_release_node(ic, ni);
1193 }
1194 }
1195
1196
1197 STATIC int
1198 wi_reset(struct wi_softc *sc)
1199 {
1200 int i, error;
1201
1202 DPRINTF(("wi_reset\n"));
1203
1204 if (sc->sc_reset)
1205 (*sc->sc_reset)(sc);
1206
1207 error = 0;
1208 for (i = 0; i < 5; i++) {
1209 DELAY(20*1000); /* XXX: way too long! */
1210 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
1211 break;
1212 }
1213 if (error) {
1214 printf("%s: init failed\n", sc->sc_dev.dv_xname);
1215 return error;
1216 }
1217 CSR_WRITE_2(sc, WI_INT_EN, 0);
1218 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
1219
1220 /* Calibrate timer. */
1221 wi_write_val(sc, WI_RID_TICK_TIME, 0);
1222 return 0;
1223 }
1224
1225 STATIC void
1226 wi_watchdog(struct ifnet *ifp)
1227 {
1228 struct wi_softc *sc = ifp->if_softc;
1229
1230 ifp->if_timer = 0;
1231 if (!sc->sc_enabled)
1232 return;
1233
1234 if (sc->sc_tx_timer) {
1235 if (--sc->sc_tx_timer == 0) {
1236 printf("%s: device timeout\n", ifp->if_xname);
1237 ifp->if_oerrors++;
1238 wi_init(ifp);
1239 return;
1240 }
1241 ifp->if_timer = 1;
1242 }
1243
1244 if (sc->sc_scan_timer) {
1245 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
1246 sc->sc_firmware_type == WI_INTERSIL) {
1247 DPRINTF(("wi_watchdog: inquire scan\n"));
1248 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1249 }
1250 if (sc->sc_scan_timer)
1251 ifp->if_timer = 1;
1252 }
1253
1254 /* TODO: rate control */
1255 ieee80211_watchdog(ifp);
1256 }
1257
1258 STATIC int
1259 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1260 {
1261 struct wi_softc *sc = ifp->if_softc;
1262 struct ieee80211com *ic = &sc->sc_ic;
1263 struct ifreq *ifr = (struct ifreq *)data;
1264 int s, error = 0;
1265
1266 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1267 return ENXIO;
1268
1269 s = splnet();
1270
1271 switch (cmd) {
1272 case SIOCSIFFLAGS:
1273 /*
1274 * Can't do promisc and hostap at the same time. If all that's
1275 * changing is the promisc flag, try to short-circuit a call to
1276 * wi_init() by just setting PROMISC in the hardware.
1277 */
1278 if (ifp->if_flags & IFF_UP) {
1279 if (sc->sc_enabled) {
1280 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1281 (ifp->if_flags & IFF_PROMISC) != 0)
1282 wi_write_val(sc, WI_RID_PROMISC, 1);
1283 else
1284 wi_write_val(sc, WI_RID_PROMISC, 0);
1285 } else
1286 error = wi_init(ifp);
1287 } else if (sc->sc_enabled)
1288 wi_stop(ifp, 1);
1289 break;
1290 case SIOCSIFMEDIA:
1291 case SIOCGIFMEDIA:
1292 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1293 break;
1294 case SIOCADDMULTI:
1295 case SIOCDELMULTI:
1296 error = (cmd == SIOCADDMULTI) ?
1297 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1298 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1299 if (error == ENETRESET) {
1300 if (ifp->if_flags & IFF_RUNNING) {
1301 /* do not rescan */
1302 error = wi_write_multi(sc);
1303 } else
1304 error = 0;
1305 }
1306 break;
1307 case SIOCGIFGENERIC:
1308 error = wi_get_cfg(ifp, cmd, data);
1309 break;
1310 case SIOCSIFGENERIC:
1311 error = suser(curproc->p_ucred, &curproc->p_acflag);
1312 if (error)
1313 break;
1314 error = wi_set_cfg(ifp, cmd, data);
1315 if (error == ENETRESET) {
1316 if (ifp->if_flags & IFF_RUNNING)
1317 error = wi_init(ifp);
1318 else
1319 error = 0;
1320 }
1321 break;
1322 case SIOCS80211BSSID:
1323 if (sc->sc_firmware_type == WI_LUCENT) {
1324 error = ENODEV;
1325 break;
1326 }
1327 /* fall through */
1328 default:
1329 error = ieee80211_ioctl(ifp, cmd, data);
1330 if (error == ENETRESET) {
1331 if (sc->sc_enabled)
1332 error = wi_init(ifp);
1333 else
1334 error = 0;
1335 }
1336 break;
1337 }
1338 splx(s);
1339 return error;
1340 }
1341
1342 STATIC int
1343 wi_media_change(struct ifnet *ifp)
1344 {
1345 struct wi_softc *sc = ifp->if_softc;
1346 struct ieee80211com *ic = &sc->sc_ic;
1347 int error;
1348
1349 error = ieee80211_media_change(ifp);
1350 if (error == ENETRESET) {
1351 if (sc->sc_enabled)
1352 error = wi_init(ifp);
1353 else
1354 error = 0;
1355 }
1356 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1357
1358 return error;
1359 }
1360
1361 STATIC void
1362 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1363 {
1364 struct wi_softc *sc = ifp->if_softc;
1365 struct ieee80211com *ic = &sc->sc_ic;
1366 u_int16_t val;
1367 int rate;
1368
1369 if (sc->sc_enabled == 0) {
1370 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1371 imr->ifm_status = 0;
1372 return;
1373 }
1374
1375 imr->ifm_status = IFM_AVALID;
1376 imr->ifm_active = IFM_IEEE80211;
1377 if (ic->ic_state == IEEE80211_S_RUN &&
1378 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1379 imr->ifm_status |= IFM_ACTIVE;
1380 if (wi_read_xrid(sc, WI_RID_CUR_TX_RATE, &val, sizeof(val)) == 0) {
1381 /* convert to 802.11 rate */
1382 val = le16toh(val);
1383 rate = val * 2;
1384 if (sc->sc_firmware_type == WI_LUCENT) {
1385 if (rate == 10)
1386 rate = 11; /* 5.5Mbps */
1387 } else {
1388 if (rate == 4*2)
1389 rate = 11; /* 5.5Mbps */
1390 else if (rate == 8*2)
1391 rate = 22; /* 11Mbps */
1392 }
1393 } else
1394 rate = 0;
1395 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1396 switch (ic->ic_opmode) {
1397 case IEEE80211_M_STA:
1398 break;
1399 case IEEE80211_M_IBSS:
1400 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1401 break;
1402 case IEEE80211_M_AHDEMO:
1403 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1404 break;
1405 case IEEE80211_M_HOSTAP:
1406 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1407 break;
1408 case IEEE80211_M_MONITOR:
1409 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1410 break;
1411 }
1412 }
1413
1414 STATIC struct ieee80211_node *
1415 wi_node_alloc(struct ieee80211com *ic)
1416 {
1417 struct wi_node *wn =
1418 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1419 return wn ? &wn->wn_node : NULL;
1420 }
1421
1422 STATIC void
1423 wi_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1424 {
1425 struct wi_softc *sc = ic->ic_if.if_softc;
1426 int i;
1427
1428 for (i = 0; i < WI_NTXRSS; i++) {
1429 if (sc->sc_rssd[i].rd_desc.id_node == ni)
1430 sc->sc_rssd[i].rd_desc.id_node = NULL;
1431 }
1432 free(ni, M_DEVBUF);
1433 }
1434
1435 STATIC void
1436 wi_node_copy(struct ieee80211com *ic, struct ieee80211_node *dst,
1437 const struct ieee80211_node *src)
1438 {
1439 *(struct wi_node *)dst = *(const struct wi_node *)src;
1440 }
1441
1442 STATIC void
1443 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1444 {
1445 struct ieee80211com *ic = &sc->sc_ic;
1446 struct ieee80211_node *ni = ic->ic_bss;
1447 struct ifnet *ifp = &ic->ic_if;
1448
1449 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1450 return;
1451
1452 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
1453 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1454
1455 /* In promiscuous mode, the BSSID field is not a reliable
1456 * indicator of the firmware's BSSID. Damp spurious
1457 * change-of-BSSID indications.
