wi.c revision 1.193 1 /* $NetBSD: wi.c,v 1.193 2004/12/14 19:53:46 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1997, 1998, 1999
41 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Bill Paul.
54 * 4. Neither the name of the author nor the names of any co-contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
68 * THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
73 *
74 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
81 * from Lucent. Unlike the older cards, the new ones are programmed
82 * entirely via a firmware-driven controller called the Hermes.
83 * Unfortunately, Lucent will not release the Hermes programming manual
84 * without an NDA (if at all). What they do release is an API library
85 * called the HCF (Hardware Control Functions) which is supposed to
86 * do the device-specific operations of a device driver for you. The
87 * publically available version of the HCF library (the 'HCF Light') is
88 * a) extremely gross, b) lacks certain features, particularly support
89 * for 802.11 frames, and c) is contaminated by the GNU Public License.
90 *
91 * This driver does not use the HCF or HCF Light at all. Instead, it
92 * programs the Hermes controller directly, using information gleaned
93 * from the HCF Light code and corresponding documentation.
94 *
95 * This driver supports both the PCMCIA and ISA versions of the
96 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
97 * anything of the sort: it's actually a PCMCIA bridge adapter
98 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
99 * inserted. Consequently, you need to use the pccard support for
100 * both the ISA and PCMCIA adapters.
101 */
102
103 /*
104 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
105 * Oslo IETF plenary meeting.
106 */
107
108 #include <sys/cdefs.h>
109 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.193 2004/12/14 19:53:46 dyoung Exp $");
110
111 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
112 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
113 #undef WI_HISTOGRAM
114 #undef WI_RING_DEBUG
115 #define STATIC static
116
117 #include "bpfilter.h"
118
119 #include <sys/param.h>
120 #include <sys/systm.h>
121 #include <sys/callout.h>
122 #include <sys/device.h>
123 #include <sys/socket.h>
124 #include <sys/mbuf.h>
125 #include <sys/ioctl.h>
126 #include <sys/kernel.h> /* for hz */
127 #include <sys/proc.h>
128
129 #include <net/if.h>
130 #include <net/if_dl.h>
131 #include <net/if_llc.h>
132 #include <net/if_media.h>
133 #include <net/if_ether.h>
134 #include <net/route.h>
135
136 #include <net80211/ieee80211_var.h>
137 #include <net80211/ieee80211_compat.h>
138 #include <net80211/ieee80211_ioctl.h>
139 #include <net80211/ieee80211_radiotap.h>
140 #include <net80211/ieee80211_rssadapt.h>
141
142 #if NBPFILTER > 0
143 #include <net/bpf.h>
144 #include <net/bpfdesc.h>
145 #endif
146
147 #include <machine/bus.h>
148
149 #include <dev/ic/wi_ieee.h>
150 #include <dev/ic/wireg.h>
151 #include <dev/ic/wivar.h>
152
153 STATIC int wi_init(struct ifnet *);
154 STATIC void wi_stop(struct ifnet *, int);
155 STATIC void wi_start(struct ifnet *);
156 STATIC int wi_reset(struct wi_softc *);
157 STATIC void wi_watchdog(struct ifnet *);
158 STATIC int wi_ioctl(struct ifnet *, u_long, caddr_t);
159 STATIC int wi_media_change(struct ifnet *);
160 STATIC void wi_media_status(struct ifnet *, struct ifmediareq *);
161
162 STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211com *);
163 STATIC void wi_node_copy(struct ieee80211com *, struct ieee80211_node *,
164 const struct ieee80211_node *);
165 STATIC void wi_node_free(struct ieee80211com *, struct ieee80211_node *);
166
167 STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
168 STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
169 STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *,
170 struct ieee80211_frame *, u_int);
171 STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *);
172 STATIC void wi_rssadapt_updatestats(void *);
173 STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *);
174 STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[],
175 wi_rssdescq_t *, u_int8_t (*)[]);
176 STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]);
177
178 STATIC void wi_rx_intr(struct wi_softc *);
179 STATIC void wi_txalloc_intr(struct wi_softc *);
180 STATIC void wi_cmd_intr(struct wi_softc *);
181 STATIC void wi_tx_intr(struct wi_softc *);
182 STATIC void wi_tx_ex_intr(struct wi_softc *);
183 STATIC void wi_info_intr(struct wi_softc *);
184
185 STATIC void wi_push_packet(struct wi_softc *);
186 STATIC int wi_get_cfg(struct ifnet *, u_long, caddr_t);
187 STATIC int wi_set_cfg(struct ifnet *, u_long, caddr_t);
188 STATIC int wi_cfg_txrate(struct wi_softc *);
189 STATIC int wi_write_txrate(struct wi_softc *, int);
190 STATIC int wi_write_wep(struct wi_softc *);
191 STATIC int wi_write_multi(struct wi_softc *);
192 STATIC int wi_alloc_fid(struct wi_softc *, int, int *);
193 STATIC void wi_read_nicid(struct wi_softc *);
194 STATIC int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
195
196 STATIC int wi_cmd(struct wi_softc *, int, int, int, int);
197 STATIC int wi_cmd_start(struct wi_softc *, int, int, int, int);
198 STATIC int wi_cmd_wait(struct wi_softc *, int, int);
199 STATIC int wi_seek_bap(struct wi_softc *, int, int);
200 STATIC int wi_read_bap(struct wi_softc *, int, int, void *, int);
201 STATIC int wi_write_bap(struct wi_softc *, int, int, void *, int);
202 STATIC int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
203 STATIC int wi_read_rid(struct wi_softc *, int, void *, int *);
204 STATIC int wi_write_rid(struct wi_softc *, int, void *, int);
205
206 STATIC int wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
207 STATIC int wi_set_tim(struct ieee80211com *, int, int);
208
209 STATIC int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
210 STATIC void wi_scan_result(struct wi_softc *, int, int);
211
212 STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
213
214 static inline int
215 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
216 {
217
218 val = htole16(val);
219 return wi_write_rid(sc, rid, &val, sizeof(val));
220 }
221
222 static struct timeval lasttxerror; /* time of last tx error msg */
223 static int curtxeps = 0; /* current tx error msgs/sec */
224 static int wi_txerate = 0; /* tx error rate: max msgs/sec */
225
226 #ifdef WI_DEBUG
227 int wi_debug = 0;
228
229 #define DPRINTF(X) if (wi_debug) printf X
230 #define DPRINTF2(X) if (wi_debug > 1) printf X
231 #define IFF_DUMPPKTS(_ifp) \
232 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
233 #else
234 #define DPRINTF(X)
235 #define DPRINTF2(X)
236 #define IFF_DUMPPKTS(_ifp) 0
237 #endif
238
239 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \
240 WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD)
241
242 struct wi_card_ident
243 wi_card_ident[] = {
244 /* CARD_ID CARD_NAME FIRM_TYPE */
245 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
246 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
247 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
248 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
249 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
250 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
251 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
252 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
253 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
254 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
255 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
256 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
257 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
258 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
259 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
260 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
261 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
262 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
263 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
264 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
265 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
266 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
267 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
268 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
269 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
270 { 0, NULL, 0 },
271 };
272
273 STATIC int
274 wi_read_xrid(struct wi_softc *sc, int rid, void *buf, int ebuflen)
275 {
276 int buflen, rc;
277
278 buflen = ebuflen;
279 if ((rc = wi_read_rid(sc, rid, buf, &buflen)) != 0)
280 return rc;
281
282 if (buflen < ebuflen) {
283 #ifdef WI_DEBUG
284 printf("%s: rid=%#04x read %d, expected %d\n", __func__,
285 rid, buflen, ebuflen);
286 #endif
287 return -1;
288 }
289 return 0;
290 }
291
292 int
293 wi_attach(struct wi_softc *sc, const u_int8_t *macaddr)
294 {
295 struct ieee80211com *ic = &sc->sc_ic;
296 struct ifnet *ifp = &ic->ic_if;
297 int chan, nrate, buflen;
298 u_int16_t val, chanavail;
299 struct {
300 u_int16_t nrates;
301 char rates[IEEE80211_RATE_SIZE];
302 } ratebuf;
303 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
304 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
305 };
306 int s;
307
308 s = splnet();
309
310 /* Make sure interrupts are disabled. */
311 CSR_WRITE_2(sc, WI_INT_EN, 0);
312 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
313
314 sc->sc_invalid = 0;
315
316 /* Reset the NIC. */
317 if (wi_reset(sc) != 0) {
318 sc->sc_invalid = 1;
319 splx(s);
320 return 1;
321 }
322
323 if (!macaddr) {
324 if (wi_read_xrid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
325 IEEE80211_ADDR_LEN) != 0 ||
326 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
327 printf(" could not get mac address, attach failed\n");
328 splx(s);
329 return 1;
330 }
331 } else
332 memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN);
333
334 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
335
336 /* Read NIC identification */
337 wi_read_nicid(sc);
338
339 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
340 ifp->if_softc = sc;
341 ifp->if_start = wi_start;
342 ifp->if_ioctl = wi_ioctl;
343 ifp->if_watchdog = wi_watchdog;
344 ifp->if_init = wi_init;
345 ifp->if_stop = wi_stop;
346 ifp->if_flags =
347 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
348 IFQ_SET_READY(&ifp->if_snd);
349
350 ic->ic_phytype = IEEE80211_T_DS;
351 ic->ic_opmode = IEEE80211_M_STA;
352 ic->ic_caps = IEEE80211_C_AHDEMO;
353 ic->ic_state = IEEE80211_S_INIT;
354 ic->ic_max_aid = WI_MAX_AID;
355
356 /* Find available channel */
357 if (wi_read_xrid(sc, WI_RID_CHANNEL_LIST, &chanavail,
358 sizeof(chanavail)) != 0) {
359 aprint_normal("%s: using default channel list\n", sc->sc_dev.dv_xname);
360 chanavail = htole16(0x1fff); /* assume 1-13 */
361 }
362 for (chan = 16; chan > 0; chan--) {
363 if (!isset((u_int8_t*)&chanavail, chan - 1))
364 continue;
365 ic->ic_ibss_chan = &ic->ic_channels[chan];
366 ic->ic_channels[chan].ic_freq =
367 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
368 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
369 }
370
371 /* Find default IBSS channel */
372 if (wi_read_xrid(sc, WI_RID_OWN_CHNL, &val, sizeof(val)) == 0) {
373 chan = le16toh(val);
374 if (isset((u_int8_t*)&chanavail, chan - 1))
375 ic->ic_ibss_chan = &ic->ic_channels[chan];
376 }
377 if (ic->ic_ibss_chan == NULL) {
378 aprint_error("%s: no available channel\n", sc->sc_dev.dv_xname);
379 return 1;
380 }
381
382 if (sc->sc_firmware_type == WI_LUCENT) {
383 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
384 } else {
385 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
386 wi_read_xrid(sc, WI_RID_DBM_ADJUST, &val, sizeof(val)) == 0)
387 sc->sc_dbm_offset = le16toh(val);
388 else
389 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
390 }
391
392 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
393
394 /*
395 * Set flags based on firmware version.
