wi.c revision 1.209 1 /* $NetBSD: wi.c,v 1.209 2005/08/10 13:20:42 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1997, 1998, 1999
41 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Bill Paul.
54 * 4. Neither the name of the author nor the names of any co-contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
68 * THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
73 *
74 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
81 * from Lucent. Unlike the older cards, the new ones are programmed
82 * entirely via a firmware-driven controller called the Hermes.
83 * Unfortunately, Lucent will not release the Hermes programming manual
84 * without an NDA (if at all). What they do release is an API library
85 * called the HCF (Hardware Control Functions) which is supposed to
86 * do the device-specific operations of a device driver for you. The
87 * publically available version of the HCF library (the 'HCF Light') is
88 * a) extremely gross, b) lacks certain features, particularly support
89 * for 802.11 frames, and c) is contaminated by the GNU Public License.
90 *
91 * This driver does not use the HCF or HCF Light at all. Instead, it
92 * programs the Hermes controller directly, using information gleaned
93 * from the HCF Light code and corresponding documentation.
94 *
95 * This driver supports both the PCMCIA and ISA versions of the
96 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
97 * anything of the sort: it's actually a PCMCIA bridge adapter
98 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
99 * inserted. Consequently, you need to use the pccard support for
100 * both the ISA and PCMCIA adapters.
101 */
102
103 /*
104 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
105 * Oslo IETF plenary meeting.
106 */
107
108 #include <sys/cdefs.h>
109 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.209 2005/08/10 13:20:42 christos Exp $");
110
111 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
112 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
113 #undef WI_HISTOGRAM
114 #undef WI_RING_DEBUG
115 #define STATIC static
116
117 #include "bpfilter.h"
118
119 #include <sys/param.h>
120 #include <sys/sysctl.h>
121 #include <sys/systm.h>
122 #include <sys/callout.h>
123 #include <sys/device.h>
124 #include <sys/socket.h>
125 #include <sys/mbuf.h>
126 #include <sys/ioctl.h>
127 #include <sys/kernel.h> /* for hz */
128 #include <sys/proc.h>
129
130 #include <net/if.h>
131 #include <net/if_dl.h>
132 #include <net/if_llc.h>
133 #include <net/if_media.h>
134 #include <net/if_ether.h>
135 #include <net/route.h>
136
137 #include <net80211/ieee80211_netbsd.h>
138 #include <net80211/ieee80211_var.h>
139 #include <net80211/ieee80211_ioctl.h>
140 #include <net80211/ieee80211_radiotap.h>
141 #include <net80211/ieee80211_rssadapt.h>
142
143 #if NBPFILTER > 0
144 #include <net/bpf.h>
145 #include <net/bpfdesc.h>
146 #endif
147
148 #include <machine/bus.h>
149
150 #include <dev/ic/wi_ieee.h>
151 #include <dev/ic/wireg.h>
152 #include <dev/ic/wivar.h>
153
154 STATIC int wi_init(struct ifnet *);
155 STATIC void wi_stop(struct ifnet *, int);
156 STATIC void wi_start(struct ifnet *);
157 STATIC int wi_reset(struct wi_softc *);
158 STATIC void wi_watchdog(struct ifnet *);
159 STATIC int wi_ioctl(struct ifnet *, u_long, caddr_t);
160 STATIC int wi_media_change(struct ifnet *);
161 STATIC void wi_media_status(struct ifnet *, struct ifmediareq *);
162
163 STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211_node_table *);
164 STATIC void wi_node_free(struct ieee80211_node *);
165
166 STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
167 STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
168 STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *,
169 struct ieee80211_frame *, u_int);
170 STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *);
171 STATIC void wi_rssadapt_updatestats(void *);
172 STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *);
173 STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[],
174 wi_rssdescq_t *, u_int8_t (*)[]);
175 STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]);
176
177 STATIC void wi_rx_intr(struct wi_softc *);
178 STATIC void wi_txalloc_intr(struct wi_softc *);
179 STATIC void wi_cmd_intr(struct wi_softc *);
180 STATIC void wi_tx_intr(struct wi_softc *);
181 STATIC void wi_tx_ex_intr(struct wi_softc *);
182 STATIC void wi_info_intr(struct wi_softc *);
183
184 STATIC int wi_key_alloc(struct ieee80211com *, const struct ieee80211_key *);
185 STATIC int wi_key_delete(struct ieee80211com *, const struct ieee80211_key *);
186 STATIC int wi_key_set(struct ieee80211com *, const struct ieee80211_key *,
187 const u_int8_t[IEEE80211_ADDR_LEN]);
188 STATIC void wi_key_update_begin(struct ieee80211com *);
189 STATIC void wi_key_update_end(struct ieee80211com *);
190
191 STATIC void wi_push_packet(struct wi_softc *);
192 STATIC int wi_get_cfg(struct ifnet *, u_long, caddr_t);
193 STATIC int wi_set_cfg(struct ifnet *, u_long, caddr_t);
194 STATIC int wi_cfg_txrate(struct wi_softc *);
195 STATIC int wi_write_txrate(struct wi_softc *, int);
196 STATIC int wi_write_wep(struct wi_softc *);
197 STATIC int wi_write_multi(struct wi_softc *);
198 STATIC int wi_alloc_fid(struct wi_softc *, int, int *);
199 STATIC void wi_read_nicid(struct wi_softc *);
200 STATIC int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
201
202 STATIC int wi_cmd(struct wi_softc *, int, int, int, int);
203 STATIC int wi_cmd_start(struct wi_softc *, int, int, int, int);
204 STATIC int wi_cmd_wait(struct wi_softc *, int, int);
205 STATIC int wi_seek_bap(struct wi_softc *, int, int);
206 STATIC int wi_read_bap(struct wi_softc *, int, int, void *, int);
207 STATIC int wi_write_bap(struct wi_softc *, int, int, void *, int);
208 STATIC int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
209 STATIC int wi_read_rid(struct wi_softc *, int, void *, int *);
210 STATIC int wi_write_rid(struct wi_softc *, int, void *, int);
211
212 STATIC int wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
213 STATIC void wi_set_tim(struct ieee80211com *, struct ieee80211_node *, int);
214
215 STATIC int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
216 STATIC void wi_scan_result(struct wi_softc *, int, int);
217
218 STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
219 STATIC void wi_mend_flags(struct wi_softc *, enum ieee80211_state);
220
221 static inline int
222 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
223 {
224
225 val = htole16(val);
226 return wi_write_rid(sc, rid, &val, sizeof(val));
227 }
228
229 static struct timeval lasttxerror; /* time of last tx error msg */
230 static int curtxeps = 0; /* current tx error msgs/sec */
231 static int wi_txerate = 0; /* tx error rate: max msgs/sec */
232
233 #ifdef WI_DEBUG
234 #define WI_DEBUG_MAX 2
235 int wi_debug = 0;
236
237 #define DPRINTF(X) if (wi_debug) printf X
238 #define DPRINTF2(X) if (wi_debug > 1) printf X
239 #define IFF_DUMPPKTS(_ifp) \
240 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
241 static int wi_sysctl_verify_debug(SYSCTLFN_PROTO);
242 #else
243 #define DPRINTF(X)
244 #define DPRINTF2(X)
245 #define IFF_DUMPPKTS(_ifp) 0
246 #endif
247
248 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \
249 WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD)
250
251 struct wi_card_ident
252 wi_card_ident[] = {
253 /* CARD_ID CARD_NAME FIRM_TYPE */
254 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
255 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
256 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
257 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
258 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
259 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
260 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
261 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
262 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
263 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
264 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
265 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
266 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
267 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
268 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
269 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
270 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
