wi.c revision 1.201 1 /* $NetBSD: wi.c,v 1.201 2005/06/26 21:51:37 erh Exp $ */
2
3 /*-
4 * Copyright (c) 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1997, 1998, 1999
41 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Bill Paul.
54 * 4. Neither the name of the author nor the names of any co-contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
68 * THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
73 *
74 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
81 * from Lucent. Unlike the older cards, the new ones are programmed
82 * entirely via a firmware-driven controller called the Hermes.
83 * Unfortunately, Lucent will not release the Hermes programming manual
84 * without an NDA (if at all). What they do release is an API library
85 * called the HCF (Hardware Control Functions) which is supposed to
86 * do the device-specific operations of a device driver for you. The
87 * publically available version of the HCF library (the 'HCF Light') is
88 * a) extremely gross, b) lacks certain features, particularly support
89 * for 802.11 frames, and c) is contaminated by the GNU Public License.
90 *
91 * This driver does not use the HCF or HCF Light at all. Instead, it
92 * programs the Hermes controller directly, using information gleaned
93 * from the HCF Light code and corresponding documentation.
94 *
95 * This driver supports both the PCMCIA and ISA versions of the
96 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
97 * anything of the sort: it's actually a PCMCIA bridge adapter
98 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
99 * inserted. Consequently, you need to use the pccard support for
100 * both the ISA and PCMCIA adapters.
101 */
102
103 /*
104 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
105 * Oslo IETF plenary meeting.
106 */
107
108 #include <sys/cdefs.h>
109 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.201 2005/06/26 21:51:37 erh Exp $");
110
111 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
112 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
113 #undef WI_HISTOGRAM
114 #undef WI_RING_DEBUG
115 #define STATIC static
116
117 #include "bpfilter.h"
118
119 #include <sys/param.h>
120 #include <sys/systm.h>
121 #include <sys/callout.h>
122 #include <sys/device.h>
123 #include <sys/socket.h>
124 #include <sys/mbuf.h>
125 #include <sys/ioctl.h>
126 #include <sys/kernel.h> /* for hz */
127 #include <sys/proc.h>
128
129 #include <net/if.h>
130 #include <net/if_dl.h>
131 #include <net/if_llc.h>
132 #include <net/if_media.h>
133 #include <net/if_ether.h>
134 #include <net/route.h>
135
136 #include <net80211/ieee80211_netbsd.h>
137 #include <net80211/ieee80211_var.h>
138 #include <net80211/ieee80211_ioctl.h>
139 #include <net80211/ieee80211_radiotap.h>
140 #include <net80211/ieee80211_rssadapt.h>
141
142 #if NBPFILTER > 0
143 #include <net/bpf.h>
144 #include <net/bpfdesc.h>
145 #endif
146
147 #include <machine/bus.h>
148
149 #include <dev/ic/wi_ieee.h>
150 #include <dev/ic/wireg.h>
151 #include <dev/ic/wivar.h>
152
153 STATIC int wi_init(struct ifnet *);
154 STATIC void wi_stop(struct ifnet *, int);
155 STATIC void wi_start(struct ifnet *);
156 STATIC int wi_reset(struct wi_softc *);
157 STATIC void wi_watchdog(struct ifnet *);
158 STATIC int wi_ioctl(struct ifnet *, u_long, caddr_t);
159 STATIC int wi_media_change(struct ifnet *);
160 STATIC void wi_media_status(struct ifnet *, struct ifmediareq *);
161
162 STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211_node_table *);
163 STATIC void wi_node_free(struct ieee80211_node *);
164
165 STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
166 STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
167 STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *,
168 struct ieee80211_frame *, u_int);
169 STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *);
170 STATIC void wi_rssadapt_updatestats(void *);
171 STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *);
172 STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[],
173 wi_rssdescq_t *, u_int8_t (*)[]);
174 STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]);
175
176 STATIC void wi_rx_intr(struct wi_softc *);
177 STATIC void wi_txalloc_intr(struct wi_softc *);
178 STATIC void wi_cmd_intr(struct wi_softc *);
179 STATIC void wi_tx_intr(struct wi_softc *);
180 STATIC void wi_tx_ex_intr(struct wi_softc *);
181 STATIC void wi_info_intr(struct wi_softc *);
182
183 STATIC int wi_key_alloc(struct ieee80211com *, const struct ieee80211_key *);
184 STATIC int wi_key_delete(struct ieee80211com *, const struct ieee80211_key *);
185 STATIC int wi_key_set(struct ieee80211com *, const struct ieee80211_key *,
186 const u_int8_t[IEEE80211_ADDR_LEN]);
187 STATIC void wi_key_update_begin(struct ieee80211com *);
188 STATIC void wi_key_update_end(struct ieee80211com *);
189
190 STATIC void wi_push_packet(struct wi_softc *);
191 STATIC int wi_get_cfg(struct ifnet *, u_long, caddr_t);
192 STATIC int wi_set_cfg(struct ifnet *, u_long, caddr_t);
193 STATIC int wi_cfg_txrate(struct wi_softc *);
194 STATIC int wi_write_txrate(struct wi_softc *, int);
195 STATIC int wi_write_wep(struct wi_softc *);
196 STATIC int wi_write_multi(struct wi_softc *);
197 STATIC int wi_alloc_fid(struct wi_softc *, int, int *);
198 STATIC void wi_read_nicid(struct wi_softc *);
199 STATIC int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
200
201 STATIC int wi_cmd(struct wi_softc *, int, int, int, int);
202 STATIC int wi_cmd_start(struct wi_softc *, int, int, int, int);
203 STATIC int wi_cmd_wait(struct wi_softc *, int, int);
204 STATIC int wi_seek_bap(struct wi_softc *, int, int);
205 STATIC int wi_read_bap(struct wi_softc *, int, int, void *, int);
206 STATIC int wi_write_bap(struct wi_softc *, int, int, void *, int);
207 STATIC int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
208 STATIC int wi_read_rid(struct wi_softc *, int, void *, int *);
209 STATIC int wi_write_rid(struct wi_softc *, int, void *, int);
210
211 STATIC int wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
212 STATIC void wi_set_tim(struct ieee80211com *, struct ieee80211_node *, int);
213
214 STATIC int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
215 STATIC void wi_scan_result(struct wi_softc *, int, int);
216
217 STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
218 STATIC void wi_mend_flags(struct wi_softc *);
219
220 static inline int
221 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
222 {
223
224 val = htole16(val);
225 return wi_write_rid(sc, rid, &val, sizeof(val));
226 }
227
228 static struct timeval lasttxerror; /* time of last tx error msg */
229 static int curtxeps = 0; /* current tx error msgs/sec */
230 static int wi_txerate = 0; /* tx error rate: max msgs/sec */
231
232 #ifdef WI_DEBUG
233 int wi_debug = 0;
234
235 #define DPRINTF(X) if (wi_debug) printf X
236 #define DPRINTF2(X) if (wi_debug > 1) printf X
237 #define IFF_DUMPPKTS(_ifp) \
238 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
239 #else
240 #define DPRINTF(X)
241 #define DPRINTF2(X)
242 #define IFF_DUMPPKTS(_ifp) 0
243 #endif
244
245 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \
246 WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD)
247
248 struct wi_card_ident
249 wi_card_ident[] = {
250 /* CARD_ID CARD_NAME FIRM_TYPE */
251 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
252 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
253 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
254 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
255 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
256 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
257 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
258 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
259 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
260 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
261 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
262 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
263 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
264 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
265 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
266 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
267 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
268 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
269 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
270 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
271 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
272 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
273 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
274 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
275 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
276 { 0, NULL, 0 },
277 };
278
279 STATIC int
280 wi_read_xrid(struct wi_softc *sc, int rid, void *buf, int ebuflen)
281 {
282 int buflen, rc;
283
284 buflen = ebuflen;
285 if ((rc = wi_read_rid(sc, rid, buf, &buflen)) != 0)
286 return rc;
287
288 if (buflen < ebuflen) {
289 #ifdef WI_DEBUG
290 printf("%s: rid=%#04x read %d, expected %d\n", __func__,
291 rid, buflen, ebuflen);
292 #endif
293 return -1;
294 }
295 return 0;
296 }
297
298 int
299 wi_attach(struct wi_softc *sc, const u_int8_t *macaddr)
300 {
301 struct ieee80211com *ic = &sc->sc_ic;
302 struct ifnet *ifp = &sc->sc_if;
303 int chan, nrate, buflen;
304 u_int16_t val, chanavail;
305 struct {
306 u_int16_t nrates;
307 char rates[IEEE80211_RATE_SIZE];
308 } ratebuf;
309 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
310 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
311 };
312 int s;
313
314 s = splnet();
315
316 /* Make sure interrupts are disabled. */
317 CSR_WRITE_2(sc, WI_INT_EN, 0);
318 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
319
320 sc->sc_invalid = 0;
321
322 /* Reset the NIC. */
323 if (wi_reset(sc) != 0) {
324 sc->sc_invalid = 1;
325 splx(s);
326 return 1;
327 }
328
329 if (wi_read_xrid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
330 IEEE80211_ADDR_LEN) != 0 ||
331 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
332 if (macaddr != NULL)
333 memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN);
334 else {
335 printf(" could not get mac address, attach failed\n");
336 splx(s);
337 return 1;
338 }
339 }
340
341 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
342
343 /* Read NIC identification */
344 wi_read_nicid(sc);
345
346 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
347 ifp->if_softc = sc;
348 ifp->if_start = wi_start;
349 ifp->if_ioctl = wi_ioctl;
350 ifp->if_watchdog = wi_watchdog;
351 ifp->if_init = wi_init;
352 ifp->if_stop = wi_stop;
353 ifp->if_flags =
354 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
355 IFQ_SET_READY(&ifp->if_snd);
356
357 ic->ic_ifp = ifp;
358 ic->ic_phytype = IEEE80211_T_DS;
359 ic->ic_opmode = IEEE80211_M_STA;
360 ic->ic_caps = IEEE80211_C_AHDEMO;
361 ic->ic_state = IEEE80211_S_INIT;
362 ic->ic_max_aid = WI_MAX_AID;
363
364 /* Find available channel */
365 if (wi_read_xrid(sc, WI_RID_CHANNEL_LIST, &chanavail,
366 sizeof(chanavail)) != 0) {
367 aprint_normal("%s: using default channel list\n", sc->sc_dev.dv_xname);
368 chanavail = htole16(0x1fff); /* assume 1-13 */
369 }
370 for (chan = 16; chan > 0; chan--) {
371 if (!isset((u_int8_t*)&chanavail, chan - 1))
372 continue;
373 ic->ic_ibss_chan = &ic->ic_channels[chan];
374 ic->ic_channels[chan].ic_freq =
375 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
376 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
377 }
378
379 /* Find default IBSS channel */
380 if (wi_read_xrid(sc, WI_RID_OWN_CHNL, &val, sizeof(val)) == 0) {
381 chan = le16toh(val);
382 if (isset((u_int8_t*)&chanavail, chan - 1))
383 ic->ic_ibss_chan = &ic->ic_channels[chan];
384 }
385 if (ic->ic_ibss_chan == NULL) {
386 aprint_error("%s: no available channel\n", sc->sc_dev.dv_xname);
387 return 1;
388 }
389
390 if (sc->sc_firmware_type == WI_LUCENT) {
391 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
392 } else {
393 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
394 wi_read_xrid(sc, WI_RID_DBM_ADJUST, &val, sizeof(val)) == 0)
395 sc->sc_dbm_offset = le16toh(val);
396 else
397 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
398 }
399
400 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
401
402 /*
403 * Set flags based on firmware version.