396 */
397 switch (sc->sc_firmware_type) {
398 case WI_LUCENT:
399 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
400 #ifdef WI_HERMES_AUTOINC_WAR
401 /* XXX: not confirmed, but never seen for recent firmware */
402 if (sc->sc_sta_firmware_ver < 40000) {
403 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
404 }
405 #endif
406 if (sc->sc_sta_firmware_ver >= 60000)
407 sc->sc_flags |= WI_FLAGS_HAS_MOR;
408 if (sc->sc_sta_firmware_ver >= 60006) {
409 ic->ic_caps |= IEEE80211_C_IBSS;
410 ic->ic_caps |= IEEE80211_C_MONITOR;
411 }
412 ic->ic_caps |= IEEE80211_C_PMGT;
413 sc->sc_ibss_port = 1;
414 break;
415
416 case WI_INTERSIL:
417 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
418 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
419 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
420 if (sc->sc_sta_firmware_ver > 10101)
421 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
422 if (sc->sc_sta_firmware_ver >= 800) {
423 if (sc->sc_sta_firmware_ver != 10402)
424 ic->ic_caps |= IEEE80211_C_HOSTAP;
425 ic->ic_caps |= IEEE80211_C_IBSS;
426 ic->ic_caps |= IEEE80211_C_MONITOR;
427 }
428 ic->ic_caps |= IEEE80211_C_PMGT;
429 sc->sc_ibss_port = 0;
430 sc->sc_alt_retry = 2;
431 break;
432
433 case WI_SYMBOL:
434 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
435 if (sc->sc_sta_firmware_ver >= 20000)
436 ic->ic_caps |= IEEE80211_C_IBSS;
437 sc->sc_ibss_port = 4;
438 break;
439 }
440
441 /*
442 * Find out if we support WEP on this card.
443 */
444 if (wi_read_xrid(sc, WI_RID_WEP_AVAIL, &val, sizeof(val)) == 0 &&
445 val != htole16(0))
446 ic->ic_caps |= IEEE80211_C_WEP;
447
448 /* Find supported rates. */
449 buflen = sizeof(ratebuf);
450 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 &&
451 buflen > 2) {
452 nrate = le16toh(ratebuf.nrates);
453 if (nrate > IEEE80211_RATE_SIZE)
454 nrate = IEEE80211_RATE_SIZE;
455 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates,
456 &ratebuf.rates[0], nrate);
457 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
458 } else {
459 aprint_error("%s: no supported rate list\n", sc->sc_dev.dv_xname);
460 return 1;
461 }
462
463 sc->sc_max_datalen = 2304;
464 sc->sc_rts_thresh = 2347;
465 sc->sc_frag_thresh = 2346;
466 sc->sc_system_scale = 1;
467 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
468 sc->sc_roaming_mode = 1;
469
470 callout_init(&sc->sc_rssadapt_ch);
471
472 /*
473 * Call MI attach routines.
474 */
475 if_attach(ifp);
476 ieee80211_ifattach(ifp);
477
478 sc->sc_newstate = ic->ic_newstate;
479 ic->ic_newstate = wi_newstate;
480 ic->ic_node_alloc = wi_node_alloc;
481 ic->ic_node_free = wi_node_free;
482 ic->ic_node_copy = wi_node_copy;
483 ic->ic_set_tim = wi_set_tim;
484
485 ieee80211_media_init(ifp, wi_media_change, wi_media_status);
486
487 #if NBPFILTER > 0
488 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
489 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
490 #endif
491
492 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
493 sc->sc_rxtap.wr_ihdr.it_len = sizeof(sc->sc_rxtapu);
494 sc->sc_rxtap.wr_ihdr.it_present = WI_RX_RADIOTAP_PRESENT;
495
496 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
497 sc->sc_txtap.wt_ihdr.it_len = sizeof(sc->sc_txtapu);
498 sc->sc_txtap.wt_ihdr.it_present = WI_TX_RADIOTAP_PRESENT;
499
500 /* Attach is successful. */
501 sc->sc_attached = 1;
502
503 splx(s);
504 return 0;
505 }
506
507 int
508 wi_detach(struct wi_softc *sc)
509 {
510 struct ifnet *ifp = &sc->sc_ic.ic_if;
511 int s;
512
513 if (!sc->sc_attached)
514 return 0;
515
516 s = splnet();
517
518 sc->sc_invalid = 1;
519 wi_stop(ifp, 1);
520
521 /* Delete all remaining media. */
522 ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY);
523
524 ieee80211_ifdetach(ifp);
525 if_detach(ifp);
526 splx(s);
527 return 0;
528 }
529
530 #ifdef __NetBSD__
531 int
532 wi_activate(struct device *self, enum devact act)
533 {
534 struct wi_softc *sc = (struct wi_softc *)self;
535 int rv = 0, s;
536
537 s = splnet();
538 switch (act) {
539 case DVACT_ACTIVATE:
540 rv = EOPNOTSUPP;
541 break;
542
543 case DVACT_DEACTIVATE:
544 if_deactivate(&sc->sc_ic.ic_if);
545 break;
546 }
547 splx(s);
548 return rv;
549 }
550
551 void
552 wi_power(struct wi_softc *sc, int why)
553 {
554 struct ifnet *ifp = &sc->sc_ic.ic_if;
555 int s;
556
557 s = splnet();
558 switch (why) {
559 case PWR_SUSPEND:
560 case PWR_STANDBY:
561 wi_stop(ifp, 1);
562 break;
563 case PWR_RESUME:
564 if (ifp->if_flags & IFF_UP) {
565 wi_init(ifp);
566 (void)wi_intr(sc);
567 }
568 break;
569 case PWR_SOFTSUSPEND:
570 case PWR_SOFTSTANDBY:
571 case PWR_SOFTRESUME:
572 break;
573 }
574 splx(s);
575 }
576 #endif /* __NetBSD__ */
577
578 void
579 wi_shutdown(struct wi_softc *sc)
580 {
581 struct ifnet *ifp = &sc->sc_ic.ic_if;
582
583 if (sc->sc_attached)
584 wi_stop(ifp, 1);
585 }
586
587 int
588 wi_intr(void *arg)
589 {
590 int i;
591 struct wi_softc *sc = arg;
592 struct ifnet *ifp = &sc->sc_ic.ic_if;
593 u_int16_t status;
594
595 if (sc->sc_enabled == 0 ||
596 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
597 (ifp->if_flags & IFF_RUNNING) == 0)
598 return 0;
599
600 if ((ifp->if_flags & IFF_UP) == 0) {
601 CSR_WRITE_2(sc, WI_INT_EN, 0);
602 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
603 return 1;
604 }
605
606 /* This is superfluous on Prism, but Lucent breaks if we
607 * do not disable interrupts.
608 */
609 CSR_WRITE_2(sc, WI_INT_EN, 0);
610
611 /* maximum 10 loops per interrupt */
612 for (i = 0; i < 10; i++) {
613 /*
614 * Only believe a status bit when we enter wi_intr, or when
615 * the bit was "off" the last time through the loop. This is
616 * my strategy to avoid racing the hardware/firmware if I
617 * can re-read the event status register more quickly than
618 * it is updated.
619 */
620 status = CSR_READ_2(sc, WI_EVENT_STAT);
621 #ifdef WI_DEBUG
622 if (wi_debug > 1) {
623 printf("%s: iter %d status %#04x\n", __func__, i,
624 status);
625 }
626 #endif /* WI_DEBUG */
627 if ((status & WI_INTRS) == 0)
628 break;
629
630 sc->sc_status = status;
631
632 if (status & WI_EV_RX)
633 wi_rx_intr(sc);
634
635 if (status & WI_EV_ALLOC)
636 wi_txalloc_intr(sc);
637
638 if (status & WI_EV_TX)
639 wi_tx_intr(sc);
640
641 if (status & WI_EV_TX_EXC)
642 wi_tx_ex_intr(sc);
643
644 if (status & WI_EV_INFO)
645 wi_info_intr(sc);
646
647 CSR_WRITE_2(sc, WI_EVENT_ACK, sc->sc_status);
648
649 if (sc->sc_status & WI_EV_CMD)
650 wi_cmd_intr(sc);
651
652 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
653 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
654 !IFQ_IS_EMPTY(&ifp->if_snd))
655 wi_start(ifp);
656
657 sc->sc_status = 0;
658 }
659
660 /* re-enable interrupts */
661 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
662
663 sc->sc_status = 0;
664
665 return 1;
666 }
667
668 #define arraylen(a) (sizeof(a) / sizeof((a)[0]))
669
670 STATIC void
671 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree)
672 {
673 int i;
674 SLIST_INIT(rssdfree);
675 for (i = 0; i < arraylen(*rssd); i++) {
676 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next);
677 }
678 }
679
680 STATIC void
681 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS],
682 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE])
683 {
684 struct ieee80211_node *ni;
685 int i;
686 for (i = 0; i < arraylen(*rssd); i++) {
687 ni = (*rssd)[i].rd_desc.id_node;
688 (*rssd)[i].rd_desc.id_node = NULL;
689 if (ni != NULL && (ic->ic_if.if_flags & IFF_DEBUG) != 0)
690 printf("%s: cleaning outstanding rssadapt "
691 "descriptor for %s\n",
692 ic->ic_if.if_xname, ether_sprintf(ni->ni_macaddr));
693 if (ni != NULL)
694 ieee80211_release_node(ic, ni);
695 }
696 memset(*txpending, 0, sizeof(*txpending));
697 wi_rssdescs_init(rssd, rssdfree);
698 }
699
700 STATIC int
701 wi_init(struct ifnet *ifp)
702 {
703 struct wi_softc *sc = ifp->if_softc;
704 struct ieee80211com *ic = &sc->sc_ic;
705 struct wi_joinreq join;
706 int i;
707 int error = 0, wasenabled;
708
709 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
710 wasenabled = sc->sc_enabled;
711 if (!sc->sc_enabled) {
712 if ((error = (*sc->sc_enable)(sc)) != 0)
713 goto out;
714 sc->sc_enabled = 1;
715 } else
716 wi_stop(ifp, 0);
717
718 /* Symbol firmware cannot be initialized more than once */
719 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled)
720 if ((error = wi_reset(sc)) != 0)
721 goto out;
722
723 /* common 802.11 configuration */
724 ic->ic_flags &= ~IEEE80211_F_IBSSON;
725 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
726 switch (ic->ic_opmode) {
727 case IEEE80211_M_STA:
728 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
729 break;
730 case IEEE80211_M_IBSS:
731 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
732 ic->ic_flags |= IEEE80211_F_IBSSON;
733 break;
734 case IEEE80211_M_AHDEMO:
735 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
736 break;
737 case IEEE80211_M_HOSTAP:
738 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
739 break;
740 case IEEE80211_M_MONITOR:
741 if (sc->sc_firmware_type == WI_LUCENT)
742 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
743 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
744 break;
745 }
746
747 /* Intersil interprets this RID as joining ESS even in IBSS mode */
748 if (sc->sc_firmware_type == WI_LUCENT &&
749 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
750 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
751 else
752 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
753 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
754 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
755 ic->ic_des_esslen);
756 wi_write_val(sc, WI_RID_OWN_CHNL,
757 ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
758 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
759 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
760 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
761 if (ic->ic_caps & IEEE80211_C_PMGT)
762 wi_write_val(sc, WI_RID_PM_ENABLED,
763 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
764
765 /* not yet common 802.11 configuration */
766 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
767 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
768 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
769 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
770
771 /* driver specific 802.11 configuration */
772 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
773 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
774 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
775 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
776 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
777 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
778 wi_cfg_txrate(sc);
779 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
780
781 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
782 sc->sc_firmware_type == WI_INTERSIL) {
783 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
784 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
785 }
786
787 if (sc->sc_firmware_type == WI_INTERSIL) {
788 struct ieee80211_rateset *rs =
789 &ic->ic_sup_rates[IEEE80211_MODE_11B];
790 u_int16_t basic = 0, supported = 0, rate;
791
792 for (i = 0; i < rs->rs_nrates; i++) {
793 switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
794 case 2:
795 rate = 1;
796 break;
797 case 4:
798 rate = 2;
799 break;
800 case 11:
801 rate = 4;
802 break;
803 case 22:
804 rate = 8;
805 break;
806 default:
807 rate = 0;
808 break;
809 }
810 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC)
811 basic |= rate;
812 supported |= rate;
813 }
814 wi_write_val(sc, WI_RID_BASIC_RATE, basic);
815 wi_write_val(sc, WI_RID_SUPPORT_RATE, supported);
816 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry);
817 }
818
819 /*
820 * Initialize promisc mode.