271 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
272 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
273 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
274 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
275 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
276 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
277 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
278 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
279 { 0, NULL, 0 },
280 };
281
282 #ifndef _LKM
283 /*
284 * Setup sysctl(3) MIB, hw.wi.*
285 *
286 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
287 */
288 SYSCTL_SETUP(sysctl_wi, "sysctl wi(4) subtree setup")
289 {
290 int rc;
291 const struct sysctlnode *rnode;
292 #ifdef WI_DEBUG
293 const struct sysctlnode *cnode;
294 #endif /* WI_DEBUG */
295
296 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
297 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
298 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
299 goto err;
300
301 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
302 CTLFLAG_PERMANENT, CTLTYPE_NODE, "wi",
303 "Lucent/Prism/Symbol 802.11 controls",
304 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
305 goto err;
306
307 #ifdef WI_DEBUG
308 /* control debugging printfs */
309 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
310 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
311 "debug", SYSCTL_DESCR("Enable debugging output"),
312 wi_sysctl_verify_debug, 0, &wi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
313 goto err;
314 #endif /* WI_DEBUG */
315 return;
316 err:
317 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
318 }
319 #endif
320
321 #ifdef WI_DEBUG
322 static int
323 wi_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
324 {
325 int error, t;
326 struct sysctlnode node;
327
328 node = *rnode;
329 t = *(int*)rnode->sysctl_data;
330 node.sysctl_data = &t;
331 error = sysctl_lookup(SYSCTLFN_CALL(&node));
332 if (error || newp == NULL)
333 return (error);
334
335 if (t < lower || t > upper)
336 return (EINVAL);
337
338 *(int*)rnode->sysctl_data = t;
339
340 return (0);
341 }
342
343 static int
344 wi_sysctl_verify_debug(SYSCTLFN_ARGS)
345 {
346 return wi_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
347 0, WI_DEBUG_MAX);
348 }
349 #endif /* WI_DEBUG */
350
351 STATIC int
352 wi_read_xrid(struct wi_softc *sc, int rid, void *buf, int ebuflen)
353 {
354 int buflen, rc;
355
356 buflen = ebuflen;
357 if ((rc = wi_read_rid(sc, rid, buf, &buflen)) != 0)
358 return rc;
359
360 if (buflen < ebuflen) {
361 #ifdef WI_DEBUG
362 printf("%s: rid=%#04x read %d, expected %d\n", __func__,
363 rid, buflen, ebuflen);
364 #endif
365 return -1;
366 }
367 return 0;
368 }
369
370 int
371 wi_attach(struct wi_softc *sc, const u_int8_t *macaddr)
372 {
373 struct ieee80211com *ic = &sc->sc_ic;
374 struct ifnet *ifp = &sc->sc_if;
375 int chan, nrate, buflen;
376 u_int16_t val, chanavail;
377 struct {
378 u_int16_t nrates;
379 char rates[IEEE80211_RATE_SIZE];
380 } ratebuf;
381 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
382 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
383 };
384 int s;
385
386 s = splnet();
387
388 /* Make sure interrupts are disabled. */
389 CSR_WRITE_2(sc, WI_INT_EN, 0);
390 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
391
392 sc->sc_invalid = 0;
393
394 /* Reset the NIC. */
395 if (wi_reset(sc) != 0) {
396 sc->sc_invalid = 1;
397 splx(s);
398 return 1;
399 }
400
401 if (wi_read_xrid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
402 IEEE80211_ADDR_LEN) != 0 ||
403 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
404 if (macaddr != NULL)
405 memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN);
406 else {
407 printf(" could not get mac address, attach failed\n");
408 splx(s);
409 return 1;
410 }
411 }
412
413 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
414
415 /* Read NIC identification */
416 wi_read_nicid(sc);
417
418 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
419 ifp->if_softc = sc;
420 ifp->if_start = wi_start;
421 ifp->if_ioctl = wi_ioctl;
422 ifp->if_watchdog = wi_watchdog;
423 ifp->if_init = wi_init;
424 ifp->if_stop = wi_stop;
425 ifp->if_flags =
426 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
427 IFQ_SET_READY(&ifp->if_snd);
428
429 ic->ic_ifp = ifp;
430 ic->ic_phytype = IEEE80211_T_DS;
431 ic->ic_opmode = IEEE80211_M_STA;
432 ic->ic_caps = IEEE80211_C_AHDEMO;
433 ic->ic_state = IEEE80211_S_INIT;
434 ic->ic_max_aid = WI_MAX_AID;
435
436 /* Find available channel */
437 if (wi_read_xrid(sc, WI_RID_CHANNEL_LIST, &chanavail,
438 sizeof(chanavail)) != 0) {
439 aprint_normal("%s: using default channel list\n", sc->sc_dev.dv_xname);
440 chanavail = htole16(0x1fff); /* assume 1-13 */
441 }
442 for (chan = 16; chan > 0; chan--) {
443 if (!isset((u_int8_t*)&chanavail, chan - 1))
444 continue;
445 ic->ic_ibss_chan = &ic->ic_channels[chan];
446 ic->ic_channels[chan].ic_freq =
447 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
448 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
449 }
450
451 /* Find default IBSS channel */
452 if (wi_read_xrid(sc, WI_RID_OWN_CHNL, &val, sizeof(val)) == 0) {
453 chan = le16toh(val);
454 if (isset((u_int8_t*)&chanavail, chan - 1))
455 ic->ic_ibss_chan = &ic->ic_channels[chan];
456 }
457 if (ic->ic_ibss_chan == NULL) {
458 aprint_error("%s: no available channel\n", sc->sc_dev.dv_xname);
459 return 1;
460 }
461
462 if (sc->sc_firmware_type == WI_LUCENT) {
463 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
464 } else {
465 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
466 wi_read_xrid(sc, WI_RID_DBM_ADJUST, &val, sizeof(val)) == 0)
467 sc->sc_dbm_offset = le16toh(val);
468 else
469 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
470 }
471
472 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
473
474 /*
475 * Set flags based on firmware version.
476 */
477 switch (sc->sc_firmware_type) {
478 case WI_LUCENT:
479 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
480 #ifdef WI_HERMES_AUTOINC_WAR
481 /* XXX: not confirmed, but never seen for recent firmware */
482 if (sc->sc_sta_firmware_ver < 40000) {
483 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
484 }
485 #endif
486 if (sc->sc_sta_firmware_ver >= 60000)
487 sc->sc_flags |= WI_FLAGS_HAS_MOR;
488 if (sc->sc_sta_firmware_ver >= 60006) {
489 ic->ic_caps |= IEEE80211_C_IBSS;
490 ic->ic_caps |= IEEE80211_C_MONITOR;
491 }
492 ic->ic_caps |= IEEE80211_C_PMGT;
493 sc->sc_ibss_port = 1;
494 break;
495
496 case WI_INTERSIL:
497 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
498 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
499 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
500 if (sc->sc_sta_firmware_ver > 10101)
501 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
502 if (sc->sc_sta_firmware_ver >= 800) {
503 if (sc->sc_sta_firmware_ver != 10402)
504 ic->ic_caps |= IEEE80211_C_HOSTAP;
505 ic->ic_caps |= IEEE80211_C_IBSS;
506 ic->ic_caps |= IEEE80211_C_MONITOR;
507 }
508 ic->ic_caps |= IEEE80211_C_PMGT;
509 sc->sc_ibss_port = 0;
510 sc->sc_alt_retry = 2;
511 break;
512
513 case WI_SYMBOL:
514 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
515 if (sc->sc_sta_firmware_ver >= 20000)
516 ic->ic_caps |= IEEE80211_C_IBSS;
517 sc->sc_ibss_port = 4;
518 break;
519 }
520
521 /*
522 * Find out if we support WEP on this card.
523 */
524 if (wi_read_xrid(sc, WI_RID_WEP_AVAIL, &val, sizeof(val)) == 0 &&
525 val != htole16(0))
526 ic->ic_caps |= IEEE80211_C_WEP;
527
528 /* Find supported rates. */
529 buflen = sizeof(ratebuf);
530 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 &&
531 buflen > 2) {
532 nrate = le16toh(ratebuf.nrates);
533 if (nrate > IEEE80211_RATE_SIZE)
534 nrate = IEEE80211_RATE_SIZE;
535 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates,
536 &ratebuf.rates[0], nrate);
537 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
538 } else {
539 aprint_error("%s: no supported rate list\n", sc->sc_dev.dv_xname);
540 return 1;
541 }
542
543 sc->sc_max_datalen = 2304;
544 sc->sc_rts_thresh = 2347;
545 sc->sc_frag_thresh = 2346;
546 sc->sc_system_scale = 1;
547 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
548 sc->sc_roaming_mode = 1;
549
550 callout_init(&sc->sc_rssadapt_ch);
551
552 /*
553 * Call MI attach routines.
