wi.c revision 1.199 1 /* $NetBSD: wi.c,v 1.199 2005/06/25 03:56:53 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1997, 1998, 1999
41 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Bill Paul.
54 * 4. Neither the name of the author nor the names of any co-contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
68 * THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
73 *
74 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
81 * from Lucent. Unlike the older cards, the new ones are programmed
82 * entirely via a firmware-driven controller called the Hermes.
83 * Unfortunately, Lucent will not release the Hermes programming manual
84 * without an NDA (if at all). What they do release is an API library
85 * called the HCF (Hardware Control Functions) which is supposed to
86 * do the device-specific operations of a device driver for you. The
87 * publically available version of the HCF library (the 'HCF Light') is
88 * a) extremely gross, b) lacks certain features, particularly support
89 * for 802.11 frames, and c) is contaminated by the GNU Public License.
90 *
91 * This driver does not use the HCF or HCF Light at all. Instead, it
92 * programs the Hermes controller directly, using information gleaned
93 * from the HCF Light code and corresponding documentation.
94 *
95 * This driver supports both the PCMCIA and ISA versions of the
96 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
97 * anything of the sort: it's actually a PCMCIA bridge adapter
98 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
99 * inserted. Consequently, you need to use the pccard support for
100 * both the ISA and PCMCIA adapters.
101 */
102
103 /*
104 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
105 * Oslo IETF plenary meeting.
106 */
107
108 #include <sys/cdefs.h>
109 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.199 2005/06/25 03:56:53 dyoung Exp $");
110
111 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
112 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
113 #undef WI_HISTOGRAM
114 #undef WI_RING_DEBUG
115 #define STATIC static
116
117 #include "bpfilter.h"
118
119 #include <sys/param.h>
120 #include <sys/systm.h>
121 #include <sys/callout.h>
122 #include <sys/device.h>
123 #include <sys/socket.h>
124 #include <sys/mbuf.h>
125 #include <sys/ioctl.h>
126 #include <sys/kernel.h> /* for hz */
127 #include <sys/proc.h>
128
129 #include <net/if.h>
130 #include <net/if_dl.h>
131 #include <net/if_llc.h>
132 #include <net/if_media.h>
133 #include <net/if_ether.h>
134 #include <net/route.h>
135
136 #include <net80211/ieee80211_netbsd.h>
137 #include <net80211/ieee80211_var.h>
138 #include <net80211/ieee80211_ioctl.h>
139 #include <net80211/ieee80211_radiotap.h>
140 #include <net80211/ieee80211_rssadapt.h>
141
142 #if NBPFILTER > 0
143 #include <net/bpf.h>
144 #include <net/bpfdesc.h>
145 #endif
146
147 #include <machine/bus.h>
148
149 #include <dev/ic/wi_ieee.h>
150 #include <dev/ic/wireg.h>
151 #include <dev/ic/wivar.h>
152
153 STATIC int wi_init(struct ifnet *);
154 STATIC void wi_stop(struct ifnet *, int);
155 STATIC void wi_start(struct ifnet *);
156 STATIC int wi_reset(struct wi_softc *);
157 STATIC void wi_watchdog(struct ifnet *);
158 STATIC int wi_ioctl(struct ifnet *, u_long, caddr_t);
159 STATIC int wi_media_change(struct ifnet *);
160 STATIC void wi_media_status(struct ifnet *, struct ifmediareq *);
161
162 STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211_node_table *);
163 STATIC void wi_node_free(struct ieee80211_node *);
164
165 STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
166 STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
167 STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *,
168 struct ieee80211_frame *, u_int);
169 STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *);
170 STATIC void wi_rssadapt_updatestats(void *);
171 STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *);
172 STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[],
173 wi_rssdescq_t *, u_int8_t (*)[]);
174 STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]);
175
176 STATIC void wi_rx_intr(struct wi_softc *);
177 STATIC void wi_txalloc_intr(struct wi_softc *);
178 STATIC void wi_cmd_intr(struct wi_softc *);
179 STATIC void wi_tx_intr(struct wi_softc *);
180 STATIC void wi_tx_ex_intr(struct wi_softc *);
181 STATIC void wi_info_intr(struct wi_softc *);
182
183 STATIC int wi_key_alloc(struct ieee80211com *, const struct ieee80211_key *);
184 STATIC int wi_key_delete(struct ieee80211com *, const struct ieee80211_key *);
185 STATIC int wi_key_set(struct ieee80211com *, const struct ieee80211_key *,
186 const u_int8_t[IEEE80211_ADDR_LEN]);
187 STATIC void wi_key_update_begin(struct ieee80211com *);
188 STATIC void wi_key_update_end(struct ieee80211com *);
189
190 STATIC void wi_push_packet(struct wi_softc *);
191 STATIC int wi_get_cfg(struct ifnet *, u_long, caddr_t);
192 STATIC int wi_set_cfg(struct ifnet *, u_long, caddr_t);
193 STATIC int wi_cfg_txrate(struct wi_softc *);
194 STATIC int wi_write_txrate(struct wi_softc *, int);
195 STATIC int wi_write_wep(struct wi_softc *);
196 STATIC int wi_write_multi(struct wi_softc *);
197 STATIC int wi_alloc_fid(struct wi_softc *, int, int *);
198 STATIC void wi_read_nicid(struct wi_softc *);
199 STATIC int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
200
201 STATIC int wi_cmd(struct wi_softc *, int, int, int, int);
202 STATIC int wi_cmd_start(struct wi_softc *, int, int, int, int);
203 STATIC int wi_cmd_wait(struct wi_softc *, int, int);
204 STATIC int wi_seek_bap(struct wi_softc *, int, int);
205 STATIC int wi_read_bap(struct wi_softc *, int, int, void *, int);
206 STATIC int wi_write_bap(struct wi_softc *, int, int, void *, int);
207 STATIC int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
208 STATIC int wi_read_rid(struct wi_softc *, int, void *, int *);
209 STATIC int wi_write_rid(struct wi_softc *, int, void *, int);
210
211 STATIC int wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
212 STATIC void wi_set_tim(struct ieee80211com *, struct ieee80211_node *, int);
213
214 STATIC int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
215 STATIC void wi_scan_result(struct wi_softc *, int, int);
216
217 STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
218 STATIC void wi_mend_flags(struct wi_softc *);
219
220 static inline int
221 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
222 {
223
224 val = htole16(val);
225 return wi_write_rid(sc, rid, &val, sizeof(val));
226 }
227
228 static struct timeval lasttxerror; /* time of last tx error msg */
229 static int curtxeps = 0; /* current tx error msgs/sec */
230 static int wi_txerate = 0; /* tx error rate: max msgs/sec */
231
232 #ifdef WI_DEBUG
233 int wi_debug = 0;
234
235 #define DPRINTF(X) if (wi_debug) printf X
236 #define DPRINTF2(X) if (wi_debug > 1) printf X
237 #define IFF_DUMPPKTS(_ifp) \
238 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
239 #else
240 #define DPRINTF(X)
241 #define DPRINTF2(X)
242 #define IFF_DUMPPKTS(_ifp) 0
243 #endif
244
245 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \
246 WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD)
247
248 struct wi_card_ident
249 wi_card_ident[] = {
250 /* CARD_ID CARD_NAME FIRM_TYPE */
251 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
252 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
253 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
254 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
255 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
256 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
257 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
258 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
259 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
260 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
261 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
262 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
263 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
264 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
265 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
266 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
267 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
268 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
269 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
270 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
271 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
272 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
273 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
274 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
275 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
276 { 0, NULL, 0 },
277 };
278
279 STATIC int
280 wi_read_xrid(struct wi_softc *sc, int rid, void *buf, int ebuflen)
281 {
282 int buflen, rc;
283
284 buflen = ebuflen;
285 if ((rc = wi_read_rid(sc, rid, buf, &buflen)) != 0)
286 return rc;
287
288 if (buflen < ebuflen) {
289 #ifdef WI_DEBUG
290 printf("%s: rid=%#04x read %d, expected %d\n", __func__,
291 rid, buflen, ebuflen);
292 #endif
293 return -1;
294 }
295 return 0;
296 }
297
298 int
299 wi_attach(struct wi_softc *sc, const u_int8_t *macaddr)
300 {
301 struct ieee80211com *ic = &sc->sc_ic;
302 struct ifnet *ifp = &sc->sc_if;
303 int chan, nrate, buflen;
304 u_int16_t val, chanavail;
305 struct {
306 u_int16_t nrates;
307 char rates[IEEE80211_RATE_SIZE];
308 } ratebuf;
309 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
310 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
311 };
312 int s;
313
314 s = splnet();
315
316 /* Make sure interrupts are disabled. */
317 CSR_WRITE_2(sc, WI_INT_EN, 0);
318 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
319
320 sc->sc_invalid = 0;
321
322 /* Reset the NIC. */
323 if (wi_reset(sc) != 0) {
324 sc->sc_invalid = 1;
325 splx(s);
326 return 1;
327 }
328
329 if (wi_read_xrid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
330 IEEE80211_ADDR_LEN) != 0 ||
331 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
332 if (macaddr != NULL)
333 memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN);
334 else {
335 printf(" could not get mac address, attach failed\n");
336 splx(s);
337 return 1;
338 }
339 }
340
341 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
342
343 /* Read NIC identification */
344 wi_read_nicid(sc);
345
346 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
347 ifp->if_softc = sc;
348 ifp->if_start = wi_start;
349 ifp->if_ioctl = wi_ioctl;
350 ifp->if_watchdog = wi_watchdog;
351 ifp->if_init = wi_init;
352 ifp->if_stop = wi_stop;
353 ifp->if_flags =
354 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
355 IFQ_SET_READY(&ifp->if_snd);
356
357 ic->ic_ifp = ifp;
358 ic->ic_phytype = IEEE80211_T_DS;
359 ic->ic_opmode = IEEE80211_M_STA;
360 ic->ic_caps = IEEE80211_C_AHDEMO;
361 ic->ic_state = IEEE80211_S_INIT;
362 ic->ic_max_aid = WI_MAX_AID;
363
364 /* Find available channel */
365 if (wi_read_xrid(sc, WI_RID_CHANNEL_LIST, &chanavail,
366 sizeof(chanavail)) != 0) {
367 aprint_normal("%s: using default channel list\n", sc->sc_dev.dv_xname);
368 chanavail = htole16(0x1fff); /* assume 1-13 */
369 }
370 for (chan = 16; chan > 0; chan--) {
371 if (!isset((u_int8_t*)&chanavail, chan - 1))
372 continue;
373 ic->ic_ibss_chan = &ic->ic_channels[chan];
374 ic->ic_channels[chan].ic_freq =
375 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
376 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
377 }
378
379 /* Find default IBSS channel */
380 if (wi_read_xrid(sc, WI_RID_OWN_CHNL, &val, sizeof(val)) == 0) {
381 chan = le16toh(val);
382 if (isset((u_int8_t*)&chanavail, chan - 1))
383 ic->ic_ibss_chan = &ic->ic_channels[chan];
384 }
385 if (ic->ic_ibss_chan == NULL) {
386 aprint_error("%s: no available channel\n", sc->sc_dev.dv_xname);
387 return 1;
388 }
389
390 if (sc->sc_firmware_type == WI_LUCENT) {
391 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
392 } else {
393 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
394 wi_read_xrid(sc, WI_RID_DBM_ADJUST, &val, sizeof(val)) == 0)
395 sc->sc_dbm_offset = le16toh(val);
396 else
397 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
398 }
399
400 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
401
402 /*
403 * Set flags based on firmware version.