821 * Being in Host-AP mode causes a great
822 * deal of pain if promiscuous mode is set.
823 * Therefore we avoid confusing the firmware
824 * and always reset promisc mode in Host-AP
825 * mode. Host-AP sees all the packets anyway.
826 */
827 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
828 (ifp->if_flags & IFF_PROMISC) != 0) {
829 wi_write_val(sc, WI_RID_PROMISC, 1);
830 } else {
831 wi_write_val(sc, WI_RID_PROMISC, 0);
832 }
833
834 /* Configure WEP. */
835 if (ic->ic_caps & IEEE80211_C_WEP)
836 wi_write_wep(sc);
837
838 /* Set multicast filter. */
839 wi_write_multi(sc);
840
841 sc->sc_txalloc = 0;
842 sc->sc_txalloced = 0;
843 sc->sc_txqueue = 0;
844 sc->sc_txqueued = 0;
845 sc->sc_txstart = 0;
846 sc->sc_txstarted = 0;
847
848 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
849 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
850 if (sc->sc_firmware_type == WI_SYMBOL)
851 sc->sc_buflen = 1585; /* XXX */
852 for (i = 0; i < WI_NTXBUF; i++) {
853 error = wi_alloc_fid(sc, sc->sc_buflen,
854 &sc->sc_txd[i].d_fid);
855 if (error) {
856 printf("%s: tx buffer allocation failed\n",
857 sc->sc_dev.dv_xname);
858 goto out;
859 }
860 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
861 sc->sc_txd[i].d_fid));
862 ++sc->sc_txalloced;
863 }
864 }
865
866 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree);
867
868 /* Enable desired port */
869 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
870 ifp->if_flags |= IFF_RUNNING;
871 ifp->if_flags &= ~IFF_OACTIVE;
872 ic->ic_state = IEEE80211_S_INIT;
873
874 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
875 ic->ic_opmode == IEEE80211_M_MONITOR ||
876 ic->ic_opmode == IEEE80211_M_HOSTAP)
877 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
878
879 /* Enable interrupts */
880 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
881
882 if (!wasenabled &&
883 ic->ic_opmode == IEEE80211_M_HOSTAP &&
884 sc->sc_firmware_type == WI_INTERSIL) {
885 /* XXX: some card need to be re-enabled for hostap */
886 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
887 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
888 }
889
890 if (ic->ic_opmode == IEEE80211_M_STA &&
891 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
892 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
893 memset(&join, 0, sizeof(join));
894 if (ic->ic_flags & IEEE80211_F_DESBSSID)
895 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
896 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
897 join.wi_chan =
898 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan));
899 /* Lucent firmware does not support the JOIN RID. */
900 if (sc->sc_firmware_type != WI_LUCENT)
901 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
902 }
903
904 out:
905 if (error) {
906 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
907 wi_stop(ifp, 0);
908 }
909 DPRINTF(("wi_init: return %d\n", error));
910 return error;
911 }
912
913 STATIC void
914 wi_txcmd_wait(struct wi_softc *sc)
915 {
916 KASSERT(sc->sc_txcmds == 1);
917 if (sc->sc_status & WI_EV_CMD) {
918 sc->sc_status &= ~WI_EV_CMD;
919 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
920 } else
921 (void)wi_cmd_wait(sc, WI_CMD_TX | WI_RECLAIM, 0);
922 }
923
924 STATIC void
925 wi_stop(struct ifnet *ifp, int disable)
926 {
927 struct wi_softc *sc = ifp->if_softc;
928 struct ieee80211com *ic = &sc->sc_ic;
929 int s;
930
931 if (!sc->sc_enabled)
932 return;
933
934 s = splnet();
935
936 DPRINTF(("wi_stop: disable %d\n", disable));
937
938 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
939
940 /* wait for tx command completion (deassoc, deauth) */
941 while (sc->sc_txcmds > 0) {
942 wi_txcmd_wait(sc);
943 wi_cmd_intr(sc);
944 }
945
946 /* TBD wait for deassoc, deauth tx completion? */
947
948 if (!sc->sc_invalid) {
949 CSR_WRITE_2(sc, WI_INT_EN, 0);
950 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
951 }
952
953 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
954 &sc->sc_txpending);
955
956 sc->sc_tx_timer = 0;
957 sc->sc_scan_timer = 0;
958 sc->sc_false_syns = 0;
959 sc->sc_naps = 0;
960 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
961 ifp->if_timer = 0;
962
963 if (disable) {
964 if (sc->sc_disable)
965 (*sc->sc_disable)(sc);
966 sc->sc_enabled = 0;
967 }
968 splx(s);
969 }
970
971 /*
972 * Choose a data rate for a packet len bytes long that suits the packet
973 * type and the wireless conditions.
974 *
975 * TBD Adapt fragmentation threshold.
976 */
977 STATIC int
978 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni,
979 struct ieee80211_frame *wh, u_int len)
980 {
981 struct wi_softc *sc = ic->ic_if.if_softc;
982 struct wi_node *wn = (void*)ni;
983 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt;
984 int do_not_adapt, i, rateidx, s;
985
986 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) &&
987 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0;
988
989 s = splnet();
990
991 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len,
992 ic->ic_fixed_rate,
993 ((ic->ic_if.if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_if.if_xname,
994 do_not_adapt);
995
996 ni->ni_txrate = rateidx;
997
998 if (ic->ic_opmode != IEEE80211_M_HOSTAP) {
999 /* choose the slowest pending rate so that we don't
1000 * accidentally send a packet on the MAC's queue
1001 * too fast. TBD find out if the MAC labels Tx
1002 * packets w/ rate when enqueued or dequeued.
1003 */
1004 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++);
1005 rateidx = i;
1006 }
1007
1008 splx(s);
1009 return (rateidx);
1010 }
1011
1012 STATIC void
1013 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1014 {
1015 struct wi_node *wn;
1016 if (id->id_node == NULL)
1017 return;
1018
1019 wn = (void*)id->id_node;
1020 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id);
1021 }
1022
1023 STATIC void
1024 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1025 {
1026 struct ieee80211_node *ni;
1027 struct wi_node *wn;
1028 int s;
1029
1030 s = splnet();
1031
1032 if ((ni = id->id_node) == NULL) {
1033 DPRINTF(("wi_lower_rate: missing node\n"));
1034 goto out;
1035 }
1036
1037 wn = (void *)ni;
1038
1039 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id);
1040 out:
1041 splx(s);
1042 return;
1043 }
1044
1045 STATIC void
1046 wi_start(struct ifnet *ifp)
1047 {
1048 struct wi_softc *sc = ifp->if_softc;
1049 struct ieee80211com *ic = &sc->sc_ic;
1050 struct ieee80211_node *ni;
1051 struct ieee80211_frame *wh;
1052 struct ieee80211_rateset *rs;
1053 struct wi_rssdesc *rd;
1054 struct ieee80211_rssdesc *id;
1055 struct mbuf *m0;
1056 struct wi_frame frmhdr;
1057 int cur, fid, off, rateidx;
1058
1059 if (!sc->sc_enabled || sc->sc_invalid)
1060 return;
1061 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
1062 return;
1063
1064 memset(&frmhdr, 0, sizeof(frmhdr));
1065 cur = sc->sc_txqueue;
1066 for (;;) {
1067 ni = ic->ic_bss;
1068 if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) {
1069 ifp->if_flags |= IFF_OACTIVE;
1070 break;
1071 }
1072 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
1073 IF_DEQUEUE(&ic->ic_mgtq, m0);
1074 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
1075 (caddr_t)&frmhdr.wi_ehdr);
1076 frmhdr.wi_ehdr.ether_type = 0;
1077 wh = mtod(m0, struct ieee80211_frame *);
1078 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1079 m0->m_pkthdr.rcvif = NULL;
1080 } else if (ic->ic_state != IEEE80211_S_RUN)
1081 break;
1082 else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
1083 struct llc *llc;
1084
1085 /*
1086 * Should these packets be processed after the
1087 * regular packets or before? Since they are being
1088 * probed for, they are probably less time critical
1089 * than other packets, but, on the other hand,
1090 * we want the power saving nodes to go back to
1091 * sleep as quickly as possible to save power...