554 */
555 if_attach(ifp);
556 ieee80211_ifattach(ic);
557
558 sc->sc_newstate = ic->ic_newstate;
559 sc->sc_set_tim = ic->ic_set_tim;
560 ic->ic_newstate = wi_newstate;
561 ic->ic_node_alloc = wi_node_alloc;
562 ic->ic_node_free = wi_node_free;
563 ic->ic_set_tim = wi_set_tim;
564
565 ic->ic_crypto.cs_key_alloc = wi_key_alloc;
566 ic->ic_crypto.cs_key_delete = wi_key_delete;
567 ic->ic_crypto.cs_key_set = wi_key_set;
568 ic->ic_crypto.cs_key_update_begin = wi_key_update_begin;
569 ic->ic_crypto.cs_key_update_end = wi_key_update_end;
570
571 ieee80211_media_init(ic, wi_media_change, wi_media_status);
572
573 #if NBPFILTER > 0
574 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
575 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
576 #endif
577
578 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
579 sc->sc_rxtap.wr_ihdr.it_len = sizeof(sc->sc_rxtapu);
580 sc->sc_rxtap.wr_ihdr.it_present = WI_RX_RADIOTAP_PRESENT;
581
582 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
583 sc->sc_txtap.wt_ihdr.it_len = sizeof(sc->sc_txtapu);
584 sc->sc_txtap.wt_ihdr.it_present = WI_TX_RADIOTAP_PRESENT;
585
586 /* Attach is successful. */
587 sc->sc_attached = 1;
588
589 splx(s);
590 ieee80211_announce(ic);
591 return 0;
592 }
593
594 int
595 wi_detach(struct wi_softc *sc)
596 {
597 struct ifnet *ifp = &sc->sc_if;
598 int s;
599
600 if (!sc->sc_attached)
601 return 0;
602
603 sc->sc_invalid = 1;
604 s = splnet();
605
606 wi_stop(ifp, 1);
607
608 ieee80211_ifdetach(&sc->sc_ic);
609 if_detach(ifp);
610 splx(s);
611 return 0;
612 }
613
614 #ifdef __NetBSD__
615 int
616 wi_activate(struct device *self, enum devact act)
617 {
618 struct wi_softc *sc = (struct wi_softc *)self;
619 int rv = 0, s;
620
621 s = splnet();
622 switch (act) {
623 case DVACT_ACTIVATE:
624 rv = EOPNOTSUPP;
625 break;
626
627 case DVACT_DEACTIVATE:
628 if_deactivate(&sc->sc_if);
629 break;
630 }
631 splx(s);
632 return rv;
633 }
634
635 void
636 wi_power(struct wi_softc *sc, int why)
637 {
638 struct ifnet *ifp = &sc->sc_if;
639 int s;
640
641 s = splnet();
642 switch (why) {
643 case PWR_SUSPEND:
644 case PWR_STANDBY:
645 wi_stop(ifp, 1);
646 break;
647 case PWR_RESUME:
648 if (ifp->if_flags & IFF_UP) {
649 wi_init(ifp);
650 (void)wi_intr(sc);
651 }
652 break;
653 case PWR_SOFTSUSPEND:
654 case PWR_SOFTSTANDBY:
655 case PWR_SOFTRESUME:
656 break;
657 }
658 splx(s);
659 }
660 #endif /* __NetBSD__ */
661
662 void
663 wi_shutdown(struct wi_softc *sc)
664 {
665 struct ifnet *ifp = &sc->sc_if;
666
667 if (sc->sc_attached)
668 wi_stop(ifp, 1);
669 }
670
671 int
672 wi_intr(void *arg)
673 {
674 int i;
675 struct wi_softc *sc = arg;
676 struct ifnet *ifp = &sc->sc_if;
677 u_int16_t status;
678
679 if (sc->sc_enabled == 0 ||
680 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
681 (ifp->if_flags & IFF_RUNNING) == 0)
682 return 0;
683
684 if ((ifp->if_flags & IFF_UP) == 0) {
685 CSR_WRITE_2(sc, WI_INT_EN, 0);
686 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
687 return 1;
688 }
689
690 /* This is superfluous on Prism, but Lucent breaks if we
691 * do not disable interrupts.
692 */
693 CSR_WRITE_2(sc, WI_INT_EN, 0);
694
695 /* maximum 10 loops per interrupt */
696 for (i = 0; i < 10; i++) {
697 status = CSR_READ_2(sc, WI_EVENT_STAT);
698 #ifdef WI_DEBUG
699 if (wi_debug > 1) {
700 printf("%s: iter %d status %#04x\n", __func__, i,
701 status);
702 }
703 #endif /* WI_DEBUG */
704 if ((status & WI_INTRS) == 0)
705 break;
706
707 sc->sc_status = status;
708
709 if (status & WI_EV_RX)
710 wi_rx_intr(sc);
711
712 if (status & WI_EV_ALLOC)
713 wi_txalloc_intr(sc);
714
715 if (status & WI_EV_TX)
716 wi_tx_intr(sc);
717
718 if (status & WI_EV_TX_EXC)
719 wi_tx_ex_intr(sc);
720
721 if (status & WI_EV_INFO)
722 wi_info_intr(sc);
723
724 CSR_WRITE_2(sc, WI_EVENT_ACK, sc->sc_status);
725
726 if (sc->sc_status & WI_EV_CMD)
727 wi_cmd_intr(sc);
728
729 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
730 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
731 !IFQ_IS_EMPTY(&ifp->if_snd))
732 wi_start(ifp);
733
734 sc->sc_status = 0;
735 }
736
737 /* re-enable interrupts */
738 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
739
740 sc->sc_status = 0;
741
742 return 1;
743 }
744
745 #define arraylen(a) (sizeof(a) / sizeof((a)[0]))
746
747 STATIC void
748 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree)
749 {
750 int i;
751 SLIST_INIT(rssdfree);
752 for (i = 0; i < arraylen(*rssd); i++) {
753 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next);
754 }
755 }
756
757 STATIC void
758 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS],
759 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE])
760 {
761 struct ieee80211_node *ni;
762 int i;
763 for (i = 0; i < arraylen(*rssd); i++) {
764 ni = (*rssd)[i].rd_desc.id_node;
765 (*rssd)[i].rd_desc.id_node = NULL;
766 if (ni != NULL && (ic->ic_ifp->if_flags & IFF_DEBUG) != 0)
767 printf("%s: cleaning outstanding rssadapt "
768 "descriptor for %s\n",
769 ic->ic_ifp->if_xname, ether_sprintf(ni->ni_macaddr));
770 if (ni != NULL)
771 ieee80211_free_node(ni);
772 }
773 memset(*txpending, 0, sizeof(*txpending));
774 wi_rssdescs_init(rssd, rssdfree);
775 }
776
777 STATIC int
778 wi_init(struct ifnet *ifp)
779 {
780 struct wi_softc *sc = ifp->if_softc;
781 struct ieee80211com *ic = &sc->sc_ic;
782 struct wi_joinreq join;
783 int i;
784 int error = 0, wasenabled;
785
786 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
787 wasenabled = sc->sc_enabled;
788 if (!sc->sc_enabled) {
789 if ((error = (*sc->sc_enable)(sc)) != 0)
790 goto out;
791 sc->sc_enabled = 1;
792 } else
793 wi_stop(ifp, 0);
794
795 /* Symbol firmware cannot be initialized more than once */
796 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled)
797 if ((error = wi_reset(sc)) != 0)
798 goto out;
799
800 /* common 802.11 configuration */
801 ic->ic_flags &= ~IEEE80211_F_IBSSON;
802 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
803 switch (ic->ic_opmode) {
804 case IEEE80211_M_STA:
805 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
806 break;
807 case IEEE80211_M_IBSS:
808 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
809 ic->ic_flags |= IEEE80211_F_IBSSON;
810 break;
811 case IEEE80211_M_AHDEMO:
812 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
813 break;
814 case IEEE80211_M_HOSTAP:
815 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
816 break;
817 case IEEE80211_M_MONITOR:
818 if (sc->sc_firmware_type == WI_LUCENT)
819 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
820 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
821 break;
822 }
823
824 /* Intersil interprets this RID as joining ESS even in IBSS mode */
825 if (sc->sc_firmware_type == WI_LUCENT &&
826 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
827 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
828 else
829 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
830 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
831 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
832 ic->ic_des_esslen);
833 wi_write_val(sc, WI_RID_OWN_CHNL,
834 ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
835 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
836 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
837 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
838 if (ic->ic_caps & IEEE80211_C_PMGT)
839 wi_write_val(sc, WI_RID_PM_ENABLED,
840 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
841
842 /* not yet common 802.11 configuration */
843 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
844 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
845 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
846 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
847
848 /* driver specific 802.11 configuration */
849 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
850 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
851 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
852 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
853 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
854 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
855 wi_cfg_txrate(sc);
856 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
857
858 #ifndef IEEE80211_NO_HOSTAP
859 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
860 sc->sc_firmware_type == WI_INTERSIL) {
861 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
862 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
863 }
864 #endif /* !IEEE80211_NO_HOSTAP */
865
866 if (sc->sc_firmware_type == WI_INTERSIL) {
867 struct ieee80211_rateset *rs =
868 &ic->ic_sup_rates[IEEE80211_MODE_11B];
869 u_int16_t basic = 0, supported = 0, rate;
870
871 for (i = 0; i < rs->rs_nrates; i++) {
872 switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
873 case 2:
874 rate = 1;
875 break;
876 case 4:
877 rate = 2;
878 break;
879 case 11:
880 rate = 4;
881 break;
882 case 22:
883 rate = 8;
884 break;
885 default:
886 rate = 0;
887 break;
888 }
889 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC)
890 basic |= rate;
891 supported |= rate;
892 }
893 wi_write_val(sc, WI_RID_BASIC_RATE, basic);
894 wi_write_val(sc, WI_RID_SUPPORT_RATE, supported);
895 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry);
896 }
897
898 /*
899 * Initialize promisc mode.