404 */
405 switch (sc->sc_firmware_type) {
406 case WI_LUCENT:
407 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
408 #ifdef WI_HERMES_AUTOINC_WAR
409 /* XXX: not confirmed, but never seen for recent firmware */
410 if (sc->sc_sta_firmware_ver < 40000) {
411 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
412 }
413 #endif
414 if (sc->sc_sta_firmware_ver >= 60000)
415 sc->sc_flags |= WI_FLAGS_HAS_MOR;
416 if (sc->sc_sta_firmware_ver >= 60006) {
417 ic->ic_caps |= IEEE80211_C_IBSS;
418 ic->ic_caps |= IEEE80211_C_MONITOR;
419 }
420 ic->ic_caps |= IEEE80211_C_PMGT;
421 sc->sc_ibss_port = 1;
422 break;
423
424 case WI_INTERSIL:
425 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
426 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
427 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
428 if (sc->sc_sta_firmware_ver > 10101)
429 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
430 if (sc->sc_sta_firmware_ver >= 800) {
431 if (sc->sc_sta_firmware_ver != 10402)
432 ic->ic_caps |= IEEE80211_C_HOSTAP;
433 ic->ic_caps |= IEEE80211_C_IBSS;
434 ic->ic_caps |= IEEE80211_C_MONITOR;
435 }
436 ic->ic_caps |= IEEE80211_C_PMGT;
437 sc->sc_ibss_port = 0;
438 sc->sc_alt_retry = 2;
439 break;
440
441 case WI_SYMBOL:
442 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
443 if (sc->sc_sta_firmware_ver >= 20000)
444 ic->ic_caps |= IEEE80211_C_IBSS;
445 sc->sc_ibss_port = 4;
446 break;
447 }
448
449 /*
450 * Find out if we support WEP on this card.
451 */
452 if (wi_read_xrid(sc, WI_RID_WEP_AVAIL, &val, sizeof(val)) == 0 &&
453 val != htole16(0))
454 ic->ic_caps |= IEEE80211_C_WEP;
455
456 /* Find supported rates. */
457 buflen = sizeof(ratebuf);
458 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 &&
459 buflen > 2) {
460 nrate = le16toh(ratebuf.nrates);
461 if (nrate > IEEE80211_RATE_SIZE)
462 nrate = IEEE80211_RATE_SIZE;
463 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates,
464 &ratebuf.rates[0], nrate);
465 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
466 } else {
467 aprint_error("%s: no supported rate list\n", sc->sc_dev.dv_xname);
468 return 1;
469 }
470
471 sc->sc_max_datalen = 2304;
472 sc->sc_rts_thresh = 2347;
473 sc->sc_frag_thresh = 2346;
474 sc->sc_system_scale = 1;
475 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
476 sc->sc_roaming_mode = 1;
477
478 callout_init(&sc->sc_rssadapt_ch);
479
480 /*
481 * Call MI attach routines.
482 */
483 if_attach(ifp);
484 ieee80211_ifattach(ic);
485
486 sc->sc_newstate = ic->ic_newstate;
487 sc->sc_set_tim = ic->ic_set_tim;
488 ic->ic_newstate = wi_newstate;
489 ic->ic_node_alloc = wi_node_alloc;
490 ic->ic_node_free = wi_node_free;
491 ic->ic_set_tim = wi_set_tim;
492
493 ic->ic_crypto.cs_key_alloc = wi_key_alloc;
494 ic->ic_crypto.cs_key_delete = wi_key_delete;
495 ic->ic_crypto.cs_key_set = wi_key_set;
496 ic->ic_crypto.cs_key_update_begin = wi_key_update_begin;
497 ic->ic_crypto.cs_key_update_end = wi_key_update_end;
498
499 ieee80211_media_init(ic, wi_media_change, wi_media_status);
500
501 #if NBPFILTER > 0
502 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
503 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
504 #endif
505
506 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
507 sc->sc_rxtap.wr_ihdr.it_len = sizeof(sc->sc_rxtapu);
508 sc->sc_rxtap.wr_ihdr.it_present = WI_RX_RADIOTAP_PRESENT;
509
510 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
511 sc->sc_txtap.wt_ihdr.it_len = sizeof(sc->sc_txtapu);
512 sc->sc_txtap.wt_ihdr.it_present = WI_TX_RADIOTAP_PRESENT;
513
514 /* Attach is successful. */
515 sc->sc_attached = 1;
516
517 splx(s);
518 return 0;
519 }
520
521 int
522 wi_detach(struct wi_softc *sc)
523 {
524 struct ifnet *ifp = &sc->sc_if;
525 int s;
526
527 if (!sc->sc_attached)
528 return 0;
529
530 sc->sc_invalid = 1;
531 s = splnet();
532
533 wi_stop(ifp, 1);
534
535 ieee80211_ifdetach(&sc->sc_ic);
536 if_detach(ifp);
537 splx(s);
538 return 0;
539 }
540
541 #ifdef __NetBSD__
542 int
543 wi_activate(struct device *self, enum devact act)
544 {
545 struct wi_softc *sc = (struct wi_softc *)self;
546 int rv = 0, s;
547
548 s = splnet();
549 switch (act) {
550 case DVACT_ACTIVATE:
551 rv = EOPNOTSUPP;
552 break;
553
554 case DVACT_DEACTIVATE:
555 if_deactivate(&sc->sc_if);
556 break;
557 }
558 splx(s);
559 return rv;
560 }
561
562 void
563 wi_power(struct wi_softc *sc, int why)
564 {
565 struct ifnet *ifp = &sc->sc_if;
566 int s;
567
568 s = splnet();
569 switch (why) {
570 case PWR_SUSPEND:
571 case PWR_STANDBY:
572 wi_stop(ifp, 1);
573 break;
574 case PWR_RESUME:
575 if (ifp->if_flags & IFF_UP) {
576 wi_init(ifp);
577 (void)wi_intr(sc);
578 }
579 break;
580 case PWR_SOFTSUSPEND:
581 case PWR_SOFTSTANDBY:
582 case PWR_SOFTRESUME:
583 break;
584 }
585 splx(s);
586 }
587 #endif /* __NetBSD__ */
588
589 void
590 wi_shutdown(struct wi_softc *sc)
591 {
592 struct ifnet *ifp = &sc->sc_if;
593
594 if (sc->sc_attached)
595 wi_stop(ifp, 1);
596 }
597
598 int
599 wi_intr(void *arg)
600 {
601 int i;
602 struct wi_softc *sc = arg;
603 struct ifnet *ifp = &sc->sc_if;
604 u_int16_t status;
605
606 if (sc->sc_enabled == 0 ||
607 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
608 (ifp->if_flags & IFF_RUNNING) == 0)
609 return 0;
610
611 if ((ifp->if_flags & IFF_UP) == 0) {
612 CSR_WRITE_2(sc, WI_INT_EN, 0);
613 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
614 return 1;
615 }
616
617 /* This is superfluous on Prism, but Lucent breaks if we
618 * do not disable interrupts.
619 */
620 CSR_WRITE_2(sc, WI_INT_EN, 0);
621
622 /* maximum 10 loops per interrupt */
623 for (i = 0; i < 10; i++) {
624 status = CSR_READ_2(sc, WI_EVENT_STAT);
625 #ifdef WI_DEBUG
626 if (wi_debug > 1) {
627 printf("%s: iter %d status %#04x\n", __func__, i,
628 status);
629 }
630 #endif /* WI_DEBUG */
631 if ((status & WI_INTRS) == 0)
632 break;
633
634 sc->sc_status = status;
635
636 if (status & WI_EV_RX)
637 wi_rx_intr(sc);
638
639 if (status & WI_EV_ALLOC)
640 wi_txalloc_intr(sc);
641
642 if (status & WI_EV_TX)
643 wi_tx_intr(sc);
644
645 if (status & WI_EV_TX_EXC)
646 wi_tx_ex_intr(sc);
647
648 if (status & WI_EV_INFO)
649 wi_info_intr(sc);
650
651 CSR_WRITE_2(sc, WI_EVENT_ACK, sc->sc_status);
652
653 if (sc->sc_status & WI_EV_CMD)
654 wi_cmd_intr(sc);
655
656 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
657 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
658 !IFQ_IS_EMPTY(&ifp->if_snd))
659 wi_start(ifp);
660
661 sc->sc_status = 0;
662 }
663
664 /* re-enable interrupts */
665 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
666
667 sc->sc_status = 0;
668
669 return 1;
670 }
671
672 #define arraylen(a) (sizeof(a) / sizeof((a)[0]))
673
674 STATIC void
675 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree)
676 {
677 int i;
678 SLIST_INIT(rssdfree);
679 for (i = 0; i < arraylen(*rssd); i++) {
680 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next);
681 }
682 }
683
684 STATIC void
685 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS],
686 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE])
687 {
688 struct ieee80211_node *ni;
689 int i;
690 for (i = 0; i < arraylen(*rssd); i++) {
691 ni = (*rssd)[i].rd_desc.id_node;
692 (*rssd)[i].rd_desc.id_node = NULL;
693 if (ni != NULL && (ic->ic_ifp->if_flags & IFF_DEBUG) != 0)
694 printf("%s: cleaning outstanding rssadapt "
695 "descriptor for %s\n",
696 ic->ic_ifp->if_xname, ether_sprintf(ni->ni_macaddr));
697 if (ni != NULL)
698 ieee80211_free_node(ni);
699 }
700 memset(*txpending, 0, sizeof(*txpending));
701 wi_rssdescs_init(rssd, rssdfree);
702 }
703
704 STATIC int
705 wi_init(struct ifnet *ifp)
706 {
707 struct wi_softc *sc = ifp->if_softc;
708 struct ieee80211com *ic = &sc->sc_ic;
709 struct wi_joinreq join;
710 int i;
711 int error = 0, wasenabled;
712
713 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
714 wasenabled = sc->sc_enabled;
715 if (!sc->sc_enabled) {
716 if ((error = (*sc->sc_enable)(sc)) != 0)
717 goto out;
718 sc->sc_enabled = 1;
719 } else
720 wi_stop(ifp, 0);
721
722 /* Symbol firmware cannot be initialized more than once */
723 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled)
724 if ((error = wi_reset(sc)) != 0)
725 goto out;
726
727 /* common 802.11 configuration */
728 ic->ic_flags &= ~IEEE80211_F_IBSSON;
729 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
730 switch (ic->ic_opmode) {
731 case IEEE80211_M_STA:
732 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
733 break;
734 case IEEE80211_M_IBSS:
735 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
736 ic->ic_flags |= IEEE80211_F_IBSSON;
737 break;
738 case IEEE80211_M_AHDEMO:
739 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
740 break;
741 case IEEE80211_M_HOSTAP:
742 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
743 break;
744 case IEEE80211_M_MONITOR:
745 if (sc->sc_firmware_type == WI_LUCENT)
746 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
747 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
748 break;
749 }
750
751 /* Intersil interprets this RID as joining ESS even in IBSS mode */
752 if (sc->sc_firmware_type == WI_LUCENT &&
753 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
754 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
755 else
756 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
757 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
758 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
759 ic->ic_des_esslen);
760 wi_write_val(sc, WI_RID_OWN_CHNL,
761 ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
762 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
763 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
764 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
765 if (ic->ic_caps & IEEE80211_C_PMGT)
766 wi_write_val(sc, WI_RID_PM_ENABLED,
767 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
768
769 /* not yet common 802.11 configuration */
770 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
771 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
772 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
773 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
774
775 /* driver specific 802.11 configuration */
776 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
777 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
778 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
779 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
780 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
781 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
782 wi_cfg_txrate(sc);
783 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
784
785 #ifndef IEEE80211_NO_HOSTAP
786 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
787 sc->sc_firmware_type == WI_INTERSIL) {
788 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
789 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
790 }
791 #endif /* !IEEE80211_NO_HOSTAP */
792
793 if (sc->sc_firmware_type == WI_INTERSIL) {
794 struct ieee80211_rateset *rs =
795 &ic->ic_sup_rates[IEEE80211_MODE_11B];
796 u_int16_t basic = 0, supported = 0, rate;
797
798 for (i = 0; i < rs->rs_nrates; i++) {
799 switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
800 case 2:
801 rate = 1;
802 break;
803 case 4:
804 rate = 2;
805 break;
806 case 11:
807 rate = 4;
808 break;
809 case 22:
810 rate = 8;
811 break;
812 default:
813 rate = 0;
814 break;
815 }
816 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC)
817 basic |= rate;
818 supported |= rate;
819 }
820 wi_write_val(sc, WI_RID_BASIC_RATE, basic);
821 wi_write_val(sc, WI_RID_SUPPORT_RATE, supported);
822 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry);
823 }
824
825 /*
826 * Initialize promisc mode.
827 * Being in Host-AP mode causes a great
828 * deal of pain if promiscuous mode is set.
829 * Therefore we avoid confusing the firmware
830 * and always reset promisc mode in Host-AP
831 * mode. Host-AP sees all the packets anyway.