1092 */
1093
1094 IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
1095 wh = mtod(m0, struct ieee80211_frame *);
1096 llc = (struct llc *) (wh + 1);
1097 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
1098 (caddr_t)&frmhdr.wi_ehdr);
1099 frmhdr.wi_ehdr.ether_type = llc->llc_snap.ether_type;
1100 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1101 m0->m_pkthdr.rcvif = NULL;
1102 } else {
1103 IFQ_POLL(&ifp->if_snd, m0);
1104 if (m0 == NULL) {
1105 break;
1106 }
1107 IFQ_DEQUEUE(&ifp->if_snd, m0);
1108 ifp->if_opackets++;
1109 m_copydata(m0, 0, ETHER_HDR_LEN,
1110 (caddr_t)&frmhdr.wi_ehdr);
1111 #if NBPFILTER > 0
1112 if (ifp->if_bpf)
1113 bpf_mtap(ifp->if_bpf, m0);
1114 #endif
1115
1116 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
1117 ifp->if_oerrors++;
1118 continue;
1119 }
1120 wh = mtod(m0, struct ieee80211_frame *);
1121 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1122 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1123 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1124 IEEE80211_FC0_TYPE_DATA) {
1125 if (ni->ni_associd == 0) {
1126 m_freem(m0);
1127 ifp->if_oerrors++;
1128 goto next;
1129 }
1130 if (ni->ni_pwrsave & IEEE80211_PS_SLEEP) {
1131 ieee80211_pwrsave(ic, ni, m0);
1132 continue; /* don't free node. */
1133 }
1134 }
1135 }
1136 #if NBPFILTER > 0
1137 if (ic->ic_rawbpf)
1138 bpf_mtap(ic->ic_rawbpf, m0);
1139 #endif
1140 frmhdr.wi_tx_ctl =
1141 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK);
1142 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1143 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
1144 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1145 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
1146 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
1147 ifp->if_oerrors++;
1148 goto next;
1149 }
1150 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
1151 }
1152
1153 rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len);
1154 rs = &ni->ni_rates;
1155
1156 #if NBPFILTER > 0
1157 if (sc->sc_drvbpf) {
1158 struct wi_tx_radiotap_header *tap = &sc->sc_txtap;
1159
1160 tap->wt_rate = rs->rs_rates[rateidx];
1161 tap->wt_chan_freq =
1162 htole16(ic->ic_bss->ni_chan->ic_freq);
1163 tap->wt_chan_flags =
1164 htole16(ic->ic_bss->ni_chan->ic_flags);
1165 /* TBD tap->wt_flags */
1166
1167 bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0);
1168 }
1169 #endif
1170
1171 rd = SLIST_FIRST(&sc->sc_rssdfree);
1172 id = &rd->rd_desc;
1173 id->id_len = m0->m_pkthdr.len;
1174 id->id_rateidx = ni->ni_txrate;
1175 id->id_rssi = ni->ni_rssi;
1176
1177 frmhdr.wi_tx_idx = rd - sc->sc_rssd;
1178
1179 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1180 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] &
1181 IEEE80211_RATE_VAL);
1182 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA)
1183 (void)wi_write_txrate(sc, rs->rs_rates[rateidx]);
1184
1185 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
1186 (caddr_t)&frmhdr.wi_whdr);
1187 m_adj(m0, sizeof(struct ieee80211_frame));
1188 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
1189 if (IFF_DUMPPKTS(ifp))
1190 wi_dump_pkt(&frmhdr, ni, -1);
1191 fid = sc->sc_txd[cur].d_fid;
1192 off = sizeof(frmhdr);
1193 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
1194 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
1195 printf("%s: %s write fid %x failed\n",
1196 sc->sc_dev.dv_xname, __func__, fid);
1197 ifp->if_oerrors++;
1198 m_freem(m0);
1199 goto next;
1200 }
1201 m_freem(m0);
1202 sc->sc_txpending[ni->ni_txrate]++;
1203 --sc->sc_txalloced;
1204 if (sc->sc_txqueued++ == 0) {
1205 #ifdef DIAGNOSTIC
1206 if (cur != sc->sc_txstart)
1207 printf("%s: ring is desynchronized\n",
1208 sc->sc_dev.dv_xname);
1209 #endif
1210 wi_push_packet(sc);
1211 } else {
1212 #ifdef WI_RING_DEBUG
1213 printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1214 sc->sc_dev.dv_xname, fid,
1215 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1216 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1217 #endif
1218 }
1219 sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF;
1220 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next);
1221 id->id_node = ni;
1222 continue;
1223 next:
1224 if (ni != NULL)
1225 ieee80211_release_node(ic, ni);
1226 }
1227 }
1228
1229
1230 STATIC int
1231 wi_reset(struct wi_softc *sc)
1232 {
1233 int i, error;
1234
1235 DPRINTF(("wi_reset\n"));
1236
1237 if (sc->sc_reset)
1238 (*sc->sc_reset)(sc);
1239
1240 error = 0;
1241 for (i = 0; i < 5; i++) {
1242 DELAY(20*1000); /* XXX: way too long! */
1243 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
1244 break;
1245 }
1246 if (error) {
1247 printf("%s: init failed\n", sc->sc_dev.dv_xname);
1248 return error;
1249 }
1250 CSR_WRITE_2(sc, WI_INT_EN, 0);
1251 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
1252
1253 /* Calibrate timer. */
1254 wi_write_val(sc, WI_RID_TICK_TIME, 0);
1255 return 0;
1256 }
1257
1258 STATIC void
1259 wi_watchdog(struct ifnet *ifp)
1260 {
1261 struct wi_softc *sc = ifp->if_softc;
1262
1263 ifp->if_timer = 0;
1264 if (!sc->sc_enabled)
1265 return;
1266
1267 if (sc->sc_tx_timer) {
1268 if (--sc->sc_tx_timer == 0) {
1269 printf("%s: device timeout\n", ifp->if_xname);
1270 ifp->if_oerrors++;
1271 wi_init(ifp);
1272 return;
1273 }
1274 ifp->if_timer = 1;
1275 }
1276
1277 if (sc->sc_scan_timer) {
1278 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
1279 sc->sc_firmware_type == WI_INTERSIL) {
1280 DPRINTF(("wi_watchdog: inquire scan\n"));
1281 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1282 }
1283 if (sc->sc_scan_timer)
1284 ifp->if_timer = 1;
1285 }
1286
1287 /* TODO: rate control */
1288 ieee80211_watchdog(ifp);
1289 }
1290
1291 STATIC int
1292 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1293 {
1294 struct wi_softc *sc = ifp->if_softc;
1295 struct ieee80211com *ic = &sc->sc_ic;
1296 struct ifreq *ifr = (struct ifreq *)data;
1297 int s, error = 0;
1298
1299 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1300 return ENXIO;
1301
1302 s = splnet();
1303
1304 switch (cmd) {
1305 case SIOCSIFFLAGS:
1306 /*
1307 * Can't do promisc and hostap at the same time. If all that's
1308 * changing is the promisc flag, try to short-circuit a call to
1309 * wi_init() by just setting PROMISC in the hardware.
1310 */
1311 if (ifp->if_flags & IFF_UP) {
1312 if (sc->sc_enabled) {
1313 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1314 (ifp->if_flags & IFF_PROMISC) != 0)
1315 wi_write_val(sc, WI_RID_PROMISC, 1);
1316 else
1317 wi_write_val(sc, WI_RID_PROMISC, 0);
1318 } else
1319 error = wi_init(ifp);
1320 } else if (sc->sc_enabled)
1321 wi_stop(ifp, 1);
1322 break;
1323 case SIOCSIFMEDIA:
1324 case SIOCGIFMEDIA:
1325 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1326 break;
1327 case SIOCADDMULTI:
1328 case SIOCDELMULTI:
1329 error = (cmd == SIOCADDMULTI) ?
1330 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1331 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1332 if (error == ENETRESET) {
1333 if (ifp->if_flags & IFF_RUNNING) {
1334 /* do not rescan */
1335 error = wi_write_multi(sc);
1336 } else
1337 error = 0;
1338 }
1339 break;
1340 case SIOCGIFGENERIC:
1341 error = wi_get_cfg(ifp, cmd, data);
1342 break;
1343 case SIOCSIFGENERIC:
1344 error = suser(curproc->p_ucred, &curproc->p_acflag);
1345 if (error)
1346 break;
1347 error = wi_set_cfg(ifp, cmd, data);
1348 if (error == ENETRESET) {
1349 if (ifp->if_flags & IFF_RUNNING)
1350 error = wi_init(ifp);
1351 else
1352 error = 0;
1353 }
1354 break;
1355 case SIOCS80211BSSID:
1356 if (sc->sc_firmware_type == WI_LUCENT) {
1357 error = ENODEV;
1358 break;
1359 }
1360 /* fall through */
1361 default:
1362 error = ieee80211_ioctl(ifp, cmd, data);
1363 if (error == ENETRESET) {
1364 if (sc->sc_enabled)
1365 error = wi_init(ifp);
1366 else
1367 error = 0;
1368 }
1369 break;
1370 }
1371 splx(s);
1372 return error;
1373 }
1374
1375 STATIC int
1376 wi_media_change(struct ifnet *ifp)
1377 {
1378 struct wi_softc *sc = ifp->if_softc;
1379 struct ieee80211com *ic = &sc->sc_ic;
1380 int error;
1381
1382 error = ieee80211_media_change(ifp);
1383 if (error == ENETRESET) {
1384 if (sc->sc_enabled)
1385 error = wi_init(ifp);
1386 else
1387 error = 0;
1388 }
1389 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1390
1391 return error;
1392 }
1393
1394 STATIC void
1395 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1396 {
1397 struct wi_softc *sc = ifp->if_softc;
1398 struct ieee80211com *ic = &sc->sc_ic;
1399 u_int16_t val;
1400 int rate;
1401
1402 if (sc->sc_enabled == 0) {
1403 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1404 imr->ifm_status = 0;
1405 return;
1406 }
1407
1408 imr->ifm_status = IFM_AVALID;
1409 imr->ifm_active = IFM_IEEE80211;
1410 if (ic->ic_state == IEEE80211_S_RUN &&
1411 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1412 imr->ifm_status |= IFM_ACTIVE;
1413 if (wi_read_xrid(sc, WI_RID_CUR_TX_RATE, &val, sizeof(val)) == 0) {
1414 /* convert to 802.11 rate */
1415 val = le16toh(val);
1416 rate = val * 2;
1417 if (sc->sc_firmware_type == WI_LUCENT) {
1418 if (rate == 10)
1419 rate = 11; /* 5.5Mbps */
1420 } else {
1421 if (rate == 4*2)
1422 rate = 11; /* 5.5Mbps */
1423 else if (rate == 8*2)
1424 rate = 22; /* 11Mbps */
1425 }
1426 } else
1427 rate = 0;
1428 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1429 switch (ic->ic_opmode) {
1430 case IEEE80211_M_STA:
1431 break;
1432 case IEEE80211_M_IBSS:
1433 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1434 break;
1435 case IEEE80211_M_AHDEMO:
1436 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1437 break;
1438 case IEEE80211_M_HOSTAP:
1439 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1440 break;
1441 case IEEE80211_M_MONITOR:
1442 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1443 break;
1444 }
1445 }
1446
1447 STATIC struct ieee80211_node *
1448 wi_node_alloc(struct ieee80211com *ic)
1449 {
1450 struct wi_node *wn =
1451 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1452 return wn ? &wn->wn_node : NULL;
1453 }
1454
1455 STATIC void
1456 wi_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1457 {
1458 struct wi_softc *sc = ic->ic_if.if_softc;
1459 int i;
1460
1461 for (i = 0; i < WI_NTXRSS; i++) {
1462 if (sc->sc_rssd[i].rd_desc.id_node == ni)
1463 sc->sc_rssd[i].rd_desc.id_node = NULL;
1464 }
1465 free(ni, M_DEVBUF);
1466 }
1467
1468 STATIC void
1469 wi_node_copy(struct ieee80211com *ic, struct ieee80211_node *dst,
1470 const struct ieee80211_node *src)
1471 {
1472 *(struct wi_node *)dst = *(const struct wi_node *)src;
1473 }
1474
1475 STATIC void
1476 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1477 {
1478 struct ieee80211com *ic = &sc->sc_ic;
1479 struct ieee80211_node *ni = ic->ic_bss;
1480 struct ifnet *ifp = &ic->ic_if;
1481
1482 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1483 return;
1484
1485 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
1486 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1487
1488 /* In promiscuous mode, the BSSID field is not a reliable
1489 * indicator of the firmware's BSSID. Damp spurious
1490 * change-of-BSSID indications.
1491 */
1492 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1493 !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns,
1494 WI_MAX_FALSE_SYNS))
1495 return;
1496
1497 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1498 }
1499
1500 static __inline void
1501 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni,
1502 struct ieee80211_frame *wh, int rssi)
1503 {
1504 struct wi_node *wn;
1505
1506 if (ni == NULL) {
1507 printf("%s: null node", __func__);
1508 return;
1509 }
1510
1511 wn = (void*)ni;
1512 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi);
1513 }
1514
1515 STATIC void
1516 wi_rx_intr(struct wi_softc *sc)
1517 {
1518 struct ieee80211com *ic = &sc->sc_ic;
1519 struct ifnet *ifp = &ic->ic_if;
1520 struct ieee80211_node *ni;
1521 struct wi_frame frmhdr;
1522 struct mbuf *m;
1523 struct ieee80211_frame *wh;
1524 int fid, len, off, rssi;
1525 u_int8_t dir;
1526 u_int16_t status;
1527 u_int32_t rstamp;
1528
1529 fid = CSR_READ_2(sc, WI_RX_FID);
1530
1531 /* First read in the frame header */
1532 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1533 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1534 __func__, fid);
1535 ifp->if_ierrors++;
1536 return;
1537 }
1538
1539 if (IFF_DUMPPKTS(ifp))
1540 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1541
1542 /*
1543 * Drop undecryptable or packets with receive errors here
1544 */
1545 status = le16toh(frmhdr.wi_status);
1546 if ((status & WI_STAT_ERRSTAT) != 0 &&
1547 ic->ic_opmode != IEEE80211_M_MONITOR) {
1548 ifp->if_ierrors++;
1549 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1550 return;
1551 }
1552 rssi = frmhdr.wi_rx_signal;
1553 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1554 le16toh(frmhdr.wi_rx_tstamp1);
1555
1556 len = le16toh(frmhdr.wi_dat_len);
1557 off = ALIGN(sizeof(struct ieee80211_frame));
1558
1559 /* Sometimes the PRISM2.x returns bogusly large frames. Except
1560 * in monitor mode, just throw them away.