404 */
405 switch (sc->sc_firmware_type) {
406 case WI_LUCENT:
407 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
408 #ifdef WI_HERMES_AUTOINC_WAR
409 /* XXX: not confirmed, but never seen for recent firmware */
410 if (sc->sc_sta_firmware_ver < 40000) {
411 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
412 }
413 #endif
414 if (sc->sc_sta_firmware_ver >= 60000)
415 sc->sc_flags |= WI_FLAGS_HAS_MOR;
416 if (sc->sc_sta_firmware_ver >= 60006) {
417 ic->ic_caps |= IEEE80211_C_IBSS;
418 ic->ic_caps |= IEEE80211_C_MONITOR;
419 }
420 ic->ic_caps |= IEEE80211_C_PMGT;
421 sc->sc_ibss_port = 1;
422 break;
423
424 case WI_INTERSIL:
425 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
426 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
427 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
428 if (sc->sc_sta_firmware_ver > 10101)
429 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
430 if (sc->sc_sta_firmware_ver >= 800) {
431 if (sc->sc_sta_firmware_ver != 10402)
432 ic->ic_caps |= IEEE80211_C_HOSTAP;
433 ic->ic_caps |= IEEE80211_C_IBSS;
434 ic->ic_caps |= IEEE80211_C_MONITOR;
435 }
436 ic->ic_caps |= IEEE80211_C_PMGT;
437 sc->sc_ibss_port = 0;
438 sc->sc_alt_retry = 2;
439 break;
440
441 case WI_SYMBOL:
442 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
443 if (sc->sc_sta_firmware_ver >= 20000)
444 ic->ic_caps |= IEEE80211_C_IBSS;
445 sc->sc_ibss_port = 4;
446 break;
447 }
448
449 /*
450 * Find out if we support WEP on this card.
451 */
452 if (wi_read_xrid(sc, WI_RID_WEP_AVAIL, &val, sizeof(val)) == 0 &&
453 val != htole16(0))
454 ic->ic_caps |= IEEE80211_C_WEP;
455
456 /* Find supported rates. */
457 buflen = sizeof(ratebuf);
458 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 &&
459 buflen > 2) {
460 nrate = le16toh(ratebuf.nrates);
461 if (nrate > IEEE80211_RATE_SIZE)
462 nrate = IEEE80211_RATE_SIZE;
463 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates,
464 &ratebuf.rates[0], nrate);
465 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
466 } else {
467 aprint_error("%s: no supported rate list\n", sc->sc_dev.dv_xname);
468 return 1;
469 }
470
471 sc->sc_max_datalen = 2304;
472 sc->sc_rts_thresh = 2347;
473 sc->sc_frag_thresh = 2346;
474 sc->sc_system_scale = 1;
475 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
476 sc->sc_roaming_mode = 1;
477
478 callout_init(&sc->sc_rssadapt_ch);
479
480 /*
481 * Call MI attach routines.
482 */
483 if_attach(ifp);
484 ieee80211_ifattach(ic);
485
486 sc->sc_newstate = ic->ic_newstate;
487 sc->sc_set_tim = ic->ic_set_tim;
488 ic->ic_newstate = wi_newstate;
489 ic->ic_node_alloc = wi_node_alloc;
490 ic->ic_node_free = wi_node_free;
491 ic->ic_set_tim = wi_set_tim;
492
493 ic->ic_crypto.cs_key_alloc = wi_key_alloc;
494 ic->ic_crypto.cs_key_delete = wi_key_delete;
495 ic->ic_crypto.cs_key_set = wi_key_set;
496 ic->ic_crypto.cs_key_update_begin = wi_key_update_begin;
497 ic->ic_crypto.cs_key_update_end = wi_key_update_end;
498
499 ieee80211_media_init(ic, wi_media_change, wi_media_status);
500
501 #if NBPFILTER > 0
502 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
503 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
504 #endif
505
506 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
507 sc->sc_rxtap.wr_ihdr.it_len = sizeof(sc->sc_rxtapu);
508 sc->sc_rxtap.wr_ihdr.it_present = WI_RX_RADIOTAP_PRESENT;
509
510 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
511 sc->sc_txtap.wt_ihdr.it_len = sizeof(sc->sc_txtapu);
512 sc->sc_txtap.wt_ihdr.it_present = WI_TX_RADIOTAP_PRESENT;
513
514 /* Attach is successful. */
515 sc->sc_attached = 1;
516
517 splx(s);
518 return 0;
519 }
520
521 int
522 wi_detach(struct wi_softc *sc)
523 {
524 struct ifnet *ifp = &sc->sc_if;
525 int s;
526
527 if (!sc->sc_attached)
528 return 0;
529
530 sc->sc_invalid = 1;
531 s = splnet();
532
533 wi_stop(ifp, 1);
534
535 ieee80211_ifdetach(&sc->sc_ic);
536 if_detach(ifp);
537 splx(s);
538 return 0;
539 }
540
541 #ifdef __NetBSD__
542 int
543 wi_activate(struct device *self, enum devact act)
544 {
545 struct wi_softc *sc = (struct wi_softc *)self;
546 int rv = 0, s;
547
548 s = splnet();
549 switch (act) {
550 case DVACT_ACTIVATE:
551 rv = EOPNOTSUPP;
552 break;
553
554 case DVACT_DEACTIVATE:
555 if_deactivate(&sc->sc_if);
556 break;
557 }
558 splx(s);
559 return rv;
560 }
561
562 void
563 wi_power(struct wi_softc *sc, int why)
564 {
565 struct ifnet *ifp = &sc->sc_if;
566 int s;
567
568 s = splnet();
569 switch (why) {
570 case PWR_SUSPEND:
571 case PWR_STANDBY:
572 wi_stop(ifp, 1);
573 break;
574 case PWR_RESUME:
575 if (ifp->if_flags & IFF_UP) {
576 wi_init(ifp);
577 (void)wi_intr(sc);
578 }
579 break;
580 case PWR_SOFTSUSPEND:
581 case PWR_SOFTSTANDBY:
582 case PWR_SOFTRESUME:
583 break;
584 }
585 splx(s);
586 }
587 #endif /* __NetBSD__ */
588
589 void
590 wi_shutdown(struct wi_softc *sc)
591 {
592 struct ifnet *ifp = &sc->sc_if;
593
594 if (sc->sc_attached)
595 wi_stop(ifp, 1);
596 }
597
598 int
599 wi_intr(void *arg)
600 {
601 int i;
602 struct wi_softc *sc = arg;
603 struct ifnet *ifp = &sc->sc_if;
604 u_int16_t status;
605
606 if (sc->sc_enabled == 0 ||
607 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
608 (ifp->if_flags & IFF_RUNNING) == 0)
609 return 0;
610
611 if ((ifp->if_flags & IFF_UP) == 0) {
612 CSR_WRITE_2(sc, WI_INT_EN, 0);
613 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
614 return 1;
615 }
616
617 /* This is superfluous on Prism, but Lucent breaks if we
618 * do not disable interrupts.
619 */
620 CSR_WRITE_2(sc, WI_INT_EN, 0);
621
622 /* maximum 10 loops per interrupt */
623 for (i = 0; i < 10; i++) {
624 status = CSR_READ_2(sc, WI_EVENT_STAT);
625 #ifdef WI_DEBUG
626 if (wi_debug > 1) {
627 printf("%s: iter %d status %#04x\n", __func__, i,
628 status);
629 }
630 #endif /* WI_DEBUG */
631 if ((status & WI_INTRS) == 0)
632 break;
633
634 sc->sc_status = status;
635
636 if (status & WI_EV_RX)
637 wi_rx_intr(sc);
638
639 if (status & WI_EV_ALLOC)
640 wi_txalloc_intr(sc);
641
642 if (status & WI_EV_TX)
643 wi_tx_intr(sc);
644
645 if (status & WI_EV_TX_EXC)
646 wi_tx_ex_intr(sc);
647
648 if (status & WI_EV_INFO)
649 wi_info_intr(sc);
650
651 CSR_WRITE_2(sc, WI_EVENT_ACK, sc->sc_status);
652
653 if (sc->sc_status & WI_EV_CMD)
654 wi_cmd_intr(sc);
655
656 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
657 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
658 !IFQ_IS_EMPTY(&ifp->if_snd))
659 wi_start(ifp);
660
661 sc->sc_status = 0;
662 }
663
664 /* re-enable interrupts */
665 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
666
667 sc->sc_status = 0;
668
669 return 1;
670 }
671
672 #define arraylen(a) (sizeof(a) / sizeof((a)[0]))
673
674 STATIC void
675 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree)
676 {
677 int i;
678 SLIST_INIT(rssdfree);
679 for (i = 0; i < arraylen(*rssd); i++) {
680 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next);
681 }
682 }
683
684 STATIC void
685 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS],
686 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE])
687 {
688 struct ieee80211_node *ni;
689 int i;
690 for (i = 0; i < arraylen(*rssd); i++) {
691 ni = (*rssd)[i].rd_desc.id_node;
692 (*rssd)[i].rd_desc.id_node = NULL;
693 if (ni != NULL && (ic->ic_ifp->if_flags & IFF_DEBUG) != 0)
694 printf("%s: cleaning outstanding rssadapt "
695 "descriptor for %s\n",
696 ic->ic_ifp->if_xname, ether_sprintf(ni->ni_macaddr));
697 if (ni != NULL)
698 ieee80211_free_node(ni);
699 }
700 memset(*txpending, 0, sizeof(*txpending));
701 wi_rssdescs_init(rssd, rssdfree);
702 }
703
704 STATIC int
705 wi_init(struct ifnet *ifp)
706 {
707 struct wi_softc *sc = ifp->if_softc;
708 struct ieee80211com *ic = &sc->sc_ic;
709 struct wi_joinreq join;
710 int i;
711 int error = 0, wasenabled;
712
713 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
714 wasenabled = sc->sc_enabled;
715 if (!sc->sc_enabled) {
716 if ((error = (*sc->sc_enable)(sc)) != 0)
717 goto out;
718 sc->sc_enabled = 1;
719 } else
720 wi_stop(ifp, 0);
721
722 /* Symbol firmware cannot be initialized more than once */
723 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled)
724 if ((error = wi_reset(sc)) != 0)
725 goto out;
726
727 /* common 802.11 configuration */
728 ic->ic_flags &= ~IEEE80211_F_IBSSON;
729 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
730 switch (ic->ic_opmode) {
731 case IEEE80211_M_STA:
732 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
733 break;
734 case IEEE80211_M_IBSS:
735 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
736 ic->ic_flags |= IEEE80211_F_IBSSON;
737 break;
738 case IEEE80211_M_AHDEMO:
739 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
740 break;
741 case IEEE80211_M_HOSTAP:
742 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
743 break;
744 case IEEE80211_M_MONITOR:
745 if (sc->sc_firmware_type == WI_LUCENT)
746 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
747 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
748 break;
749 }
750
751 /* Intersil interprets this RID as joining ESS even in IBSS mode */
752 if (sc->sc_firmware_type == WI_LUCENT &&
753 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
754 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
755 else
756 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
757 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
758 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
759 ic->ic_des_esslen);
760 wi_write_val(sc, WI_RID_OWN_CHNL,
761 ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
762 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
763 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
764 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
765 if (ic->ic_caps & IEEE80211_C_PMGT)
766 wi_write_val(sc, WI_RID_PM_ENABLED,
767 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
768
769 /* not yet common 802.11 configuration */
770 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
771 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
772 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
773 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
774
775 /* driver specific 802.11 configuration */
776 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
777 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
778 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
779 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
780 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
781 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
782 wi_cfg_txrate(sc);
783 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
784
785 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
786 sc->sc_firmware_type == WI_INTERSIL) {
787 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
788 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
789 }
790
791 if (sc->sc_firmware_type == WI_INTERSIL) {
792 struct ieee80211_rateset *rs =
793 &ic->ic_sup_rates[IEEE80211_MODE_11B];
794 u_int16_t basic = 0, supported = 0, rate;
795
796 for (i = 0; i < rs->rs_nrates; i++) {
797 switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
798 case 2:
799 rate = 1;
800 break;
801 case 4:
802 rate = 2;
803 break;
804 case 11:
805 rate = 4;
806 break;
807 case 22:
808 rate = 8;
809 break;
810 default:
811 rate = 0;
812 break;
813 }
814 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC)
815 basic |= rate;
816 supported |= rate;
817 }
818 wi_write_val(sc, WI_RID_BASIC_RATE, basic);
819 wi_write_val(sc, WI_RID_SUPPORT_RATE, supported);
820 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry);
821 }
822
823 /*
824 * Initialize promisc mode.
825 * Being in Host-AP mode causes a great
826 * deal of pain if promiscuous mode is set.
827 * Therefore we avoid confusing the firmware
828 * and always reset promisc mode in Host-AP
829 * mode. Host-AP sees all the packets anyway.