832 */
833 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
834 (ifp->if_flags & IFF_PROMISC) != 0) {
835 wi_write_val(sc, WI_RID_PROMISC, 1);
836 } else {
837 wi_write_val(sc, WI_RID_PROMISC, 0);
838 }
839
840 /* Configure WEP. */
841 if (ic->ic_caps & IEEE80211_C_WEP) {
842 sc->sc_cnfauthmode = ic->ic_bss->ni_authmode;
843 wi_write_wep(sc);
844 }
845
846 /* Set multicast filter. */
847 wi_write_multi(sc);
848
849 sc->sc_txalloc = 0;
850 sc->sc_txalloced = 0;
851 sc->sc_txqueue = 0;
852 sc->sc_txqueued = 0;
853 sc->sc_txstart = 0;
854 sc->sc_txstarted = 0;
855
856 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
857 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
858 if (sc->sc_firmware_type == WI_SYMBOL)
859 sc->sc_buflen = 1585; /* XXX */
860 for (i = 0; i < WI_NTXBUF; i++) {
861 error = wi_alloc_fid(sc, sc->sc_buflen,
862 &sc->sc_txd[i].d_fid);
863 if (error) {
864 printf("%s: tx buffer allocation failed\n",
865 sc->sc_dev.dv_xname);
866 goto out;
867 }
868 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
869 sc->sc_txd[i].d_fid));
870 ++sc->sc_txalloced;
871 }
872 }
873
874 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree);
875
876 /* Enable desired port */
877 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
878 ifp->if_flags |= IFF_RUNNING;
879 ifp->if_flags &= ~IFF_OACTIVE;
880 ic->ic_state = IEEE80211_S_INIT;
881
882 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
883 ic->ic_opmode == IEEE80211_M_IBSS ||
884 ic->ic_opmode == IEEE80211_M_MONITOR ||
885 ic->ic_opmode == IEEE80211_M_HOSTAP)
886 ieee80211_create_ibss(ic, ic->ic_ibss_chan);
887
888 /* Enable interrupts */
889 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
890
891 #ifndef IEEE80211_NO_HOSTAP
892 if (!wasenabled &&
893 ic->ic_opmode == IEEE80211_M_HOSTAP &&
894 sc->sc_firmware_type == WI_INTERSIL) {
895 /* XXX: some card need to be re-enabled for hostap */
896 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
897 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
898 }
899 #endif /* !IEEE80211_NO_HOSTAP */
900
901 if (ic->ic_opmode == IEEE80211_M_STA &&
902 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
903 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
904 memset(&join, 0, sizeof(join));
905 if (ic->ic_flags & IEEE80211_F_DESBSSID)
906 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
907 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
908 join.wi_chan =
909 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan));
910 /* Lucent firmware does not support the JOIN RID. */
911 if (sc->sc_firmware_type != WI_LUCENT)
912 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
913 }
914
915 out:
916 if (error) {
917 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
918 wi_stop(ifp, 0);
919 }
920 DPRINTF(("wi_init: return %d\n", error));
921 return error;
922 }
923
924 STATIC void
925 wi_txcmd_wait(struct wi_softc *sc)
926 {
927 KASSERT(sc->sc_txcmds == 1);
928 if (sc->sc_status & WI_EV_CMD) {
929 sc->sc_status &= ~WI_EV_CMD;
930 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
931 } else
932 (void)wi_cmd_wait(sc, WI_CMD_TX | WI_RECLAIM, 0);
933 }
934
935 STATIC void
936 wi_stop(struct ifnet *ifp, int disable)
937 {
938 struct wi_softc *sc = ifp->if_softc;
939 struct ieee80211com *ic = &sc->sc_ic;
940 int s;
941
942 if (!sc->sc_enabled)
943 return;
944
945 s = splnet();
946
947 DPRINTF(("wi_stop: disable %d\n", disable));
948
949 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
950
951 /* wait for tx command completion (deassoc, deauth) */
952 while (sc->sc_txcmds > 0) {
953 wi_txcmd_wait(sc);
954 wi_cmd_intr(sc);
955 }
956
957 /* TBD wait for deassoc, deauth tx completion? */
958
959 if (!sc->sc_invalid) {
960 CSR_WRITE_2(sc, WI_INT_EN, 0);
961 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
962 }
963
964 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
965 &sc->sc_txpending);
966
967 sc->sc_tx_timer = 0;
968 sc->sc_scan_timer = 0;
969 sc->sc_false_syns = 0;
970 sc->sc_naps = 0;
971 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
972 ifp->if_timer = 0;
973
974 if (disable) {
975 if (sc->sc_disable)
976 (*sc->sc_disable)(sc);
977 sc->sc_enabled = 0;
978 }
979 splx(s);
980 }
981
982 /*
983 * Choose a data rate for a packet len bytes long that suits the packet
984 * type and the wireless conditions.
985 *
986 * TBD Adapt fragmentation threshold.
987 */
988 STATIC int
989 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni,
990 struct ieee80211_frame *wh, u_int len)
991 {
992 struct wi_softc *sc = ic->ic_ifp->if_softc;
993 struct wi_node *wn = (void*)ni;
994 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt;
995 int do_not_adapt, i, rateidx, s;
996
997 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) &&
998 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0;
999
1000 s = splnet();
1001
1002 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len,
1003 ic->ic_fixed_rate,
1004 ((ic->ic_ifp->if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_ifp->if_xname,
1005 do_not_adapt);
1006
1007 ni->ni_txrate = rateidx;
1008
1009 if (ic->ic_opmode != IEEE80211_M_HOSTAP) {
1010 /* choose the slowest pending rate so that we don't
1011 * accidentally send a packet on the MAC's queue
1012 * too fast. TBD find out if the MAC labels Tx
1013 * packets w/ rate when enqueued or dequeued.
1014 */
1015 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++);
1016 rateidx = i;
1017 }
1018
1019 splx(s);
1020 return (rateidx);
1021 }
1022
1023 STATIC void
1024 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1025 {
1026 struct wi_node *wn;
1027 if (id->id_node == NULL)
1028 return;
1029
1030 wn = (void*)id->id_node;
1031 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id);
1032 }
1033
1034 STATIC void
1035 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1036 {
1037 struct ieee80211_node *ni;
1038 struct wi_node *wn;
1039 int s;
1040
1041 s = splnet();
1042
1043 if ((ni = id->id_node) == NULL) {
1044 DPRINTF(("wi_lower_rate: missing node\n"));
1045 goto out;
1046 }
1047
1048 wn = (void *)ni;
1049
1050 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id);
1051 out:
1052 splx(s);
1053 return;
1054 }
1055
1056 STATIC void
1057 wi_start(struct ifnet *ifp)
1058 {
1059 struct wi_softc *sc = ifp->if_softc;
1060 struct ieee80211com *ic = &sc->sc_ic;
1061 struct ether_header *eh;
1062 struct ieee80211_node *ni;
1063 struct ieee80211_frame *wh;
1064 struct ieee80211_rateset *rs;
1065 struct wi_rssdesc *rd;
1066 struct ieee80211_rssdesc *id;
1067 struct mbuf *m0;
1068 struct wi_frame frmhdr;
1069 int cur, fid, off, rateidx;
1070
1071 if (!sc->sc_enabled || sc->sc_invalid)
1072 return;
1073 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
1074 return;
1075
1076 memset(&frmhdr, 0, sizeof(frmhdr));
1077 cur = sc->sc_txqueue;
1078 for (;;) {
1079 ni = ic->ic_bss;
1080 if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) {
1081 ifp->if_flags |= IFF_OACTIVE;
1082 break;
1083 }
1084 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
1085 IF_DEQUEUE(&ic->ic_mgtq, m0);
1086 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
1087 (caddr_t)&frmhdr.wi_ehdr);
1088 frmhdr.wi_ehdr.ether_type = 0;
1089 wh = mtod(m0, struct ieee80211_frame *);
1090 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1091 m0->m_pkthdr.rcvif = NULL;
1092 } else if (ic->ic_state == IEEE80211_S_RUN) {
1093 IFQ_POLL(&ifp->if_snd, m0);
1094 if (m0 == NULL)
1095 break;
1096 IFQ_DEQUEUE(&ifp->if_snd, m0);
1097 ifp->if_opackets++;
1098 m_copydata(m0, 0, ETHER_HDR_LEN,
1099 (caddr_t)&frmhdr.wi_ehdr);
1100 #if NBPFILTER > 0
1101 if (ifp->if_bpf)
1102 bpf_mtap(ifp->if_bpf, m0);
1103 #endif
1104
1105 eh = mtod(m0, struct ether_header *);
1106 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1107 if (ni == NULL) {
1108 ifp->if_oerrors++;
1109 continue;
1110 }
1111 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1112 (m0->m_flags & M_PWR_SAV) == 0) {
1113 ieee80211_pwrsave(ic, ni, m0);
1114 goto next;
1115 }
1116 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
1117 ieee80211_free_node(ni);
1118 ifp->if_oerrors++;
1119 continue;
1120 }
1121 wh = mtod(m0, struct ieee80211_frame *);
1122 } else
1123 break;
1124 #if NBPFILTER > 0
1125 if (ic->ic_rawbpf)
1126 bpf_mtap(ic->ic_rawbpf, m0);
1127 #endif
1128 frmhdr.wi_tx_ctl =
1129 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK);
1130 #ifndef IEEE80211_NO_HOSTAP
1131 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1132 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
1133 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1134 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
1135 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1136 ifp->if_oerrors++;
1137 goto next;
1138 }
1139 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
1140 }
1141 #endif /* !IEEE80211_NO_HOSTAP */
1142
1143 rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len);
1144 rs = &ni->ni_rates;
1145
1146 #if NBPFILTER > 0
1147 if (sc->sc_drvbpf) {
1148 struct wi_tx_radiotap_header *tap = &sc->sc_txtap;
1149
1150 tap->wt_rate = rs->rs_rates[rateidx];
1151 tap->wt_chan_freq =
1152 htole16(ic->ic_bss->ni_chan->ic_freq);
1153 tap->wt_chan_flags =
1154 htole16(ic->ic_bss->ni_chan->ic_flags);
1155 /* TBD tap->wt_flags */
1156
1157 bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0);
1158 }
1159 #endif
1160
1161 rd = SLIST_FIRST(&sc->sc_rssdfree);
1162 id = &rd->rd_desc;
1163 id->id_len = m0->m_pkthdr.len;
1164 id->id_rateidx = ni->ni_txrate;
1165 id->id_rssi = ni->ni_rssi;
1166
1167 frmhdr.wi_tx_idx = rd - sc->sc_rssd;
1168
1169 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1170 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] &
1171 IEEE80211_RATE_VAL);
1172 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA)
1173 (void)wi_write_txrate(sc, rs->rs_rates[rateidx]);
1174
1175 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
1176 (caddr_t)&frmhdr.wi_whdr);
1177 m_adj(m0, sizeof(struct ieee80211_frame));
1178 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
1179 if (IFF_DUMPPKTS(ifp))
1180 wi_dump_pkt(&frmhdr, ni, -1);
1181 fid = sc->sc_txd[cur].d_fid;
1182 off = sizeof(frmhdr);
1183 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
1184 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
1185 printf("%s: %s write fid %x failed\n",
1186 sc->sc_dev.dv_xname, __func__, fid);
1187 ifp->if_oerrors++;
1188 m_freem(m0);
1189 goto next;
1190 }
1191 m_freem(m0);
1192 sc->sc_txpending[ni->ni_txrate]++;
1193 --sc->sc_txalloced;
1194 if (sc->sc_txqueued++ == 0) {
1195 #ifdef DIAGNOSTIC
1196 if (cur != sc->sc_txstart)
1197 printf("%s: ring is desynchronized\n",
1198 sc->sc_dev.dv_xname);
1199 #endif
1200 wi_push_packet(sc);
1201 } else {
1202 #ifdef WI_RING_DEBUG
1203 printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1204 sc->sc_dev.dv_xname, fid,
1205 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1206 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1207 #endif
1208 }
1209 sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF;
1210 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next);
1211 id->id_node = ni;
1212 continue;
1213 next:
1214 if (ni != NULL)
1215 ieee80211_free_node(ni);
1216 }
1217 }
1218
1219
1220 STATIC int
1221 wi_reset(struct wi_softc *sc)
1222 {
1223 int i, error;
1224
1225 DPRINTF(("wi_reset\n"));
1226
1227 if (sc->sc_reset)
1228 (*sc->sc_reset)(sc);
1229
1230 error = 0;
1231 for (i = 0; i < 5; i++) {
1232 if (sc->sc_invalid)
1233 return ENXIO;
1234 DELAY(20*1000); /* XXX: way too long! */
1235 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
1236 break;
1237 }
1238 if (error) {
1239 printf("%s: init failed\n", sc->sc_dev.dv_xname);
1240 return error;
1241 }
1242 CSR_WRITE_2(sc, WI_INT_EN, 0);
1243 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
1244
1245 /* Calibrate timer. */
1246 wi_write_val(sc, WI_RID_TICK_TIME, 0);
1247 return 0;
1248 }
1249
1250 STATIC void
1251 wi_watchdog(struct ifnet *ifp)
1252 {
1253 struct wi_softc *sc = ifp->if_softc;
1254
1255 ifp->if_timer = 0;
1256 if (!sc->sc_enabled)
1257 return;
1258
1259 if (sc->sc_tx_timer) {
1260 if (--sc->sc_tx_timer == 0) {
1261 printf("%s: device timeout\n", ifp->if_xname);
1262 ifp->if_oerrors++;
1263 wi_init(ifp);
1264 return;
1265 }
1266 ifp->if_timer = 1;
1267 }
1268
1269 if (sc->sc_scan_timer) {
1270 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
1271 sc->sc_firmware_type == WI_INTERSIL) {
1272 DPRINTF(("wi_watchdog: inquire scan\n"));
1273 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1274 }
1275 if (sc->sc_scan_timer)
1276 ifp->if_timer = 1;
1277 }
1278
1279 /* TODO: rate control */
1280 ieee80211_watchdog(&sc->sc_ic);
1281 }
1282
1283 STATIC int
1284 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1285 {
1286 struct wi_softc *sc = ifp->if_softc;
1287 struct ieee80211com *ic = &sc->sc_ic;
1288 struct ifreq *ifr = (struct ifreq *)data;
1289 int s, error = 0;
1290
1291 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1292 return ENXIO;
1293
1294 s = splnet();
1295
1296 switch (cmd) {
1297 case SIOCSIFFLAGS:
1298 /*
1299 * Can't do promisc and hostap at the same time. If all that's
1300 * changing is the promisc flag, try to short-circuit a call to
1301 * wi_init() by just setting PROMISC in the hardware.