1561 */
1562 if (off + len > MCLBYTES) {
1563 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1564 ifp->if_ierrors++;
1565 DPRINTF(("wi_rx_intr: oversized packet\n"));
1566 return;
1567 } else
1568 len = 0;
1569 }
1570
1571 MGETHDR(m, M_DONTWAIT, MT_DATA);
1572 if (m == NULL) {
1573 ifp->if_ierrors++;
1574 DPRINTF(("wi_rx_intr: MGET failed\n"));
1575 return;
1576 }
1577 if (off + len > MHLEN) {
1578 MCLGET(m, M_DONTWAIT);
1579 if ((m->m_flags & M_EXT) == 0) {
1580 m_freem(m);
1581 ifp->if_ierrors++;
1582 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1583 return;
1584 }
1585 }
1586
1587 m->m_data += off - sizeof(struct ieee80211_frame);
1588 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1589 wi_read_bap(sc, fid, sizeof(frmhdr),
1590 m->m_data + sizeof(struct ieee80211_frame), len);
1591 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1592 m->m_pkthdr.rcvif = ifp;
1593
1594 #if NBPFILTER > 0
1595 if (sc->sc_drvbpf) {
1596 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap;
1597
1598 tap->wr_rate = frmhdr.wi_rx_rate / 5;
1599 tap->wr_antsignal = frmhdr.wi_rx_signal;
1600 tap->wr_antnoise = frmhdr.wi_rx_silence;
1601 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1602 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1603 if (frmhdr.wi_status & WI_STAT_PCF)
1604 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1605
1606 bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m);
1607 }
1608 #endif
1609 wh = mtod(m, struct ieee80211_frame *);
1610 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1611 /*
1612 * WEP is decrypted by hardware. Clear WEP bit
1613 * header for ieee80211_input().
1614 */
1615 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1616 }
1617
1618 /* synchronize driver's BSSID with firmware's BSSID */
1619 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1620 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1621 wi_sync_bssid(sc, wh->i_addr3);
1622
1623 ni = ieee80211_find_rxnode(ic, wh);
1624
1625 ieee80211_input(ifp, m, ni, rssi, rstamp);
1626
1627 wi_rssadapt_input(ic, ni, wh, rssi);
1628
1629 /*
1630 * The frame may have caused the node to be marked for
1631 * reclamation (e.g. in response to a DEAUTH message)
1632 * so use release_node here instead of unref_node.
1633 */
1634 ieee80211_release_node(ic, ni);
1635 }
1636
1637 STATIC void
1638 wi_tx_ex_intr(struct wi_softc *sc)
1639 {
1640 struct ieee80211com *ic = &sc->sc_ic;
1641 struct ifnet *ifp = &ic->ic_if;
1642 struct ieee80211_node *ni;
1643 struct ieee80211_rssdesc *id;
1644 struct wi_rssdesc *rssd;
1645 struct wi_frame frmhdr;
1646 int fid;
1647 u_int16_t status;
1648
1649 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1650 /* Read in the frame header */
1651 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1652 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1653 __func__, fid);
1654 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1655 &sc->sc_txpending);
1656 goto out;
1657 }
1658
1659 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1660 printf("%s: %s bad idx %02x\n",
1661 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1662 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1663 &sc->sc_txpending);
1664 goto out;
1665 }
1666
1667 status = le16toh(frmhdr.wi_status);
1668
1669 /*
1670 * Spontaneous station disconnects appear as xmit
1671 * errors. Don't announce them and/or count them
1672 * as an output error.
1673 */
1674 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1675 printf("%s: tx failed", sc->sc_dev.dv_xname);
1676 if (status & WI_TXSTAT_RET_ERR)
1677 printf(", retry limit exceeded");
1678 if (status & WI_TXSTAT_AGED_ERR)
1679 printf(", max transmit lifetime exceeded");
1680 if (status & WI_TXSTAT_DISCONNECT)
1681 printf(", port disconnected");
1682 if (status & WI_TXSTAT_FORM_ERR)
1683 printf(", invalid format (data len %u src %s)",
1684 le16toh(frmhdr.wi_dat_len),
1685 ether_sprintf(frmhdr.wi_ehdr.ether_shost));
1686 if (status & ~0xf)
1687 printf(", status=0x%x", status);
1688 printf("\n");
1689 }
1690 ifp->if_oerrors++;
1691 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1692 id = &rssd->rd_desc;
1693 if ((status & WI_TXSTAT_RET_ERR) != 0)
1694 wi_lower_rate(ic, id);
1695
1696 ni = id->id_node;
1697 id->id_node = NULL;
1698
1699 if (ni == NULL) {
1700 printf("%s: %s null node, rssdesc %02x\n",
1701 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1702 goto out;
1703 }
1704
1705 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1706 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1707 __func__, id->id_rateidx);
1708 sc->sc_txpending[id->id_rateidx] = 0;
1709 }
1710 if (ni != NULL)
1711 ieee80211_release_node(ic, ni);
1712 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1713 out:
1714 ifp->if_flags &= ~IFF_OACTIVE;
1715 }
1716
1717 STATIC void
1718 wi_txalloc_intr(struct wi_softc *sc)
1719 {
1720 int fid, cur;
1721
1722 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1723
1724 cur = sc->sc_txalloc;
1725 #ifdef DIAGNOSTIC
1726 if (sc->sc_txstarted == 0) {
1727 printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1728 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1729 sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1730 return;
1731 }
1732 #endif
1733 --sc->sc_txstarted;
1734 ++sc->sc_txalloced;
1735 sc->sc_txd[cur].d_fid = fid;
1736 sc->sc_txalloc = (cur + 1) % WI_NTXBUF;
1737 #ifdef WI_RING_DEBUG
1738 printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1739 sc->sc_dev.dv_xname, fid,
1740 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1741 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1742 #endif
1743 }
1744
1745 STATIC void
1746 wi_cmd_intr(struct wi_softc *sc)
1747 {
1748 struct ieee80211com *ic = &sc->sc_ic;
1749 struct ifnet *ifp = &ic->ic_if;
1750
1751 #ifdef WI_DEBUG
1752 if (wi_debug)
1753 printf("%s: %d txcmds outstanding\n", __func__, sc->sc_txcmds);
1754 #endif
1755 KASSERT(sc->sc_txcmds > 0);
1756
1757 --sc->sc_txcmds;
1758
1759 if (--sc->sc_txqueued == 0) {
1760 sc->sc_tx_timer = 0;
1761 ifp->if_flags &= ~IFF_OACTIVE;
1762 #ifdef WI_RING_DEBUG
1763 printf("%s: cmd , alloc %d queue %d start %d alloced %d queued %d started %d\n",
1764 sc->sc_dev.dv_xname,
1765 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1766 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1767 #endif
1768 } else
1769 wi_push_packet(sc);
1770 }
1771
1772 STATIC void
1773 wi_push_packet(struct wi_softc *sc)
1774 {
1775 struct ieee80211com *ic = &sc->sc_ic;
1776 struct ifnet *ifp = &ic->ic_if;
1777 int cur, fid;
1778
1779 cur = sc->sc_txstart;
1780 fid = sc->sc_txd[cur].d_fid;
1781
1782 KASSERT(sc->sc_txcmds == 0);
1783
1784 if (wi_cmd_start(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
1785 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1786 /* XXX ring might have a hole */
1787 }
1788
1789 if (sc->sc_txcmds++ > 0)
1790 printf("%s: %d tx cmds pending!!!\n", __func__, sc->sc_txcmds);
1791
1792 ++sc->sc_txstarted;
1793 #ifdef DIAGNOSTIC
1794 if (sc->sc_txstarted > WI_NTXBUF)
1795 printf("%s: too many buffers started\n", sc->sc_dev.dv_xname);
1796 #endif
1797 sc->sc_txstart = (cur + 1) % WI_NTXBUF;
1798 sc->sc_tx_timer = 5;
1799 ifp->if_timer = 1;
1800 #ifdef WI_RING_DEBUG
1801 printf("%s: push %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1802 sc->sc_dev.dv_xname, fid,
1803 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1804 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1805 #endif
1806 }
1807
1808 STATIC void
1809 wi_tx_intr(struct wi_softc *sc)
1810 {
1811 struct ieee80211com *ic = &sc->sc_ic;
1812 struct ifnet *ifp = &ic->ic_if;
1813 struct ieee80211_node *ni;
1814 struct ieee80211_rssdesc *id;
1815 struct wi_rssdesc *rssd;
1816 struct wi_frame frmhdr;
1817 int fid;
1818
1819 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1820 /* Read in the frame header */
1821 if (wi_read_bap(sc, fid, offsetof(struct wi_frame, wi_tx_swsup2),
1822 &frmhdr.wi_tx_swsup2, 2) != 0) {
1823 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1824 __func__, fid);
1825 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1826 &sc->sc_txpending);
1827 goto out;
1828 }
1829
1830 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1831 printf("%s: %s bad idx %02x\n",
1832 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1833 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1834 &sc->sc_txpending);
1835 goto out;
1836 }
1837
1838 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1839 id = &rssd->rd_desc;
1840 wi_raise_rate(ic, id);
1841
1842 ni = id->id_node;
1843 id->id_node = NULL;
1844
1845 if (ni == NULL) {
1846 printf("%s: %s null node, rssdesc %02x\n",
1847 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1848 goto out;
1849 }
1850
1851 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1852 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1853 __func__, id->id_rateidx);
1854 sc->sc_txpending[id->id_rateidx] = 0;
1855 }
1856 if (ni != NULL)
1857 ieee80211_release_node(ic, ni);
1858 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1859 out:
1860 ifp->if_flags &= ~IFF_OACTIVE;
1861 }
1862
1863 STATIC void
1864 wi_info_intr(struct wi_softc *sc)
1865 {
1866 struct ieee80211com *ic = &sc->sc_ic;
1867 struct ifnet *ifp = &ic->ic_if;
1868 int i, fid, len, off;
1869 u_int16_t ltbuf[2];
1870 u_int16_t stat;
1871 u_int32_t *ptr;
1872
1873 fid = CSR_READ_2(sc, WI_INFO_FID);
1874 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1875
1876 switch (le16toh(ltbuf[1])) {
1877
1878 case WI_INFO_LINK_STAT:
1879 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1880 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1881 switch (le16toh(stat)) {
1882 case CONNECTED:
1883 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1884 if (ic->ic_state == IEEE80211_S_RUN &&
1885 ic->ic_opmode != IEEE80211_M_IBSS)
1886 break;
1887 /* FALLTHROUGH */
1888 case AP_CHANGE:
1889 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1890 break;
1891 case AP_IN_RANGE:
1892 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1893 break;
1894 case AP_OUT_OF_RANGE:
1895 if (sc->sc_firmware_type == WI_SYMBOL &&
1896 sc->sc_scan_timer > 0) {
1897 if (wi_cmd(sc, WI_CMD_INQUIRE,
1898 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1899 sc->sc_scan_timer = 0;
1900 break;
1901 }
1902 if (ic->ic_opmode == IEEE80211_M_STA)
1903 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1904 break;
1905 case DISCONNECTED:
1906 case ASSOC_FAILED:
1907 if (ic->ic_opmode == IEEE80211_M_STA)
1908 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1909 break;
1910 }
1911 break;
1912
1913 case WI_INFO_COUNTERS:
1914 /* some card versions have a larger stats structure */
1915 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1916 ptr = (u_int32_t *)&sc->sc_stats;
1917 off = sizeof(ltbuf);
1918 for (i = 0; i < len; i++, off += 2, ptr++) {
1919 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1920 stat = le16toh(stat);
1921 #ifdef WI_HERMES_STATS_WAR
1922 if (stat & 0xf000)
1923 stat = ~stat;
1924 #endif
1925 *ptr += stat;
1926 }
1927 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1928 sc->sc_stats.wi_tx_multi_retries +
1929 sc->sc_stats.wi_tx_retry_limit;
1930 break;
1931
1932 case WI_INFO_SCAN_RESULTS:
1933 case WI_INFO_HOST_SCAN_RESULTS:
1934 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1935 break;
1936
1937 default:
1938 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1939 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1940 break;
1941 }
1942 }
1943
1944 STATIC int
1945 wi_write_multi(struct wi_softc *sc)
1946 {
1947 struct ifnet *ifp = &sc->sc_ic.ic_if;
1948 int n;
1949 struct wi_mcast mlist;
1950 struct ether_multi *enm;
1951 struct ether_multistep estep;
1952
1953 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1954 allmulti:
1955 ifp->if_flags |= IFF_ALLMULTI;
1956 memset(&mlist, 0, sizeof(mlist));