830 */
831 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
832 (ifp->if_flags & IFF_PROMISC) != 0) {
833 wi_write_val(sc, WI_RID_PROMISC, 1);
834 } else {
835 wi_write_val(sc, WI_RID_PROMISC, 0);
836 }
837
838 /* Configure WEP. */
839 if (ic->ic_caps & IEEE80211_C_WEP) {
840 sc->sc_cnfauthmode = ic->ic_bss->ni_authmode;
841 wi_write_wep(sc);
842 }
843
844 /* Set multicast filter. */
845 wi_write_multi(sc);
846
847 sc->sc_txalloc = 0;
848 sc->sc_txalloced = 0;
849 sc->sc_txqueue = 0;
850 sc->sc_txqueued = 0;
851 sc->sc_txstart = 0;
852 sc->sc_txstarted = 0;
853
854 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
855 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
856 if (sc->sc_firmware_type == WI_SYMBOL)
857 sc->sc_buflen = 1585; /* XXX */
858 for (i = 0; i < WI_NTXBUF; i++) {
859 error = wi_alloc_fid(sc, sc->sc_buflen,
860 &sc->sc_txd[i].d_fid);
861 if (error) {
862 printf("%s: tx buffer allocation failed\n",
863 sc->sc_dev.dv_xname);
864 goto out;
865 }
866 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
867 sc->sc_txd[i].d_fid));
868 ++sc->sc_txalloced;
869 }
870 }
871
872 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree);
873
874 /* Enable desired port */
875 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
876 ifp->if_flags |= IFF_RUNNING;
877 ifp->if_flags &= ~IFF_OACTIVE;
878 ic->ic_state = IEEE80211_S_INIT;
879
880 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
881 ic->ic_opmode == IEEE80211_M_IBSS ||
882 ic->ic_opmode == IEEE80211_M_MONITOR ||
883 ic->ic_opmode == IEEE80211_M_HOSTAP)
884 ieee80211_create_ibss(ic, ic->ic_ibss_chan);
885
886 /* Enable interrupts */
887 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
888
889 if (!wasenabled &&
890 ic->ic_opmode == IEEE80211_M_HOSTAP &&
891 sc->sc_firmware_type == WI_INTERSIL) {
892 /* XXX: some card need to be re-enabled for hostap */
893 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
894 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
895 }
896
897 if (ic->ic_opmode == IEEE80211_M_STA &&
898 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
899 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
900 memset(&join, 0, sizeof(join));
901 if (ic->ic_flags & IEEE80211_F_DESBSSID)
902 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
903 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
904 join.wi_chan =
905 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan));
906 /* Lucent firmware does not support the JOIN RID. */
907 if (sc->sc_firmware_type != WI_LUCENT)
908 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
909 }
910
911 out:
912 if (error) {
913 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
914 wi_stop(ifp, 0);
915 }
916 DPRINTF(("wi_init: return %d\n", error));
917 return error;
918 }
919
920 STATIC void
921 wi_txcmd_wait(struct wi_softc *sc)
922 {
923 KASSERT(sc->sc_txcmds == 1);
924 if (sc->sc_status & WI_EV_CMD) {
925 sc->sc_status &= ~WI_EV_CMD;
926 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
927 } else
928 (void)wi_cmd_wait(sc, WI_CMD_TX | WI_RECLAIM, 0);
929 }
930
931 STATIC void
932 wi_stop(struct ifnet *ifp, int disable)
933 {
934 struct wi_softc *sc = ifp->if_softc;
935 struct ieee80211com *ic = &sc->sc_ic;
936 int s;
937
938 if (!sc->sc_enabled)
939 return;
940
941 s = splnet();
942
943 DPRINTF(("wi_stop: disable %d\n", disable));
944
945 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
946
947 /* wait for tx command completion (deassoc, deauth) */
948 while (sc->sc_txcmds > 0) {
949 wi_txcmd_wait(sc);
950 wi_cmd_intr(sc);
951 }
952
953 /* TBD wait for deassoc, deauth tx completion? */
954
955 if (!sc->sc_invalid) {
956 CSR_WRITE_2(sc, WI_INT_EN, 0);
957 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
958 }
959
960 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
961 &sc->sc_txpending);
962
963 sc->sc_tx_timer = 0;
964 sc->sc_scan_timer = 0;
965 sc->sc_false_syns = 0;
966 sc->sc_naps = 0;
967 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
968 ifp->if_timer = 0;
969
970 if (disable) {
971 if (sc->sc_disable)
972 (*sc->sc_disable)(sc);
973 sc->sc_enabled = 0;
974 }
975 splx(s);
976 }
977
978 /*
979 * Choose a data rate for a packet len bytes long that suits the packet
980 * type and the wireless conditions.
981 *
982 * TBD Adapt fragmentation threshold.
983 */
984 STATIC int
985 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni,
986 struct ieee80211_frame *wh, u_int len)
987 {
988 struct wi_softc *sc = ic->ic_ifp->if_softc;
989 struct wi_node *wn = (void*)ni;
990 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt;
991 int do_not_adapt, i, rateidx, s;
992
993 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) &&
994 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0;
995
996 s = splnet();
997
998 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len,
999 ic->ic_fixed_rate,
1000 ((ic->ic_ifp->if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_ifp->if_xname,
1001 do_not_adapt);
1002
1003 ni->ni_txrate = rateidx;
1004
1005 if (ic->ic_opmode != IEEE80211_M_HOSTAP) {
1006 /* choose the slowest pending rate so that we don't
1007 * accidentally send a packet on the MAC's queue
1008 * too fast. TBD find out if the MAC labels Tx
1009 * packets w/ rate when enqueued or dequeued.
1010 */
1011 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++);
1012 rateidx = i;
1013 }
1014
1015 splx(s);
1016 return (rateidx);
1017 }
1018
1019 STATIC void
1020 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1021 {
1022 struct wi_node *wn;
1023 if (id->id_node == NULL)
1024 return;
1025
1026 wn = (void*)id->id_node;
1027 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id);
1028 }
1029
1030 STATIC void
1031 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1032 {
1033 struct ieee80211_node *ni;
1034 struct wi_node *wn;
1035 int s;
1036
1037 s = splnet();
1038
1039 if ((ni = id->id_node) == NULL) {
1040 DPRINTF(("wi_lower_rate: missing node\n"));
1041 goto out;
1042 }
1043
1044 wn = (void *)ni;
1045
1046 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id);
1047 out:
1048 splx(s);
1049 return;
1050 }
1051
1052 STATIC void
1053 wi_start(struct ifnet *ifp)
1054 {
1055 struct wi_softc *sc = ifp->if_softc;
1056 struct ieee80211com *ic = &sc->sc_ic;
1057 struct ether_header *eh;
1058 struct ieee80211_node *ni;
1059 struct ieee80211_frame *wh;
1060 struct ieee80211_rateset *rs;
1061 struct wi_rssdesc *rd;
1062 struct ieee80211_rssdesc *id;
1063 struct mbuf *m0;
1064 struct wi_frame frmhdr;
1065 int cur, fid, off, rateidx;
1066
1067 if (!sc->sc_enabled || sc->sc_invalid)
1068 return;
1069 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
1070 return;
1071
1072 memset(&frmhdr, 0, sizeof(frmhdr));
1073 cur = sc->sc_txqueue;
1074 for (;;) {
1075 ni = ic->ic_bss;
1076 if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) {
1077 ifp->if_flags |= IFF_OACTIVE;
1078 break;
1079 }
1080 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
1081 IF_DEQUEUE(&ic->ic_mgtq, m0);
1082 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
1083 (caddr_t)&frmhdr.wi_ehdr);
1084 frmhdr.wi_ehdr.ether_type = 0;
1085 wh = mtod(m0, struct ieee80211_frame *);
1086 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1087 m0->m_pkthdr.rcvif = NULL;
1088 } else if (ic->ic_state == IEEE80211_S_RUN) {
1089 IFQ_POLL(&ifp->if_snd, m0);
1090 if (m0 == NULL)
1091 break;
1092 IFQ_DEQUEUE(&ifp->if_snd, m0);
1093 ifp->if_opackets++;
1094 m_copydata(m0, 0, ETHER_HDR_LEN,
1095 (caddr_t)&frmhdr.wi_ehdr);
1096 #if NBPFILTER > 0
1097 if (ifp->if_bpf)
1098 bpf_mtap(ifp->if_bpf, m0);
1099 #endif
1100
1101 eh = mtod(m0, struct ether_header *);
1102 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1103 if (ni == NULL) {
1104 ifp->if_oerrors++;
1105 continue;
1106 }
1107 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1108 (m0->m_flags & M_PWR_SAV) == 0) {
1109 ieee80211_pwrsave(ic, ni, m0);
1110 goto next;
1111 }
1112 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
1113 ieee80211_free_node(ni);
1114 ifp->if_oerrors++;
1115 continue;
1116 }
1117 wh = mtod(m0, struct ieee80211_frame *);
1118 } else
1119 break;
1120 #if NBPFILTER > 0
1121 if (ic->ic_rawbpf)
1122 bpf_mtap(ic->ic_rawbpf, m0);
1123 #endif
1124 frmhdr.wi_tx_ctl =
1125 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK);
1126 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1127 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
1128 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1129 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
1130 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1131 ifp->if_oerrors++;
1132 goto next;
1133 }
1134 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
1135 }
1136
1137 rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len);
1138 rs = &ni->ni_rates;
1139
1140 #if NBPFILTER > 0
1141 if (sc->sc_drvbpf) {
1142 struct wi_tx_radiotap_header *tap = &sc->sc_txtap;
1143
1144 tap->wt_rate = rs->rs_rates[rateidx];
1145 tap->wt_chan_freq =
1146 htole16(ic->ic_bss->ni_chan->ic_freq);
1147 tap->wt_chan_flags =
1148 htole16(ic->ic_bss->ni_chan->ic_flags);
1149 /* TBD tap->wt_flags */
1150
1151 bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0);
1152 }
1153 #endif
1154
1155 rd = SLIST_FIRST(&sc->sc_rssdfree);
1156 id = &rd->rd_desc;
1157 id->id_len = m0->m_pkthdr.len;
1158 id->id_rateidx = ni->ni_txrate;
1159 id->id_rssi = ni->ni_rssi;
1160
1161 frmhdr.wi_tx_idx = rd - sc->sc_rssd;
1162
1163 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1164 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] &
1165 IEEE80211_RATE_VAL);
1166 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA)
1167 (void)wi_write_txrate(sc, rs->rs_rates[rateidx]);
1168
1169 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
1170 (caddr_t)&frmhdr.wi_whdr);
1171 m_adj(m0, sizeof(struct ieee80211_frame));
1172 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
1173 if (IFF_DUMPPKTS(ifp))
1174 wi_dump_pkt(&frmhdr, ni, -1);
1175 fid = sc->sc_txd[cur].d_fid;
1176 off = sizeof(frmhdr);
1177 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
1178 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
1179 printf("%s: %s write fid %x failed\n",
1180 sc->sc_dev.dv_xname, __func__, fid);
1181 ifp->if_oerrors++;
1182 m_freem(m0);
1183 goto next;
1184 }
1185 m_freem(m0);
1186 sc->sc_txpending[ni->ni_txrate]++;
1187 --sc->sc_txalloced;
1188 if (sc->sc_txqueued++ == 0) {
1189 #ifdef DIAGNOSTIC
1190 if (cur != sc->sc_txstart)
1191 printf("%s: ring is desynchronized\n",
1192 sc->sc_dev.dv_xname);
1193 #endif
1194 wi_push_packet(sc);
1195 } else {
1196 #ifdef WI_RING_DEBUG
1197 printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1198 sc->sc_dev.dv_xname, fid,
1199 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1200 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1201 #endif
1202 }
1203 sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF;
1204 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next);
1205 id->id_node = ni;
1206 continue;
1207 next:
1208 if (ni != NULL)
1209 ieee80211_free_node(ni);
1210 }
1211 }
1212
1213
1214 STATIC int
1215 wi_reset(struct wi_softc *sc)
1216 {
1217 int i, error;
1218
1219 DPRINTF(("wi_reset\n"));
1220
1221 if (sc->sc_reset)
1222 (*sc->sc_reset)(sc);
1223
1224 error = 0;
1225 for (i = 0; i < 5; i++) {
1226 if (sc->sc_invalid)
1227 return ENXIO;
1228 DELAY(20*1000); /* XXX: way too long! */
1229 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
1230 break;
1231 }
1232 if (error) {
1233 printf("%s: init failed\n", sc->sc_dev.dv_xname);
1234 return error;
1235 }
1236 CSR_WRITE_2(sc, WI_INT_EN, 0);
1237 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
1238
1239 /* Calibrate timer. */
1240 wi_write_val(sc, WI_RID_TICK_TIME, 0);
1241 return 0;
1242 }
1243
1244 STATIC void
1245 wi_watchdog(struct ifnet *ifp)
1246 {
1247 struct wi_softc *sc = ifp->if_softc;
1248
1249 ifp->if_timer = 0;
1250 if (!sc->sc_enabled)
1251 return;
1252
1253 if (sc->sc_tx_timer) {
1254 if (--sc->sc_tx_timer == 0) {
1255 printf("%s: device timeout\n", ifp->if_xname);
1256 ifp->if_oerrors++;
1257 wi_init(ifp);
1258 return;
1259 }
1260 ifp->if_timer = 1;
1261 }
1262
1263 if (sc->sc_scan_timer) {
1264 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
1265 sc->sc_firmware_type == WI_INTERSIL) {
1266 DPRINTF(("wi_watchdog: inquire scan\n"));
1267 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1268 }
1269 if (sc->sc_scan_timer)
1270 ifp->if_timer = 1;
1271 }
1272
1273 /* TODO: rate control */
1274 ieee80211_watchdog(&sc->sc_ic);
1275 }
1276
1277 STATIC int
1278 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1279 {
1280 struct wi_softc *sc = ifp->if_softc;
1281 struct ieee80211com *ic = &sc->sc_ic;
1282 struct ifreq *ifr = (struct ifreq *)data;
1283 int s, error = 0;
1284
1285 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1286 return ENXIO;
1287
1288 s = splnet();
1289
1290 switch (cmd) {
1291 case SIOCSIFFLAGS:
1292 /*
1293 * Can't do promisc and hostap at the same time. If all that's
1294 * changing is the promisc flag, try to short-circuit a call to
1295 * wi_init() by just setting PROMISC in the hardware.