1302 */
1303 if (ifp->if_flags & IFF_UP) {
1304 if (sc->sc_enabled) {
1305 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1306 (ifp->if_flags & IFF_PROMISC) != 0)
1307 wi_write_val(sc, WI_RID_PROMISC, 1);
1308 else
1309 wi_write_val(sc, WI_RID_PROMISC, 0);
1310 } else
1311 error = wi_init(ifp);
1312 } else if (sc->sc_enabled)
1313 wi_stop(ifp, 1);
1314 break;
1315 case SIOCSIFMEDIA:
1316 case SIOCGIFMEDIA:
1317 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1318 break;
1319 case SIOCADDMULTI:
1320 case SIOCDELMULTI:
1321 error = (cmd == SIOCADDMULTI) ?
1322 ether_addmulti(ifr, &sc->sc_ec) :
1323 ether_delmulti(ifr, &sc->sc_ec);
1324 if (error == ENETRESET) {
1325 if (ifp->if_flags & IFF_RUNNING) {
1326 /* do not rescan */
1327 error = wi_write_multi(sc);
1328 } else
1329 error = 0;
1330 }
1331 break;
1332 case SIOCGIFGENERIC:
1333 error = wi_get_cfg(ifp, cmd, data);
1334 break;
1335 case SIOCSIFGENERIC:
1336 error = suser(curproc->p_ucred, &curproc->p_acflag);
1337 if (error)
1338 break;
1339 error = wi_set_cfg(ifp, cmd, data);
1340 if (error == ENETRESET) {
1341 if (ifp->if_flags & IFF_RUNNING)
1342 error = wi_init(ifp);
1343 else
1344 error = 0;
1345 }
1346 break;
1347 case SIOCS80211BSSID:
1348 if (sc->sc_firmware_type == WI_LUCENT) {
1349 error = ENODEV;
1350 break;
1351 }
1352 /* fall through */
1353 default:
1354 ic->ic_flags = sc->sc_ic_flags;
1355 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1356 sc->sc_ic_flags = ic->ic_flags;
1357 wi_mend_flags(sc);
1358 if (error == ENETRESET) {
1359 if (sc->sc_enabled)
1360 error = wi_init(ifp);
1361 else
1362 error = 0;
1363 }
1364 break;
1365 }
1366 splx(s);
1367 return error;
1368 }
1369
1370 STATIC int
1371 wi_media_change(struct ifnet *ifp)
1372 {
1373 struct wi_softc *sc = ifp->if_softc;
1374 struct ieee80211com *ic = &sc->sc_ic;
1375 int error;
1376
1377 error = ieee80211_media_change(ifp);
1378 if (error == ENETRESET) {
1379 if (sc->sc_enabled)
1380 error = wi_init(ifp);
1381 else
1382 error = 0;
1383 }
1384 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1385
1386 return error;
1387 }
1388
1389 STATIC void
1390 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1391 {
1392 struct wi_softc *sc = ifp->if_softc;
1393 struct ieee80211com *ic = &sc->sc_ic;
1394 u_int16_t val;
1395 int rate;
1396
1397 if (sc->sc_enabled == 0) {
1398 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1399 imr->ifm_status = 0;
1400 return;
1401 }
1402
1403 imr->ifm_status = IFM_AVALID;
1404 imr->ifm_active = IFM_IEEE80211;
1405 if (ic->ic_state == IEEE80211_S_RUN &&
1406 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1407 imr->ifm_status |= IFM_ACTIVE;
1408 if (wi_read_xrid(sc, WI_RID_CUR_TX_RATE, &val, sizeof(val)) == 0) {
1409 /* convert to 802.11 rate */
1410 val = le16toh(val);
1411 rate = val * 2;
1412 if (sc->sc_firmware_type == WI_LUCENT) {
1413 if (rate == 10)
1414 rate = 11; /* 5.5Mbps */
1415 } else {
1416 if (rate == 4*2)
1417 rate = 11; /* 5.5Mbps */
1418 else if (rate == 8*2)
1419 rate = 22; /* 11Mbps */
1420 }
1421 } else
1422 rate = 0;
1423 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1424 switch (ic->ic_opmode) {
1425 case IEEE80211_M_STA:
1426 break;
1427 case IEEE80211_M_IBSS:
1428 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1429 break;
1430 case IEEE80211_M_AHDEMO:
1431 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1432 break;
1433 case IEEE80211_M_HOSTAP:
1434 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1435 break;
1436 case IEEE80211_M_MONITOR:
1437 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1438 break;
1439 }
1440 }
1441
1442 STATIC struct ieee80211_node *
1443 wi_node_alloc(struct ieee80211_node_table *nt)
1444 {
1445 struct wi_node *wn =
1446 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1447 return wn ? &wn->wn_node : NULL;
1448 }
1449
1450 STATIC void
1451 wi_node_free(struct ieee80211_node *ni)
1452 {
1453 struct wi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1454 int i;
1455
1456 for (i = 0; i < WI_NTXRSS; i++) {
1457 if (sc->sc_rssd[i].rd_desc.id_node == ni)
1458 sc->sc_rssd[i].rd_desc.id_node = NULL;
1459 }
1460 free(ni, M_DEVBUF);
1461 }
1462
1463 STATIC void
1464 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1465 {
1466 struct ieee80211com *ic = &sc->sc_ic;
1467 struct ieee80211_node *ni = ic->ic_bss;
1468 struct ifnet *ifp = &sc->sc_if;
1469
1470 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1471 return;
1472
1473 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
1474 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1475
1476 /* In promiscuous mode, the BSSID field is not a reliable
1477 * indicator of the firmware's BSSID. Damp spurious
1478 * change-of-BSSID indications.
1479 */
1480 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1481 !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns,
1482 WI_MAX_FALSE_SYNS))
1483 return;
1484
1485 sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1);
1486 /*
1487 * XXX hack; we should create a new node with the new bssid
1488 * and replace the existing ic_bss with it but since we don't
1489 * process management frames to collect state we cheat by
1490 * reusing the existing node as we know wi_newstate will be
1491 * called and it will overwrite the node state.
1492 */
1493 ieee80211_sta_join(ic, ieee80211_ref_node(ni));
1494 }
1495
1496 static __inline void
1497 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni,
1498 struct ieee80211_frame *wh, int rssi)
1499 {
1500 struct wi_node *wn;
1501
1502 if (ni == NULL) {
1503 printf("%s: null node", __func__);
1504 return;
1505 }
1506
1507 wn = (void*)ni;
1508 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi);
1509 }
1510
1511 STATIC void
1512 wi_rx_intr(struct wi_softc *sc)
1513 {
1514 struct ieee80211com *ic = &sc->sc_ic;
1515 struct ifnet *ifp = &sc->sc_if;
1516 struct ieee80211_node *ni;
1517 struct wi_frame frmhdr;
1518 struct mbuf *m;
1519 struct ieee80211_frame *wh;
1520 int fid, len, off, rssi;
1521 u_int8_t dir;
1522 u_int16_t status;
1523 u_int32_t rstamp;
1524
1525 fid = CSR_READ_2(sc, WI_RX_FID);
1526
1527 /* First read in the frame header */
1528 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1529 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1530 __func__, fid);
1531 ifp->if_ierrors++;
1532 return;
1533 }
1534
1535 if (IFF_DUMPPKTS(ifp))
1536 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1537
1538 /*
1539 * Drop undecryptable or packets with receive errors here
1540 */
1541 status = le16toh(frmhdr.wi_status);
1542 if ((status & WI_STAT_ERRSTAT) != 0 &&
1543 ic->ic_opmode != IEEE80211_M_MONITOR) {
1544 ifp->if_ierrors++;
1545 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1546 return;
1547 }
1548 rssi = frmhdr.wi_rx_signal;
1549 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1550 le16toh(frmhdr.wi_rx_tstamp1);
1551
1552 len = le16toh(frmhdr.wi_dat_len);
1553 off = ALIGN(sizeof(struct ieee80211_frame));
1554
1555 /* Sometimes the PRISM2.x returns bogusly large frames. Except
1556 * in monitor mode, just throw them away.
1557 */
1558 if (off + len > MCLBYTES) {
1559 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1560 ifp->if_ierrors++;
1561 DPRINTF(("wi_rx_intr: oversized packet\n"));
1562 return;
1563 } else
1564 len = 0;
1565 }
1566
1567 MGETHDR(m, M_DONTWAIT, MT_DATA);
1568 if (m == NULL) {
1569 ifp->if_ierrors++;
1570 DPRINTF(("wi_rx_intr: MGET failed\n"));
1571 return;
1572 }
1573 if (off + len > MHLEN) {
1574 MCLGET(m, M_DONTWAIT);
1575 if ((m->m_flags & M_EXT) == 0) {
1576 m_freem(m);
1577 ifp->if_ierrors++;
1578 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1579 return;
1580 }
1581 }
1582
1583 m->m_data += off - sizeof(struct ieee80211_frame);
1584 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1585 wi_read_bap(sc, fid, sizeof(frmhdr),
1586 m->m_data + sizeof(struct ieee80211_frame), len);
1587 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1588 m->m_pkthdr.rcvif = ifp;
1589
1590 #if NBPFILTER > 0
1591 if (sc->sc_drvbpf) {
1592 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap;
1593
1594 tap->wr_rate = frmhdr.wi_rx_rate / 5;
1595 tap->wr_antsignal = frmhdr.wi_rx_signal;
1596 tap->wr_antnoise = frmhdr.wi_rx_silence;
1597 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1598 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1599 if (frmhdr.wi_status & WI_STAT_PCF)
1600 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1601
1602 bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m);
1603 }
1604 #endif
1605 wh = mtod(m, struct ieee80211_frame *);
1606 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1607 /*
1608 * WEP is decrypted by hardware. Clear WEP bit
1609 * header for ieee80211_input().
1610 */
1611 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1612 }
1613
1614 /* synchronize driver's BSSID with firmware's BSSID */
1615 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1616 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1617 wi_sync_bssid(sc, wh->i_addr3);
1618
1619 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1620
1621 ieee80211_input(ic, m, ni, rssi, rstamp);
1622
1623 wi_rssadapt_input(ic, ni, wh, rssi);
1624
1625 /*
1626 * The frame may have caused the node to be marked for
1627 * reclamation (e.g. in response to a DEAUTH message)
1628 * so use release_node here instead of unref_node.