1957 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1958 sizeof(mlist));
1959 }
1960
1961 n = 0;
1962 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1963 while (enm != NULL) {
1964 /* Punt on ranges or too many multicast addresses. */
1965 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1966 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1967 goto allmulti;
1968
1969 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1970 n++;
1971 ETHER_NEXT_MULTI(estep, enm);
1972 }
1973 ifp->if_flags &= ~IFF_ALLMULTI;
1974 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1975 IEEE80211_ADDR_LEN * n);
1976 }
1977
1978
1979 STATIC void
1980 wi_read_nicid(struct wi_softc *sc)
1981 {
1982 struct wi_card_ident *id;
1983 char *p;
1984 int len;
1985 u_int16_t ver[4];
1986
1987 /* getting chip identity */
1988 memset(ver, 0, sizeof(ver));
1989 len = sizeof(ver);
1990 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1991 printf("%s: using ", sc->sc_dev.dv_xname);
1992 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1993
1994 sc->sc_firmware_type = WI_NOTYPE;
1995 for (id = wi_card_ident; id->card_name != NULL; id++) {
1996 if (le16toh(ver[0]) == id->card_id) {
1997 printf("%s", id->card_name);
1998 sc->sc_firmware_type = id->firm_type;
1999 break;
2000 }
2001 }
2002 if (sc->sc_firmware_type == WI_NOTYPE) {
2003 if (le16toh(ver[0]) & 0x8000) {
2004 printf("Unknown PRISM2 chip");
2005 sc->sc_firmware_type = WI_INTERSIL;
2006 } else {
2007 printf("Unknown Lucent chip");
2008 sc->sc_firmware_type = WI_LUCENT;
2009 }
2010 }
2011
2012 /* get primary firmware version (Only Prism chips) */
2013 if (sc->sc_firmware_type != WI_LUCENT) {
2014 memset(ver, 0, sizeof(ver));
2015 len = sizeof(ver);
2016 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
2017 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
2018 le16toh(ver[3]) * 100 + le16toh(ver[1]);
2019 }
2020
2021 /* get station firmware version */
2022 memset(ver, 0, sizeof(ver));
2023 len = sizeof(ver);
2024 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
2025 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
2026 le16toh(ver[3]) * 100 + le16toh(ver[1]);
2027 if (sc->sc_firmware_type == WI_INTERSIL &&
2028 (sc->sc_sta_firmware_ver == 10102 ||
2029 sc->sc_sta_firmware_ver == 20102)) {
2030 char ident[12];
2031 memset(ident, 0, sizeof(ident));
2032 len = sizeof(ident);
2033 /* value should be the format like "V2.00-11" */
2034 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
2035 *(p = (char *)ident) >= 'A' &&
2036 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
2037 sc->sc_firmware_type = WI_SYMBOL;
2038 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
2039 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
2040 (p[6] - '0') * 10 + (p[7] - '0');
2041 }
2042 }
2043
2044 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
2045 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
2046 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
2047 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
2048 printf("Primary (%u.%u.%u), ",
2049 sc->sc_pri_firmware_ver / 10000,
2050 (sc->sc_pri_firmware_ver % 10000) / 100,
2051 sc->sc_pri_firmware_ver % 100);
2052 printf("Station (%u.%u.%u)\n",
2053 sc->sc_sta_firmware_ver / 10000,
2054 (sc->sc_sta_firmware_ver % 10000) / 100,
2055 sc->sc_sta_firmware_ver % 100);
2056 }
2057
2058 STATIC int
2059 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
2060 {
2061 struct wi_ssid ssid;
2062
2063 if (buflen > IEEE80211_NWID_LEN)
2064 return ENOBUFS;
2065 memset(&ssid, 0, sizeof(ssid));
2066 ssid.wi_len = htole16(buflen);
2067 memcpy(ssid.wi_ssid, buf, buflen);
2068 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
2069 }
2070
2071 STATIC int
2072 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2073 {
2074 struct wi_softc *sc = ifp->if_softc;
2075 struct ieee80211com *ic = &sc->sc_ic;
2076 struct ifreq *ifr = (struct ifreq *)data;
2077 struct wi_req wreq;
2078 int len, n, error;
2079
2080 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2081 if (error)
2082 return error;
2083 len = (wreq.wi_len - 1) * 2;
2084 if (len < sizeof(u_int16_t))
2085 return ENOSPC;
2086 if (len > sizeof(wreq.wi_val))
2087 len = sizeof(wreq.wi_val);
2088
2089 switch (wreq.wi_type) {
2090
2091 case WI_RID_IFACE_STATS:
2092 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
2093 if (len < sizeof(sc->sc_stats))
2094 error = ENOSPC;
2095 else
2096 len = sizeof(sc->sc_stats);
2097 break;
2098
2099 case WI_RID_ENCRYPTION:
2100 case WI_RID_TX_CRYPT_KEY:
2101 case WI_RID_DEFLT_CRYPT_KEYS:
2102 case WI_RID_TX_RATE:
2103 return ieee80211_cfgget(ifp, cmd, data);
2104
2105 case WI_RID_MICROWAVE_OVEN:
2106 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
2107 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2108 &len);
2109 break;
2110 }
2111 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
2112 len = sizeof(u_int16_t);
2113 break;
2114
2115 case WI_RID_DBM_ADJUST:
2116 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
2117 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2118 &len);
2119 break;
2120 }
2121 wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
2122 len = sizeof(u_int16_t);
2123 break;
2124
2125 case WI_RID_ROAMING_MODE:
2126 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
2127 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2128 &len);
2129 break;
2130 }
2131 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
2132 len = sizeof(u_int16_t);
2133 break;
2134
2135 case WI_RID_SYSTEM_SCALE:
2136 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
2137 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2138 &len);
2139 break;
2140 }
2141 wreq.wi_val[0] = htole16(sc->sc_system_scale);
2142 len = sizeof(u_int16_t);
2143 break;
2144
2145 case WI_RID_FRAG_THRESH:
2146 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
2147 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2148 &len);
2149 break;
2150 }
2151 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2152 len = sizeof(u_int16_t);
2153 break;
2154
2155 case WI_RID_READ_APS:
2156 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2157 return ieee80211_cfgget(ifp, cmd, data);
2158 if (sc->sc_scan_timer > 0) {
2159 error = EINPROGRESS;
2160 break;
2161 }
2162 n = sc->sc_naps;
2163 if (len < sizeof(n)) {
2164 error = ENOSPC;
2165 break;
2166 }
2167 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
2168 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
2169 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
2170 memcpy(wreq.wi_val, &n, sizeof(n));
2171 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
2172 sizeof(struct wi_apinfo) * n);
2173 break;
2174
2175 default:
2176 if (sc->sc_enabled) {
2177 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2178 &len);
2179 break;
2180 }
2181 switch (wreq.wi_type) {
2182 case WI_RID_MAX_DATALEN:
2183 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
2184 len = sizeof(u_int16_t);
2185 break;
2186 case WI_RID_FRAG_THRESH:
2187 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2188 len = sizeof(u_int16_t);
2189 break;
2190 case WI_RID_RTS_THRESH:
2191 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
2192 len = sizeof(u_int16_t);
2193 break;
2194 case WI_RID_CNFAUTHMODE:
2195 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
2196 len = sizeof(u_int16_t);
2197 break;
2198 case WI_RID_NODENAME:
2199 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
2200 error = ENOSPC;
2201 break;
2202 }
2203 len = sc->sc_nodelen + sizeof(u_int16_t);
2204 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
2205 memcpy(&wreq.wi_val[1], sc->sc_nodename,
2206 sc->sc_nodelen);
2207 break;
2208 default:
2209 return ieee80211_cfgget(ifp, cmd, data);
2210 }
2211 break;
2212 }
2213 if (error)
2214 return error;
2215 wreq.wi_len = (len + 1) / 2 + 1;
2216 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
2217 }
2218
2219 STATIC int
2220 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2221 {
2222 struct wi_softc *sc = ifp->if_softc;
2223 struct ieee80211com *ic = &sc->sc_ic;
2224 struct ifreq *ifr = (struct ifreq *)data;
2225 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2226 struct wi_req wreq;
2227 struct mbuf *m;
2228 int i, len, error;
2229
2230 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2231 if (error)
2232 return error;
2233 len = (wreq.wi_len - 1) * 2;
2234 switch (wreq.wi_type) {
2235 case WI_RID_DBM_ADJUST:
2236 return ENODEV;
2237
2238 case WI_RID_NODENAME:
2239 if (le16toh(wreq.wi_val[0]) * 2 > len ||
2240 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
2241 error = ENOSPC;
2242 break;
2243 }
2244 if (sc->sc_enabled) {
2245 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2246 len);
2247 if (error)
2248 break;
2249 }
2250 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
2251 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
2252 break;
2253
2254 case WI_RID_MICROWAVE_OVEN:
2255 case WI_RID_ROAMING_MODE:
2256 case WI_RID_SYSTEM_SCALE:
2257 case WI_RID_FRAG_THRESH:
2258 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
2259 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
2260 break;
2261 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
2262 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
2263 break;
2264 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
2265 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
2266 break;
2267 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
2268 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
2269 break;
2270 /* FALLTHROUGH */
2271 case WI_RID_RTS_THRESH:
2272 case WI_RID_CNFAUTHMODE:
2273 case WI_RID_MAX_DATALEN:
2274 if (sc->sc_enabled) {
2275 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2276 sizeof(u_int16_t));
2277 if (error)
2278 break;
2279 }
2280 switch (wreq.wi_type) {
2281 case WI_RID_FRAG_THRESH:
2282 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
2283 break;
2284 case WI_RID_RTS_THRESH:
2285 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
2286 break;
2287 case WI_RID_MICROWAVE_OVEN:
2288 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
2289 break;
2290 case WI_RID_ROAMING_MODE:
2291 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
2292 break;
2293 case WI_RID_SYSTEM_SCALE:
2294 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
2295 break;
2296 case WI_RID_CNFAUTHMODE:
2297 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
2298 break;
2299 case WI_RID_MAX_DATALEN:
2300 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
2301 break;
2302 }
2303 break;
2304
2305 case WI_RID_TX_RATE:
2306 switch (le16toh(wreq.wi_val[0])) {
2307 case 3:
2308 ic->ic_fixed_rate = -1;
2309 break;
2310 default:
2311 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2312 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
2313 / 2 == le16toh(wreq.wi_val[0]))
2314 break;
2315 }
2316 if (i == IEEE80211_RATE_SIZE)
2317 return EINVAL;
2318 ic->ic_fixed_rate = i;
2319 }
2320 if (sc->sc_enabled)
2321 error = wi_cfg_txrate(sc);
2322 break;
2323
2324 case WI_RID_SCAN_APS:
2325 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2326 error = wi_scan_ap(sc, 0x3fff, 0x000f);
2327 break;
2328
2329 case WI_RID_MGMT_XMIT:
2330 if (!sc->sc_enabled) {
2331 error = ENETDOWN;
2332 break;
2333 }
2334 if (ic->ic_mgtq.ifq_len > 5) {
2335 error = EAGAIN;
2336 break;
2337 }
2338 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
2339 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
2340 if (m == NULL) {
2341 error = ENOMEM;
2342 break;
2343 }
2344 IF_ENQUEUE(&ic->ic_mgtq, m);
2345 break;
2346
2347 default:
2348 if (sc->sc_enabled) {
2349 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2350 len);
2351 if (error)
2352 break;
2353 }
2354 error = ieee80211_cfgset(ifp, cmd, data);
2355 break;
2356 }
2357 return error;
2358 }
2359
2360 /* Rate is 0 for hardware auto-select, otherwise rate is
2361 * 2, 4, 11, or 22 (units of 500Kbps).