900 * Being in Host-AP mode causes a great
901 * deal of pain if promiscuous mode is set.
902 * Therefore we avoid confusing the firmware
903 * and always reset promisc mode in Host-AP
904 * mode. Host-AP sees all the packets anyway.
905 */
906 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
907 (ifp->if_flags & IFF_PROMISC) != 0) {
908 wi_write_val(sc, WI_RID_PROMISC, 1);
909 } else {
910 wi_write_val(sc, WI_RID_PROMISC, 0);
911 }
912
913 /* Configure WEP. */
914 if (ic->ic_caps & IEEE80211_C_WEP) {
915 sc->sc_cnfauthmode = ic->ic_bss->ni_authmode;
916 wi_write_wep(sc);
917 }
918
919 /* Set multicast filter. */
920 wi_write_multi(sc);
921
922 sc->sc_txalloc = 0;
923 sc->sc_txalloced = 0;
924 sc->sc_txqueue = 0;
925 sc->sc_txqueued = 0;
926 sc->sc_txstart = 0;
927 sc->sc_txstarted = 0;
928
929 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
930 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
931 if (sc->sc_firmware_type == WI_SYMBOL)
932 sc->sc_buflen = 1585; /* XXX */
933 for (i = 0; i < WI_NTXBUF; i++) {
934 error = wi_alloc_fid(sc, sc->sc_buflen,
935 &sc->sc_txd[i].d_fid);
936 if (error) {
937 printf("%s: tx buffer allocation failed\n",
938 sc->sc_dev.dv_xname);
939 goto out;
940 }
941 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
942 sc->sc_txd[i].d_fid));
943 ++sc->sc_txalloced;
944 }
945 }
946
947 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree);
948
949 /* Enable desired port */
950 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
951 ifp->if_flags |= IFF_RUNNING;
952 ifp->if_flags &= ~IFF_OACTIVE;
953 ic->ic_state = IEEE80211_S_INIT;
954
955 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
956 ic->ic_opmode == IEEE80211_M_IBSS ||
957 ic->ic_opmode == IEEE80211_M_MONITOR ||
958 ic->ic_opmode == IEEE80211_M_HOSTAP)
959 ieee80211_create_ibss(ic, ic->ic_ibss_chan);
960
961 /* Enable interrupts */
962 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
963
964 #ifndef IEEE80211_NO_HOSTAP
965 if (!wasenabled &&
966 ic->ic_opmode == IEEE80211_M_HOSTAP &&
967 sc->sc_firmware_type == WI_INTERSIL) {
968 /* XXX: some card need to be re-enabled for hostap */
969 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
970 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
971 }
972 #endif /* !IEEE80211_NO_HOSTAP */
973
974 if (ic->ic_opmode == IEEE80211_M_STA &&
975 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
976 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
977 memset(&join, 0, sizeof(join));
978 if (ic->ic_flags & IEEE80211_F_DESBSSID)
979 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
980 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
981 join.wi_chan =
982 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan));
983 /* Lucent firmware does not support the JOIN RID. */
984 if (sc->sc_firmware_type != WI_LUCENT)
985 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
986 }
987
988 out:
989 if (error) {
990 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
991 wi_stop(ifp, 0);
992 }
993 DPRINTF(("wi_init: return %d\n", error));
994 return error;
995 }
996
997 STATIC void
998 wi_txcmd_wait(struct wi_softc *sc)
999 {
1000 KASSERT(sc->sc_txcmds == 1);
1001 if (sc->sc_status & WI_EV_CMD) {
1002 sc->sc_status &= ~WI_EV_CMD;
1003 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1004 } else
1005 (void)wi_cmd_wait(sc, WI_CMD_TX | WI_RECLAIM, 0);
1006 }
1007
1008 STATIC void
1009 wi_stop(struct ifnet *ifp, int disable)
1010 {
1011 struct wi_softc *sc = ifp->if_softc;
1012 struct ieee80211com *ic = &sc->sc_ic;
1013 int s;
1014
1015 if (!sc->sc_enabled)
1016 return;
1017
1018 s = splnet();
1019
1020 DPRINTF(("wi_stop: disable %d\n", disable));
1021
1022 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1023
1024 /* wait for tx command completion (deassoc, deauth) */
1025 while (sc->sc_txcmds > 0) {
1026 wi_txcmd_wait(sc);
1027 wi_cmd_intr(sc);
1028 }
1029
1030 /* TBD wait for deassoc, deauth tx completion? */
1031
1032 if (!sc->sc_invalid) {
1033 CSR_WRITE_2(sc, WI_INT_EN, 0);
1034 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
1035 }
1036
1037 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1038 &sc->sc_txpending);
1039
1040 sc->sc_tx_timer = 0;
1041 sc->sc_scan_timer = 0;
1042 sc->sc_false_syns = 0;
1043 sc->sc_naps = 0;
1044 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1045 ifp->if_timer = 0;
1046
1047 if (disable) {
1048 if (sc->sc_disable)
1049 (*sc->sc_disable)(sc);
1050 sc->sc_enabled = 0;
1051 }
1052 splx(s);
1053 }
1054
1055 /*
1056 * Choose a data rate for a packet len bytes long that suits the packet
1057 * type and the wireless conditions.
1058 *
1059 * TBD Adapt fragmentation threshold.
1060 */
1061 STATIC int
1062 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni,
1063 struct ieee80211_frame *wh, u_int len)
1064 {
1065 struct wi_softc *sc = ic->ic_ifp->if_softc;
1066 struct wi_node *wn = (void*)ni;
1067 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt;
1068 int do_not_adapt, i, rateidx, s;
1069
1070 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) &&
1071 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0;
1072
1073 s = splnet();
1074
1075 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len,
1076 ic->ic_fixed_rate,
1077 ((ic->ic_ifp->if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_ifp->if_xname,
1078 do_not_adapt);
1079
1080 ni->ni_txrate = rateidx;
1081
1082 if (ic->ic_opmode != IEEE80211_M_HOSTAP) {
1083 /* choose the slowest pending rate so that we don't
1084 * accidentally send a packet on the MAC's queue
1085 * too fast. TBD find out if the MAC labels Tx
1086 * packets w/ rate when enqueued or dequeued.