1629 */
1630 ieee80211_free_node(ni);
1631 }
1632
1633 STATIC void
1634 wi_tx_ex_intr(struct wi_softc *sc)
1635 {
1636 struct ieee80211com *ic = &sc->sc_ic;
1637 struct ifnet *ifp = &sc->sc_if;
1638 struct ieee80211_node *ni;
1639 struct ieee80211_rssdesc *id;
1640 struct wi_rssdesc *rssd;
1641 struct wi_frame frmhdr;
1642 int fid;
1643 u_int16_t status;
1644
1645 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1646 /* Read in the frame header */
1647 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1648 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1649 __func__, fid);
1650 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1651 &sc->sc_txpending);
1652 goto out;
1653 }
1654
1655 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1656 printf("%s: %s bad idx %02x\n",
1657 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1658 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1659 &sc->sc_txpending);
1660 goto out;
1661 }
1662
1663 status = le16toh(frmhdr.wi_status);
1664
1665 /*
1666 * Spontaneous station disconnects appear as xmit
1667 * errors. Don't announce them and/or count them
1668 * as an output error.
1669 */
1670 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1671 printf("%s: tx failed", sc->sc_dev.dv_xname);
1672 if (status & WI_TXSTAT_RET_ERR)
1673 printf(", retry limit exceeded");
1674 if (status & WI_TXSTAT_AGED_ERR)
1675 printf(", max transmit lifetime exceeded");
1676 if (status & WI_TXSTAT_DISCONNECT)
1677 printf(", port disconnected");
1678 if (status & WI_TXSTAT_FORM_ERR)
1679 printf(", invalid format (data len %u src %s)",
1680 le16toh(frmhdr.wi_dat_len),
1681 ether_sprintf(frmhdr.wi_ehdr.ether_shost));
1682 if (status & ~0xf)
1683 printf(", status=0x%x", status);
1684 printf("\n");
1685 }
1686 ifp->if_oerrors++;
1687 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1688 id = &rssd->rd_desc;
1689 if ((status & WI_TXSTAT_RET_ERR) != 0)
1690 wi_lower_rate(ic, id);
1691
1692 ni = id->id_node;
1693 id->id_node = NULL;
1694
1695 if (ni == NULL) {
1696 printf("%s: %s null node, rssdesc %02x\n",
1697 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1698 goto out;
1699 }
1700
1701 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1702 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1703 __func__, id->id_rateidx);
1704 sc->sc_txpending[id->id_rateidx] = 0;
1705 }
1706 if (ni != NULL)
1707 ieee80211_free_node(ni);
1708 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1709 out:
1710 ifp->if_flags &= ~IFF_OACTIVE;
1711 }
1712
1713 STATIC void
1714 wi_txalloc_intr(struct wi_softc *sc)
1715 {
1716 int fid, cur;
1717
1718 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1719
1720 cur = sc->sc_txalloc;
1721 #ifdef DIAGNOSTIC
1722 if (sc->sc_txstarted == 0) {
1723 printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1724 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1725 sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1726 return;
1727 }
1728 #endif
1729 --sc->sc_txstarted;
1730 ++sc->sc_txalloced;
1731 sc->sc_txd[cur].d_fid = fid;
1732 sc->sc_txalloc = (cur + 1) % WI_NTXBUF;
1733 #ifdef WI_RING_DEBUG
1734 printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1735 sc->sc_dev.dv_xname, fid,
1736 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1737 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1738 #endif
1739 }
1740
1741 STATIC void
1742 wi_cmd_intr(struct wi_softc *sc)
1743 {
1744 struct ifnet *ifp = &sc->sc_if;
1745
1746 if (sc->sc_invalid)
1747 return;
1748 #ifdef WI_DEBUG
1749 if (wi_debug)
1750 printf("%s: %d txcmds outstanding\n", __func__, sc->sc_txcmds);
1751 #endif
1752 KASSERT(sc->sc_txcmds > 0);
1753
1754 --sc->sc_txcmds;
1755
1756 if (--sc->sc_txqueued == 0) {
1757 sc->sc_tx_timer = 0;
1758 ifp->if_flags &= ~IFF_OACTIVE;
1759 #ifdef WI_RING_DEBUG
1760 printf("%s: cmd , alloc %d queue %d start %d alloced %d queued %d started %d\n",
1761 sc->sc_dev.dv_xname,
1762 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1763 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1764 #endif
1765 } else
1766 wi_push_packet(sc);
1767 }
1768
1769 STATIC void
1770 wi_push_packet(struct wi_softc *sc)
1771 {
1772 struct ifnet *ifp = &sc->sc_if;
1773 int cur, fid;
1774
1775 cur = sc->sc_txstart;
1776 fid = sc->sc_txd[cur].d_fid;
1777
1778 KASSERT(sc->sc_txcmds == 0);
1779
1780 if (wi_cmd_start(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
1781 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1782 /* XXX ring might have a hole */
1783 }
1784
1785 if (sc->sc_txcmds++ > 0)
1786 printf("%s: %d tx cmds pending!!!\n", __func__, sc->sc_txcmds);
1787
1788 ++sc->sc_txstarted;
1789 #ifdef DIAGNOSTIC
1790 if (sc->sc_txstarted > WI_NTXBUF)
1791 printf("%s: too many buffers started\n", sc->sc_dev.dv_xname);
1792 #endif
1793 sc->sc_txstart = (cur + 1) % WI_NTXBUF;
1794 sc->sc_tx_timer = 5;
1795 ifp->if_timer = 1;
1796 #ifdef WI_RING_DEBUG
1797 printf("%s: push %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1798 sc->sc_dev.dv_xname, fid,
1799 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1800 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1801 #endif
1802 }
1803
1804 STATIC void
1805 wi_tx_intr(struct wi_softc *sc)
1806 {
1807 struct ieee80211com *ic = &sc->sc_ic;
1808 struct ifnet *ifp = &sc->sc_if;
1809 struct ieee80211_node *ni;
1810 struct ieee80211_rssdesc *id;
1811 struct wi_rssdesc *rssd;
1812 struct wi_frame frmhdr;
1813 int fid;
1814
1815 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1816 /* Read in the frame header */
1817 if (wi_read_bap(sc, fid, offsetof(struct wi_frame, wi_tx_swsup2),
1818 &frmhdr.wi_tx_swsup2, 2) != 0) {
1819 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1820 __func__, fid);
1821 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1822 &sc->sc_txpending);
1823 goto out;
1824 }
1825
1826 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1827 printf("%s: %s bad idx %02x\n",
1828 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1829 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1830 &sc->sc_txpending);
1831 goto out;
1832 }
1833
1834 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1835 id = &rssd->rd_desc;
1836 wi_raise_rate(ic, id);
1837
1838 ni = id->id_node;
1839 id->id_node = NULL;
1840
1841 if (ni == NULL) {
1842 printf("%s: %s null node, rssdesc %02x\n",
1843 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1844 goto out;
1845 }
1846
1847 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1848 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1849 __func__, id->id_rateidx);
1850 sc->sc_txpending[id->id_rateidx] = 0;
1851 }
1852 if (ni != NULL)
1853 ieee80211_free_node(ni);
1854 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1855 out:
1856 ifp->if_flags &= ~IFF_OACTIVE;
1857 }
1858
1859 STATIC void
1860 wi_info_intr(struct wi_softc *sc)
1861 {
1862 struct ieee80211com *ic = &sc->sc_ic;
1863 struct ifnet *ifp = &sc->sc_if;
1864 int i, fid, len, off;
1865 u_int16_t ltbuf[2];
1866 u_int16_t stat;
1867 u_int32_t *ptr;
1868
1869 fid = CSR_READ_2(sc, WI_INFO_FID);
1870 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1871
1872 switch (le16toh(ltbuf[1])) {
1873
1874 case WI_INFO_LINK_STAT:
1875 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1876 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1877 switch (le16toh(stat)) {
1878 case CONNECTED:
1879 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1880 if (ic->ic_state == IEEE80211_S_RUN &&
1881 ic->ic_opmode != IEEE80211_M_IBSS)
1882 break;
1883 /* FALLTHROUGH */
1884 case AP_CHANGE:
1885 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1886 break;
1887 case AP_IN_RANGE:
1888 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1889 break;
1890 case AP_OUT_OF_RANGE:
1891 if (sc->sc_firmware_type == WI_SYMBOL &&
1892 sc->sc_scan_timer > 0) {
1893 if (wi_cmd(sc, WI_CMD_INQUIRE,
1894 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1895 sc->sc_scan_timer = 0;
1896 break;
1897 }
1898 if (ic->ic_opmode == IEEE80211_M_STA)
1899 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1900 break;
1901 case DISCONNECTED:
1902 case ASSOC_FAILED:
1903 if (ic->ic_opmode == IEEE80211_M_STA)
1904 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1905 break;
1906 }
1907 break;
1908
1909 case WI_INFO_COUNTERS:
1910 /* some card versions have a larger stats structure */
1911 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1912 ptr = (u_int32_t *)&sc->sc_stats;
1913 off = sizeof(ltbuf);
1914 for (i = 0; i < len; i++, off += 2, ptr++) {
1915 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1916 stat = le16toh(stat);
1917 #ifdef WI_HERMES_STATS_WAR
1918 if (stat & 0xf000)
1919 stat = ~stat;
1920 #endif
1921 *ptr += stat;
1922 }
1923 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1924 sc->sc_stats.wi_tx_multi_retries +
1925 sc->sc_stats.wi_tx_retry_limit;
1926 break;
1927
1928 case WI_INFO_SCAN_RESULTS:
1929 case WI_INFO_HOST_SCAN_RESULTS:
1930 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1931 break;
1932
1933 default:
1934 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1935 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1936 break;
1937 }
1938 }
1939
1940 STATIC int
1941 wi_write_multi(struct wi_softc *sc)
1942 {
1943 struct ifnet *ifp = &sc->sc_if;
1944 int n;
1945 struct wi_mcast mlist;
1946 struct ether_multi *enm;
1947 struct ether_multistep estep;
1948
1949 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1950 allmulti:
1951 ifp->if_flags |= IFF_ALLMULTI;
1952 memset(&mlist, 0, sizeof(mlist));
1953 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1954 sizeof(mlist));
1955 }
1956
1957 n = 0;
1958 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1959 while (enm != NULL) {
1960 /* Punt on ranges or too many multicast addresses. */
1961 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1962 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1963 goto allmulti;
1964
1965 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1966 n++;
1967 ETHER_NEXT_MULTI(estep, enm);
1968 }
1969 ifp->if_flags &= ~IFF_ALLMULTI;
1970 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1971 IEEE80211_ADDR_LEN * n);
1972 }
1973
1974
1975 STATIC void
1976 wi_read_nicid(struct wi_softc *sc)
1977 {
1978 struct wi_card_ident *id;
1979 char *p;
1980 int len;
1981 u_int16_t ver[4];
1982
1983 /* getting chip identity */
1984 memset(ver, 0, sizeof(ver));
1985 len = sizeof(ver);
1986 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1987 printf("%s: using ", sc->sc_dev.dv_xname);
1988 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1989
1990 sc->sc_firmware_type = WI_NOTYPE;
1991 for (id = wi_card_ident; id->card_name != NULL; id++) {
1992 if (le16toh(ver[0]) == id->card_id) {
1993 printf("%s", id->card_name);
1994 sc->sc_firmware_type = id->firm_type;
1995 break;
1996 }
1997 }
1998 if (sc->sc_firmware_type == WI_NOTYPE) {
1999 if (le16toh(ver[0]) & 0x8000) {
2000 printf("Unknown PRISM2 chip");
2001 sc->sc_firmware_type = WI_INTERSIL;
2002 } else {
2003 printf("Unknown Lucent chip");
2004 sc->sc_firmware_type = WI_LUCENT;
2005 }
2006 }
2007
2008 /* get primary firmware version (Only Prism chips) */
2009 if (sc->sc_firmware_type != WI_LUCENT) {
2010 memset(ver, 0, sizeof(ver));
2011 len = sizeof(ver);
2012 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
2013 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
2014 le16toh(ver[3]) * 100 + le16toh(ver[1]);
2015 }
2016
2017 /* get station firmware version */
2018 memset(ver, 0, sizeof(ver));
2019 len = sizeof(ver);
2020 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
2021 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
2022 le16toh(ver[3]) * 100 + le16toh(ver[1]);
2023 if (sc->sc_firmware_type == WI_INTERSIL &&
2024 (sc->sc_sta_firmware_ver == 10102 ||
2025 sc->sc_sta_firmware_ver == 20102)) {
2026 char ident[12];
2027 memset(ident, 0, sizeof(ident));
2028 len = sizeof(ident);
2029 /* value should be the format like "V2.00-11" */
2030 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
2031 *(p = (char *)ident) >= 'A' &&
2032 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
2033 sc->sc_firmware_type = WI_SYMBOL;
2034 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
2035 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
2036 (p[6] - '0') * 10 + (p[7] - '0');
2037 }
2038 }
2039
2040 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
2041 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
2042 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
2043 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
2044 printf("Primary (%u.%u.%u), ",
2045 sc->sc_pri_firmware_ver / 10000,
2046 (sc->sc_pri_firmware_ver % 10000) / 100,
2047 sc->sc_pri_firmware_ver % 100);
2048 printf("Station (%u.%u.%u)\n",
2049 sc->sc_sta_firmware_ver / 10000,
2050 (sc->sc_sta_firmware_ver % 10000) / 100,
2051 sc->sc_sta_firmware_ver % 100);
2052 }
2053
2054 STATIC int
2055 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
2056 {
2057 struct wi_ssid ssid;
2058