1296 */
1297 if (ifp->if_flags & IFF_UP) {
1298 if (sc->sc_enabled) {
1299 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1300 (ifp->if_flags & IFF_PROMISC) != 0)
1301 wi_write_val(sc, WI_RID_PROMISC, 1);
1302 else
1303 wi_write_val(sc, WI_RID_PROMISC, 0);
1304 } else
1305 error = wi_init(ifp);
1306 } else if (sc->sc_enabled)
1307 wi_stop(ifp, 1);
1308 break;
1309 case SIOCSIFMEDIA:
1310 case SIOCGIFMEDIA:
1311 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1312 break;
1313 case SIOCADDMULTI:
1314 case SIOCDELMULTI:
1315 error = (cmd == SIOCADDMULTI) ?
1316 ether_addmulti(ifr, &sc->sc_ec) :
1317 ether_delmulti(ifr, &sc->sc_ec);
1318 if (error == ENETRESET) {
1319 if (ifp->if_flags & IFF_RUNNING) {
1320 /* do not rescan */
1321 error = wi_write_multi(sc);
1322 } else
1323 error = 0;
1324 }
1325 break;
1326 case SIOCGIFGENERIC:
1327 error = wi_get_cfg(ifp, cmd, data);
1328 break;
1329 case SIOCSIFGENERIC:
1330 error = suser(curproc->p_ucred, &curproc->p_acflag);
1331 if (error)
1332 break;
1333 error = wi_set_cfg(ifp, cmd, data);
1334 if (error == ENETRESET) {
1335 if (ifp->if_flags & IFF_RUNNING)
1336 error = wi_init(ifp);
1337 else
1338 error = 0;
1339 }
1340 break;
1341 case SIOCS80211BSSID:
1342 if (sc->sc_firmware_type == WI_LUCENT) {
1343 error = ENODEV;
1344 break;
1345 }
1346 /* fall through */
1347 default:
1348 ic->ic_flags = sc->sc_ic_flags;
1349 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1350 sc->sc_ic_flags = ic->ic_flags;
1351 wi_mend_flags(sc);
1352 if (error == ENETRESET) {
1353 if (sc->sc_enabled)
1354 error = wi_init(ifp);
1355 else
1356 error = 0;
1357 }
1358 break;
1359 }
1360 splx(s);
1361 return error;
1362 }
1363
1364 STATIC int
1365 wi_media_change(struct ifnet *ifp)
1366 {
1367 struct wi_softc *sc = ifp->if_softc;
1368 struct ieee80211com *ic = &sc->sc_ic;
1369 int error;
1370
1371 error = ieee80211_media_change(ifp);
1372 if (error == ENETRESET) {
1373 if (sc->sc_enabled)
1374 error = wi_init(ifp);
1375 else
1376 error = 0;
1377 }
1378 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1379
1380 return error;
1381 }
1382
1383 STATIC void
1384 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1385 {
1386 struct wi_softc *sc = ifp->if_softc;
1387 struct ieee80211com *ic = &sc->sc_ic;
1388 u_int16_t val;
1389 int rate;
1390
1391 if (sc->sc_enabled == 0) {
1392 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1393 imr->ifm_status = 0;
1394 return;
1395 }
1396
1397 imr->ifm_status = IFM_AVALID;
1398 imr->ifm_active = IFM_IEEE80211;
1399 if (ic->ic_state == IEEE80211_S_RUN &&
1400 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1401 imr->ifm_status |= IFM_ACTIVE;
1402 if (wi_read_xrid(sc, WI_RID_CUR_TX_RATE, &val, sizeof(val)) == 0) {
1403 /* convert to 802.11 rate */
1404 val = le16toh(val);
1405 rate = val * 2;
1406 if (sc->sc_firmware_type == WI_LUCENT) {
1407 if (rate == 10)
1408 rate = 11; /* 5.5Mbps */
1409 } else {
1410 if (rate == 4*2)
1411 rate = 11; /* 5.5Mbps */
1412 else if (rate == 8*2)
1413 rate = 22; /* 11Mbps */
1414 }
1415 } else
1416 rate = 0;
1417 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1418 switch (ic->ic_opmode) {
1419 case IEEE80211_M_STA:
1420 break;
1421 case IEEE80211_M_IBSS:
1422 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1423 break;
1424 case IEEE80211_M_AHDEMO:
1425 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1426 break;
1427 case IEEE80211_M_HOSTAP:
1428 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1429 break;
1430 case IEEE80211_M_MONITOR:
1431 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1432 break;
1433 }
1434 }
1435
1436 STATIC struct ieee80211_node *
1437 wi_node_alloc(struct ieee80211_node_table *nt)
1438 {
1439 struct wi_node *wn =
1440 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1441 return wn ? &wn->wn_node : NULL;
1442 }
1443
1444 STATIC void
1445 wi_node_free(struct ieee80211_node *ni)
1446 {
1447 struct wi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1448 int i;
1449
1450 for (i = 0; i < WI_NTXRSS; i++) {
1451 if (sc->sc_rssd[i].rd_desc.id_node == ni)
1452 sc->sc_rssd[i].rd_desc.id_node = NULL;
1453 }
1454 free(ni, M_DEVBUF);
1455 }
1456
1457 STATIC void
1458 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1459 {
1460 struct ieee80211com *ic = &sc->sc_ic;
1461 struct ieee80211_node *ni = ic->ic_bss;
1462 struct ifnet *ifp = &sc->sc_if;
1463
1464 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1465 return;
1466
1467 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
1468 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1469
1470 /* In promiscuous mode, the BSSID field is not a reliable
1471 * indicator of the firmware's BSSID. Damp spurious
1472 * change-of-BSSID indications.
1473 */
1474 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1475 !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns,
1476 WI_MAX_FALSE_SYNS))
1477 return;
1478
1479 sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1);
1480 /*
1481 * XXX hack; we should create a new node with the new bssid
1482 * and replace the existing ic_bss with it but since we don't
1483 * process management frames to collect state we cheat by
1484 * reusing the existing node as we know wi_newstate will be
1485 * called and it will overwrite the node state.
1486 */
1487 ieee80211_sta_join(ic, ieee80211_ref_node(ni));
1488 }
1489
1490 static __inline void
1491 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni,
1492 struct ieee80211_frame *wh, int rssi)
1493 {
1494 struct wi_node *wn;
1495
1496 if (ni == NULL) {
1497 printf("%s: null node", __func__);
1498 return;
1499 }
1500
1501 wn = (void*)ni;
1502 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi);
1503 }
1504
1505 STATIC void
1506 wi_rx_intr(struct wi_softc *sc)
1507 {
1508 struct ieee80211com *ic = &sc->sc_ic;
1509 struct ifnet *ifp = &sc->sc_if;
1510 struct ieee80211_node *ni;
1511 struct wi_frame frmhdr;
1512 struct mbuf *m;
1513 struct ieee80211_frame *wh;
1514 int fid, len, off, rssi;
1515 u_int8_t dir;
1516 u_int16_t status;
1517 u_int32_t rstamp;
1518
1519 fid = CSR_READ_2(sc, WI_RX_FID);
1520
1521 /* First read in the frame header */
1522 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1523 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1524 __func__, fid);
1525 ifp->if_ierrors++;
1526 return;
1527 }
1528
1529 if (IFF_DUMPPKTS(ifp))
1530 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1531
1532 /*
1533 * Drop undecryptable or packets with receive errors here
1534 */
1535 status = le16toh(frmhdr.wi_status);
1536 if ((status & WI_STAT_ERRSTAT) != 0 &&
1537 ic->ic_opmode != IEEE80211_M_MONITOR) {
1538 ifp->if_ierrors++;
1539 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1540 return;
1541 }
1542 rssi = frmhdr.wi_rx_signal;
1543 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1544 le16toh(frmhdr.wi_rx_tstamp1);
1545
1546 len = le16toh(frmhdr.wi_dat_len);
1547 off = ALIGN(sizeof(struct ieee80211_frame));
1548
1549 /* Sometimes the PRISM2.x returns bogusly large frames. Except
1550 * in monitor mode, just throw them away.
1551 */
1552 if (off + len > MCLBYTES) {
1553 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1554 ifp->if_ierrors++;
1555 DPRINTF(("wi_rx_intr: oversized packet\n"));
1556 return;
1557 } else
1558 len = 0;
1559 }
1560
1561 MGETHDR(m, M_DONTWAIT, MT_DATA);
1562 if (m == NULL) {
1563 ifp->if_ierrors++;
1564 DPRINTF(("wi_rx_intr: MGET failed\n"));
1565 return;
1566 }
1567 if (off + len > MHLEN) {
1568 MCLGET(m, M_DONTWAIT);
1569 if ((m->m_flags & M_EXT) == 0) {
1570 m_freem(m);
1571 ifp->if_ierrors++;
1572 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1573 return;
1574 }
1575 }
1576
1577 m->m_data += off - sizeof(struct ieee80211_frame);
1578 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1579 wi_read_bap(sc, fid, sizeof(frmhdr),
1580 m->m_data + sizeof(struct ieee80211_frame), len);
1581 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1582 m->m_pkthdr.rcvif = ifp;
1583
1584 #if NBPFILTER > 0
1585 if (sc->sc_drvbpf) {
1586 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap;
1587
1588 tap->wr_rate = frmhdr.wi_rx_rate / 5;
1589 tap->wr_antsignal = frmhdr.wi_rx_signal;
1590 tap->wr_antnoise = frmhdr.wi_rx_silence;
1591 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1592 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1593 if (frmhdr.wi_status & WI_STAT_PCF)
1594 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1595
1596 bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m);
1597 }
1598 #endif
1599 wh = mtod(m, struct ieee80211_frame *);
1600 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1601 /*
1602 * WEP is decrypted by hardware. Clear WEP bit
1603 * header for ieee80211_input().
1604 */
1605 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1606 }
1607
1608 /* synchronize driver's BSSID with firmware's BSSID */
1609 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1610 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1611 wi_sync_bssid(sc, wh->i_addr3);
1612
1613 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1614
1615 ieee80211_input(ic, m, ni, rssi, rstamp);
1616
1617 wi_rssadapt_input(ic, ni, wh, rssi);
1618
1619 /*
1620 * The frame may have caused the node to be marked for
1621 * reclamation (e.g. in response to a DEAUTH message)
1622 * so use release_node here instead of unref_node.