2362 */
2363 STATIC int
2364 wi_write_txrate(struct wi_softc *sc, int rate)
2365 {
2366 u_int16_t hwrate;
2367
2368 /* rate: 0, 2, 4, 11, 22 */
2369 switch (sc->sc_firmware_type) {
2370 case WI_LUCENT:
2371 switch (rate & IEEE80211_RATE_VAL) {
2372 case 2:
2373 hwrate = 1;
2374 break;
2375 case 4:
2376 hwrate = 2;
2377 break;
2378 default:
2379 hwrate = 3; /* auto */
2380 break;
2381 case 11:
2382 hwrate = 4;
2383 break;
2384 case 22:
2385 hwrate = 5;
2386 break;
2387 }
2388 break;
2389 default:
2390 switch (rate & IEEE80211_RATE_VAL) {
2391 case 2:
2392 hwrate = 1;
2393 break;
2394 case 4:
2395 hwrate = 2;
2396 break;
2397 case 11:
2398 hwrate = 4;
2399 break;
2400 case 22:
2401 hwrate = 8;
2402 break;
2403 default:
2404 hwrate = 15; /* auto */
2405 break;
2406 }
2407 break;
2408 }
2409
2410 if (sc->sc_tx_rate == hwrate)
2411 return 0;
2412
2413 if (sc->sc_if.if_flags & IFF_DEBUG)
2414 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate,
2415 hwrate, rate);
2416
2417 sc->sc_tx_rate = hwrate;
2418
2419 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate);
2420 }
2421
2422 STATIC int
2423 wi_cfg_txrate(struct wi_softc *sc)
2424 {
2425 struct ieee80211com *ic = &sc->sc_ic;
2426 struct ieee80211_rateset *rs;
2427 int rate;
2428
2429 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2430
2431 sc->sc_tx_rate = 0; /* force write to RID */
2432
2433 if (ic->ic_fixed_rate < 0)
2434 rate = 0; /* auto */
2435 else
2436 rate = rs->rs_rates[ic->ic_fixed_rate];
2437
2438 return wi_write_txrate(sc, rate);
2439 }
2440
2441 STATIC int
2442 wi_write_wep(struct wi_softc *sc)
2443 {
2444 struct ieee80211com *ic = &sc->sc_ic;
2445 int error = 0;
2446 int i, keylen;
2447 u_int16_t val;
2448 struct wi_key wkey[IEEE80211_WEP_NKID];
2449
2450 switch (sc->sc_firmware_type) {
2451 case WI_LUCENT:
2452 val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0;
2453 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2454 if (error)
2455 break;
2456 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
2457 if (error)
2458 break;
2459 memset(wkey, 0, sizeof(wkey));
2460 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2461 keylen = ic->ic_nw_keys[i].wk_len;
2462 wkey[i].wi_keylen = htole16(keylen);
2463 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2464 keylen);
2465 }
2466 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2467 wkey, sizeof(wkey));
2468 break;
2469
2470 case WI_INTERSIL:
2471 case WI_SYMBOL:
2472 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2473 /*
2474 * ONLY HWB3163 EVAL-CARD Firmware version
2475 * less than 0.8 variant2
2476 *
2477 * If promiscuous mode disable, Prism2 chip
2478 * does not work with WEP .
2479 * It is under investigation for details.
2480 * (ichiro (at) NetBSD.org)
2481 */
2482 if (sc->sc_firmware_type == WI_INTERSIL &&
2483 sc->sc_sta_firmware_ver < 802 ) {
2484 /* firm ver < 0.8 variant 2 */
2485 wi_write_val(sc, WI_RID_PROMISC, 1);
2486 }
2487 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2488 sc->sc_cnfauthmode);
2489 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
2490 /*
2491 * Encryption firmware has a bug for HostAP mode.
2492 */
2493 if (sc->sc_firmware_type == WI_INTERSIL &&
2494 ic->ic_opmode == IEEE80211_M_HOSTAP)
2495 val |= HOST_ENCRYPT;
2496 } else {
2497 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2498 IEEE80211_AUTH_OPEN);
2499 val = HOST_ENCRYPT | HOST_DECRYPT;
2500 }
2501 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2502 if (error)
2503 break;
2504 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2505 ic->ic_wep_txkey);
2506 if (error)
2507 break;
2508 /*
2509 * It seems that the firmware accept 104bit key only if
2510 * all the keys have 104bit length. We get the length of
2511 * the transmit key and use it for all other keys.
2512 * Perhaps we should use software WEP for such situation.
2513 */
2514 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
2515 if (keylen > IEEE80211_WEP_KEYLEN)
2516 keylen = 13; /* 104bit keys */
2517 else
2518 keylen = IEEE80211_WEP_KEYLEN;
2519 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2520 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2521 ic->ic_nw_keys[i].wk_key, keylen);
2522 if (error)
2523 break;
2524 }
2525 break;
2526 }
2527 return error;
2528 }
2529
2530 /* Must be called at proper protection level! */
2531 STATIC int
2532 wi_cmd_start(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2533 {
2534 #ifdef WI_HISTOGRAM
2535 static int hist1[11];
2536 static int hist1count;
2537 #endif
2538 int i;
2539
2540 /* wait for the busy bit to clear */
2541 for (i = 500; i > 0; i--) { /* 5s */
2542 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2543 break;
2544 DELAY(1000); /* 1 m sec */
2545 }
2546 if (i == 0) {
2547 printf("%s: wi_cmd: busy bit won't clear.\n",
2548 sc->sc_dev.dv_xname);
2549 return(ETIMEDOUT);
2550 }
2551 #ifdef WI_HISTOGRAM
2552 if (i > 490)
2553 hist1[500 - i]++;
2554 else
2555 hist1[10]++;
2556 if (++hist1count == 1000) {
2557 hist1count = 0;
2558 printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n",
2559 sc->sc_dev.dv_xname,
2560 hist1[0], hist1[1], hist1[2], hist1[3], hist1[4],
2561 hist1[5], hist1[6], hist1[7], hist1[8], hist1[9],
2562 hist1[10]);
2563 }
2564 #endif
2565 CSR_WRITE_2(sc, WI_PARAM0, val0);
2566 CSR_WRITE_2(sc, WI_PARAM1, val1);
2567 CSR_WRITE_2(sc, WI_PARAM2, val2);
2568 CSR_WRITE_2(sc, WI_COMMAND, cmd);
2569
2570 return 0;
2571 }
2572
2573 STATIC int
2574 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2575 {
2576 int rc;
2577
2578 #ifdef WI_DEBUG
2579 if (wi_debug) {
2580 printf("%s: [enter] %d txcmds outstanding\n", __func__,
2581 sc->sc_txcmds);
2582 }
2583 #endif
2584 if (sc->sc_txcmds > 0)
2585 wi_txcmd_wait(sc);
2586
2587 if ((rc = wi_cmd_start(sc, cmd, val0, val1, val2)) != 0)
2588 return rc;
2589
2590 if (cmd == WI_CMD_INI) {
2591 /* XXX: should sleep here. */
2592 DELAY(100*1000);
2593 }
2594 rc = wi_cmd_wait(sc, cmd, val0);
2595
2596 #ifdef WI_DEBUG
2597 if (wi_debug) {
2598 printf("%s: [ ] %d txcmds outstanding\n", __func__,
2599 sc->sc_txcmds);
2600 }
2601 #endif
2602 if (sc->sc_txcmds > 0)
2603 wi_cmd_intr(sc);
2604
2605 #ifdef WI_DEBUG
2606 if (wi_debug) {
2607 printf("%s: [leave] %d txcmds outstanding\n", __func__,
2608 sc->sc_txcmds);
2609 }
2610 #endif
2611 return rc;
2612 }
2613
2614 STATIC int
2615 wi_cmd_wait(struct wi_softc *sc, int cmd, int val0)
2616 {
2617 #ifdef WI_HISTOGRAM
2618 static int hist2[11];
2619 static int hist2count;
2620 #endif
2621 int i, status;
2622 #ifdef WI_DEBUG
2623 if (wi_debug > 1)
2624 printf("%s: cmd=%#x, arg=%#x\n", __func__, cmd, val0);
2625 #endif /* WI_DEBUG */
2626
2627 /* wait for the cmd completed bit */
2628 for (i = 0; i < WI_TIMEOUT; i++) {
2629 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
2630 break;
2631 DELAY(WI_DELAY);
2632 }
2633
2634 #ifdef WI_HISTOGRAM
2635 if (i < 100)
2636 hist2[i/10]++;
2637 else
2638 hist2[10]++;
2639 if (++hist2count == 1000) {
2640 hist2count = 0;
2641 printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n",
2642 sc->sc_dev.dv_xname,
2643 hist2[0], hist2[1], hist2[2], hist2[3], hist2[4],
2644 hist2[5], hist2[6], hist2[7], hist2[8], hist2[9],
2645 hist2[10]);
2646 }
2647 #endif
2648
2649 status = CSR_READ_2(sc, WI_STATUS);
2650
2651 if (i == WI_TIMEOUT) {
2652 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
2653 sc->sc_dev.dv_xname, cmd, val0);
2654 return ETIMEDOUT;
2655 }
2656
2657 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2658
2659 if (status & WI_STAT_CMD_RESULT) {
2660 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
2661 sc->sc_dev.dv_xname, cmd, val0);
2662 return EIO;
2663 }
2664 return 0;
2665 }
2666
2667 STATIC int
2668 wi_seek_bap(struct wi_softc *sc, int id, int off)
2669 {
2670 #ifdef WI_HISTOGRAM
2671 static int hist4[11];
2672 static int hist4count;
2673 #endif
2674 int i, status;
2675
2676 CSR_WRITE_2(sc, WI_SEL0, id);
2677 CSR_WRITE_2(sc, WI_OFF0, off);
2678
2679 for (i = 0; ; i++) {
2680 status = CSR_READ_2(sc, WI_OFF0);
2681 if ((status & WI_OFF_BUSY) == 0)
2682 break;
2683 if (i == WI_TIMEOUT) {
2684 printf("%s: timeout in wi_seek to %x/%x\n",
2685 sc->sc_dev.dv_xname, id, off);
2686 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2687 return ETIMEDOUT;
2688 }
2689 DELAY(2);
2690 }
2691 #ifdef WI_HISTOGRAM
2692 if (i < 100)
2693 hist4[i/10]++;
2694 else
2695 hist4[10]++;
2696 if (++hist4count == 2500) {
2697 hist4count = 0;
2698 printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n",
2699 sc->sc_dev.dv_xname,
2700 hist4[0], hist4[1], hist4[2], hist4[3], hist4[4],
2701 hist4[5], hist4[6], hist4[7], hist4[8], hist4[9],
2702 hist4[10]);
2703 }
2704 #endif
2705 if (status & WI_OFF_ERR) {
2706 printf("%s: failed in wi_seek to %x/%x\n",
2707 sc->sc_dev.dv_xname, id, off);
2708 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2709 return EIO;
2710 }
2711 sc->sc_bap_id = id;
2712 sc->sc_bap_off = off;
2713 return 0;
2714 }
2715
2716 STATIC int
2717 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2718 {
2719 int error, cnt;
2720
2721 if (buflen == 0)
2722 return 0;
2723 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2724 if ((error = wi_seek_bap(sc, id, off)) != 0)
2725 return error;
2726 }
2727 cnt = (buflen + 1) / 2;
2728 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2729 sc->sc_bap_off += cnt * 2;
2730 return 0;
2731 }
2732
2733 STATIC int
2734 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2735 {
2736 int error, cnt;
2737
2738 if (buflen == 0)
2739 return 0;
2740
2741 #ifdef WI_HERMES_AUTOINC_WAR
2742 again:
2743 #endif
2744 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2745 if ((error = wi_seek_bap(sc, id, off)) != 0)
2746 return error;
2747 }
2748 cnt = (buflen + 1) / 2;
2749 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2750 sc->sc_bap_off += cnt * 2;
2751
2752 #ifdef WI_HERMES_AUTOINC_WAR
2753 /*
2754 * According to the comments in the HCF Light code, there is a bug
2755 * in the Hermes (or possibly in certain Hermes firmware revisions)
2756 * where the chip's internal autoincrement counter gets thrown off
2757 * during data writes: the autoincrement is missed, causing one
2758 * data word to be overwritten and subsequent words to be written to
2759 * the wrong memory locations. The end result is that we could end
2760 * up transmitting bogus frames without realizing it. The workaround
2761 * for this is to write a couple of extra guard words after the end
2762 * of the transfer, then attempt to read then back. If we fail to
2763 * locate the guard words where we expect them, we preform the
2764 * transfer over again.