1087 */
1088 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++);
1089 rateidx = i;
1090 }
1091
1092 splx(s);
1093 return (rateidx);
1094 }
1095
1096 STATIC void
1097 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1098 {
1099 struct wi_node *wn;
1100 if (id->id_node == NULL)
1101 return;
1102
1103 wn = (void*)id->id_node;
1104 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id);
1105 }
1106
1107 STATIC void
1108 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1109 {
1110 struct ieee80211_node *ni;
1111 struct wi_node *wn;
1112 int s;
1113
1114 s = splnet();
1115
1116 if ((ni = id->id_node) == NULL) {
1117 DPRINTF(("wi_lower_rate: missing node\n"));
1118 goto out;
1119 }
1120
1121 wn = (void *)ni;
1122
1123 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id);
1124 out:
1125 splx(s);
1126 return;
1127 }
1128
1129 STATIC void
1130 wi_start(struct ifnet *ifp)
1131 {
1132 struct wi_softc *sc = ifp->if_softc;
1133 struct ieee80211com *ic = &sc->sc_ic;
1134 struct ether_header *eh;
1135 struct ieee80211_node *ni;
1136 struct ieee80211_frame *wh;
1137 struct ieee80211_rateset *rs;
1138 struct wi_rssdesc *rd;
1139 struct ieee80211_rssdesc *id;
1140 struct mbuf *m0;
1141 struct wi_frame frmhdr;
1142 int cur, fid, off, rateidx;
1143
1144 if (!sc->sc_enabled || sc->sc_invalid)
1145 return;
1146 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
1147 return;
1148
1149 memset(&frmhdr, 0, sizeof(frmhdr));
1150 cur = sc->sc_txqueue;
1151 for (;;) {
1152 ni = ic->ic_bss;
1153 if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) {
1154 ifp->if_flags |= IFF_OACTIVE;
1155 break;
1156 }
1157 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
1158 IF_DEQUEUE(&ic->ic_mgtq, m0);
1159 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
1160 (caddr_t)&frmhdr.wi_ehdr);
1161 frmhdr.wi_ehdr.ether_type = 0;
1162 wh = mtod(m0, struct ieee80211_frame *);
1163 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1164 m0->m_pkthdr.rcvif = NULL;
1165 } else if (ic->ic_state == IEEE80211_S_RUN) {
1166 IFQ_POLL(&ifp->if_snd, m0);
1167 if (m0 == NULL)
1168 break;
1169 IFQ_DEQUEUE(&ifp->if_snd, m0);
1170 ifp->if_opackets++;
1171 m_copydata(m0, 0, ETHER_HDR_LEN,
1172 (caddr_t)&frmhdr.wi_ehdr);
1173 #if NBPFILTER > 0
1174 if (ifp->if_bpf)
1175 bpf_mtap(ifp->if_bpf, m0);
1176 #endif
1177
1178 eh = mtod(m0, struct ether_header *);
1179 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1180 if (ni == NULL) {
1181 ifp->if_oerrors++;
1182 continue;
1183 }
1184 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1185 (m0->m_flags & M_PWR_SAV) == 0) {
1186 ieee80211_pwrsave(ic, ni, m0);
1187 goto next;
1188 }
1189 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
1190 ieee80211_free_node(ni);
1191 ifp->if_oerrors++;
1192 continue;
1193 }
1194 wh = mtod(m0, struct ieee80211_frame *);
1195 } else
1196 break;
1197 #if NBPFILTER > 0
1198 if (ic->ic_rawbpf)
1199 bpf_mtap(ic->ic_rawbpf, m0);
1200 #endif
1201 frmhdr.wi_tx_ctl =
1202 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK);
1203 #ifndef IEEE80211_NO_HOSTAP
1204 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1205 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
1206 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1207 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
1208 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1209 m_freem(m0);
1210 ifp->if_oerrors++;
1211 goto next;
1212 }
1213 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
1214 }
1215 #endif /* !IEEE80211_NO_HOSTAP */
1216
1217 rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len);
1218 rs = &ni->ni_rates;
1219
1220 #if NBPFILTER > 0
1221 if (sc->sc_drvbpf) {
1222 struct wi_tx_radiotap_header *tap = &sc->sc_txtap;
1223
1224 tap->wt_rate = rs->rs_rates[rateidx];
1225 tap->wt_chan_freq =
1226 htole16(ic->ic_bss->ni_chan->ic_freq);
1227 tap->wt_chan_flags =
1228 htole16(ic->ic_bss->ni_chan->ic_flags);
1229 /* TBD tap->wt_flags */
1230
1231 bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0);
1232 }
1233 #endif
1234
1235 rd = SLIST_FIRST(&sc->sc_rssdfree);
1236 id = &rd->rd_desc;
1237 id->id_len = m0->m_pkthdr.len;
1238 id->id_rateidx = ni->ni_txrate;
1239 id->id_rssi = ni->ni_rssi;
1240
1241 frmhdr.wi_tx_idx = rd - sc->sc_rssd;
1242
1243 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1244 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] &
1245 IEEE80211_RATE_VAL);
1246 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA)
1247 (void)wi_write_txrate(sc, rs->rs_rates[rateidx]);
1248
1249 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
1250 (caddr_t)&frmhdr.wi_whdr);
1251 m_adj(m0, sizeof(struct ieee80211_frame));
1252 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
1253 if (IFF_DUMPPKTS(ifp))
1254 wi_dump_pkt(&frmhdr, ni, -1);
1255 fid = sc->sc_txd[cur].d_fid;
1256 off = sizeof(frmhdr);
1257 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
1258 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
1259 printf("%s: %s write fid %x failed\n",
1260 sc->sc_dev.dv_xname, __func__, fid);
1261 ifp->if_oerrors++;
1262 m_freem(m0);
1263 goto next;
1264 }
1265 m_freem(m0);
1266 sc->sc_txpending[ni->ni_txrate]++;
1267 --sc->sc_txalloced;
1268 if (sc->sc_txqueued++ == 0) {
1269 #ifdef DIAGNOSTIC
1270 if (cur != sc->sc_txstart)
1271 printf("%s: ring is desynchronized\n",
1272 sc->sc_dev.dv_xname);
1273 #endif
1274 wi_push_packet(sc);
1275 } else {
1276 #ifdef WI_RING_DEBUG
1277 printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1278 sc->sc_dev.dv_xname, fid,
1279 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1280 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1281 #endif
1282 }
1283 sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF;
1284 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next);
1285 id->id_node = ni;
1286 continue;
1287 next:
1288 if (ni != NULL)
1289 ieee80211_free_node(ni);
1290 }
1291 }
1292
1293
1294 STATIC int
1295 wi_reset(struct wi_softc *sc)
1296 {
1297 int i, error;
1298
1299 DPRINTF(("wi_reset\n"));
1300
1301 if (sc->sc_reset)
1302 (*sc->sc_reset)(sc);
1303
1304 error = 0;
1305 for (i = 0; i < 5; i++) {
1306 if (sc->sc_invalid)
1307 return ENXIO;
1308 DELAY(20*1000); /* XXX: way too long! */
1309 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
1310 break;
1311 }
1312 if (error) {
1313 printf("%s: init failed\n", sc->sc_dev.dv_xname);
1314 return error;
1315 }
1316 CSR_WRITE_2(sc, WI_INT_EN, 0);
1317 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
1318
1319 /* Calibrate timer. */
1320 wi_write_val(sc, WI_RID_TICK_TIME, 0);
1321 return 0;
1322 }
1323
1324 STATIC void
1325 wi_watchdog(struct ifnet *ifp)
1326 {
1327 struct wi_softc *sc = ifp->if_softc;
1328
1329 ifp->if_timer = 0;
1330 if (!sc->sc_enabled)
1331 return;
1332
1333 if (sc->sc_tx_timer) {
1334 if (--sc->sc_tx_timer == 0) {
1335 printf("%s: device timeout\n", ifp->if_xname);
1336 ifp->if_oerrors++;
1337 wi_init(ifp);
1338 return;
1339 }
1340 ifp->if_timer = 1;
1341 }
1342
1343 if (sc->sc_scan_timer) {
1344 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
1345 sc->sc_firmware_type == WI_INTERSIL) {
1346 DPRINTF(("wi_watchdog: inquire scan\n"));
1347 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1348 }
1349 if (sc->sc_scan_timer)
1350 ifp->if_timer = 1;
1351 }
1352
1353 /* TODO: rate control */
1354 ieee80211_watchdog(&sc->sc_ic);
1355 }
1356
1357 STATIC int
1358 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1359 {
1360 struct wi_softc *sc = ifp->if_softc;
1361 struct ieee80211com *ic = &sc->sc_ic;
1362 struct ifreq *ifr = (struct ifreq *)data;
1363 int s, error = 0;
1364
1365 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1366 return ENXIO;
1367
1368 s = splnet();
1369
1370 switch (cmd) {
1371 case SIOCSIFFLAGS:
1372 /*
1373 * Can't do promisc and hostap at the same time. If all that's
1374 * changing is the promisc flag, try to short-circuit a call to
1375 * wi_init() by just setting PROMISC in the hardware.
1376 */
1377 if (ifp->if_flags & IFF_UP) {
1378 if (sc->sc_enabled) {
1379 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1380 (ifp->if_flags & IFF_PROMISC) != 0)
1381 wi_write_val(sc, WI_RID_PROMISC, 1);
1382 else
1383 wi_write_val(sc, WI_RID_PROMISC, 0);
1384 } else
1385 error = wi_init(ifp);
1386 } else if (sc->sc_enabled)
1387 wi_stop(ifp, 1);
1388 break;
1389 case SIOCSIFMEDIA:
1390 case SIOCGIFMEDIA:
1391 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1392 break;
1393 case SIOCADDMULTI:
1394 case SIOCDELMULTI:
1395 error = (cmd == SIOCADDMULTI) ?