1623 */
1624 ieee80211_free_node(ni);
1625 }
1626
1627 STATIC void
1628 wi_tx_ex_intr(struct wi_softc *sc)
1629 {
1630 struct ieee80211com *ic = &sc->sc_ic;
1631 struct ifnet *ifp = &sc->sc_if;
1632 struct ieee80211_node *ni;
1633 struct ieee80211_rssdesc *id;
1634 struct wi_rssdesc *rssd;
1635 struct wi_frame frmhdr;
1636 int fid;
1637 u_int16_t status;
1638
1639 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1640 /* Read in the frame header */
1641 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1642 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1643 __func__, fid);
1644 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1645 &sc->sc_txpending);
1646 goto out;
1647 }
1648
1649 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1650 printf("%s: %s bad idx %02x\n",
1651 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1652 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1653 &sc->sc_txpending);
1654 goto out;
1655 }
1656
1657 status = le16toh(frmhdr.wi_status);
1658
1659 /*
1660 * Spontaneous station disconnects appear as xmit
1661 * errors. Don't announce them and/or count them
1662 * as an output error.
1663 */
1664 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1665 printf("%s: tx failed", sc->sc_dev.dv_xname);
1666 if (status & WI_TXSTAT_RET_ERR)
1667 printf(", retry limit exceeded");
1668 if (status & WI_TXSTAT_AGED_ERR)
1669 printf(", max transmit lifetime exceeded");
1670 if (status & WI_TXSTAT_DISCONNECT)
1671 printf(", port disconnected");
1672 if (status & WI_TXSTAT_FORM_ERR)
1673 printf(", invalid format (data len %u src %s)",
1674 le16toh(frmhdr.wi_dat_len),
1675 ether_sprintf(frmhdr.wi_ehdr.ether_shost));
1676 if (status & ~0xf)
1677 printf(", status=0x%x", status);
1678 printf("\n");
1679 }
1680 ifp->if_oerrors++;
1681 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1682 id = &rssd->rd_desc;
1683 if ((status & WI_TXSTAT_RET_ERR) != 0)
1684 wi_lower_rate(ic, id);
1685
1686 ni = id->id_node;
1687 id->id_node = NULL;
1688
1689 if (ni == NULL) {
1690 printf("%s: %s null node, rssdesc %02x\n",
1691 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1692 goto out;
1693 }
1694
1695 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1696 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1697 __func__, id->id_rateidx);
1698 sc->sc_txpending[id->id_rateidx] = 0;
1699 }
1700 if (ni != NULL)
1701 ieee80211_free_node(ni);
1702 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1703 out:
1704 ifp->if_flags &= ~IFF_OACTIVE;
1705 }
1706
1707 STATIC void
1708 wi_txalloc_intr(struct wi_softc *sc)
1709 {
1710 int fid, cur;
1711
1712 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1713
1714 cur = sc->sc_txalloc;
1715 #ifdef DIAGNOSTIC
1716 if (sc->sc_txstarted == 0) {
1717 printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1718 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1719 sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1720 return;
1721 }
1722 #endif
1723 --sc->sc_txstarted;
1724 ++sc->sc_txalloced;
1725 sc->sc_txd[cur].d_fid = fid;
1726 sc->sc_txalloc = (cur + 1) % WI_NTXBUF;
1727 #ifdef WI_RING_DEBUG
1728 printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1729 sc->sc_dev.dv_xname, fid,
1730 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1731 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1732 #endif
1733 }
1734
1735 STATIC void
1736 wi_cmd_intr(struct wi_softc *sc)
1737 {
1738 struct ifnet *ifp = &sc->sc_if;
1739
1740 if (sc->sc_invalid)
1741 return;
1742 #ifdef WI_DEBUG
1743 if (wi_debug)
1744 printf("%s: %d txcmds outstanding\n", __func__, sc->sc_txcmds);
1745 #endif
1746 KASSERT(sc->sc_txcmds > 0);
1747
1748 --sc->sc_txcmds;
1749
1750 if (--sc->sc_txqueued == 0) {
1751 sc->sc_tx_timer = 0;
1752 ifp->if_flags &= ~IFF_OACTIVE;
1753 #ifdef WI_RING_DEBUG
1754 printf("%s: cmd , alloc %d queue %d start %d alloced %d queued %d started %d\n",
1755 sc->sc_dev.dv_xname,
1756 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1757 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1758 #endif
1759 } else
1760 wi_push_packet(sc);
1761 }
1762
1763 STATIC void
1764 wi_push_packet(struct wi_softc *sc)
1765 {
1766 struct ifnet *ifp = &sc->sc_if;
1767 int cur, fid;
1768
1769 cur = sc->sc_txstart;
1770 fid = sc->sc_txd[cur].d_fid;
1771
1772 KASSERT(sc->sc_txcmds == 0);
1773
1774 if (wi_cmd_start(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
1775 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1776 /* XXX ring might have a hole */
1777 }
1778
1779 if (sc->sc_txcmds++ > 0)
1780 printf("%s: %d tx cmds pending!!!\n", __func__, sc->sc_txcmds);
1781
1782 ++sc->sc_txstarted;
1783 #ifdef DIAGNOSTIC
1784 if (sc->sc_txstarted > WI_NTXBUF)
1785 printf("%s: too many buffers started\n", sc->sc_dev.dv_xname);
1786 #endif
1787 sc->sc_txstart = (cur + 1) % WI_NTXBUF;
1788 sc->sc_tx_timer = 5;
1789 ifp->if_timer = 1;
1790 #ifdef WI_RING_DEBUG
1791 printf("%s: push %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1792 sc->sc_dev.dv_xname, fid,
1793 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1794 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1795 #endif
1796 }
1797
1798 STATIC void
1799 wi_tx_intr(struct wi_softc *sc)
1800 {
1801 struct ieee80211com *ic = &sc->sc_ic;
1802 struct ifnet *ifp = &sc->sc_if;
1803 struct ieee80211_node *ni;
1804 struct ieee80211_rssdesc *id;
1805 struct wi_rssdesc *rssd;
1806 struct wi_frame frmhdr;
1807 int fid;
1808
1809 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1810 /* Read in the frame header */
1811 if (wi_read_bap(sc, fid, offsetof(struct wi_frame, wi_tx_swsup2),
1812 &frmhdr.wi_tx_swsup2, 2) != 0) {
1813 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1814 __func__, fid);
1815 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1816 &sc->sc_txpending);
1817 goto out;
1818 }
1819
1820 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1821 printf("%s: %s bad idx %02x\n",
1822 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1823 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1824 &sc->sc_txpending);
1825 goto out;
1826 }
1827
1828 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1829 id = &rssd->rd_desc;
1830 wi_raise_rate(ic, id);
1831
1832 ni = id->id_node;
1833 id->id_node = NULL;
1834
1835 if (ni == NULL) {
1836 printf("%s: %s null node, rssdesc %02x\n",
1837 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1838 goto out;
1839 }
1840
1841 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1842 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1843 __func__, id->id_rateidx);
1844 sc->sc_txpending[id->id_rateidx] = 0;
1845 }
1846 if (ni != NULL)
1847 ieee80211_free_node(ni);
1848 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1849 out:
1850 ifp->if_flags &= ~IFF_OACTIVE;
1851 }
1852
1853 STATIC void
1854 wi_info_intr(struct wi_softc *sc)
1855 {
1856 struct ieee80211com *ic = &sc->sc_ic;
1857 struct ifnet *ifp = &sc->sc_if;
1858 int i, fid, len, off;
1859 u_int16_t ltbuf[2];
1860 u_int16_t stat;
1861 u_int32_t *ptr;
1862
1863 fid = CSR_READ_2(sc, WI_INFO_FID);
1864 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1865
1866 switch (le16toh(ltbuf[1])) {
1867
1868 case WI_INFO_LINK_STAT:
1869 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1870 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1871 switch (le16toh(stat)) {
1872 case CONNECTED:
1873 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1874 if (ic->ic_state == IEEE80211_S_RUN &&
1875 ic->ic_opmode != IEEE80211_M_IBSS)
1876 break;
1877 /* FALLTHROUGH */
1878 case AP_CHANGE:
1879 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1880 break;
1881 case AP_IN_RANGE:
1882 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1883 break;
1884 case AP_OUT_OF_RANGE:
1885 if (sc->sc_firmware_type == WI_SYMBOL &&
1886 sc->sc_scan_timer > 0) {
1887 if (wi_cmd(sc, WI_CMD_INQUIRE,
1888 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1889 sc->sc_scan_timer = 0;
1890 break;
1891 }
1892 if (ic->ic_opmode == IEEE80211_M_STA)
1893 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1894 break;
1895 case DISCONNECTED:
1896 case ASSOC_FAILED:
1897 if (ic->ic_opmode == IEEE80211_M_STA)
1898 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1899 break;
1900 }
1901 break;
1902
1903 case WI_INFO_COUNTERS:
1904 /* some card versions have a larger stats structure */
1905 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1906 ptr = (u_int32_t *)&sc->sc_stats;
1907 off = sizeof(ltbuf);
1908 for (i = 0; i < len; i++, off += 2, ptr++) {
1909 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1910 stat = le16toh(stat);
1911 #ifdef WI_HERMES_STATS_WAR
1912 if (stat & 0xf000)
1913 stat = ~stat;
1914 #endif
1915 *ptr += stat;
1916 }
1917 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1918 sc->sc_stats.wi_tx_multi_retries +
1919 sc->sc_stats.wi_tx_retry_limit;
1920 break;
1921
1922 case WI_INFO_SCAN_RESULTS:
1923 case WI_INFO_HOST_SCAN_RESULTS:
1924 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1925 break;
1926
1927 default:
1928 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1929 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1930 break;
1931 }
1932 }
1933
1934 STATIC int
1935 wi_write_multi(struct wi_softc *sc)
1936 {
1937 struct ifnet *ifp = &sc->sc_if;
1938 int n;
1939 struct wi_mcast mlist;
1940 struct ether_multi *enm;
1941 struct ether_multistep estep;
1942
1943 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1944 allmulti:
1945 ifp->if_flags |= IFF_ALLMULTI;
1946 memset(&mlist, 0, sizeof(mlist));
1947 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1948 sizeof(mlist));
1949 }
1950
1951 n = 0;
1952 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1953 while (enm != NULL) {
1954 /* Punt on ranges or too many multicast addresses. */
1955 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1956 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1957 goto allmulti;
1958
1959 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1960 n++;
1961 ETHER_NEXT_MULTI(estep, enm);
1962 }
1963 ifp->if_flags &= ~IFF_ALLMULTI;
1964 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1965 IEEE80211_ADDR_LEN * n);
1966 }
1967
1968
1969 STATIC void
1970 wi_read_nicid(struct wi_softc *sc)
1971 {
1972 struct wi_card_ident *id;
1973 char *p;
1974 int len;
1975 u_int16_t ver[4];
1976
1977 /* getting chip identity */
1978 memset(ver, 0, sizeof(ver));
1979 len = sizeof(ver);
1980 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1981 printf("%s: using ", sc->sc_dev.dv_xname);
1982 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1983
1984 sc->sc_firmware_type = WI_NOTYPE;
1985 for (id = wi_card_ident; id->card_name != NULL; id++) {
1986 if (le16toh(ver[0]) == id->card_id) {
1987 printf("%s", id->card_name);
1988 sc->sc_firmware_type = id->firm_type;
1989 break;
1990 }
1991 }
1992 if (sc->sc_firmware_type == WI_NOTYPE) {
1993 if (le16toh(ver[0]) & 0x8000) {
1994 printf("Unknown PRISM2 chip");
1995 sc->sc_firmware_type = WI_INTERSIL;
1996 } else {
1997 printf("Unknown Lucent chip");
1998 sc->sc_firmware_type = WI_LUCENT;
1999 }
2000 }
2001
2002 /* get primary firmware version (Only Prism chips) */
2003 if (sc->sc_firmware_type != WI_LUCENT) {
2004 memset(ver, 0, sizeof(ver));
2005 len = sizeof(ver);
2006 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
2007 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
2008 le16toh(ver[3]) * 100 + le16toh(ver[1]);
2009 }
2010
2011 /* get station firmware version */
2012 memset(ver, 0, sizeof(ver));
2013 len = sizeof(ver);
2014 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
2015 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
2016 le16toh(ver[3]) * 100 + le16toh(ver[1]);
2017 if (sc->sc_firmware_type == WI_INTERSIL &&
2018 (sc->sc_sta_firmware_ver == 10102 ||
2019 sc->sc_sta_firmware_ver == 20102)) {
2020 char ident[12];
2021 memset(ident, 0, sizeof(ident));
2022 len = sizeof(ident);
2023 /* value should be the format like "V2.00-11" */
2024 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
2025 *(p = (char *)ident) >= 'A' &&
2026 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
2027 sc->sc_firmware_type = WI_SYMBOL;
2028 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
2029 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
2030 (p[6] - '0') * 10 + (p[7] - '0');
2031 }
2032 }
2033
2034 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
2035 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
2036 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
2037 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
2038 printf("Primary (%u.%u.%u), ",
2039 sc->sc_pri_firmware_ver / 10000,
2040 (sc->sc_pri_firmware_ver % 10000) / 100,
2041 sc->sc_pri_firmware_ver % 100);
2042 printf("Station (%u.%u.%u)\n",
2043 sc->sc_sta_firmware_ver / 10000,
2044 (sc->sc_sta_firmware_ver % 10000) / 100,
2045 sc->sc_sta_firmware_ver % 100);
2046 }
2047
2048 STATIC int
2049 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
2050 {