1458 */
1459 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1460 !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns,
1461 WI_MAX_FALSE_SYNS))
1462 return;
1463
1464 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1465 }
1466
1467 static __inline void
1468 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni,
1469 struct ieee80211_frame *wh, int rssi)
1470 {
1471 struct wi_node *wn;
1472
1473 if (ni == NULL) {
1474 printf("%s: null node", __func__);
1475 return;
1476 }
1477
1478 wn = (void*)ni;
1479 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi);
1480 }
1481
1482 STATIC void
1483 wi_rx_intr(struct wi_softc *sc)
1484 {
1485 struct ieee80211com *ic = &sc->sc_ic;
1486 struct ifnet *ifp = &ic->ic_if;
1487 struct ieee80211_node *ni;
1488 struct wi_frame frmhdr;
1489 struct mbuf *m;
1490 struct ieee80211_frame *wh;
1491 int fid, len, off, rssi;
1492 u_int8_t dir;
1493 u_int16_t status;
1494 u_int32_t rstamp;
1495
1496 fid = CSR_READ_2(sc, WI_RX_FID);
1497
1498 /* First read in the frame header */
1499 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1500 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1501 __func__, fid);
1502 ifp->if_ierrors++;
1503 return;
1504 }
1505
1506 if (IFF_DUMPPKTS(ifp))
1507 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1508
1509 /*
1510 * Drop undecryptable or packets with receive errors here
1511 */
1512 status = le16toh(frmhdr.wi_status);
1513 if ((status & WI_STAT_ERRSTAT) != 0 &&
1514 ic->ic_opmode != IEEE80211_M_MONITOR) {
1515 ifp->if_ierrors++;
1516 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1517 return;
1518 }
1519 rssi = frmhdr.wi_rx_signal;
1520 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1521 le16toh(frmhdr.wi_rx_tstamp1);
1522
1523 len = le16toh(frmhdr.wi_dat_len);
1524 off = ALIGN(sizeof(struct ieee80211_frame));
1525
1526 /* Sometimes the PRISM2.x returns bogusly large frames. Except
1527 * in monitor mode, just throw them away.
1528 */
1529 if (off + len > MCLBYTES) {
1530 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1531 ifp->if_ierrors++;
1532 DPRINTF(("wi_rx_intr: oversized packet\n"));
1533 return;
1534 } else
1535 len = 0;
1536 }
1537
1538 MGETHDR(m, M_DONTWAIT, MT_DATA);
1539 if (m == NULL) {
1540 ifp->if_ierrors++;
1541 DPRINTF(("wi_rx_intr: MGET failed\n"));
1542 return;
1543 }
1544 if (off + len > MHLEN) {
1545 MCLGET(m, M_DONTWAIT);
1546 if ((m->m_flags & M_EXT) == 0) {
1547 m_freem(m);
1548 ifp->if_ierrors++;
1549 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1550 return;
1551 }
1552 }
1553
1554 m->m_data += off - sizeof(struct ieee80211_frame);
1555 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1556 wi_read_bap(sc, fid, sizeof(frmhdr),
1557 m->m_data + sizeof(struct ieee80211_frame), len);
1558 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1559 m->m_pkthdr.rcvif = ifp;
1560
1561 #if NBPFILTER > 0
1562 if (sc->sc_drvbpf) {
1563 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap;
1564
1565 tap->wr_rate = frmhdr.wi_rx_rate / 5;
1566 tap->wr_antsignal = frmhdr.wi_rx_signal;
1567 tap->wr_antnoise = frmhdr.wi_rx_silence;
1568 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1569 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1570 if (frmhdr.wi_status & WI_STAT_PCF)
1571 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1572
1573 bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m);
1574 }
1575 #endif
1576 wh = mtod(m, struct ieee80211_frame *);
1577 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1578 /*
1579 * WEP is decrypted by hardware. Clear WEP bit
1580 * header for ieee80211_input().
1581 */
1582 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1583 }
1584
1585 /* synchronize driver's BSSID with firmware's BSSID */
1586 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1587 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1588 wi_sync_bssid(sc, wh->i_addr3);
1589
1590 ni = ieee80211_find_rxnode(ic, wh);
1591
1592 ieee80211_input(ifp, m, ni, rssi, rstamp);
1593
1594 wi_rssadapt_input(ic, ni, wh, rssi);
1595
1596 /*
1597 * The frame may have caused the node to be marked for
1598 * reclamation (e.g. in response to a DEAUTH message)
1599 * so use release_node here instead of unref_node.
1600 */
1601 ieee80211_release_node(ic, ni);
1602 }
1603
1604 STATIC void
1605 wi_tx_ex_intr(struct wi_softc *sc)
1606 {
1607 struct ieee80211com *ic = &sc->sc_ic;
1608 struct ifnet *ifp = &ic->ic_if;
1609 struct ieee80211_node *ni;
1610 struct ieee80211_rssdesc *id;
1611 struct wi_rssdesc *rssd;
1612 struct wi_frame frmhdr;
1613 int fid;
1614 u_int16_t status;
1615
1616 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1617 /* Read in the frame header */
1618 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1619 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1620 __func__, fid);
1621 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1622 &sc->sc_txpending);
1623 goto out;
1624 }
1625
1626 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1627 printf("%s: %s bad idx %02x\n",
1628 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1629 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1630 &sc->sc_txpending);
1631 goto out;
1632 }
1633
1634 status = le16toh(frmhdr.wi_status);
1635
1636 /*
1637 * Spontaneous station disconnects appear as xmit
1638 * errors. Don't announce them and/or count them
1639 * as an output error.