1396 ether_addmulti(ifr, &sc->sc_ec) :
1397 ether_delmulti(ifr, &sc->sc_ec);
1398 if (error == ENETRESET) {
1399 if (ifp->if_flags & IFF_RUNNING) {
1400 /* do not rescan */
1401 error = wi_write_multi(sc);
1402 } else
1403 error = 0;
1404 }
1405 break;
1406 case SIOCGIFGENERIC:
1407 error = wi_get_cfg(ifp, cmd, data);
1408 break;
1409 case SIOCSIFGENERIC:
1410 error = suser(curproc->p_ucred, &curproc->p_acflag);
1411 if (error)
1412 break;
1413 error = wi_set_cfg(ifp, cmd, data);
1414 if (error == ENETRESET) {
1415 if (ifp->if_flags & IFF_RUNNING)
1416 error = wi_init(ifp);
1417 else
1418 error = 0;
1419 }
1420 break;
1421 case SIOCS80211BSSID:
1422 if (sc->sc_firmware_type == WI_LUCENT) {
1423 error = ENODEV;
1424 break;
1425 }
1426 /* fall through */
1427 default:
1428 ic->ic_flags |= sc->sc_ic_flags;
1429 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1430 sc->sc_ic_flags = ic->ic_flags & IEEE80211_F_DROPUNENC;
1431 if (error == ENETRESET) {
1432 if (sc->sc_enabled)
1433 error = wi_init(ifp);
1434 else
1435 error = 0;
1436 }
1437 break;
1438 }
1439 wi_mend_flags(sc, ic->ic_state);
1440 splx(s);
1441 return error;
1442 }
1443
1444 STATIC int
1445 wi_media_change(struct ifnet *ifp)
1446 {
1447 struct wi_softc *sc = ifp->if_softc;
1448 struct ieee80211com *ic = &sc->sc_ic;
1449 int error;
1450
1451 error = ieee80211_media_change(ifp);
1452 if (error == ENETRESET) {
1453 if (sc->sc_enabled)
1454 error = wi_init(ifp);
1455 else
1456 error = 0;
1457 }
1458 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1459
1460 return error;
1461 }
1462
1463 STATIC void
1464 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1465 {
1466 struct wi_softc *sc = ifp->if_softc;
1467 struct ieee80211com *ic = &sc->sc_ic;
1468 u_int16_t val;
1469 int rate;
1470
1471 if (sc->sc_enabled == 0) {
1472 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1473 imr->ifm_status = 0;
1474 return;
1475 }
1476
1477 imr->ifm_status = IFM_AVALID;
1478 imr->ifm_active = IFM_IEEE80211;
1479 if (ic->ic_state == IEEE80211_S_RUN &&
1480 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1481 imr->ifm_status |= IFM_ACTIVE;
1482 if (wi_read_xrid(sc, WI_RID_CUR_TX_RATE, &val, sizeof(val)) == 0) {
1483 /* convert to 802.11 rate */
1484 val = le16toh(val);
1485 rate = val * 2;
1486 if (sc->sc_firmware_type == WI_LUCENT) {
1487 if (rate == 10)
1488 rate = 11; /* 5.5Mbps */
1489 } else {
1490 if (rate == 4*2)
1491 rate = 11; /* 5.5Mbps */
1492 else if (rate == 8*2)
1493 rate = 22; /* 11Mbps */
1494 }
1495 } else
1496 rate = 0;
1497 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1498 switch (ic->ic_opmode) {
1499 case IEEE80211_M_STA:
1500 break;
1501 case IEEE80211_M_IBSS:
1502 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1503 break;
1504 case IEEE80211_M_AHDEMO:
1505 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1506 break;
1507 case IEEE80211_M_HOSTAP:
1508 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1509 break;
1510 case IEEE80211_M_MONITOR:
1511 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1512 break;
1513 }
1514 }
1515
1516 STATIC struct ieee80211_node *
1517 wi_node_alloc(struct ieee80211_node_table *nt)
1518 {
1519 struct wi_node *wn =
1520 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1521 return wn ? &wn->wn_node : NULL;
1522 }
1523
1524 STATIC void
1525 wi_node_free(struct ieee80211_node *ni)
1526 {
1527 struct wi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1528 int i;
1529
1530 for (i = 0; i < WI_NTXRSS; i++) {
1531 if (sc->sc_rssd[i].rd_desc.id_node == ni)
1532 sc->sc_rssd[i].rd_desc.id_node = NULL;
1533 }
1534 free(ni, M_DEVBUF);
1535 }
1536
1537 STATIC void
1538 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1539 {
1540 struct ieee80211com *ic = &sc->sc_ic;
1541 struct ieee80211_node *ni = ic->ic_bss;
1542 struct ifnet *ifp = &sc->sc_if;
1543
1544 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1545 return;
1546
1547 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
1548 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1549
1550 /* In promiscuous mode, the BSSID field is not a reliable
1551 * indicator of the firmware's BSSID. Damp spurious
1552 * change-of-BSSID indications.
1553 */
1554 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1555 !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns,
1556 WI_MAX_FALSE_SYNS))
1557 return;
1558
1559 sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1);
1560 /*
1561 * XXX hack; we should create a new node with the new bssid
1562 * and replace the existing ic_bss with it but since we don't
1563 * process management frames to collect state we cheat by
1564 * reusing the existing node as we know wi_newstate will be
1565 * called and it will overwrite the node state.
1566 */
1567 ieee80211_sta_join(ic, ieee80211_ref_node(ni));
1568 }
1569
1570 static __inline void
1571 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni,
1572 struct ieee80211_frame *wh, int rssi)
1573 {
1574 struct wi_node *wn;
1575
1576 if (ni == NULL) {
1577 printf("%s: null node", __func__);
1578 return;
1579 }
1580
1581 wn = (void*)ni;
1582 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi);
1583 }
1584
1585 STATIC void
1586 wi_rx_intr(struct wi_softc *sc)
1587 {
1588 struct ieee80211com *ic = &sc->sc_ic;
1589 struct ifnet *ifp = &sc->sc_if;
1590 struct ieee80211_node *ni;
1591 struct wi_frame frmhdr;
1592 struct mbuf *m;
1593 struct ieee80211_frame *wh;
1594 int fid, len, off, rssi;
1595 u_int8_t dir;
1596 u_int16_t status;
1597 u_int32_t rstamp;
1598
1599 fid = CSR_READ_2(sc, WI_RX_FID);
1600
1601 /* First read in the frame header */
1602 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1603 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1604 __func__, fid);
1605 ifp->if_ierrors++;
1606 return;
1607 }
1608
1609 if (IFF_DUMPPKTS(ifp))
1610 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1611
1612 /*
1613 * Drop undecryptable or packets with receive errors here
1614 */
1615 status = le16toh(frmhdr.wi_status);
1616 if ((status & WI_STAT_ERRSTAT) != 0 &&
1617 ic->ic_opmode != IEEE80211_M_MONITOR) {
1618 ifp->if_ierrors++;
1619 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1620 return;
1621 }
1622 rssi = frmhdr.wi_rx_signal;
1623 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1624 le16toh(frmhdr.wi_rx_tstamp1);
1625
1626 len = le16toh(frmhdr.wi_dat_len);
1627 off = ALIGN(sizeof(struct ieee80211_frame));
1628
1629 /* Sometimes the PRISM2.x returns bogusly large frames. Except
1630 * in monitor mode, just throw them away.
1631 */
1632 if (off + len > MCLBYTES) {
1633 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1634 ifp->if_ierrors++;
1635 DPRINTF(("wi_rx_intr: oversized packet\n"));
1636 return;
1637 } else
1638 len = 0;
1639 }
1640
1641 MGETHDR(m, M_DONTWAIT, MT_DATA);
1642 if (m == NULL) {
1643 ifp->if_ierrors++;
1644 DPRINTF(("wi_rx_intr: MGET failed\n"));
1645 return;
1646 }
1647 if (off + len > MHLEN) {
1648 MCLGET(m, M_DONTWAIT);
1649 if ((m->m_flags & M_EXT) == 0) {
1650 m_freem(m);
1651 ifp->if_ierrors++;
1652 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1653 return;
1654 }
1655 }
1656
1657 m->m_data += off - sizeof(struct ieee80211_frame);
1658 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1659 wi_read_bap(sc, fid, sizeof(frmhdr),
1660 m->m_data + sizeof(struct ieee80211_frame), len);
1661 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1662 m->m_pkthdr.rcvif = ifp;
1663
1664 wh = mtod(m, struct ieee80211_frame *);
1665 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1666 /*
1667 * WEP is decrypted by hardware. Clear WEP bit
1668 * header for ieee80211_input().
1669 */
1670 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1671 }
1672 #if NBPFILTER > 0
1673 if (sc->sc_drvbpf) {
1674 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap;
1675
1676 tap->wr_rate = frmhdr.wi_rx_rate / 5;
1677 tap->wr_antsignal = frmhdr.wi_rx_signal;
1678 tap->wr_antnoise = frmhdr.wi_rx_silence;
1679 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1680 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1681 if (frmhdr.wi_status & WI_STAT_PCF)
1682 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1683
1684 /* XXX IEEE80211_RADIOTAP_F_WEP */
1685 bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m);
1686 }
1687 #endif
1688
1689 /* synchronize driver's BSSID with firmware's BSSID */
1690 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1691 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1692 wi_sync_bssid(sc, wh->i_addr3);
1693
1694 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1695
1696 ieee80211_input(ic, m, ni, rssi, rstamp);
1697
1698 wi_rssadapt_input(ic, ni, wh, rssi);
1699
1700 /*
1701 * The frame may have caused the node to be marked for
1702 * reclamation (e.g. in response to a DEAUTH message)
1703 * so use release_node here instead of unref_node.