2051 struct wi_ssid ssid;
2052
2053 if (buflen > IEEE80211_NWID_LEN)
2054 return ENOBUFS;
2055 memset(&ssid, 0, sizeof(ssid));
2056 ssid.wi_len = htole16(buflen);
2057 memcpy(ssid.wi_ssid, buf, buflen);
2058 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
2059 }
2060
2061 STATIC int
2062 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2063 {
2064 struct wi_softc *sc = ifp->if_softc;
2065 struct ieee80211com *ic = &sc->sc_ic;
2066 struct ifreq *ifr = (struct ifreq *)data;
2067 struct wi_req wreq;
2068 int len, n, error;
2069
2070 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2071 if (error)
2072 return error;
2073 len = (wreq.wi_len - 1) * 2;
2074 if (len < sizeof(u_int16_t))
2075 return ENOSPC;
2076 if (len > sizeof(wreq.wi_val))
2077 len = sizeof(wreq.wi_val);
2078
2079 switch (wreq.wi_type) {
2080
2081 case WI_RID_IFACE_STATS:
2082 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
2083 if (len < sizeof(sc->sc_stats))
2084 error = ENOSPC;
2085 else
2086 len = sizeof(sc->sc_stats);
2087 break;
2088
2089 case WI_RID_ENCRYPTION:
2090 case WI_RID_TX_CRYPT_KEY:
2091 case WI_RID_DEFLT_CRYPT_KEYS:
2092 case WI_RID_TX_RATE:
2093 return ieee80211_cfgget(ic, cmd, data);
2094
2095 case WI_RID_MICROWAVE_OVEN:
2096 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
2097 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2098 &len);
2099 break;
2100 }
2101 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
2102 len = sizeof(u_int16_t);
2103 break;
2104
2105 case WI_RID_DBM_ADJUST:
2106 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
2107 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2108 &len);
2109 break;
2110 }
2111 wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
2112 len = sizeof(u_int16_t);
2113 break;
2114
2115 case WI_RID_ROAMING_MODE:
2116 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
2117 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2118 &len);
2119 break;
2120 }
2121 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
2122 len = sizeof(u_int16_t);
2123 break;
2124
2125 case WI_RID_SYSTEM_SCALE:
2126 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
2127 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2128 &len);
2129 break;
2130 }
2131 wreq.wi_val[0] = htole16(sc->sc_system_scale);
2132 len = sizeof(u_int16_t);
2133 break;
2134
2135 case WI_RID_FRAG_THRESH:
2136 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
2137 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2138 &len);
2139 break;
2140 }
2141 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2142 len = sizeof(u_int16_t);
2143 break;
2144
2145 case WI_RID_READ_APS:
2146 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2147 return ieee80211_cfgget(ic, cmd, data);
2148 if (sc->sc_scan_timer > 0) {
2149 error = EINPROGRESS;
2150 break;
2151 }
2152 n = sc->sc_naps;
2153 if (len < sizeof(n)) {
2154 error = ENOSPC;
2155 break;
2156 }
2157 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
2158 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
2159 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
2160 memcpy(wreq.wi_val, &n, sizeof(n));
2161 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
2162 sizeof(struct wi_apinfo) * n);
2163 break;
2164
2165 default:
2166 if (sc->sc_enabled) {
2167 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2168 &len);
2169 break;
2170 }
2171 switch (wreq.wi_type) {
2172 case WI_RID_MAX_DATALEN:
2173 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
2174 len = sizeof(u_int16_t);
2175 break;
2176 case WI_RID_FRAG_THRESH:
2177 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2178 len = sizeof(u_int16_t);
2179 break;
2180 case WI_RID_RTS_THRESH:
2181 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
2182 len = sizeof(u_int16_t);
2183 break;
2184 case WI_RID_CNFAUTHMODE:
2185 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
2186 len = sizeof(u_int16_t);
2187 break;
2188 case WI_RID_NODENAME:
2189 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
2190 error = ENOSPC;
2191 break;
2192 }
2193 len = sc->sc_nodelen + sizeof(u_int16_t);
2194 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
2195 memcpy(&wreq.wi_val[1], sc->sc_nodename,
2196 sc->sc_nodelen);
2197 break;
2198 default:
2199 return ieee80211_cfgget(ic, cmd, data);
2200 }
2201 break;
2202 }
2203 if (error)
2204 return error;
2205 wreq.wi_len = (len + 1) / 2 + 1;
2206 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
2207 }
2208
2209 STATIC int
2210 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2211 {
2212 struct wi_softc *sc = ifp->if_softc;
2213 struct ieee80211com *ic = &sc->sc_ic;
2214 struct ifreq *ifr = (struct ifreq *)data;
2215 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2216 struct wi_req wreq;
2217 struct mbuf *m;
2218 int i, len, error;
2219
2220 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2221 if (error)
2222 return error;
2223 len = (wreq.wi_len - 1) * 2;
2224 switch (wreq.wi_type) {
2225 case WI_RID_DBM_ADJUST:
2226 return ENODEV;
2227
2228 case WI_RID_NODENAME:
2229 if (le16toh(wreq.wi_val[0]) * 2 > len ||
2230 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
2231 error = ENOSPC;
2232 break;
2233 }
2234 if (sc->sc_enabled) {
2235 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2236 len);
2237 if (error)
2238 break;
2239 }
2240 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
2241 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
2242 break;
2243
2244 case WI_RID_MICROWAVE_OVEN:
2245 case WI_RID_ROAMING_MODE:
2246 case WI_RID_SYSTEM_SCALE:
2247 case WI_RID_FRAG_THRESH:
2248 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
2249 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
2250 break;
2251 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
2252 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
2253 break;
2254 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
2255 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
2256 break;
2257 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
2258 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
2259 break;
2260 /* FALLTHROUGH */
2261 case WI_RID_RTS_THRESH:
2262 case WI_RID_CNFAUTHMODE:
2263 case WI_RID_MAX_DATALEN:
2264 if (sc->sc_enabled) {
2265 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2266 sizeof(u_int16_t));
2267 if (error)
2268 break;
2269 }
2270 switch (wreq.wi_type) {
2271 case WI_RID_FRAG_THRESH:
2272 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
2273 break;
2274 case WI_RID_RTS_THRESH:
2275 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
2276 break;
2277 case WI_RID_MICROWAVE_OVEN:
2278 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
2279 break;
2280 case WI_RID_ROAMING_MODE:
2281 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
2282 break;
2283 case WI_RID_SYSTEM_SCALE:
2284 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
2285 break;
2286 case WI_RID_CNFAUTHMODE:
2287 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
2288 break;
2289 case WI_RID_MAX_DATALEN:
2290 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
2291 break;
2292 }
2293 break;
2294
2295 case WI_RID_TX_RATE:
2296 switch (le16toh(wreq.wi_val[0])) {
2297 case 3:
2298 ic->ic_fixed_rate = -1;
2299 break;
2300 default:
2301 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2302 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
2303 / 2 == le16toh(wreq.wi_val[0]))
2304 break;
2305 }
2306 if (i == IEEE80211_RATE_SIZE)
2307 return EINVAL;
2308 ic->ic_fixed_rate = i;
2309 }
2310 if (sc->sc_enabled)
2311 error = wi_cfg_txrate(sc);
2312 break;
2313
2314 case WI_RID_SCAN_APS:
2315 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2316 error = wi_scan_ap(sc, 0x3fff, 0x000f);
2317 break;
2318
2319 case WI_RID_MGMT_XMIT:
2320 if (!sc->sc_enabled) {
2321 error = ENETDOWN;
2322 break;
2323 }
2324 if (ic->ic_mgtq.ifq_len > 5) {
2325 error = EAGAIN;
2326 break;
2327 }
2328 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
2329 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
2330 if (m == NULL) {
2331 error = ENOMEM;
2332 break;
2333 }
2334 IF_ENQUEUE(&ic->ic_mgtq, m);
2335 break;
2336
2337 default:
2338 if (sc->sc_enabled) {
2339 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2340 len);
2341 if (error)
2342 break;
2343 }
2344 error = ieee80211_cfgset(ic, cmd, data);
2345 break;
2346 }
2347 return error;
2348 }
2349
2350 /* Rate is 0 for hardware auto-select, otherwise rate is
2351 * 2, 4, 11, or 22 (units of 500Kbps).
2352 */
2353 STATIC int
2354 wi_write_txrate(struct wi_softc *sc, int rate)
2355 {
2356 u_int16_t hwrate;
2357
2358 /* rate: 0, 2, 4, 11, 22 */
2359 switch (sc->sc_firmware_type) {
2360 case WI_LUCENT:
2361 switch (rate & IEEE80211_RATE_VAL) {
2362 case 2:
2363 hwrate = 1;
2364 break;
2365 case 4:
2366 hwrate = 2;
2367 break;
2368 default:
2369 hwrate = 3; /* auto */
2370 break;
2371 case 11:
2372 hwrate = 4;
2373 break;
2374 case 22:
2375 hwrate = 5;
2376 break;
2377 }
2378 break;
2379 default:
2380 switch (rate & IEEE80211_RATE_VAL) {
2381 case 2:
2382 hwrate = 1;
2383 break;
2384 case 4:
2385 hwrate = 2;
2386 break;
2387 case 11:
2388 hwrate = 4;
2389 break;
2390 case 22:
2391 hwrate = 8;
2392 break;
2393 default:
2394 hwrate = 15; /* auto */
2395 break;
2396 }
2397 break;
2398 }
2399
2400 if (sc->sc_tx_rate == hwrate)
2401 return 0;
2402
2403 if (sc->sc_if.if_flags & IFF_DEBUG)
2404 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate,
2405 hwrate, rate);
2406
2407 sc->sc_tx_rate = hwrate;
2408
2409 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate);
2410 }
2411
2412 STATIC int
2413 wi_cfg_txrate(struct wi_softc *sc)
2414 {
2415 struct ieee80211com *ic = &sc->sc_ic;
2416 struct ieee80211_rateset *rs;
2417 int rate;
2418
2419 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2420
2421 sc->sc_tx_rate = 0; /* force write to RID */
2422
2423 if (ic->ic_fixed_rate < 0)
2424 rate = 0; /* auto */
2425 else
2426 rate = rs->rs_rates[ic->ic_fixed_rate];
2427
2428 return wi_write_txrate(sc, rate);
2429 }
2430
2431 STATIC int
2432 wi_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
2433 {
2434 int keyix;
2435
2436 if (&ic->ic_nw_keys[0] <= k && k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])
2437 keyix = k - ic->ic_nw_keys;
2438 else
2439 keyix = IEEE80211_KEYIX_NONE;
2440
2441 DPRINTF(("%s: alloc key %u\n", __func__, keyix));
2442
2443 return keyix;
2444 }
2445
2446 STATIC int
2447 wi_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2448 {
2449 struct wi_softc *sc = ic->ic_ifp->if_softc;
2450 u_int keyix = k->wk_keyix;
2451
2452 DPRINTF(("%s: delete key %u\n", __func__, keyix));
2453
2454 if (keyix >= IEEE80211_WEP_NKID)
2455 return 0;
2456 if (k->wk_keylen != 0)
2457 sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
2458
2459 return 1;
2460 }
2461
2462 static int
2463 wi_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2464 const u_int8_t mac[IEEE80211_ADDR_LEN])
2465 {
2466 struct wi_softc *sc = ic->ic_ifp->if_softc;
2467
2468 DPRINTF(("%s: set key %u\n", __func__, k->wk_keyix));
2469
2470 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2471 return 0;
2472
2473 sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
2474
2475 return 1;
2476 }
2477
2478 STATIC void
2479 wi_key_update_begin(struct ieee80211com *ic)
2480 {
2481 DPRINTF(("%s:\n", __func__));
2482 }
2483
2484 STATIC void
2485 wi_key_update_end(struct ieee80211com *ic)
2486 {
2487 struct ifnet *ifp = ic->ic_ifp;
2488 struct wi_softc *sc = ifp->if_softc;
2489
2490 DPRINTF(("%s:\n", __func__));
2491
2492 if ((sc->sc_flags & WI_FLAGS_WEP_VALID) != 0)
2493 return;
2494 if (ic->ic_caps & IEEE80211_C_WEP)
2495 (void)wi_write_wep(sc);
2496 }
2497
2498 STATIC int
2499 wi_write_wep(struct wi_softc *sc)
2500 {
2501 struct ifnet *ifp = &sc->sc_if;
2502 struct ieee80211com *ic = &sc->sc_ic;
2503 int error = 0;
2504 int i, keylen;
2505 u_int16_t val;
2506 struct wi_key wkey[IEEE80211_WEP_NKID];
2507
2508 if ((ifp->if_flags & IFF_RUNNING) != 0)
2509 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
2510
2511 switch (sc->sc_firmware_type) {
2512 case WI_LUCENT:
2513 val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0;
2514 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2515 if (error)
2516 break;
2517 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_def_txkey);
2518 if (error)
2519 break;
2520 memset(wkey, 0, sizeof(wkey));
2521 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2522 keylen = ic->ic_nw_keys[i].wk_keylen;
2523 wkey[i].wi_keylen = htole16(keylen);
2524 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2525 keylen);
2526 }
2527 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2528 wkey, sizeof(wkey));
2529 break;
2530
2531 case WI_INTERSIL:
2532 case WI_SYMBOL:
2533 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2534 /*
2535 * ONLY HWB3163 EVAL-CARD Firmware version
2536 * less than 0.8 variant2
2537 *
2538 * If promiscuous mode disable, Prism2 chip
2539 * does not work with WEP .