2059 if (buflen > IEEE80211_NWID_LEN)
2060 return ENOBUFS;
2061 memset(&ssid, 0, sizeof(ssid));
2062 ssid.wi_len = htole16(buflen);
2063 memcpy(ssid.wi_ssid, buf, buflen);
2064 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
2065 }
2066
2067 STATIC int
2068 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2069 {
2070 struct wi_softc *sc = ifp->if_softc;
2071 struct ieee80211com *ic = &sc->sc_ic;
2072 struct ifreq *ifr = (struct ifreq *)data;
2073 struct wi_req wreq;
2074 int len, n, error;
2075
2076 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2077 if (error)
2078 return error;
2079 len = (wreq.wi_len - 1) * 2;
2080 if (len < sizeof(u_int16_t))
2081 return ENOSPC;
2082 if (len > sizeof(wreq.wi_val))
2083 len = sizeof(wreq.wi_val);
2084
2085 switch (wreq.wi_type) {
2086
2087 case WI_RID_IFACE_STATS:
2088 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
2089 if (len < sizeof(sc->sc_stats))
2090 error = ENOSPC;
2091 else
2092 len = sizeof(sc->sc_stats);
2093 break;
2094
2095 case WI_RID_ENCRYPTION:
2096 case WI_RID_TX_CRYPT_KEY:
2097 case WI_RID_DEFLT_CRYPT_KEYS:
2098 case WI_RID_TX_RATE:
2099 return ieee80211_cfgget(ic, cmd, data);
2100
2101 case WI_RID_MICROWAVE_OVEN:
2102 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
2103 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2104 &len);
2105 break;
2106 }
2107 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
2108 len = sizeof(u_int16_t);
2109 break;
2110
2111 case WI_RID_DBM_ADJUST:
2112 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
2113 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2114 &len);
2115 break;
2116 }
2117 wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
2118 len = sizeof(u_int16_t);
2119 break;
2120
2121 case WI_RID_ROAMING_MODE:
2122 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
2123 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2124 &len);
2125 break;
2126 }
2127 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
2128 len = sizeof(u_int16_t);
2129 break;
2130
2131 case WI_RID_SYSTEM_SCALE:
2132 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
2133 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2134 &len);
2135 break;
2136 }
2137 wreq.wi_val[0] = htole16(sc->sc_system_scale);
2138 len = sizeof(u_int16_t);
2139 break;
2140
2141 case WI_RID_FRAG_THRESH:
2142 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
2143 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2144 &len);
2145 break;
2146 }
2147 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2148 len = sizeof(u_int16_t);
2149 break;
2150
2151 case WI_RID_READ_APS:
2152 #ifndef IEEE80211_NO_HOSTAP
2153 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2154 return ieee80211_cfgget(ic, cmd, data);
2155 #endif /* !IEEE80211_NO_HOSTAP */
2156 if (sc->sc_scan_timer > 0) {
2157 error = EINPROGRESS;
2158 break;
2159 }
2160 n = sc->sc_naps;
2161 if (len < sizeof(n)) {
2162 error = ENOSPC;
2163 break;
2164 }
2165 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
2166 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
2167 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
2168 memcpy(wreq.wi_val, &n, sizeof(n));
2169 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
2170 sizeof(struct wi_apinfo) * n);
2171 break;
2172
2173 default:
2174 if (sc->sc_enabled) {
2175 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2176 &len);
2177 break;
2178 }
2179 switch (wreq.wi_type) {
2180 case WI_RID_MAX_DATALEN:
2181 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
2182 len = sizeof(u_int16_t);
2183 break;
2184 case WI_RID_FRAG_THRESH:
2185 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2186 len = sizeof(u_int16_t);
2187 break;
2188 case WI_RID_RTS_THRESH:
2189 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
2190 len = sizeof(u_int16_t);
2191 break;
2192 case WI_RID_CNFAUTHMODE:
2193 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
2194 len = sizeof(u_int16_t);
2195 break;
2196 case WI_RID_NODENAME:
2197 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
2198 error = ENOSPC;
2199 break;
2200 }
2201 len = sc->sc_nodelen + sizeof(u_int16_t);
2202 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
2203 memcpy(&wreq.wi_val[1], sc->sc_nodename,
2204 sc->sc_nodelen);
2205 break;
2206 default:
2207 return ieee80211_cfgget(ic, cmd, data);
2208 }
2209 break;
2210 }
2211 if (error)
2212 return error;
2213 wreq.wi_len = (len + 1) / 2 + 1;
2214 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
2215 }
2216
2217 STATIC int
2218 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2219 {
2220 struct wi_softc *sc = ifp->if_softc;
2221 struct ieee80211com *ic = &sc->sc_ic;
2222 struct ifreq *ifr = (struct ifreq *)data;
2223 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2224 struct wi_req wreq;
2225 struct mbuf *m;
2226 int i, len, error;
2227
2228 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2229 if (error)
2230 return error;
2231 len = (wreq.wi_len - 1) * 2;
2232 switch (wreq.wi_type) {
2233 case WI_RID_DBM_ADJUST:
2234 return ENODEV;
2235
2236 case WI_RID_NODENAME:
2237 if (le16toh(wreq.wi_val[0]) * 2 > len ||
2238 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
2239 error = ENOSPC;
2240 break;
2241 }
2242 if (sc->sc_enabled) {
2243 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2244 len);
2245 if (error)
2246 break;
2247 }
2248 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
2249 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
2250 break;
2251
2252 case WI_RID_MICROWAVE_OVEN:
2253 case WI_RID_ROAMING_MODE:
2254 case WI_RID_SYSTEM_SCALE:
2255 case WI_RID_FRAG_THRESH:
2256 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
2257 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
2258 break;
2259 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
2260 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
2261 break;
2262 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
2263 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
2264 break;
2265 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
2266 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
2267 break;
2268 /* FALLTHROUGH */
2269 case WI_RID_RTS_THRESH:
2270 case WI_RID_CNFAUTHMODE:
2271 case WI_RID_MAX_DATALEN:
2272 if (sc->sc_enabled) {
2273 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2274 sizeof(u_int16_t));
2275 if (error)
2276 break;
2277 }
2278 switch (wreq.wi_type) {
2279 case WI_RID_FRAG_THRESH:
2280 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
2281 break;
2282 case WI_RID_RTS_THRESH:
2283 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
2284 break;
2285 case WI_RID_MICROWAVE_OVEN:
2286 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
2287 break;
2288 case WI_RID_ROAMING_MODE:
2289 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
2290 break;
2291 case WI_RID_SYSTEM_SCALE:
2292 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
2293 break;
2294 case WI_RID_CNFAUTHMODE:
2295 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
2296 break;
2297 case WI_RID_MAX_DATALEN:
2298 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
2299 break;
2300 }
2301 break;
2302
2303 case WI_RID_TX_RATE:
2304 switch (le16toh(wreq.wi_val[0])) {
2305 case 3:
2306 ic->ic_fixed_rate = -1;
2307 break;
2308 default:
2309 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2310 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
2311 / 2 == le16toh(wreq.wi_val[0]))
2312 break;
2313 }
2314 if (i == IEEE80211_RATE_SIZE)
2315 return EINVAL;
2316 ic->ic_fixed_rate = i;
2317 }
2318 if (sc->sc_enabled)
2319 error = wi_cfg_txrate(sc);
2320 break;
2321
2322 case WI_RID_SCAN_APS:
2323 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2324 error = wi_scan_ap(sc, 0x3fff, 0x000f);
2325 break;
2326
2327 case WI_RID_MGMT_XMIT:
2328 if (!sc->sc_enabled) {
2329 error = ENETDOWN;
2330 break;
2331 }
2332 if (ic->ic_mgtq.ifq_len > 5) {
2333 error = EAGAIN;
2334 break;
2335 }
2336 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
2337 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
2338 if (m == NULL) {
2339 error = ENOMEM;
2340 break;
2341 }
2342 IF_ENQUEUE(&ic->ic_mgtq, m);
2343 break;
2344
2345 default:
2346 if (sc->sc_enabled) {
2347 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2348 len);
2349 if (error)
2350 break;
2351 }
2352 error = ieee80211_cfgset(ic, cmd, data);
2353 break;
2354 }
2355 return error;
2356 }
2357
2358 /* Rate is 0 for hardware auto-select, otherwise rate is
2359 * 2, 4, 11, or 22 (units of 500Kbps).
2360 */
2361 STATIC int
2362 wi_write_txrate(struct wi_softc *sc, int rate)
2363 {
2364 u_int16_t hwrate;
2365
2366 /* rate: 0, 2, 4, 11, 22 */
2367 switch (sc->sc_firmware_type) {
2368 case WI_LUCENT:
2369 switch (rate & IEEE80211_RATE_VAL) {
2370 case 2:
2371 hwrate = 1;
2372 break;
2373 case 4:
2374 hwrate = 2;
2375 break;
2376 default:
2377 hwrate = 3; /* auto */
2378 break;
2379 case 11:
2380 hwrate = 4;
2381 break;
2382 case 22:
2383 hwrate = 5;
2384 break;
2385 }
2386 break;
2387 default:
2388 switch (rate & IEEE80211_RATE_VAL) {
2389 case 2:
2390 hwrate = 1;
2391 break;
2392 case 4:
2393 hwrate = 2;
2394 break;
2395 case 11:
2396 hwrate = 4;
2397 break;
2398 case 22:
2399 hwrate = 8;
2400 break;
2401 default:
2402 hwrate = 15; /* auto */
2403 break;
2404 }
2405 break;
2406 }
2407
2408 if (sc->sc_tx_rate == hwrate)
2409 return 0;
2410
2411 if (sc->sc_if.if_flags & IFF_DEBUG)
2412 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate,
2413 hwrate, rate);
2414
2415 sc->sc_tx_rate = hwrate;
2416
2417 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate);
2418 }
2419
2420 STATIC int
2421 wi_cfg_txrate(struct wi_softc *sc)
2422 {
2423 struct ieee80211com *ic = &sc->sc_ic;
2424 struct ieee80211_rateset *rs;
2425 int rate;
2426
2427 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2428
2429 sc->sc_tx_rate = 0; /* force write to RID */
2430
2431 if (ic->ic_fixed_rate < 0)
2432 rate = 0; /* auto */
2433 else
2434 rate = rs->rs_rates[ic->ic_fixed_rate];
2435
2436 return wi_write_txrate(sc, rate);
2437 }
2438
2439 STATIC int
2440 wi_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
2441 {
2442 int keyix;
2443
2444 if (&ic->ic_nw_keys[0] <= k && k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])
2445 keyix = k - ic->ic_nw_keys;
2446 else
2447 keyix = IEEE80211_KEYIX_NONE;
2448
2449 DPRINTF(("%s: alloc key %u\n", __func__, keyix));
2450
2451 return keyix;
2452 }
2453
2454 STATIC int
2455 wi_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2456 {
2457 struct wi_softc *sc = ic->ic_ifp->if_softc;
2458 u_int keyix = k->wk_keyix;
2459
2460 DPRINTF(("%s: delete key %u\n", __func__, keyix));
2461
2462 if (keyix >= IEEE80211_WEP_NKID)
2463 return 0;
2464 if (k->wk_keylen != 0)
2465 sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
2466
2467 return 1;
2468 }
2469
2470 static int
2471 wi_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2472 const u_int8_t mac[IEEE80211_ADDR_LEN])
2473 {
2474 struct wi_softc *sc = ic->ic_ifp->if_softc;
2475
2476 DPRINTF(("%s: set key %u\n", __func__, k->wk_keyix));
2477
2478 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2479 return 0;
2480
2481 sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
2482
2483 return 1;
2484 }
2485
2486 STATIC void
2487 wi_key_update_begin(struct ieee80211com *ic)
2488 {
2489 DPRINTF(("%s:\n", __func__));
2490 }
2491
2492 STATIC void
2493 wi_key_update_end(struct ieee80211com *ic)
2494 {
2495 struct ifnet *ifp = ic->ic_ifp;
2496 struct wi_softc *sc = ifp->if_softc;
2497
2498 DPRINTF(("%s:\n", __func__));
2499
2500 if ((sc->sc_flags & WI_FLAGS_WEP_VALID) != 0)
2501 return;
2502 if (ic->ic_caps & IEEE80211_C_WEP)
2503 (void)wi_write_wep(sc);
2504 }
2505
2506 STATIC int
2507 wi_write_wep(struct wi_softc *sc)
2508 {
2509 struct ifnet *ifp = &sc->sc_if;
2510 struct ieee80211com *ic = &sc->sc_ic;
2511 int error = 0;
2512 int i, keylen;
2513 u_int16_t val;
2514 struct wi_key wkey[IEEE80211_WEP_NKID];
2515
2516 if ((ifp->if_flags & IFF_RUNNING) != 0)
2517 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
2518
2519 switch (sc->sc_firmware_type) {
2520 case WI_LUCENT:
2521 val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0;
2522 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2523 if (error)
2524 break;
2525 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_def_txkey);
2526 if (error)
2527 break;
2528 memset(wkey, 0, sizeof(wkey));
2529 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2530 keylen = ic->ic_nw_keys[i].wk_keylen;
2531 wkey[i].wi_keylen = htole16(keylen);
2532 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2533 keylen);
2534 }
2535 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2536 wkey, sizeof(wkey));
2537 break;
2538
2539 case WI_INTERSIL:
2540 case WI_SYMBOL:
2541 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2542 /*
2543 * ONLY HWB3163 EVAL-CARD Firmware version
2544 * less than 0.8 variant2
2545 *
2546 * If promiscuous mode disable, Prism2 chip
2547 * does not work with WEP .