2765 */
2766 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2767 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2768 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2769 wi_seek_bap(sc, id, sc->sc_bap_off);
2770 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2771 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2772 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2773 printf("%s: detect auto increment bug, try again\n",
2774 sc->sc_dev.dv_xname);
2775 goto again;
2776 }
2777 }
2778 #endif
2779 return 0;
2780 }
2781
2782 STATIC int
2783 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2784 {
2785 int error, len;
2786 struct mbuf *m;
2787
2788 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2789 if (m->m_len == 0)
2790 continue;
2791
2792 len = min(m->m_len, totlen);
2793
2794 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2795 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2796 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2797 totlen);
2798 }
2799
2800 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2801 return error;
2802
2803 off += m->m_len;
2804 totlen -= len;
2805 }
2806 return 0;
2807 }
2808
2809 STATIC int
2810 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2811 {
2812 int i;
2813
2814 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2815 printf("%s: failed to allocate %d bytes on NIC\n",
2816 sc->sc_dev.dv_xname, len);
2817 return ENOMEM;
2818 }
2819
2820 for (i = 0; i < WI_TIMEOUT; i++) {
2821 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2822 break;
2823 if (i == WI_TIMEOUT) {
2824 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
2825 return ETIMEDOUT;
2826 }
2827 DELAY(1);
2828 }
2829 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
2830 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2831 return 0;
2832 }
2833
2834 STATIC int
2835 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2836 {
2837 int error, len;
2838 u_int16_t ltbuf[2];
2839
2840 /* Tell the NIC to enter record read mode. */
2841 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2842 if (error)
2843 return error;
2844
2845 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2846 if (error)
2847 return error;
2848
2849 if (le16toh(ltbuf[0]) == 0)
2850 return EOPNOTSUPP;
2851 if (le16toh(ltbuf[1]) != rid) {
2852 printf("%s: record read mismatch, rid=%x, got=%x\n",
2853 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
2854 return EIO;
2855 }
2856 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
2857 if (*buflenp < len) {
2858 printf("%s: record buffer is too small, "
2859 "rid=%x, size=%d, len=%d\n",
2860 sc->sc_dev.dv_xname, rid, *buflenp, len);
2861 return ENOSPC;
2862 }
2863 *buflenp = len;
2864 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2865 }
2866
2867 STATIC int
2868 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2869 {
2870 int error;
2871 u_int16_t ltbuf[2];
2872
2873 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
2874 ltbuf[1] = htole16(rid);
2875
2876 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2877 if (error)
2878 return error;
2879 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2880 if (error)
2881 return error;
2882
2883 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2884 }
2885
2886 STATIC void
2887 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni)
2888 {
2889 struct wi_node *wn = (void*)ni;
2890 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt);
2891 }
2892
2893 STATIC void
2894 wi_rssadapt_updatestats(void *arg)
2895 {
2896 struct wi_softc *sc = arg;
2897 struct ieee80211com *ic = &sc->sc_ic;
2898 ieee80211_iterate_nodes(ic, wi_rssadapt_updatestats_cb, arg);
2899 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2900 ic->ic_state == IEEE80211_S_RUN)
2901 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
2902 wi_rssadapt_updatestats, arg);
2903 }
2904
2905 STATIC int
2906 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2907 {
2908 struct ifnet *ifp = &ic->ic_if;
2909 struct wi_softc *sc = ic->ic_softc;
2910 struct ieee80211_node *ni = ic->ic_bss;
2911 int linkstate = LINK_STATE_DOWN, s;
2912 u_int16_t val;
2913 struct wi_ssid ssid;
2914 struct wi_macaddr bssid, old_bssid;
2915 enum ieee80211_state ostate;
2916 #ifdef WI_DEBUG
2917 static const char *stname[] =
2918 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
2919 #endif /* WI_DEBUG */
2920
2921 ostate = ic->ic_state;
2922 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
2923
2924 switch (nstate) {
2925 case IEEE80211_S_INIT:
2926 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2927 callout_stop(&sc->sc_rssadapt_ch);
2928 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2929 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2930 return (*sc->sc_newstate)(ic, nstate, arg);
2931
2932 case IEEE80211_S_RUN:
2933 linkstate = LINK_STATE_UP;
2934 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2935 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid);
2936 wi_read_xrid(sc, WI_RID_CURRENT_BSSID, &bssid,
2937 IEEE80211_ADDR_LEN);
2938 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid);
2939 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid);
2940 wi_read_xrid(sc, WI_RID_CURRENT_CHAN, &val, sizeof(val));
2941 if (!isset(ic->ic_chan_avail, le16toh(val)))
2942 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname,
2943 le16toh(val));
2944 ni->ni_chan = &ic->ic_channels[le16toh(val)];
2945
2946 /* If not equal, then discount a false synchronization. */
2947 if (!IEEE80211_ADDR_EQ(old_bssid.wi_mac_addr, ni->ni_bssid))
2948 sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1);
2949
2950 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2951 ni->ni_esslen = ic->ic_des_esslen;
2952 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2953 ni->ni_rates = ic->ic_sup_rates[
2954 ieee80211_chan2mode(ic, ni->ni_chan)];
2955 ni->ni_intval = ic->ic_lintval;
2956 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2957 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2958 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2959 } else {
2960 wi_read_xrid(sc, WI_RID_CURRENT_SSID, &ssid,
2961 sizeof(ssid));
2962 ni->ni_esslen = le16toh(ssid.wi_len);
2963 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2964 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2965 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2966 ni->ni_rates = ic->ic_sup_rates[
2967 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/
2968 }
2969 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2970 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
2971 wi_rssadapt_updatestats, sc);
2972 break;
2973
2974 case IEEE80211_S_SCAN:
2975 case IEEE80211_S_AUTH:
2976 case IEEE80211_S_ASSOC:
2977 break;
2978 }
2979
2980 if (ifp->if_link_state != linkstate) {
2981 ifp->if_link_state = linkstate;
2982 s = splnet();
2983 rt_ifmsg(ifp);
2984 splx(s);
2985 }
2986 ic->ic_state = nstate;
2987 /* skip standard ieee80211 handling */
2988 return 0;
2989 }
2990
2991 STATIC int
2992 wi_set_tim(struct ieee80211com *ic, int aid, int which)
2993 {
2994 struct wi_softc *sc = ic->ic_softc;
2995
2996 aid &= ~0xc000;
2997 if (which)
2998 aid |= 0x8000;
2999
3000 return wi_write_val(sc, WI_RID_SET_TIM, aid);
3001 }
3002
3003 STATIC int
3004 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
3005 {
3006 int error = 0;
3007 u_int16_t val[2];
3008
3009 if (!sc->sc_enabled)
3010 return ENXIO;
3011 switch (sc->sc_firmware_type) {
3012 case WI_LUCENT:
3013 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
3014 break;
3015 case WI_INTERSIL:
3016 val[0] = htole16(chanmask); /* channel */
3017 val[1] = htole16(txrate); /* tx rate */
3018 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
3019 break;
3020 case WI_SYMBOL:
3021 /*
3022 * XXX only supported on 3.x ?
3023 */
3024 val[0] = htole16(BSCAN_BCAST | BSCAN_ONETIME);
3025 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
3026 val, sizeof(val[0]));
3027 break;
3028 }
3029 if (error == 0) {
3030 sc->sc_scan_timer = WI_SCAN_WAIT;
3031 sc->sc_ic.ic_if.if_timer = 1;
3032 DPRINTF(("wi_scan_ap: start scanning, "
3033 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate));
3034 }
3035 return error;
3036 }
3037
3038 STATIC void
3039 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
3040 {
3041 #define N(a) (sizeof (a) / sizeof (a[0]))
3042 int i, naps, off, szbuf;
3043 struct wi_scan_header ws_hdr; /* Prism2 header */
3044 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
3045 struct wi_apinfo *ap;
3046
3047 off = sizeof(u_int16_t) * 2;
3048 memset(&ws_hdr, 0, sizeof(ws_hdr));
3049 switch (sc->sc_firmware_type) {
3050 case WI_INTERSIL:
3051 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
3052 off += sizeof(ws_hdr);
3053 szbuf = sizeof(struct wi_scan_data_p2);
3054 break;
3055 case WI_SYMBOL:
3056 szbuf = sizeof(struct wi_scan_data_p2) + 6;
3057 break;
3058 case WI_LUCENT:
3059 szbuf = sizeof(struct wi_scan_data);
3060 break;
3061 default:
3062 printf("%s: wi_scan_result: unknown firmware type %u\n",
3063 sc->sc_dev.dv_xname, sc->sc_firmware_type);
3064 naps = 0;
3065 goto done;
3066 }
3067 naps = (cnt * 2 + 2 - off) / szbuf;
3068 if (naps > N(sc->sc_aps))
3069 naps = N(sc->sc_aps);
3070 sc->sc_naps = naps;
3071 /* Read Data */
3072 ap = sc->sc_aps;
3073 memset(&ws_dat, 0, sizeof(ws_dat));
3074 for (i = 0; i < naps; i++, ap++) {
3075 wi_read_bap(sc, fid, off, &ws_dat,
3076 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
3077 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
3078 ether_sprintf(ws_dat.wi_bssid)));
3079 off += szbuf;
3080 ap->scanreason = le16toh(ws_hdr.wi_reason);
3081 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
3082 ap->channel = le16toh(ws_dat.wi_chid);
3083 ap->signal = le16toh(ws_dat.wi_signal);
3084 ap->noise = le16toh(ws_dat.wi_noise);
3085 ap->quality = ap->signal - ap->noise;
3086 ap->capinfo = le16toh(ws_dat.wi_capinfo);
3087 ap->interval = le16toh(ws_dat.wi_interval);
3088 ap->rate = le16toh(ws_dat.wi_rate);
3089 ap->namelen = le16toh(ws_dat.wi_namelen);
3090 if (ap->namelen > sizeof(ap->name))
3091 ap->namelen = sizeof(ap->name);
3092 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
3093 }
3094 done:
3095 /* Done scanning */
3096 sc->sc_scan_timer = 0;
3097 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
3098 #undef N
3099 }
3100
3101 STATIC void
3102 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
3103 {
3104 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
3105 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL
3106 : -1,
3107 rssi);
3108 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
3109 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
3110 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
3111 printf(" rx_signal %u rx_rate %u rx_flow %u\n",
3112 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
3113 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
3114 wh->wi_tx_rtry, wh->wi_tx_rate,
3115 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
3116 printf(" ehdr dst %s src %s type 0x%x\n",
3117 ether_sprintf(wh->wi_ehdr.ether_dhost),
3118 ether_sprintf(wh->wi_ehdr.ether_shost),
3119 wh->wi_ehdr.ether_type);
3120 }
3121