1640 */
1641 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1642 printf("%s: tx failed", sc->sc_dev.dv_xname);
1643 if (status & WI_TXSTAT_RET_ERR)
1644 printf(", retry limit exceeded");
1645 if (status & WI_TXSTAT_AGED_ERR)
1646 printf(", max transmit lifetime exceeded");
1647 if (status & WI_TXSTAT_DISCONNECT)
1648 printf(", port disconnected");
1649 if (status & WI_TXSTAT_FORM_ERR)
1650 printf(", invalid format (data len %u src %s)",
1651 le16toh(frmhdr.wi_dat_len),
1652 ether_sprintf(frmhdr.wi_ehdr.ether_shost));
1653 if (status & ~0xf)
1654 printf(", status=0x%x", status);
1655 printf("\n");
1656 }
1657 ifp->if_oerrors++;
1658 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1659 id = &rssd->rd_desc;
1660 if ((status & WI_TXSTAT_RET_ERR) != 0)
1661 wi_lower_rate(ic, id);
1662
1663 ni = id->id_node;
1664 id->id_node = NULL;
1665
1666 if (ni == NULL) {
1667 printf("%s: %s null node, rssdesc %02x\n",
1668 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1669 goto out;
1670 }
1671
1672 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1673 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1674 __func__, id->id_rateidx);
1675 sc->sc_txpending[id->id_rateidx] = 0;
1676 }
1677 if (ni != NULL)
1678 ieee80211_release_node(ic, ni);
1679 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1680 out:
1681 ifp->if_flags &= ~IFF_OACTIVE;
1682 }
1683
1684 STATIC void
1685 wi_txalloc_intr(struct wi_softc *sc)
1686 {
1687 int fid, cur;
1688
1689 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1690
1691 cur = sc->sc_txalloc;
1692 #ifdef DIAGNOSTIC
1693 if (sc->sc_txstarted == 0) {
1694 printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1695 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1696 sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1697 return;
1698 }
1699 #endif
1700 --sc->sc_txstarted;
1701 ++sc->sc_txalloced;
1702 sc->sc_txd[cur].d_fid = fid;
1703 sc->sc_txalloc = (cur + 1) % WI_NTXBUF;
1704 #ifdef WI_RING_DEBUG
1705 printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1706 sc->sc_dev.dv_xname, fid,
1707 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1708 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1709 #endif
1710 }
1711
1712 STATIC void
1713 wi_cmd_intr(struct wi_softc *sc)
1714 {
1715 struct ieee80211com *ic = &sc->sc_ic;
1716 struct ifnet *ifp = &ic->ic_if;
1717
1718 if (--sc->sc_txqueued == 0) {
1719 sc->sc_tx_timer = 0;
1720 ifp->if_flags &= ~IFF_OACTIVE;
1721 #ifdef WI_RING_DEBUG
1722 printf("%s: cmd , alloc %d queue %d start %d alloced %d queued %d started %d\n",
1723 sc->sc_dev.dv_xname,
1724 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1725 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1726 #endif
1727 } else
1728 wi_push_packet(sc);
1729 }
1730
1731 STATIC void
1732 wi_push_packet(struct wi_softc *sc)
1733 {
1734 struct ieee80211com *ic = &sc->sc_ic;
1735 struct ifnet *ifp = &ic->ic_if;
1736 int cur, fid;
1737
1738 cur = sc->sc_txstart;
1739 fid = sc->sc_txd[cur].d_fid;
1740 if (wi_sendcmd(sc, WI_CMD_TX | WI_RECLAIM, fid)) {
1741 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1742 /* XXX ring might have a hole */
1743 }
1744 ++sc->sc_txstarted;
1745 #ifdef DIAGNOSTIC
1746 if (sc->sc_txstarted > WI_NTXBUF)
1747 printf("%s: too many buffers started\n", sc->sc_dev.dv_xname);
1748 #endif
1749 sc->sc_txstart = (cur + 1) % WI_NTXBUF;
1750 sc->sc_tx_timer = 5;
1751 ifp->if_timer = 1;
1752 #ifdef WI_RING_DEBUG
1753 printf("%s: push %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1754 sc->sc_dev.dv_xname, fid,
1755 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1756 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1757 #endif
1758 }
1759
1760 STATIC void
1761 wi_tx_intr(struct wi_softc *sc)
1762 {
1763 struct ieee80211com *ic = &sc->sc_ic;
1764 struct ifnet *ifp = &ic->ic_if;
1765 struct ieee80211_node *ni;
1766 struct ieee80211_rssdesc *id;
1767 struct wi_rssdesc *rssd;
1768 struct wi_frame frmhdr;
1769 int fid;
1770
1771 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1772 /* Read in the frame header */
1773 if (wi_read_bap(sc, fid, 8, &frmhdr.wi_rx_rate, 2) != 0) {
1774 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1775 __func__, fid);
1776 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1777 &sc->sc_txpending);
1778 goto out;
1779 }
1780
1781 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1782 printf("%s: %s bad idx %02x\n",
1783 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1784 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1785 &sc->sc_txpending);
1786 goto out;
1787 }
1788
1789 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1790 id = &rssd->rd_desc;
1791 wi_raise_rate(ic, id);
1792
1793 ni = id->id_node;
1794 id->id_node = NULL;
1795
1796 if (ni == NULL) {
1797 printf("%s: %s null node, rssdesc %02x\n",
1798 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1799 goto out;
1800 }
1801
1802 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1803 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1804 __func__, id->id_rateidx);
1805 sc->sc_txpending[id->id_rateidx] = 0;
1806 }
1807 if (ni != NULL)
1808 ieee80211_release_node(ic, ni);
1809 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1810 out:
1811 ifp->if_flags &= ~IFF_OACTIVE;
1812 }
1813
1814 STATIC void
1815 wi_info_intr(struct wi_softc *sc)
1816 {
1817 struct ieee80211com *ic = &sc->sc_ic;
1818 struct ifnet *ifp = &ic->ic_if;
1819 int i, fid, len, off;
1820 u_int16_t ltbuf[2];
1821 u_int16_t stat;
1822 u_int32_t *ptr;
1823
1824 fid = CSR_READ_2(sc, WI_INFO_FID);
1825 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1826
1827 switch (le16toh(ltbuf[1])) {
1828
1829 case WI_INFO_LINK_STAT:
1830 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1831 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1832 switch (le16toh(stat)) {
1833 case CONNECTED:
1834 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1835 if (ic->ic_state == IEEE80211_S_RUN &&
1836 ic->ic_opmode != IEEE80211_M_IBSS)
1837 break;
1838 /* FALLTHROUGH */
1839 case AP_CHANGE:
1840 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1841 break;
1842 case AP_IN_RANGE:
1843 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1844 break;
1845 case AP_OUT_OF_RANGE:
1846 if (sc->sc_firmware_type == WI_SYMBOL &&
1847 sc->sc_scan_timer > 0) {
1848 if (wi_cmd(sc, WI_CMD_INQUIRE,
1849 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1850 sc->sc_scan_timer = 0;
1851 break;
1852 }
1853 if (ic->ic_opmode == IEEE80211_M_STA)
1854 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1855 break;
1856 case DISCONNECTED:
1857 case ASSOC_FAILED:
1858 if (ic->ic_opmode == IEEE80211_M_STA)
1859 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1860 break;
1861 }
1862 break;
1863
1864 case WI_INFO_COUNTERS:
1865 /* some card versions have a larger stats structure */
1866 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1867 ptr = (u_int32_t *)&sc->sc_stats;
1868 off = sizeof(ltbuf);
1869 for (i = 0; i < len; i++, off += 2, ptr++) {
1870 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1871 stat = le16toh(stat);
1872 #ifdef WI_HERMES_STATS_WAR
1873 if (stat & 0xf000)
1874 stat = ~stat;
1875 #endif
1876 *ptr += stat;
1877 }
1878 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1879 sc->sc_stats.wi_tx_multi_retries +
1880 sc->sc_stats.wi_tx_retry_limit;
1881 break;
1882
1883 case WI_INFO_SCAN_RESULTS:
1884 case WI_INFO_HOST_SCAN_RESULTS:
1885 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1886 break;
1887
1888 default:
1889 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1890 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1891 break;
1892 }
1893 }
1894
1895 STATIC int
1896 wi_write_multi(struct wi_softc *sc)
1897 {
1898 struct ifnet *ifp = &sc->sc_ic.ic_if;
1899 int n;
1900 struct wi_mcast mlist;
1901 struct ether_multi *enm;
1902 struct ether_multistep estep;
1903
1904 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1905 allmulti:
1906 ifp->if_flags |= IFF_ALLMULTI;
1907 memset(&mlist, 0, sizeof(mlist));
1908 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1909 sizeof(mlist));
1910 }
1911
1912 n = 0;
1913 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1914 while (enm != NULL) {
1915 /* Punt on ranges or too many multicast addresses. */
1916 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1917 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1918 goto allmulti;
1919
1920 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1921 n++;
1922 ETHER_NEXT_MULTI(estep, enm);
1923 }
1924 ifp->if_flags &= ~IFF_ALLMULTI;
1925 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1926 IEEE80211_ADDR_LEN * n);
1927 }
1928
1929
1930 STATIC void
1931 wi_read_nicid(struct wi_softc *sc)
1932 {
1933 struct wi_card_ident *id;
1934 char *p;
1935 int len;
1936 u_int16_t ver[4];
1937
1938 /* getting chip identity */
1939 memset(ver, 0, sizeof(ver));
1940 len = sizeof(ver);
1941 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1942 printf("%s: using ", sc->sc_dev.dv_xname);
1943 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1944
1945 sc->sc_firmware_type = WI_NOTYPE;
1946 for (id = wi_card_ident; id->card_name != NULL; id++) {
1947 if (le16toh(ver[0]) == id->card_id) {
1948 printf("%s", id->card_name);
1949 sc->sc_firmware_type = id->firm_type;
1950 break;
1951 }
1952 }
1953 if (sc->sc_firmware_type == WI_NOTYPE) {
1954 if (le16toh(ver[0]) & 0x8000) {
1955 printf("Unknown PRISM2 chip");
1956 sc->sc_firmware_type = WI_INTERSIL;
1957 } else {
1958 printf("Unknown Lucent chip");
1959 sc->sc_firmware_type = WI_LUCENT;
1960 }
1961 }
1962
1963 /* get primary firmware version (Only Prism chips) */
1964 if (sc->sc_firmware_type != WI_LUCENT) {
1965 memset(ver, 0, sizeof(ver));
1966 len = sizeof(ver);
1967 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1968 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1969 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1970 }
1971
1972 /* get station firmware version */
1973 memset(ver, 0, sizeof(ver));
1974 len = sizeof(ver);
1975 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1976 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1977 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1978 if (sc->sc_firmware_type == WI_INTERSIL &&
1979 (sc->sc_sta_firmware_ver == 10102 ||
1980 sc->sc_sta_firmware_ver == 20102)) {
1981 char ident[12];
1982 memset(ident, 0, sizeof(ident));
1983 len = sizeof(ident);
1984 /* value should be the format like "V2.00-11" */
1985 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1986 *(p = (char *)ident) >= 'A' &&
1987 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1988 sc->sc_firmware_type = WI_SYMBOL;
1989 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1990 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1991 (p[6] - '0') * 10 + (p[7] - '0');
1992 }
1993 }
1994
1995 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1996 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1997 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1998 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1999 printf("Primary (%u.%u.%u), ",
2000 sc->sc_pri_firmware_ver / 10000,
2001 (sc->sc_pri_firmware_ver % 10000) / 100,
2002 sc->sc_pri_firmware_ver % 100);
2003 printf("Station (%u.%u.%u)\n",
2004 sc->sc_sta_firmware_ver / 10000,
2005 (sc->sc_sta_firmware_ver % 10000) / 100,
2006 sc->sc_sta_firmware_ver % 100);
2007 }
2008
2009 STATIC int
2010 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
2011 {
2012 struct wi_ssid ssid;
2013
2014 if (buflen > IEEE80211_NWID_LEN)
2015 return ENOBUFS;
2016 memset(&ssid, 0, sizeof(ssid));
2017 ssid.wi_len = htole16(buflen);
2018 memcpy(ssid.wi_ssid, buf, buflen);
2019 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
2020 }
2021
2022 STATIC int
2023 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2024 {
2025 struct wi_softc *sc = ifp->if_softc;
2026 struct ieee80211com *ic = &sc->sc_ic;
2027 struct ifreq *ifr = (struct ifreq *)data;
2028 struct wi_req wreq;
2029 int len, n, error;
2030
2031 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2032 if (error)
2033 return error;
2034 len = (wreq.wi_len - 1) * 2;
2035 if (len < sizeof(u_int16_t))
2036 return ENOSPC;
2037 if (len > sizeof(wreq.wi_val))
2038 len = sizeof(wreq.wi_val);
2039
2040 switch (wreq.wi_type) {
2041
2042 case WI_RID_IFACE_STATS:
2043 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
2044 if (len < sizeof(sc->sc_stats))
2045 error = ENOSPC;
2046 else
2047 len = sizeof(sc->sc_stats);
2048 break;
2049
2050 case WI_RID_ENCRYPTION:
2051 case WI_RID_TX_CRYPT_KEY:
2052 case WI_RID_DEFLT_CRYPT_KEYS:
2053 case WI_RID_TX_RATE:
2054 return ieee80211_cfgget(ifp, cmd, data);
2055
2056 case WI_RID_MICROWAVE_OVEN:
2057 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
2058 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2059 &len);
2060 break;
2061 }
2062 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
2063 len = sizeof(u_int16_t);
2064 break;
2065
2066 case WI_RID_DBM_ADJUST:
2067 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
2068 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2069 &len);
2070 break;
2071 }
2072 wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
2073 len = sizeof(u_int16_t);
2074 break;
2075
2076 case WI_RID_ROAMING_MODE:
2077 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
2078 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2079 &len);
2080 break;
2081 }
2082 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
2083 len = sizeof(u_int16_t);
2084 break;
2085
2086 case WI_RID_SYSTEM_SCALE:
2087 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
2088 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2089 &len);
2090 break;
2091 }
2092 wreq.wi_val[0] = htole16(sc->sc_system_scale);
2093 len = sizeof(u_int16_t);
2094 break;
2095
2096 case WI_RID_FRAG_THRESH:
2097 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
2098 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2099 &len);
2100 break;
2101 }
2102 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2103 len = sizeof(u_int16_t);
2104 break;
2105
2106 case WI_RID_READ_APS:
2107 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2108 return ieee80211_cfgget(ifp, cmd, data);
2109 if (sc->sc_scan_timer > 0) {
2110 error = EINPROGRESS;
2111 break;
2112 }
2113 n = sc->sc_naps;
2114 if (len < sizeof(n)) {
2115 error = ENOSPC;
2116 break;
2117 }
2118 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
2119 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
2120 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
2121 memcpy(wreq.wi_val, &n, sizeof(n));
2122 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
2123 sizeof(struct wi_apinfo) * n);
2124 break;
2125
2126 default:
2127 if (sc->sc_enabled) {
2128 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2129 &len);
2130 break;
2131 }
2132 switch (wreq.wi_type) {
2133 case WI_RID_MAX_DATALEN:
2134 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
2135 len = sizeof(u_int16_t);
2136 break;
2137 case WI_RID_FRAG_THRESH:
2138 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2139 len = sizeof(u_int16_t);
2140 break;
2141 case WI_RID_RTS_THRESH:
2142 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
2143 len = sizeof(u_int16_t);
2144 break;
2145 case WI_RID_CNFAUTHMODE:
2146 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
2147 len = sizeof(u_int16_t);
2148 break;
2149 case WI_RID_NODENAME:
2150 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
2151 error = ENOSPC;
2152 break;
2153 }
2154 len = sc->sc_nodelen + sizeof(u_int16_t);
2155 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
2156 memcpy(&wreq.wi_val[1], sc->sc_nodename,
2157 sc->sc_nodelen);
2158 break;
2159 default:
2160 return ieee80211_cfgget(ifp, cmd, data);
2161 }
2162 break;
2163 }
2164 if (error)
2165 return error;
2166 wreq.wi_len = (len + 1) / 2 + 1;
2167 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
2168 }
2169
2170 STATIC int
2171 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2172 {
2173 struct wi_softc *sc = ifp->if_softc;
2174 struct ieee80211com *ic = &sc->sc_ic;
2175 struct ifreq *ifr = (struct ifreq *)data;
2176 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2177 struct wi_req wreq;
2178 struct mbuf *m;
2179 int i, len, error;
2180
2181 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2182 if (error)
2183 return error;
2184 len = (wreq.wi_len - 1) * 2;
2185 switch (wreq.wi_type) {
2186 case WI_RID_DBM_ADJUST:
2187 return ENODEV;
2188
2189 case WI_RID_NODENAME:
2190 if (le16toh(wreq.wi_val[0]) * 2 > len ||
2191 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
2192 error = ENOSPC;
2193 break;
2194 }
2195 if (sc->sc_enabled) {
2196 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2197 len);
2198 if (error)
2199 break;
2200 }
2201 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
2202 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
2203 break;
2204
2205 case WI_RID_MICROWAVE_OVEN:
2206 case WI_RID_ROAMING_MODE:
2207 case WI_RID_SYSTEM_SCALE:
2208 case WI_RID_FRAG_THRESH:
2209 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
2210 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
2211 break;
2212 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
2213 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
2214 break;
2215 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
2216 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
2217 break;
2218 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
2219 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
2220 break;
2221 /* FALLTHROUGH */
2222 case WI_RID_RTS_THRESH:
2223 case WI_RID_CNFAUTHMODE:
2224 case WI_RID_MAX_DATALEN:
2225 if (sc->sc_enabled) {
2226 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2227 sizeof(u_int16_t));
2228 if (error)
2229 break;
2230 }
2231 switch (wreq.wi_type) {
2232 case WI_RID_FRAG_THRESH:
2233 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
2234 break;
2235 case WI_RID_RTS_THRESH:
2236 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
2237 break;
2238 case WI_RID_MICROWAVE_OVEN:
2239 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
2240 break;
2241 case WI_RID_ROAMING_MODE:
2242 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
2243 break;
2244 case WI_RID_SYSTEM_SCALE:
2245 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
2246 break;
2247 case WI_RID_CNFAUTHMODE:
2248 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
2249 break;
2250 case WI_RID_MAX_DATALEN:
2251 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
2252 break;
2253 }
2254 break;
2255
2256 case WI_RID_TX_RATE:
2257 switch (le16toh(wreq.wi_val[0])) {
2258 case 3:
2259 ic->ic_fixed_rate = -1;
2260 break;
2261 default:
2262 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2263 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
2264 / 2 == le16toh(wreq.wi_val[0]))
2265 break;
2266 }
2267 if (i == IEEE80211_RATE_SIZE)
2268 return EINVAL;
2269 ic->ic_fixed_rate = i;
2270 }
2271 if (sc->sc_enabled)
2272 error = wi_cfg_txrate(sc);
2273 break;
2274
2275 case WI_RID_SCAN_APS:
2276 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2277 error = wi_scan_ap(sc, 0x3fff, 0x000f);
2278 break;
2279
2280 case WI_RID_MGMT_XMIT:
2281 if (!sc->sc_enabled) {
2282 error = ENETDOWN;
2283 break;
2284 }
2285 if (ic->ic_mgtq.ifq_len > 5) {
2286 error = EAGAIN;
2287 break;
2288 }
2289 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
2290 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
2291 if (m == NULL) {
2292 error = ENOMEM;
2293 break;
2294 }
2295 IF_ENQUEUE(&ic->ic_mgtq, m);
2296 break;
2297
2298 default:
2299 if (sc->sc_enabled) {
2300 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2301 len);
2302 if (error)
2303 break;
2304 }
2305 error = ieee80211_cfgset(ifp, cmd, data);
2306 break;
2307 }
2308 return error;
2309 }
2310
2311 /* Rate is 0 for hardware auto-select, otherwise rate is
2312 * 2, 4, 11, or 22 (units of 500Kbps).
2313 */
2314 STATIC int
2315 wi_write_txrate(struct wi_softc *sc, int rate)
2316 {
2317 u_int16_t hwrate;
2318
2319 /* rate: 0, 2, 4, 11, 22 */
2320 switch (sc->sc_firmware_type) {
2321 case WI_LUCENT:
2322 switch (rate & IEEE80211_RATE_VAL) {
2323 case 2:
2324 hwrate = 1;
2325 break;
2326 case 4:
2327 hwrate = 2;
2328 break;
2329 default:
2330 hwrate = 3; /* auto */
2331 break;
2332 case 11:
2333 hwrate = 4;
2334 break;
2335 case 22:
2336 hwrate = 5;
2337 break;
2338 }
2339 break;
2340 default:
2341 switch (rate & IEEE80211_RATE_VAL) {
2342 case 2:
2343 hwrate = 1;
2344 break;
2345 case 4:
2346 hwrate = 2;
2347 break;
2348 case 11:
2349 hwrate = 4;
2350 break;
2351 case 22:
2352 hwrate = 8;
2353 break;
2354 default:
2355 hwrate = 15; /* auto */
2356 break;
2357 }
2358 break;
2359 }
2360
2361 if (sc->sc_tx_rate == hwrate)
2362 return 0;
2363
2364 if (sc->sc_if.if_flags & IFF_DEBUG)
2365 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate,
2366 hwrate, rate);
2367
2368 sc->sc_tx_rate = hwrate;
2369
2370 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate);
2371 }
2372
2373 STATIC int
2374 wi_cfg_txrate(struct wi_softc *sc)
2375 {
2376 struct ieee80211com *ic = &sc->sc_ic;
2377 struct ieee80211_rateset *rs;
2378 int rate;
2379
2380 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2381
2382 sc->sc_tx_rate = 0; /* force write to RID */
2383
2384 if (ic->ic_fixed_rate < 0)
2385 rate = 0; /* auto */
2386 else
2387 rate = rs->rs_rates[ic->ic_fixed_rate];
2388
2389 return wi_write_txrate(sc, rate);
2390 }
2391
2392 STATIC int
2393 wi_write_wep(struct wi_softc *sc)
2394 {
2395 struct ieee80211com *ic = &sc->sc_ic;
2396 int error = 0;
2397 int i, keylen;
2398 u_int16_t val;
2399 struct wi_key wkey[IEEE80211_WEP_NKID];
2400
2401 switch (sc->sc_firmware_type) {
2402 case WI_LUCENT:
2403 val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0;
2404 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2405 if (error)
2406 break;
2407 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
2408 if (error)
2409 break;
2410 memset(wkey, 0, sizeof(wkey));
2411 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2412 keylen = ic->ic_nw_keys[i].wk_len;
2413 wkey[i].wi_keylen = htole16(keylen);
2414 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2415 keylen);
2416 }
2417 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2418 wkey, sizeof(wkey));
2419 break;
2420
2421 case WI_INTERSIL:
2422 case WI_SYMBOL:
2423 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2424 /*
2425 * ONLY HWB3163 EVAL-CARD Firmware version
2426 * less than 0.8 variant2
2427 *
2428 * If promiscuous mode disable, Prism2 chip
2429 * does not work with WEP .