2548 * It is under investigation for details.
2549 * (ichiro (at) NetBSD.org)
2550 */
2551 if (sc->sc_firmware_type == WI_INTERSIL &&
2552 sc->sc_sta_firmware_ver < 802 ) {
2553 /* firm ver < 0.8 variant 2 */
2554 wi_write_val(sc, WI_RID_PROMISC, 1);
2555 }
2556 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2557 sc->sc_cnfauthmode);
2558 val = PRIVACY_INVOKED;
2559 if ((sc->sc_ic_flags & IEEE80211_F_DROPUNENC) != 0)
2560 val |= EXCLUDE_UNENCRYPTED;
2561 #ifndef IEEE80211_NO_HOSTAP
2562 /*
2563 * Encryption firmware has a bug for HostAP mode.
2564 */
2565 if (sc->sc_firmware_type == WI_INTERSIL &&
2566 ic->ic_opmode == IEEE80211_M_HOSTAP)
2567 val |= HOST_ENCRYPT;
2568 #endif /* !IEEE80211_NO_HOSTAP */
2569 } else {
2570 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2571 IEEE80211_AUTH_OPEN);
2572 val = HOST_ENCRYPT | HOST_DECRYPT;
2573 }
2574 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2575 if (error)
2576 break;
2577 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2578 ic->ic_def_txkey);
2579 if (error)
2580 break;
2581 /*
2582 * It seems that the firmware accept 104bit key only if
2583 * all the keys have 104bit length. We get the length of
2584 * the transmit key and use it for all other keys.
2585 * Perhaps we should use software WEP for such situation.
2586 */
2587 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
2588 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
2589 keylen = 13; /* No keys => 104bit ok */
2590 else
2591 keylen = ic->ic_nw_keys[ic->ic_def_txkey].wk_keylen;
2592
2593 if (keylen > IEEE80211_WEP_KEYLEN)
2594 keylen = 13; /* 104bit keys */
2595 else
2596 keylen = IEEE80211_WEP_KEYLEN;
2597 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2598 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2599 ic->ic_nw_keys[i].wk_key, keylen);
2600 if (error)
2601 break;
2602 }
2603 break;
2604 }
2605 if ((ifp->if_flags & IFF_RUNNING) != 0)
2606 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
2607 if (error == 0)
2608 sc->sc_flags |= WI_FLAGS_WEP_VALID;
2609 return error;
2610 }
2611
2612 /* Must be called at proper protection level! */
2613 STATIC int
2614 wi_cmd_start(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2615 {
2616 #ifdef WI_HISTOGRAM
2617 static int hist1[11];
2618 static int hist1count;
2619 #endif
2620 int i;
2621
2622 /* wait for the busy bit to clear */
2623 for (i = 500; i > 0; i--) { /* 5s */
2624 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2625 break;
2626 if (sc->sc_invalid)
2627 return ENXIO;
2628 DELAY(1000); /* 1 m sec */
2629 }
2630 if (i == 0) {
2631 printf("%s: wi_cmd: busy bit won't clear.\n",
2632 sc->sc_dev.dv_xname);
2633 return(ETIMEDOUT);
2634 }
2635 #ifdef WI_HISTOGRAM
2636 if (i > 490)
2637 hist1[500 - i]++;
2638 else
2639 hist1[10]++;
2640 if (++hist1count == 1000) {
2641 hist1count = 0;
2642 printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n",
2643 sc->sc_dev.dv_xname,
2644 hist1[0], hist1[1], hist1[2], hist1[3], hist1[4],
2645 hist1[5], hist1[6], hist1[7], hist1[8], hist1[9],
2646 hist1[10]);
2647 }
2648 #endif
2649 CSR_WRITE_2(sc, WI_PARAM0, val0);
2650 CSR_WRITE_2(sc, WI_PARAM1, val1);
2651 CSR_WRITE_2(sc, WI_PARAM2, val2);
2652 CSR_WRITE_2(sc, WI_COMMAND, cmd);
2653
2654 return 0;
2655 }
2656
2657 STATIC int
2658 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2659 {
2660 int rc;
2661
2662 #ifdef WI_DEBUG
2663 if (wi_debug) {
2664 printf("%s: [enter] %d txcmds outstanding\n", __func__,
2665 sc->sc_txcmds);
2666 }
2667 #endif
2668 if (sc->sc_txcmds > 0)
2669 wi_txcmd_wait(sc);
2670
2671 if ((rc = wi_cmd_start(sc, cmd, val0, val1, val2)) != 0)
2672 return rc;
2673
2674 if (cmd == WI_CMD_INI) {
2675 /* XXX: should sleep here. */
2676 if (sc->sc_invalid)
2677 return ENXIO;
2678 DELAY(100*1000);
2679 }
2680 rc = wi_cmd_wait(sc, cmd, val0);
2681
2682 #ifdef WI_DEBUG
2683 if (wi_debug) {
2684 printf("%s: [ ] %d txcmds outstanding\n", __func__,
2685 sc->sc_txcmds);
2686 }
2687 #endif
2688 if (sc->sc_txcmds > 0)
2689 wi_cmd_intr(sc);
2690
2691 #ifdef WI_DEBUG
2692 if (wi_debug) {
2693 printf("%s: [leave] %d txcmds outstanding\n", __func__,
2694 sc->sc_txcmds);
2695 }
2696 #endif
2697 return rc;
2698 }
2699
2700 STATIC int
2701 wi_cmd_wait(struct wi_softc *sc, int cmd, int val0)
2702 {
2703 #ifdef WI_HISTOGRAM
2704 static int hist2[11];
2705 static int hist2count;
2706 #endif
2707 int i, status;
2708 #ifdef WI_DEBUG
2709 if (wi_debug > 1)
2710 printf("%s: cmd=%#x, arg=%#x\n", __func__, cmd, val0);
2711 #endif /* WI_DEBUG */
2712
2713 /* wait for the cmd completed bit */
2714 for (i = 0; i < WI_TIMEOUT; i++) {
2715 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
2716 break;
2717 if (sc->sc_invalid)
2718 return ENXIO;
2719 DELAY(WI_DELAY);
2720 }
2721
2722 #ifdef WI_HISTOGRAM
2723 if (i < 100)
2724 hist2[i/10]++;
2725 else
2726 hist2[10]++;
2727 if (++hist2count == 1000) {
2728 hist2count = 0;
2729 printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n",
2730 sc->sc_dev.dv_xname,
2731 hist2[0], hist2[1], hist2[2], hist2[3], hist2[4],
2732 hist2[5], hist2[6], hist2[7], hist2[8], hist2[9],
2733 hist2[10]);
2734 }
2735 #endif
2736
2737 status = CSR_READ_2(sc, WI_STATUS);
2738
2739 if (i == WI_TIMEOUT) {
2740 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
2741 sc->sc_dev.dv_xname, cmd, val0);
2742 return ETIMEDOUT;
2743 }
2744
2745 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2746
2747 if (status & WI_STAT_CMD_RESULT) {
2748 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
2749 sc->sc_dev.dv_xname, cmd, val0);
2750 return EIO;
2751 }
2752 return 0;
2753 }
2754
2755 STATIC int
2756 wi_seek_bap(struct wi_softc *sc, int id, int off)
2757 {
2758 #ifdef WI_HISTOGRAM
2759 static int hist4[11];
2760 static int hist4count;
2761 #endif
2762 int i, status;
2763
2764 CSR_WRITE_2(sc, WI_SEL0, id);
2765 CSR_WRITE_2(sc, WI_OFF0, off);
2766
2767 for (i = 0; ; i++) {
2768 status = CSR_READ_2(sc, WI_OFF0);
2769 if ((status & WI_OFF_BUSY) == 0)
2770 break;
2771 if (i == WI_TIMEOUT) {
2772 printf("%s: timeout in wi_seek to %x/%x\n",
2773 sc->sc_dev.dv_xname, id, off);
2774 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2775 return ETIMEDOUT;
2776 }
2777 if (sc->sc_invalid)
2778 return ENXIO;
2779 DELAY(2);
2780 }
2781 #ifdef WI_HISTOGRAM
2782 if (i < 100)
2783 hist4[i/10]++;
2784 else
2785 hist4[10]++;
2786 if (++hist4count == 2500) {
2787 hist4count = 0;
2788 printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n",
2789 sc->sc_dev.dv_xname,
2790 hist4[0], hist4[1], hist4[2], hist4[3], hist4[4],
2791 hist4[5], hist4[6], hist4[7], hist4[8], hist4[9],
2792 hist4[10]);
2793 }
2794 #endif
2795 if (status & WI_OFF_ERR) {
2796 printf("%s: failed in wi_seek to %x/%x\n",
2797 sc->sc_dev.dv_xname, id, off);
2798 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2799 return EIO;
2800 }
2801 sc->sc_bap_id = id;
2802 sc->sc_bap_off = off;
2803 return 0;
2804 }
2805
2806 STATIC int
2807 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2808 {
2809 int error, cnt;
2810
2811 if (buflen == 0)
2812 return 0;
2813 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2814 if ((error = wi_seek_bap(sc, id, off)) != 0)
2815 return error;
2816 }
2817 cnt = (buflen + 1) / 2;
2818 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2819 sc->sc_bap_off += cnt * 2;
2820 return 0;
2821 }
2822
2823 STATIC int
2824 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2825 {
2826 int error, cnt;
2827
2828 if (buflen == 0)
2829 return 0;
2830
2831 #ifdef WI_HERMES_AUTOINC_WAR
2832 again:
2833 #endif
2834 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2835 if ((error = wi_seek_bap(sc, id, off)) != 0)
2836 return error;
2837 }
2838 cnt = (buflen + 1) / 2;
2839 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2840 sc->sc_bap_off += cnt * 2;
2841
2842 #ifdef WI_HERMES_AUTOINC_WAR
2843 /*
2844 * According to the comments in the HCF Light code, there is a bug
2845 * in the Hermes (or possibly in certain Hermes firmware revisions)
2846 * where the chip's internal autoincrement counter gets thrown off
2847 * during data writes: the autoincrement is missed, causing one
2848 * data word to be overwritten and subsequent words to be written to
2849 * the wrong memory locations. The end result is that we could end
2850 * up transmitting bogus frames without realizing it. The workaround
2851 * for this is to write a couple of extra guard words after the end
2852 * of the transfer, then attempt to read then back. If we fail to
2853 * locate the guard words where we expect them, we preform the
2854 * transfer over again.