2540 * It is under investigation for details.
2541 * (ichiro (at) NetBSD.org)
2542 */
2543 if (sc->sc_firmware_type == WI_INTERSIL &&
2544 sc->sc_sta_firmware_ver < 802 ) {
2545 /* firm ver < 0.8 variant 2 */
2546 wi_write_val(sc, WI_RID_PROMISC, 1);
2547 }
2548 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2549 sc->sc_cnfauthmode);
2550 val = PRIVACY_INVOKED;
2551 if ((sc->sc_ic_flags & IEEE80211_F_DROPUNENC) != 0)
2552 val |= EXCLUDE_UNENCRYPTED;
2553 /*
2554 * Encryption firmware has a bug for HostAP mode.
2555 */
2556 if (sc->sc_firmware_type == WI_INTERSIL &&
2557 ic->ic_opmode == IEEE80211_M_HOSTAP)
2558 val |= HOST_ENCRYPT;
2559 } else {
2560 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2561 IEEE80211_AUTH_OPEN);
2562 val = HOST_ENCRYPT | HOST_DECRYPT;
2563 }
2564 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2565 if (error)
2566 break;
2567 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2568 ic->ic_def_txkey);
2569 if (error)
2570 break;
2571 /*
2572 * It seems that the firmware accept 104bit key only if
2573 * all the keys have 104bit length. We get the length of
2574 * the transmit key and use it for all other keys.
2575 * Perhaps we should use software WEP for such situation.
2576 */
2577 keylen = ic->ic_nw_keys[ic->ic_def_txkey].wk_keylen;
2578 if (keylen > IEEE80211_WEP_KEYLEN)
2579 keylen = 13; /* 104bit keys */
2580 else
2581 keylen = IEEE80211_WEP_KEYLEN;
2582 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2583 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2584 ic->ic_nw_keys[i].wk_key, keylen);
2585 if (error)
2586 break;
2587 }
2588 break;
2589 }
2590 if ((ifp->if_flags & IFF_RUNNING) != 0)
2591 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
2592 if (error == 0)
2593 sc->sc_flags |= WI_FLAGS_WEP_VALID;
2594 return error;
2595 }
2596
2597 /* Must be called at proper protection level! */
2598 STATIC int
2599 wi_cmd_start(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2600 {
2601 #ifdef WI_HISTOGRAM
2602 static int hist1[11];
2603 static int hist1count;
2604 #endif
2605 int i;
2606
2607 /* wait for the busy bit to clear */
2608 for (i = 500; i > 0; i--) { /* 5s */
2609 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2610 break;
2611 if (sc->sc_invalid)
2612 return ENXIO;
2613 DELAY(1000); /* 1 m sec */
2614 }
2615 if (i == 0) {
2616 printf("%s: wi_cmd: busy bit won't clear.\n",
2617 sc->sc_dev.dv_xname);
2618 return(ETIMEDOUT);
2619 }
2620 #ifdef WI_HISTOGRAM
2621 if (i > 490)
2622 hist1[500 - i]++;
2623 else
2624 hist1[10]++;
2625 if (++hist1count == 1000) {
2626 hist1count = 0;
2627 printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n",
2628 sc->sc_dev.dv_xname,
2629 hist1[0], hist1[1], hist1[2], hist1[3], hist1[4],
2630 hist1[5], hist1[6], hist1[7], hist1[8], hist1[9],
2631 hist1[10]);
2632 }
2633 #endif
2634 CSR_WRITE_2(sc, WI_PARAM0, val0);
2635 CSR_WRITE_2(sc, WI_PARAM1, val1);
2636 CSR_WRITE_2(sc, WI_PARAM2, val2);
2637 CSR_WRITE_2(sc, WI_COMMAND, cmd);
2638
2639 return 0;
2640 }
2641
2642 STATIC int
2643 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2644 {
2645 int rc;
2646
2647 #ifdef WI_DEBUG
2648 if (wi_debug) {
2649 printf("%s: [enter] %d txcmds outstanding\n", __func__,
2650 sc->sc_txcmds);
2651 }
2652 #endif
2653 if (sc->sc_txcmds > 0)
2654 wi_txcmd_wait(sc);
2655
2656 if ((rc = wi_cmd_start(sc, cmd, val0, val1, val2)) != 0)
2657 return rc;
2658
2659 if (cmd == WI_CMD_INI) {
2660 /* XXX: should sleep here. */
2661 if (sc->sc_invalid)
2662 return ENXIO;
2663 DELAY(100*1000);
2664 }
2665 rc = wi_cmd_wait(sc, cmd, val0);
2666
2667 #ifdef WI_DEBUG
2668 if (wi_debug) {
2669 printf("%s: [ ] %d txcmds outstanding\n", __func__,
2670 sc->sc_txcmds);
2671 }
2672 #endif
2673 if (sc->sc_txcmds > 0)
2674 wi_cmd_intr(sc);
2675
2676 #ifdef WI_DEBUG
2677 if (wi_debug) {
2678 printf("%s: [leave] %d txcmds outstanding\n", __func__,
2679 sc->sc_txcmds);
2680 }
2681 #endif
2682 return rc;
2683 }
2684
2685 STATIC int
2686 wi_cmd_wait(struct wi_softc *sc, int cmd, int val0)
2687 {
2688 #ifdef WI_HISTOGRAM
2689 static int hist2[11];
2690 static int hist2count;
2691 #endif
2692 int i, status;
2693 #ifdef WI_DEBUG
2694 if (wi_debug > 1)
2695 printf("%s: cmd=%#x, arg=%#x\n", __func__, cmd, val0);
2696 #endif /* WI_DEBUG */
2697
2698 /* wait for the cmd completed bit */
2699 for (i = 0; i < WI_TIMEOUT; i++) {
2700 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
2701 break;
2702 if (sc->sc_invalid)
2703 return ENXIO;
2704 DELAY(WI_DELAY);
2705 }
2706
2707 #ifdef WI_HISTOGRAM
2708 if (i < 100)
2709 hist2[i/10]++;
2710 else
2711 hist2[10]++;
2712 if (++hist2count == 1000) {
2713 hist2count = 0;
2714 printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n",
2715 sc->sc_dev.dv_xname,
2716 hist2[0], hist2[1], hist2[2], hist2[3], hist2[4],
2717 hist2[5], hist2[6], hist2[7], hist2[8], hist2[9],
2718 hist2[10]);
2719 }
2720 #endif
2721
2722 status = CSR_READ_2(sc, WI_STATUS);
2723
2724 if (i == WI_TIMEOUT) {
2725 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
2726 sc->sc_dev.dv_xname, cmd, val0);
2727 return ETIMEDOUT;
2728 }
2729
2730 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2731
2732 if (status & WI_STAT_CMD_RESULT) {
2733 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
2734 sc->sc_dev.dv_xname, cmd, val0);
2735 return EIO;
2736 }
2737 return 0;
2738 }
2739
2740 STATIC int
2741 wi_seek_bap(struct wi_softc *sc, int id, int off)
2742 {
2743 #ifdef WI_HISTOGRAM
2744 static int hist4[11];
2745 static int hist4count;
2746 #endif
2747 int i, status;
2748
2749 CSR_WRITE_2(sc, WI_SEL0, id);
2750 CSR_WRITE_2(sc, WI_OFF0, off);
2751
2752 for (i = 0; ; i++) {
2753 status = CSR_READ_2(sc, WI_OFF0);
2754 if ((status & WI_OFF_BUSY) == 0)
2755 break;
2756 if (i == WI_TIMEOUT) {
2757 printf("%s: timeout in wi_seek to %x/%x\n",
2758 sc->sc_dev.dv_xname, id, off);
2759 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2760 return ETIMEDOUT;
2761 }
2762 if (sc->sc_invalid)
2763 return ENXIO;
2764 DELAY(2);
2765 }
2766 #ifdef WI_HISTOGRAM
2767 if (i < 100)
2768 hist4[i/10]++;
2769 else
2770 hist4[10]++;
2771 if (++hist4count == 2500) {
2772 hist4count = 0;
2773 printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n",
2774 sc->sc_dev.dv_xname,
2775 hist4[0], hist4[1], hist4[2], hist4[3], hist4[4],
2776 hist4[5], hist4[6], hist4[7], hist4[8], hist4[9],
2777 hist4[10]);
2778 }
2779 #endif
2780 if (status & WI_OFF_ERR) {
2781 printf("%s: failed in wi_seek to %x/%x\n",
2782 sc->sc_dev.dv_xname, id, off);
2783 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2784 return EIO;
2785 }
2786 sc->sc_bap_id = id;
2787 sc->sc_bap_off = off;
2788 return 0;
2789 }
2790
2791 STATIC int
2792 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2793 {
2794 int error, cnt;
2795
2796 if (buflen == 0)
2797 return 0;
2798 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2799 if ((error = wi_seek_bap(sc, id, off)) != 0)
2800 return error;
2801 }
2802 cnt = (buflen + 1) / 2;
2803 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2804 sc->sc_bap_off += cnt * 2;
2805 return 0;
2806 }
2807
2808 STATIC int
2809 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2810 {
2811 int error, cnt;
2812
2813 if (buflen == 0)
2814 return 0;
2815
2816 #ifdef WI_HERMES_AUTOINC_WAR
2817 again:
2818 #endif
2819 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2820 if ((error = wi_seek_bap(sc, id, off)) != 0)
2821 return error;
2822 }
2823 cnt = (buflen + 1) / 2;
2824 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2825 sc->sc_bap_off += cnt * 2;
2826
2827 #ifdef WI_HERMES_AUTOINC_WAR
2828 /*
2829 * According to the comments in the HCF Light code, there is a bug
2830 * in the Hermes (or possibly in certain Hermes firmware revisions)
2831 * where the chip's internal autoincrement counter gets thrown off
2832 * during data writes: the autoincrement is missed, causing one
2833 * data word to be overwritten and subsequent words to be written to
2834 * the wrong memory locations. The end result is that we could end
2835 * up transmitting bogus frames without realizing it. The workaround
2836 * for this is to write a couple of extra guard words after the end
2837 * of the transfer, then attempt to read then back. If we fail to
2838 * locate the guard words where we expect them, we preform the
2839 * transfer over again.