2430 * It is under investigation for details.
2431 * (ichiro (at) NetBSD.org)
2432 */
2433 if (sc->sc_firmware_type == WI_INTERSIL &&
2434 sc->sc_sta_firmware_ver < 802 ) {
2435 /* firm ver < 0.8 variant 2 */
2436 wi_write_val(sc, WI_RID_PROMISC, 1);
2437 }
2438 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2439 sc->sc_cnfauthmode);
2440 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
2441 /*
2442 * Encryption firmware has a bug for HostAP mode.
2443 */
2444 if (sc->sc_firmware_type == WI_INTERSIL &&
2445 ic->ic_opmode == IEEE80211_M_HOSTAP)
2446 val |= HOST_ENCRYPT;
2447 } else {
2448 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2449 IEEE80211_AUTH_OPEN);
2450 val = HOST_ENCRYPT | HOST_DECRYPT;
2451 }
2452 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2453 if (error)
2454 break;
2455 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2456 ic->ic_wep_txkey);
2457 if (error)
2458 break;
2459 /*
2460 * It seems that the firmware accept 104bit key only if
2461 * all the keys have 104bit length. We get the length of
2462 * the transmit key and use it for all other keys.
2463 * Perhaps we should use software WEP for such situation.
2464 */
2465 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
2466 if (keylen > IEEE80211_WEP_KEYLEN)
2467 keylen = 13; /* 104bit keys */
2468 else
2469 keylen = IEEE80211_WEP_KEYLEN;
2470 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2471 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2472 ic->ic_nw_keys[i].wk_key, keylen);
2473 if (error)
2474 break;
2475 }
2476 break;
2477 }
2478 return error;
2479 }
2480
2481 /* Must be called at proper protection level! */
2482 STATIC int
2483 wi_sendcmd(struct wi_softc *sc, int cmd, int val0)
2484 {
2485 #ifdef WI_HISTOGRAM
2486 static int hist3[11];
2487 static int hist3count;
2488 #endif
2489 int i;
2490
2491 /* wait for the busy bit to clear */
2492 for (i = 500; i > 0; i--) { /* 5s */
2493 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2494 break;
2495 DELAY(1000); /* 1 m sec */
2496 }
2497 if (i == 0) {
2498 printf("%s: wi_sendcmd: busy bit won't clear.\n",
2499 sc->sc_dev.dv_xname);
2500 return(ETIMEDOUT);
2501 }
2502 #ifdef WI_HISTOGRAM
2503 if (i > 490)
2504 hist3[500 - i]++;
2505 else
2506 hist3[10]++;
2507 if (++hist3count == 1000) {
2508 hist3count = 0;
2509 printf("%s: hist3: %d %d %d %d %d %d %d %d %d %d %d\n",
2510 sc->sc_dev.dv_xname,
2511 hist3[0], hist3[1], hist3[2], hist3[3], hist3[4],
2512 hist3[5], hist3[6], hist3[7], hist3[8], hist3[9],
2513 hist3[10]);
2514 }
2515 #endif
2516 CSR_WRITE_2(sc, WI_PARAM0, val0);
2517 CSR_WRITE_2(sc, WI_PARAM1, 0);
2518 CSR_WRITE_2(sc, WI_PARAM2, 0);
2519 CSR_WRITE_2(sc, WI_COMMAND, cmd);
2520
2521 return 0;
2522 }
2523
2524 STATIC int
2525 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2526 {
2527 #ifdef WI_HISTOGRAM
2528 static int hist1[11];
2529 static int hist1count;
2530 static int hist2[11];
2531 static int hist2count;
2532 #endif
2533 int i, status;
2534
2535 /* wait for the busy bit to clear */
2536 for (i = 500; i > 0; i--) { /* 5s */
2537 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2538 break;
2539 DELAY(1000); /* 1 m sec */
2540 }
2541 if (i == 0) {
2542 printf("%s: wi_cmd: busy bit won't clear.\n",
2543 sc->sc_dev.dv_xname);
2544 return(ETIMEDOUT);
2545 }
2546 #ifdef WI_HISTOGRAM
2547 if (i > 490)
2548 hist1[500 - i]++;
2549 else
2550 hist1[10]++;
2551 if (++hist1count == 1000) {
2552 hist1count = 0;
2553 printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n",
2554 sc->sc_dev.dv_xname,
2555 hist1[0], hist1[1], hist1[2], hist1[3], hist1[4],
2556 hist1[5], hist1[6], hist1[7], hist1[8], hist1[9],
2557 hist1[10]);
2558 }
2559 #endif
2560 CSR_WRITE_2(sc, WI_PARAM0, val0);
2561 CSR_WRITE_2(sc, WI_PARAM1, val1);
2562 CSR_WRITE_2(sc, WI_PARAM2, val2);
2563 CSR_WRITE_2(sc, WI_COMMAND, cmd);
2564
2565 if (cmd == WI_CMD_INI) {
2566 /* XXX: should sleep here. */
2567 DELAY(100*1000);
2568 }
2569 /* wait for the cmd completed bit */
2570 for (i = 0; i < WI_TIMEOUT; i++) {
2571 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
2572 break;
2573 DELAY(WI_DELAY);
2574 }
2575 #ifdef WI_HISTOGRAM
2576 if (i < 100)
2577 hist2[i/10]++;
2578 else
2579 hist2[10]++;
2580 if (++hist2count == 1000) {
2581 hist2count = 0;
2582 printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n",
2583 sc->sc_dev.dv_xname,
2584 hist2[0], hist2[1], hist2[2], hist2[3], hist2[4],
2585 hist2[5], hist2[6], hist2[7], hist2[8], hist2[9],
2586 hist2[10]);
2587 }
2588 #endif
2589
2590 status = CSR_READ_2(sc, WI_STATUS);
2591
2592 /* Ack the command */
2593 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2594
2595 if (i == WI_TIMEOUT) {
2596 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
2597 sc->sc_dev.dv_xname, cmd, val0);
2598 return ETIMEDOUT;
2599 }
2600
2601 if (status & WI_STAT_CMD_RESULT) {
2602 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
2603 sc->sc_dev.dv_xname, cmd, val0);
2604 return EIO;
2605 }
2606 return 0;
2607 }
2608
2609 STATIC int
2610 wi_seek_bap(struct wi_softc *sc, int id, int off)
2611 {
2612 #ifdef WI_HISTOGRAM
2613 static int hist4[11];
2614 static int hist4count;
2615 #endif
2616 int i, status;
2617
2618 CSR_WRITE_2(sc, WI_SEL0, id);
2619 CSR_WRITE_2(sc, WI_OFF0, off);
2620
2621 for (i = 0; ; i++) {
2622 status = CSR_READ_2(sc, WI_OFF0);
2623 if ((status & WI_OFF_BUSY) == 0)
2624 break;
2625 if (i == WI_TIMEOUT) {
2626 printf("%s: timeout in wi_seek to %x/%x\n",
2627 sc->sc_dev.dv_xname, id, off);
2628 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2629 return ETIMEDOUT;
2630 }
2631 DELAY(2);
2632 }
2633 #ifdef WI_HISTOGRAM
2634 if (i < 100)
2635 hist4[i/10]++;
2636 else
2637 hist4[10]++;
2638 if (++hist4count == 2500) {
2639 hist4count = 0;
2640 printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n",
2641 sc->sc_dev.dv_xname,
2642 hist4[0], hist4[1], hist4[2], hist4[3], hist4[4],
2643 hist4[5], hist4[6], hist4[7], hist4[8], hist4[9],
2644 hist4[10]);
2645 }
2646 #endif
2647 if (status & WI_OFF_ERR) {
2648 printf("%s: failed in wi_seek to %x/%x\n",
2649 sc->sc_dev.dv_xname, id, off);
2650 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2651 return EIO;
2652 }
2653 sc->sc_bap_id = id;
2654 sc->sc_bap_off = off;
2655 return 0;
2656 }
2657
2658 STATIC int
2659 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2660 {
2661 int error, cnt;
2662