2855 */
2856 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2857 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2858 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2859 wi_seek_bap(sc, id, sc->sc_bap_off);
2860 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2861 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2862 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2863 printf("%s: detect auto increment bug, try again\n",
2864 sc->sc_dev.dv_xname);
2865 goto again;
2866 }
2867 }
2868 #endif
2869 return 0;
2870 }
2871
2872 STATIC int
2873 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2874 {
2875 int error, len;
2876 struct mbuf *m;
2877
2878 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2879 if (m->m_len == 0)
2880 continue;
2881
2882 len = min(m->m_len, totlen);
2883
2884 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2885 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2886 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2887 totlen);
2888 }
2889
2890 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2891 return error;
2892
2893 off += m->m_len;
2894 totlen -= len;
2895 }
2896 return 0;
2897 }
2898
2899 STATIC int
2900 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2901 {
2902 int i;
2903
2904 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2905 printf("%s: failed to allocate %d bytes on NIC\n",
2906 sc->sc_dev.dv_xname, len);
2907 return ENOMEM;
2908 }
2909
2910 for (i = 0; i < WI_TIMEOUT; i++) {
2911 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2912 break;
2913 DELAY(1);
2914 }
2915 if (i == WI_TIMEOUT) {
2916 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
2917 return ETIMEDOUT;
2918 }
2919 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
2920 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2921 return 0;
2922 }
2923
2924 STATIC int
2925 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2926 {
2927 int error, len;
2928 u_int16_t ltbuf[2];
2929
2930 /* Tell the NIC to enter record read mode. */
2931 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2932 if (error)
2933 return error;
2934
2935 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2936 if (error)
2937 return error;
2938
2939 if (le16toh(ltbuf[0]) == 0)
2940 return EOPNOTSUPP;
2941 if (le16toh(ltbuf[1]) != rid) {
2942 printf("%s: record read mismatch, rid=%x, got=%x\n",
2943 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
2944 return EIO;
2945 }
2946 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
2947 if (*buflenp < len) {
2948 printf("%s: record buffer is too small, "
2949 "rid=%x, size=%d, len=%d\n",
2950 sc->sc_dev.dv_xname, rid, *buflenp, len);
2951 return ENOSPC;
2952 }
2953 *buflenp = len;
2954 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2955 }
2956
2957 STATIC int
2958 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2959 {
2960 int error;
2961 u_int16_t ltbuf[2];
2962
2963 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
2964 ltbuf[1] = htole16(rid);
2965
2966 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2967 if (error)
2968 return error;
2969 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2970 if (error)
2971 return error;
2972
2973 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2974 }
2975
2976 STATIC void
2977 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni)
2978 {
2979 struct wi_node *wn = (void*)ni;
2980 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt);
2981 }
2982
2983 STATIC void
2984 wi_rssadapt_updatestats(void *arg)
2985 {
2986 struct wi_softc *sc = arg;
2987 struct ieee80211com *ic = &sc->sc_ic;
2988 ieee80211_iterate_nodes(&ic->ic_sta, wi_rssadapt_updatestats_cb, arg);
2989 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2990 ic->ic_state == IEEE80211_S_RUN)
2991 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
2992 wi_rssadapt_updatestats, arg);
2993 }
2994
2995 /*
2996 * In HOSTAP mode, restore IEEE80211_F_DROPUNENC when operating
2997 * with WEP enabled so that the AP drops unencoded frames at the
2998 * 802.11 layer.
2999 *
3000 * In all other modes, clear IEEE80211_F_DROPUNENC when operating
3001 * with WEP enabled so we don't drop unencoded frames at the 802.11
3002 * layer. This is necessary because we must strip the WEP bit from
3003 * the 802.11 header before passing frames to ieee80211_input
3004 * because the card has already stripped the WEP crypto header from
3005 * the packet.
3006 */
3007 STATIC void
3008 wi_mend_flags(struct wi_softc *sc)
3009 {
3010 struct ieee80211com *ic = &sc->sc_ic;
3011
3012 if (ic->ic_state == IEEE80211_S_RUN &&
3013 (ic->ic_flags & IEEE80211_F_PRIVACY) != 0 &&
3014 ic->ic_opmode != IEEE80211_M_HOSTAP)
3015 ic->ic_flags &= ~IEEE80211_F_DROPUNENC;
3016 else
3017 ic->ic_flags = sc->sc_ic_flags;
3018 }
3019
3020 STATIC int
3021 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3022 {
3023 struct ifnet *ifp = ic->ic_ifp;
3024 struct wi_softc *sc = ifp->if_softc;
3025 struct ieee80211_node *ni = ic->ic_bss;
3026 u_int16_t val;
3027 struct wi_ssid ssid;
3028 struct wi_macaddr bssid, old_bssid;
3029 enum ieee80211_state ostate;
3030 #ifdef WI_DEBUG
3031 static const char *stname[] =
3032 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
3033 #endif /* WI_DEBUG */
3034
3035 ostate = ic->ic_state;
3036 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
3037
3038 switch (nstate) {
3039 case IEEE80211_S_INIT:
3040 if (ic->ic_opmode != IEEE80211_M_MONITOR)
3041 callout_stop(&sc->sc_rssadapt_ch);
3042 ic->ic_flags &= ~IEEE80211_F_SIBSS;
3043 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
3044 break;
3045
3046 case IEEE80211_S_SCAN:
3047 case IEEE80211_S_AUTH:
3048 case IEEE80211_S_ASSOC:
3049 ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */
3050 return 0;
3051
3052 case IEEE80211_S_RUN:
3053 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
3054 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid);
3055 wi_read_xrid(sc, WI_RID_CURRENT_BSSID, &bssid,
3056 IEEE80211_ADDR_LEN);
3057 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid);
3058 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid);
3059 wi_read_xrid(sc, WI_RID_CURRENT_CHAN, &val, sizeof(val));
3060 if (!isset(ic->ic_chan_avail, le16toh(val)))
3061 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname,
3062 le16toh(val));
3063 ni->ni_chan = &ic->ic_channels[le16toh(val)];
3064
3065 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3066 #ifndef IEEE80211_NO_HOSTAP
3067 ni->ni_esslen = ic->ic_des_esslen;
3068 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
3069 ni->ni_rates = ic->ic_sup_rates[
3070 ieee80211_chan2mode(ic, ni->ni_chan)];
3071 ni->ni_intval = ic->ic_lintval;
3072 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
3073 if (ic->ic_flags & IEEE80211_F_PRIVACY)
3074 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
3075 #endif /* !IEEE80211_NO_HOSTAP */
3076 } else {
3077 wi_read_xrid(sc, WI_RID_CURRENT_SSID, &ssid,
3078 sizeof(ssid));
3079 ni->ni_esslen = le16toh(ssid.wi_len);
3080 if (ni->ni_esslen > IEEE80211_NWID_LEN)
3081 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
3082 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
3083 ni->ni_rates = ic->ic_sup_rates[
3084 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/
3085 }
3086 wi_mend_flags(sc);
3087 if (ic->ic_opmode != IEEE80211_M_MONITOR)
3088 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
3089 wi_rssadapt_updatestats, sc);
3090 /* Trigger routing socket messages. XXX Copied from
3091 * ieee80211_newstate.
3092 */
3093 if (ic->ic_opmode == IEEE80211_M_STA)
3094 ieee80211_notify_node_join(ic, ic->ic_bss,
3095 arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
3096 break;
3097 }
3098 return (*sc->sc_newstate)(ic, nstate, arg);
3099 }
3100
3101 STATIC void
3102 wi_set_tim(struct ieee80211com *ic, struct ieee80211_node *ni, int set)
3103 {
3104 struct wi_softc *sc = ic->ic_ifp->if_softc;
3105
3106 (*sc->sc_set_tim)(ic, ni, set);
3107
3108 if ((ic->ic_flags & IEEE80211_F_TIMUPDATE) == 0)
3109 return;
3110
3111 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
3112
3113 (void)wi_write_val(sc, WI_RID_SET_TIM,
3114 IEEE80211_AID(ni->ni_associd) | (set ? 0x8000 : 0));
3115 }
3116
3117 STATIC int
3118 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
3119 {
3120 int error = 0;
3121 u_int16_t val[2];
3122
3123 if (!sc->sc_enabled)
3124 return ENXIO;
3125 switch (sc->sc_firmware_type) {
3126 case WI_LUCENT:
3127 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
3128 break;
3129 case WI_INTERSIL:
3130 val[0] = htole16(chanmask); /* channel */
3131 val[1] = htole16(txrate); /* tx rate */
3132 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
3133 break;
3134 case WI_SYMBOL:
3135 /*
3136 * XXX only supported on 3.x ?
3137 */
3138 val[0] = htole16(BSCAN_BCAST | BSCAN_ONETIME);
3139 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
3140 val, sizeof(val[0]));
3141 break;
3142 }
3143 if (error == 0) {
3144 sc->sc_scan_timer = WI_SCAN_WAIT;
3145 sc->sc_if.if_timer = 1;
3146 DPRINTF(("wi_scan_ap: start scanning, "
3147 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate));
3148 }
3149 return error;
3150 }
3151
3152 STATIC void
3153 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
3154 {
3155 #define N(a) (sizeof (a) / sizeof (a[0]))
3156 int i, naps, off, szbuf;
3157 struct wi_scan_header ws_hdr; /* Prism2 header */
3158 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
3159 struct wi_apinfo *ap;
3160
3161 off = sizeof(u_int16_t) * 2;
3162 memset(&ws_hdr, 0, sizeof(ws_hdr));
3163 switch (sc->sc_firmware_type) {
3164 case WI_INTERSIL:
3165 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
3166 off += sizeof(ws_hdr);
3167 szbuf = sizeof(struct wi_scan_data_p2);
3168 break;
3169 case WI_SYMBOL:
3170 szbuf = sizeof(struct wi_scan_data_p2) + 6;
3171 break;
3172 case WI_LUCENT:
3173 szbuf = sizeof(struct wi_scan_data);
3174 break;
3175 default:
3176 printf("%s: wi_scan_result: unknown firmware type %u\n",
3177 sc->sc_dev.dv_xname, sc->sc_firmware_type);
3178 naps = 0;
3179 goto done;
3180 }
3181 naps = (cnt * 2 + 2 - off) / szbuf;
3182 if (naps > N(sc->sc_aps))
3183 naps = N(sc->sc_aps);
3184 sc->sc_naps = naps;
3185 /* Read Data */
3186 ap = sc->sc_aps;
3187 memset(&ws_dat, 0, sizeof(ws_dat));
3188 for (i = 0; i < naps; i++, ap++) {
3189 wi_read_bap(sc, fid, off, &ws_dat,
3190 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
3191 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
3192 ether_sprintf(ws_dat.wi_bssid)));
3193 off += szbuf;
3194 ap->scanreason = le16toh(ws_hdr.wi_reason);
3195 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
3196 ap->channel = le16toh(ws_dat.wi_chid);
3197 ap->signal = le16toh(ws_dat.wi_signal);
3198 ap->noise = le16toh(ws_dat.wi_noise);
3199 ap->quality = ap->signal - ap->noise;
3200 ap->capinfo = le16toh(ws_dat.wi_capinfo);
3201 ap->interval = le16toh(ws_dat.wi_interval);
3202 ap->rate = le16toh(ws_dat.wi_rate);
3203 ap->namelen = le16toh(ws_dat.wi_namelen);
3204 if (ap->namelen > sizeof(ap->name))
3205 ap->namelen = sizeof(ap->name);
3206 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
3207 }
3208 done:
3209 /* Done scanning */
3210 sc->sc_scan_timer = 0;
3211 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
3212 #undef N
3213 }
3214
3215 STATIC void
3216 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
3217 {
3218 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
3219 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL
3220 : -1,
3221 rssi);
3222 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
3223 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
3224 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
3225 printf(" rx_signal %u rx_rate %u rx_flow %u\n",
3226 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
3227 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
3228 wh->wi_tx_rtry, wh->wi_tx_rate,
3229 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
3230 printf(" ehdr dst %s src %s type 0x%x\n",
3231 ether_sprintf(wh->wi_ehdr.ether_dhost),
3232 ether_sprintf(wh->wi_ehdr.ether_shost),
3233 wh->wi_ehdr.ether_type);
3234 }
3235