2840 */
2841 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2842 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2843 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2844 wi_seek_bap(sc, id, sc->sc_bap_off);
2845 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2846 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2847 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2848 printf("%s: detect auto increment bug, try again\n",
2849 sc->sc_dev.dv_xname);
2850 goto again;
2851 }
2852 }
2853 #endif
2854 return 0;
2855 }
2856
2857 STATIC int
2858 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2859 {
2860 int error, len;
2861 struct mbuf *m;
2862
2863 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2864 if (m->m_len == 0)
2865 continue;
2866
2867 len = min(m->m_len, totlen);
2868
2869 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2870 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2871 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2872 totlen);
2873 }
2874
2875 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2876 return error;
2877
2878 off += m->m_len;
2879 totlen -= len;
2880 }
2881 return 0;
2882 }
2883
2884 STATIC int
2885 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2886 {
2887 int i;
2888
2889 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2890 printf("%s: failed to allocate %d bytes on NIC\n",
2891 sc->sc_dev.dv_xname, len);
2892 return ENOMEM;
2893 }
2894
2895 for (i = 0; i < WI_TIMEOUT; i++) {
2896 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2897 break;
2898 DELAY(1);
2899 }
2900 if (i == WI_TIMEOUT) {
2901 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
2902 return ETIMEDOUT;
2903 }
2904 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
2905 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2906 return 0;
2907 }
2908
2909 STATIC int
2910 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2911 {
2912 int error, len;
2913 u_int16_t ltbuf[2];
2914
2915 /* Tell the NIC to enter record read mode. */
2916 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2917 if (error)
2918 return error;
2919
2920 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2921 if (error)
2922 return error;
2923
2924 if (le16toh(ltbuf[0]) == 0)
2925 return EOPNOTSUPP;
2926 if (le16toh(ltbuf[1]) != rid) {
2927 printf("%s: record read mismatch, rid=%x, got=%x\n",
2928 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
2929 return EIO;
2930 }
2931 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
2932 if (*buflenp < len) {
2933 printf("%s: record buffer is too small, "
2934 "rid=%x, size=%d, len=%d\n",
2935 sc->sc_dev.dv_xname, rid, *buflenp, len);
2936 return ENOSPC;
2937 }
2938 *buflenp = len;
2939 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2940 }
2941
2942 STATIC int
2943 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2944 {
2945 int error;
2946 u_int16_t ltbuf[2];
2947
2948 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
2949 ltbuf[1] = htole16(rid);
2950
2951 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2952 if (error)
2953 return error;
2954 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2955 if (error)
2956 return error;
2957
2958 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2959 }
2960
2961 STATIC void
2962 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni)
2963 {
2964 struct wi_node *wn = (void*)ni;
2965 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt);
2966 }
2967
2968 STATIC void
2969 wi_rssadapt_updatestats(void *arg)
2970 {
2971 struct wi_softc *sc = arg;
2972 struct ieee80211com *ic = &sc->sc_ic;
2973 ieee80211_iterate_nodes(&ic->ic_sta, wi_rssadapt_updatestats_cb, arg);
2974 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2975 ic->ic_state == IEEE80211_S_RUN)
2976 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
2977 wi_rssadapt_updatestats, arg);
2978 }
2979
2980 /*
2981 * In HOSTAP mode, restore IEEE80211_F_DROPUNENC when operating
2982 * with WEP enabled so that the AP drops unencoded frames at the
2983 * 802.11 layer.
2984 *
2985 * In all other modes, clear IEEE80211_F_DROPUNENC when operating
2986 * with WEP enabled so we don't drop unencoded frames at the 802.11
2987 * layer. This is necessary because we must strip the WEP bit from
2988 * the 802.11 header before passing frames to ieee80211_input
2989 * because the card has already stripped the WEP crypto header from
2990 * the packet.
2991 */
2992 STATIC void
2993 wi_mend_flags(struct wi_softc *sc)
2994 {
2995 struct ieee80211com *ic = &sc->sc_ic;
2996
2997 if (ic->ic_state == IEEE80211_S_RUN &&
2998 (ic->ic_flags & IEEE80211_F_PRIVACY) != 0 &&
2999 ic->ic_opmode != IEEE80211_M_HOSTAP)
3000 ic->ic_flags &= ~IEEE80211_F_DROPUNENC;
3001 else
3002 ic->ic_flags = sc->sc_ic_flags;
3003 }
3004
3005 STATIC int
3006 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3007 {
3008 struct ifnet *ifp = ic->ic_ifp;
3009 struct wi_softc *sc = ifp->if_softc;
3010 struct ieee80211_node *ni = ic->ic_bss;
3011 u_int16_t val;
3012 struct wi_ssid ssid;
3013 struct wi_macaddr bssid, old_bssid;
3014 enum ieee80211_state ostate;
3015 #ifdef WI_DEBUG
3016 static const char *stname[] =
3017 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
3018 #endif /* WI_DEBUG */
3019
3020 ostate = ic->ic_state;
3021 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
3022
3023 switch (nstate) {
3024 case IEEE80211_S_INIT:
3025 if (ic->ic_opmode != IEEE80211_M_MONITOR)
3026 callout_stop(&sc->sc_rssadapt_ch);
3027 ic->ic_flags &= ~IEEE80211_F_SIBSS;
3028 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
3029 break;
3030
3031 case IEEE80211_S_SCAN:
3032 case IEEE80211_S_AUTH:
3033 case IEEE80211_S_ASSOC:
3034 ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */
3035 return 0;
3036
3037 case IEEE80211_S_RUN:
3038 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
3039 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid);
3040 wi_read_xrid(sc, WI_RID_CURRENT_BSSID, &bssid,
3041 IEEE80211_ADDR_LEN);
3042 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid);
3043 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid);
3044 wi_read_xrid(sc, WI_RID_CURRENT_CHAN, &val, sizeof(val));
3045 if (!isset(ic->ic_chan_avail, le16toh(val)))
3046 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname,
3047 le16toh(val));
3048 ni->ni_chan = &ic->ic_channels[le16toh(val)];
3049
3050 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3051 ni->ni_esslen = ic->ic_des_esslen;
3052 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
3053 ni->ni_rates = ic->ic_sup_rates[
3054 ieee80211_chan2mode(ic, ni->ni_chan)];
3055 ni->ni_intval = ic->ic_lintval;
3056 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
3057 if (ic->ic_flags & IEEE80211_F_PRIVACY)
3058 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
3059 } else {
3060 wi_read_xrid(sc, WI_RID_CURRENT_SSID, &ssid,
3061 sizeof(ssid));
3062 ni->ni_esslen = le16toh(ssid.wi_len);
3063 if (ni->ni_esslen > IEEE80211_NWID_LEN)
3064 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
3065 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
3066 ni->ni_rates = ic->ic_sup_rates[
3067 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/
3068 }
3069 wi_mend_flags(sc);
3070 if (ic->ic_opmode != IEEE80211_M_MONITOR)
3071 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
3072 wi_rssadapt_updatestats, sc);
3073 /* Trigger routing socket messages. XXX Copied from
3074 * ieee80211_newstate.
3075 */
3076 if (ic->ic_opmode == IEEE80211_M_STA)
3077 ieee80211_notify_node_join(ic, ic->ic_bss,
3078 arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
3079 break;
3080 }
3081 return (*sc->sc_newstate)(ic, nstate, arg);
3082 }
3083
3084 STATIC void
3085 wi_set_tim(struct ieee80211com *ic, struct ieee80211_node *ni, int set)
3086 {
3087 struct wi_softc *sc = ic->ic_ifp->if_softc;
3088
3089 (*sc->sc_set_tim)(ic, ni, set);
3090
3091 if ((ic->ic_flags & IEEE80211_F_TIMUPDATE) == 0)
3092 return;
3093
3094 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
3095
3096 (void)wi_write_val(sc, WI_RID_SET_TIM,
3097 IEEE80211_AID(ni->ni_associd) | (set ? 0x8000 : 0));
3098 }
3099
3100 STATIC int
3101 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
3102 {
3103 int error = 0;
3104 u_int16_t val[2];
3105
3106 if (!sc->sc_enabled)
3107 return ENXIO;
3108 switch (sc->sc_firmware_type) {
3109 case WI_LUCENT:
3110 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
3111 break;
3112 case WI_INTERSIL:
3113 val[0] = htole16(chanmask); /* channel */
3114 val[1] = htole16(txrate); /* tx rate */
3115 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
3116 break;
3117 case WI_SYMBOL:
3118 /*
3119 * XXX only supported on 3.x ?
3120 */
3121 val[0] = htole16(BSCAN_BCAST | BSCAN_ONETIME);
3122 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
3123 val, sizeof(val[0]));
3124 break;
3125 }
3126 if (error == 0) {
3127 sc->sc_scan_timer = WI_SCAN_WAIT;
3128 sc->sc_if.if_timer = 1;
3129 DPRINTF(("wi_scan_ap: start scanning, "
3130 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate));
3131 }
3132 return error;
3133 }
3134
3135 STATIC void
3136 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
3137 {
3138 #define N(a) (sizeof (a) / sizeof (a[0]))
3139 int i, naps, off, szbuf;
3140 struct wi_scan_header ws_hdr; /* Prism2 header */
3141 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
3142 struct wi_apinfo *ap;
3143
3144 off = sizeof(u_int16_t) * 2;
3145 memset(&ws_hdr, 0, sizeof(ws_hdr));
3146 switch (sc->sc_firmware_type) {
3147 case WI_INTERSIL:
3148 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
3149 off += sizeof(ws_hdr);
3150 szbuf = sizeof(struct wi_scan_data_p2);
3151 break;
3152 case WI_SYMBOL:
3153 szbuf = sizeof(struct wi_scan_data_p2) + 6;
3154 break;
3155 case WI_LUCENT:
3156 szbuf = sizeof(struct wi_scan_data);
3157 break;
3158 default:
3159 printf("%s: wi_scan_result: unknown firmware type %u\n",
3160 sc->sc_dev.dv_xname, sc->sc_firmware_type);
3161 naps = 0;
3162 goto done;
3163 }
3164 naps = (cnt * 2 + 2 - off) / szbuf;
3165 if (naps > N(sc->sc_aps))
3166 naps = N(sc->sc_aps);
3167 sc->sc_naps = naps;
3168 /* Read Data */
3169 ap = sc->sc_aps;
3170 memset(&ws_dat, 0, sizeof(ws_dat));
3171 for (i = 0; i < naps; i++, ap++) {
3172 wi_read_bap(sc, fid, off, &ws_dat,
3173 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
3174 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
3175 ether_sprintf(ws_dat.wi_bssid)));
3176 off += szbuf;
3177 ap->scanreason = le16toh(ws_hdr.wi_reason);
3178 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
3179 ap->channel = le16toh(ws_dat.wi_chid);
3180 ap->signal = le16toh(ws_dat.wi_signal);
3181 ap->noise = le16toh(ws_dat.wi_noise);
3182 ap->quality = ap->signal - ap->noise;
3183 ap->capinfo = le16toh(ws_dat.wi_capinfo);
3184 ap->interval = le16toh(ws_dat.wi_interval);
3185 ap->rate = le16toh(ws_dat.wi_rate);
3186 ap->namelen = le16toh(ws_dat.wi_namelen);
3187 if (ap->namelen > sizeof(ap->name))
3188 ap->namelen = sizeof(ap->name);
3189 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
3190 }
3191 done:
3192 /* Done scanning */
3193 sc->sc_scan_timer = 0;
3194 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
3195 #undef N
3196 }
3197
3198 STATIC void
3199 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
3200 {
3201 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
3202 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL
3203 : -1,
3204 rssi);
3205 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
3206 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
3207 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
3208 printf(" rx_signal %u rx_rate %u rx_flow %u\n",
3209 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
3210 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
3211 wh->wi_tx_rtry, wh->wi_tx_rate,
3212 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
3213 printf(" ehdr dst %s src %s type 0x%x\n",
3214 ether_sprintf(wh->wi_ehdr.ether_dhost),
3215 ether_sprintf(wh->wi_ehdr.ether_shost),
3216 wh->wi_ehdr.ether_type);
3217 }
3218