2663 if (buflen == 0)
2664 return 0;
2665 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2666 if ((error = wi_seek_bap(sc, id, off)) != 0)
2667 return error;
2668 }
2669 cnt = (buflen + 1) / 2;
2670 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2671 sc->sc_bap_off += cnt * 2;
2672 return 0;
2673 }
2674
2675 STATIC int
2676 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2677 {
2678 int error, cnt;
2679
2680 if (buflen == 0)
2681 return 0;
2682
2683 #ifdef WI_HERMES_AUTOINC_WAR
2684 again:
2685 #endif
2686 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2687 if ((error = wi_seek_bap(sc, id, off)) != 0)
2688 return error;
2689 }
2690 cnt = (buflen + 1) / 2;
2691 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2692 sc->sc_bap_off += cnt * 2;
2693
2694 #ifdef WI_HERMES_AUTOINC_WAR
2695 /*
2696 * According to the comments in the HCF Light code, there is a bug
2697 * in the Hermes (or possibly in certain Hermes firmware revisions)
2698 * where the chip's internal autoincrement counter gets thrown off
2699 * during data writes: the autoincrement is missed, causing one
2700 * data word to be overwritten and subsequent words to be written to
2701 * the wrong memory locations. The end result is that we could end
2702 * up transmitting bogus frames without realizing it. The workaround
2703 * for this is to write a couple of extra guard words after the end
2704 * of the transfer, then attempt to read then back. If we fail to
2705 * locate the guard words where we expect them, we preform the
2706 * transfer over again.
2707 */
2708 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2709 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2710 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2711 wi_seek_bap(sc, id, sc->sc_bap_off);
2712 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2713 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2714 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2715 printf("%s: detect auto increment bug, try again\n",
2716 sc->sc_dev.dv_xname);
2717 goto again;
2718 }
2719 }
2720 #endif
2721 return 0;
2722 }
2723
2724 STATIC int
2725 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2726 {
2727 int error, len;
2728 struct mbuf *m;
2729
2730 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2731 if (m->m_len == 0)
2732 continue;
2733
2734 len = min(m->m_len, totlen);
2735
2736 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2737 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2738 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2739 totlen);
2740 }
2741
2742 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2743 return error;
2744
2745 off += m->m_len;
2746 totlen -= len;
2747 }
2748 return 0;
2749 }
2750
2751 STATIC int
2752 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2753 {
2754 int i;
2755
2756 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2757 printf("%s: failed to allocate %d bytes on NIC\n",
2758 sc->sc_dev.dv_xname, len);
2759 return ENOMEM;
2760 }
2761
2762 for (i = 0; i < WI_TIMEOUT; i++) {
2763 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2764 break;
2765 if (i == WI_TIMEOUT) {
2766 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
2767 return ETIMEDOUT;
2768 }
2769 DELAY(1);
2770 }
2771 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
2772 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2773 return 0;
2774 }
2775
2776 STATIC int
2777 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2778 {
2779 int error, len;
2780 u_int16_t ltbuf[2];
2781
2782 /* Tell the NIC to enter record read mode. */
2783 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2784 if (error)
2785 return error;
2786
2787 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2788 if (error)
2789 return error;
2790
2791 if (le16toh(ltbuf[0]) == 0)
2792 return EOPNOTSUPP;
2793 if (le16toh(ltbuf[1]) != rid) {
2794 printf("%s: record read mismatch, rid=%x, got=%x\n",
2795 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
2796 return EIO;
2797 }
2798 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
2799 if (*buflenp < len) {
2800 printf("%s: record buffer is too small, "
2801 "rid=%x, size=%d, len=%d\n",
2802 sc->sc_dev.dv_xname, rid, *buflenp, len);
2803 return ENOSPC;
2804 }
2805 *buflenp = len;
2806 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2807 }
2808
2809 STATIC int
2810 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2811 {
2812 int error;
2813 u_int16_t ltbuf[2];
2814
2815 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
2816 ltbuf[1] = htole16(rid);
2817
2818 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2819 if (error)
2820 return error;
2821 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2822 if (error)
2823 return error;
2824
2825 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2826 }
2827
2828 STATIC void
2829 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni)
2830 {
2831 struct wi_node *wn = (void*)ni;
2832 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt);
2833 }
2834
2835 STATIC void
2836 wi_rssadapt_updatestats(void *arg)
2837 {
2838 struct wi_softc *sc = arg;
2839 struct ieee80211com *ic = &sc->sc_ic;
2840 ieee80211_iterate_nodes(ic, wi_rssadapt_updatestats_cb, arg);
2841 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2842 ic->ic_state == IEEE80211_S_RUN)
2843 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
2844 wi_rssadapt_updatestats, arg);
2845 }
2846
2847 STATIC int
2848 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2849 {
2850 struct ifnet *ifp = &ic->ic_if;
2851 struct wi_softc *sc = ic->ic_softc;
2852 struct ieee80211_node *ni = ic->ic_bss;
2853 int linkstate = LINK_STATE_DOWN, s;
2854 u_int16_t val;
2855 struct wi_ssid ssid;
2856 struct wi_macaddr bssid, old_bssid;
2857 enum ieee80211_state ostate;
2858 #ifdef WI_DEBUG
2859 static const char *stname[] =
2860 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
2861 #endif /* WI_DEBUG */
2862
2863 ostate = ic->ic_state;
2864 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
2865
2866 switch (nstate) {
2867 case IEEE80211_S_INIT:
2868 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2869 callout_stop(&sc->sc_rssadapt_ch);
2870 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2871 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2872 return (*sc->sc_newstate)(ic, nstate, arg);
2873
2874 case IEEE80211_S_RUN:
2875 linkstate = LINK_STATE_UP;
2876 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2877 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid);
2878 wi_read_xrid(sc, WI_RID_CURRENT_BSSID, &bssid,
2879 IEEE80211_ADDR_LEN);
2880 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid);
2881 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid);
2882 wi_read_xrid(sc, WI_RID_CURRENT_CHAN, &val, sizeof(val));
2883 if (!isset(ic->ic_chan_avail, le16toh(val)))
2884 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname,
2885 le16toh(val));
2886 ni->ni_chan = &ic->ic_channels[le16toh(val)];
2887
2888 /* If not equal, then discount a false synchronization. */
2889 if (!IEEE80211_ADDR_EQ(old_bssid.wi_mac_addr, ni->ni_bssid))
2890 sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1);
2891
2892 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2893 ni->ni_esslen = ic->ic_des_esslen;
2894 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2895 ni->ni_rates = ic->ic_sup_rates[
2896 ieee80211_chan2mode(ic, ni->ni_chan)];
2897 ni->ni_intval = ic->ic_lintval;
2898 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2899 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2900 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2901 } else {
2902 wi_read_xrid(sc, WI_RID_CURRENT_SSID, &ssid,
2903 sizeof(ssid));
2904 ni->ni_esslen = le16toh(ssid.wi_len);
2905 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2906 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2907 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2908 ni->ni_rates = ic->ic_sup_rates[
2909 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/
2910 }
2911 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2912 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
2913 wi_rssadapt_updatestats, sc);
2914 break;
2915
2916 case IEEE80211_S_SCAN:
2917 case IEEE80211_S_AUTH:
2918 case IEEE80211_S_ASSOC:
2919 break;
2920 }
2921
2922 if (ifp->if_link_state != linkstate) {
2923 ifp->if_link_state = linkstate;
2924 s = splnet();
2925 rt_ifmsg(ifp);
2926 splx(s);
2927 }
2928 ic->ic_state = nstate;
2929 /* skip standard ieee80211 handling */
2930 return 0;
2931 }
2932
2933 STATIC int
2934 wi_set_tim(struct ieee80211com *ic, int aid, int which)
2935 {
2936 struct wi_softc *sc = ic->ic_softc;
2937
2938 aid &= ~0xc000;
2939 if (which)
2940 aid |= 0x8000;
2941
2942 return wi_write_val(sc, WI_RID_SET_TIM, aid);
2943 }
2944
2945 STATIC int
2946 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
2947 {
2948 int error = 0;
2949 u_int16_t val[2];
2950
2951 if (!sc->sc_enabled)
2952 return ENXIO;
2953 switch (sc->sc_firmware_type) {
2954 case WI_LUCENT:
2955 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2956 break;
2957 case WI_INTERSIL:
2958 val[0] = htole16(chanmask); /* channel */
2959 val[1] = htole16(txrate); /* tx rate */
2960 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2961 break;
2962 case WI_SYMBOL:
2963 /*
2964 * XXX only supported on 3.x ?
2965 */
2966 val[0] = htole16(BSCAN_BCAST | BSCAN_ONETIME);
2967 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2968 val, sizeof(val[0]));
2969 break;
2970 }
2971 if (error == 0) {
2972 sc->sc_scan_timer = WI_SCAN_WAIT;
2973 sc->sc_ic.ic_if.if_timer = 1;
2974 DPRINTF(("wi_scan_ap: start scanning, "
2975 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate));
2976 }
2977 return error;
2978 }
2979
2980 STATIC void
2981 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2982 {
2983 #define N(a) (sizeof (a) / sizeof (a[0]))
2984 int i, naps, off, szbuf;
2985 struct wi_scan_header ws_hdr; /* Prism2 header */
2986 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2987 struct wi_apinfo *ap;
2988
2989 off = sizeof(u_int16_t) * 2;
2990 memset(&ws_hdr, 0, sizeof(ws_hdr));
2991 switch (sc->sc_firmware_type) {
2992 case WI_INTERSIL:
2993 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2994 off += sizeof(ws_hdr);
2995 szbuf = sizeof(struct wi_scan_data_p2);
2996 break;
2997 case WI_SYMBOL:
2998 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2999 break;
3000 case WI_LUCENT:
3001 szbuf = sizeof(struct wi_scan_data);
3002 break;
3003 default:
3004 printf("%s: wi_scan_result: unknown firmware type %u\n",
3005 sc->sc_dev.dv_xname, sc->sc_firmware_type);
3006 naps = 0;
3007 goto done;
3008 }
3009 naps = (cnt * 2 + 2 - off) / szbuf;
3010 if (naps > N(sc->sc_aps))
3011 naps = N(sc->sc_aps);
3012 sc->sc_naps = naps;
3013 /* Read Data */
3014 ap = sc->sc_aps;
3015 memset(&ws_dat, 0, sizeof(ws_dat));
3016 for (i = 0; i < naps; i++, ap++) {
3017 wi_read_bap(sc, fid, off, &ws_dat,
3018 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
3019 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
3020 ether_sprintf(ws_dat.wi_bssid)));
3021 off += szbuf;
3022 ap->scanreason = le16toh(ws_hdr.wi_reason);
3023 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
3024 ap->channel = le16toh(ws_dat.wi_chid);
3025 ap->signal = le16toh(ws_dat.wi_signal);
3026 ap->noise = le16toh(ws_dat.wi_noise);
3027 ap->quality = ap->signal - ap->noise;
3028 ap->capinfo = le16toh(ws_dat.wi_capinfo);
3029 ap->interval = le16toh(ws_dat.wi_interval);
3030 ap->rate = le16toh(ws_dat.wi_rate);
3031 ap->namelen = le16toh(ws_dat.wi_namelen);
3032 if (ap->namelen > sizeof(ap->name))
3033 ap->namelen = sizeof(ap->name);
3034 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
3035 }
3036 done:
3037 /* Done scanning */
3038 sc->sc_scan_timer = 0;
3039 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
3040 #undef N
3041 }
3042
3043 STATIC void
3044 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
3045 {
3046 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
3047 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL
3048 : -1,
3049 rssi);
3050 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
3051 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
3052 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
3053 printf(" rx_signal %u rx_rate %u rx_flow %u\n",
3054 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
3055 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
3056 wh->wi_tx_rtry, wh->wi_tx_rate,
3057 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
3058 printf(" ehdr dst %s src %s type 0x%x\n",
3059 ether_sprintf(wh->wi_ehdr.ether_dhost),
3060 ether_sprintf(wh->wi_ehdr.ether_shost),
3061 wh->wi_ehdr.ether_type);
3062 }
3063