1704 */
1705 ieee80211_free_node(ni);
1706 }
1707
1708 STATIC void
1709 wi_tx_ex_intr(struct wi_softc *sc)
1710 {
1711 struct ieee80211com *ic = &sc->sc_ic;
1712 struct ifnet *ifp = &sc->sc_if;
1713 struct ieee80211_node *ni;
1714 struct ieee80211_rssdesc *id;
1715 struct wi_rssdesc *rssd;
1716 struct wi_frame frmhdr;
1717 int fid;
1718 u_int16_t status;
1719
1720 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1721 /* Read in the frame header */
1722 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1723 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1724 __func__, fid);
1725 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1726 &sc->sc_txpending);
1727 goto out;
1728 }
1729
1730 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1731 printf("%s: %s bad idx %02x\n",
1732 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1733 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1734 &sc->sc_txpending);
1735 goto out;
1736 }
1737
1738 status = le16toh(frmhdr.wi_status);
1739
1740 /*
1741 * Spontaneous station disconnects appear as xmit
1742 * errors. Don't announce them and/or count them
1743 * as an output error.
1744 */
1745 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1746 printf("%s: tx failed", sc->sc_dev.dv_xname);
1747 if (status & WI_TXSTAT_RET_ERR)
1748 printf(", retry limit exceeded");
1749 if (status & WI_TXSTAT_AGED_ERR)
1750 printf(", max transmit lifetime exceeded");
1751 if (status & WI_TXSTAT_DISCONNECT)
1752 printf(", port disconnected");
1753 if (status & WI_TXSTAT_FORM_ERR)
1754 printf(", invalid format (data len %u src %s)",
1755 le16toh(frmhdr.wi_dat_len),
1756 ether_sprintf(frmhdr.wi_ehdr.ether_shost));
1757 if (status & ~0xf)
1758 printf(", status=0x%x", status);
1759 printf("\n");
1760 }
1761 ifp->if_oerrors++;
1762 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1763 id = &rssd->rd_desc;
1764 if ((status & WI_TXSTAT_RET_ERR) != 0)
1765 wi_lower_rate(ic, id);
1766
1767 ni = id->id_node;
1768 id->id_node = NULL;
1769
1770 if (ni == NULL) {
1771 printf("%s: %s null node, rssdesc %02x\n",
1772 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1773 goto out;
1774 }
1775
1776 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1777 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1778 __func__, id->id_rateidx);
1779 sc->sc_txpending[id->id_rateidx] = 0;
1780 }
1781 if (ni != NULL)
1782 ieee80211_free_node(ni);
1783 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1784 out:
1785 ifp->if_flags &= ~IFF_OACTIVE;
1786 }
1787
1788 STATIC void
1789 wi_txalloc_intr(struct wi_softc *sc)
1790 {
1791 int fid, cur;
1792
1793 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1794
1795 cur = sc->sc_txalloc;
1796 #ifdef DIAGNOSTIC
1797 if (sc->sc_txstarted == 0) {
1798 printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1799 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1800 sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1801 return;
1802 }
1803 #endif
1804 --sc->sc_txstarted;
1805 ++sc->sc_txalloced;
1806 sc->sc_txd[cur].d_fid = fid;
1807 sc->sc_txalloc = (cur + 1) % WI_NTXBUF;
1808 #ifdef WI_RING_DEBUG
1809 printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1810 sc->sc_dev.dv_xname, fid,
1811 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1812 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1813 #endif
1814 }
1815
1816 STATIC void
1817 wi_cmd_intr(struct wi_softc *sc)
1818 {
1819 struct ifnet *ifp = &sc->sc_if;
1820
1821 if (sc->sc_invalid)
1822 return;
1823 #ifdef WI_DEBUG
1824 if (wi_debug > 1)
1825 printf("%s: %d txcmds outstanding\n", __func__, sc->sc_txcmds);
1826 #endif
1827 KASSERT(sc->sc_txcmds > 0);
1828
1829 --sc->sc_txcmds;
1830
1831 if (--sc->sc_txqueued == 0) {
1832 sc->sc_tx_timer = 0;
1833 ifp->if_flags &= ~IFF_OACTIVE;
1834 #ifdef WI_RING_DEBUG
1835 printf("%s: cmd , alloc %d queue %d start %d alloced %d queued %d started %d\n",
1836 sc->sc_dev.dv_xname,
1837 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1838 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1839 #endif
1840 } else
1841 wi_push_packet(sc);
1842 }
1843
1844 STATIC void
1845 wi_push_packet(struct wi_softc *sc)
1846 {
1847 struct ifnet *ifp = &sc->sc_if;
1848 int cur, fid;
1849
1850 cur = sc->sc_txstart;
1851 fid = sc->sc_txd[cur].d_fid;
1852
1853 KASSERT(sc->sc_txcmds == 0);
1854
1855 if (wi_cmd_start(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
1856 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1857 /* XXX ring might have a hole */
1858 }
1859
1860 if (sc->sc_txcmds++ > 0)
1861 printf("%s: %d tx cmds pending!!!\n", __func__, sc->sc_txcmds);
1862
1863 ++sc->sc_txstarted;
1864 #ifdef DIAGNOSTIC
1865 if (sc->sc_txstarted > WI_NTXBUF)
1866 printf("%s: too many buffers started\n", sc->sc_dev.dv_xname);
1867 #endif
1868 sc->sc_txstart = (cur + 1) % WI_NTXBUF;
1869 sc->sc_tx_timer = 5;
1870 ifp->if_timer = 1;
1871 #ifdef WI_RING_DEBUG
1872 printf("%s: push %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1873 sc->sc_dev.dv_xname, fid,
1874 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1875 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1876 #endif
1877 }
1878
1879 STATIC void
1880 wi_tx_intr(struct wi_softc *sc)
1881 {
1882 struct ieee80211com *ic = &sc->sc_ic;
1883 struct ifnet *ifp = &sc->sc_if;
1884 struct ieee80211_node *ni;
1885 struct ieee80211_rssdesc *id;
1886 struct wi_rssdesc *rssd;
1887 struct wi_frame frmhdr;
1888 int fid;
1889
1890 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1891 /* Read in the frame header */
1892 if (wi_read_bap(sc, fid, offsetof(struct wi_frame, wi_tx_swsup2),
1893 &frmhdr.wi_tx_swsup2, 2) != 0) {
1894 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1895 __func__, fid);
1896 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1897 &sc->sc_txpending);
1898 goto out;
1899 }
1900
1901 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1902 printf("%s: %s bad idx %02x\n",
1903 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1904 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1905 &sc->sc_txpending);
1906 goto out;
1907 }
1908
1909 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1910 id = &rssd->rd_desc;
1911 wi_raise_rate(ic, id);
1912
1913 ni = id->id_node;
1914 id->id_node = NULL;
1915
1916 if (ni == NULL) {
1917 printf("%s: %s null node, rssdesc %02x\n",
1918 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1919 goto out;
1920 }
1921
1922 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1923 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1924 __func__, id->id_rateidx);
1925 sc->sc_txpending[id->id_rateidx] = 0;
1926 }
1927 if (ni != NULL)
1928 ieee80211_free_node(ni);
1929 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1930 out:
1931 ifp->if_flags &= ~IFF_OACTIVE;
1932 }
1933
1934 STATIC void
1935 wi_info_intr(struct wi_softc *sc)
1936 {
1937 struct ieee80211com *ic = &sc->sc_ic;
1938 struct ifnet *ifp = &sc->sc_if;
1939 int i, fid, len, off;
1940 u_int16_t ltbuf[2];
1941 u_int16_t stat;
1942 u_int32_t *ptr;
1943
1944 fid = CSR_READ_2(sc, WI_INFO_FID);
1945 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1946
1947 switch (le16toh(ltbuf[1])) {
1948
1949 case WI_INFO_LINK_STAT:
1950 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1951 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1952 switch (le16toh(stat)) {
1953 case CONNECTED:
1954 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1955 if (ic->ic_state == IEEE80211_S_RUN &&
1956 ic->ic_opmode != IEEE80211_M_IBSS)
1957 break;
1958 /* FALLTHROUGH */
1959 case AP_CHANGE:
1960 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1961 break;
1962 case AP_IN_RANGE:
1963 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1964 break;
1965 case AP_OUT_OF_RANGE:
1966 if (sc->sc_firmware_type == WI_SYMBOL &&
1967 sc->sc_scan_timer > 0) {
1968 if (wi_cmd(sc, WI_CMD_INQUIRE,
1969 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1970 sc->sc_scan_timer = 0;
1971 break;
1972 }
1973 if (ic->ic_opmode == IEEE80211_M_STA)
1974 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1975 break;
1976 case DISCONNECTED:
1977 case ASSOC_FAILED:
1978 if (ic->ic_opmode == IEEE80211_M_STA)
1979 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1980 break;
1981 }
1982 break;
1983
1984 case WI_INFO_COUNTERS:
1985 /* some card versions have a larger stats structure */
1986 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1987 ptr = (u_int32_t *)&sc->sc_stats;
1988 off = sizeof(ltbuf);
1989 for (i = 0; i < len; i++, off += 2, ptr++) {
1990 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1991 stat = le16toh(stat);
1992 #ifdef WI_HERMES_STATS_WAR
1993 if (stat & 0xf000)
1994 stat = ~stat;
1995 #endif
1996 *ptr += stat;
1997 }
1998 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1999 sc->sc_stats.wi_tx_multi_retries +
2000 sc->sc_stats.wi_tx_retry_limit;
2001 break;
2002
2003 case WI_INFO_SCAN_RESULTS:
2004 case WI_INFO_HOST_SCAN_RESULTS:
2005 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
2006 break;
2007
2008 default:
2009 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
2010 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
2011 break;
2012 }
2013 }
2014
2015 STATIC int
2016 wi_write_multi(struct wi_softc *sc)
2017 {
2018 struct ifnet *ifp = &sc->sc_if;
2019 int n;
2020 struct wi_mcast mlist;
2021 struct ether_multi *enm;
2022 struct ether_multistep estep;
2023
2024 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2025 allmulti:
2026 ifp->if_flags |= IFF_ALLMULTI;
2027 memset(&mlist, 0, sizeof(mlist));
2028 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
2029 sizeof(mlist));
2030 }
2031
2032 n = 0;
2033 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
2034 while (enm != NULL) {
2035 /* Punt on ranges or too many multicast addresses. */
2036 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
2037 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
2038 goto allmulti;
2039
2040 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
2041 n++;
2042 ETHER_NEXT_MULTI(estep, enm);
2043 }
2044 ifp->if_flags &= ~IFF_ALLMULTI;
2045 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
2046 IEEE80211_ADDR_LEN * n);
2047 }
2048
2049
2050 STATIC void
2051 wi_read_nicid(struct wi_softc *sc)
2052 {
2053 struct wi_card_ident *id;
2054 char *p;
2055 int len;
2056 u_int16_t ver[4];
2057
2058 /* getting chip identity */
2059 memset(ver, 0, sizeof(ver));
2060 len = sizeof(ver);
2061 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
2062 printf("%s: using ", sc->sc_dev.dv_xname);
2063 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
2064
2065 sc->sc_firmware_type = WI_NOTYPE;
2066 for (id = wi_card_ident; id->card_name != NULL; id++) {
2067 if (le16toh(ver[0]) == id->card_id) {
2068 printf("%s", id->card_name);
2069 sc->sc_firmware_type = id->firm_type;
2070 break;
2071 }
2072 }
2073 if (sc->sc_firmware_type == WI_NOTYPE) {
2074 if (le16toh(ver[0]) & 0x8000) {
2075 printf("Unknown PRISM2 chip");
2076 sc->sc_firmware_type = WI_INTERSIL;
2077 } else {
2078 printf("Unknown Lucent chip");
2079 sc->sc_firmware_type = WI_LUCENT;
2080 }
2081 }
2082
2083 /* get primary firmware version (Only Prism chips) */
2084 if (sc->sc_firmware_type != WI_LUCENT) {
2085 memset(ver, 0, sizeof(ver));
2086 len = sizeof(ver);
2087 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
2088 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
2089 le16toh(ver[3]) * 100 + le16toh(ver[1]);
2090 }
2091
2092 /* get station firmware version */
2093 memset(ver, 0, sizeof(ver));
2094 len = sizeof(ver);
2095 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
2096 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
2097 le16toh(ver[3]) * 100 + le16toh(ver[1]);
2098 if (sc->sc_firmware_type == WI_INTERSIL &&
2099 (sc->sc_sta_firmware_ver == 10102 ||
2100 sc->sc_sta_firmware_ver == 20102)) {
2101 char ident[12];
2102 memset(ident, 0, sizeof(ident));
2103 len = sizeof(ident);
2104 /* value should be the format like "V2.00-11" */
2105 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
2106 *(p = (char *)ident) >= 'A' &&
2107 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
2108 sc->sc_firmware_type = WI_SYMBOL;
2109 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
2110 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
2111 (p[6] - '0') * 10 + (p[7] - '0');
2112 }
2113 }
2114
2115 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
2116 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
2117 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
2118 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
2119 printf("Primary (%u.%u.%u), ",
2120 sc->sc_pri_firmware_ver / 10000,
2121 (sc->sc_pri_firmware_ver % 10000) / 100,
2122 sc->sc_pri_firmware_ver % 100);
2123 printf("Station (%u.%u.%u)\n",
2124 sc->sc_sta_firmware_ver / 10000,
2125 (sc->sc_sta_firmware_ver % 10000) / 100,
2126 sc->sc_sta_firmware_ver % 100);
2127 }
2128
2129 STATIC int
2130 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
2131 {
2132 struct wi_ssid ssid;
2133
2134 if (buflen > IEEE80211_NWID_LEN)
2135 return ENOBUFS;
2136 memset(&ssid, 0, sizeof(ssid));
2137 ssid.wi_len = htole16(buflen);
2138 memcpy(ssid.wi_ssid, buf, buflen);
2139 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
2140 }
2141
2142 STATIC int
2143 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2144 {
2145 struct wi_softc *sc = ifp->if_softc;
2146 struct ieee80211com *ic = &sc->sc_ic;
2147 struct ifreq *ifr = (struct ifreq *)data;
2148 struct wi_req wreq;
2149 int len, n, error;
2150
2151 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2152 if (error)
2153 return error;
2154 len = (wreq.wi_len - 1) * 2;
2155 if (len < sizeof(u_int16_t))
2156 return ENOSPC;
2157 if (len > sizeof(wreq.wi_val))
2158 len = sizeof(wreq.wi_val);
2159
2160 switch (wreq.wi_type) {
2161
2162 case WI_RID_IFACE_STATS:
2163 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
2164 if (len < sizeof(sc->sc_stats))
2165 error = ENOSPC;
2166 else
2167 len = sizeof(sc->sc_stats);
2168 break;
2169
2170 case WI_RID_ENCRYPTION:
2171 case WI_RID_TX_CRYPT_KEY:
2172 case WI_RID_DEFLT_CRYPT_KEYS:
2173 case WI_RID_TX_RATE:
2174 return ieee80211_cfgget(ic, cmd, data);
2175
2176 case WI_RID_MICROWAVE_OVEN:
2177 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
2178 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2179 &len);
2180 break;
2181 }
2182 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
2183 len = sizeof(u_int16_t);
2184 break;
2185
2186 case WI_RID_DBM_ADJUST:
2187 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
2188 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2189 &len);
2190 break;
2191 }
2192 wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
2193 len = sizeof(u_int16_t);
2194 break;
2195
2196 case WI_RID_ROAMING_MODE:
2197 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
2198 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2199 &len);
2200 break;
2201 }
2202 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
2203 len = sizeof(u_int16_t);
2204 break;
2205
2206 case WI_RID_SYSTEM_SCALE:
2207 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
2208 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2209 &len);
2210 break;
2211 }
2212 wreq.wi_val[0] = htole16(sc->sc_system_scale);
2213 len = sizeof(u_int16_t);
2214 break;
2215
2216 case WI_RID_FRAG_THRESH:
2217 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
2218 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2219 &len);
2220 break;
2221 }
2222 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2223 len = sizeof(u_int16_t);
2224 break;
2225
2226 case WI_RID_READ_APS:
2227 #ifndef IEEE80211_NO_HOSTAP
2228 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2229 return ieee80211_cfgget(ic, cmd, data);
2230 #endif /* !IEEE80211_NO_HOSTAP */
2231 if (sc->sc_scan_timer > 0) {
2232 error = EINPROGRESS;
2233 break;
2234 }
2235 n = sc->sc_naps;
2236 if (len < sizeof(n)) {
2237 error = ENOSPC;
2238 break;
2239 }
2240 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
2241 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
2242 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
2243 memcpy(wreq.wi_val, &n, sizeof(n));
2244 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
2245 sizeof(struct wi_apinfo) * n);
2246 break;
2247
2248 default:
2249 if (sc->sc_enabled) {
2250 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2251 &len);
2252 break;
2253 }
2254 switch (wreq.wi_type) {
2255 case WI_RID_MAX_DATALEN:
2256 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
2257 len = sizeof(u_int16_t);
2258 break;
2259 case WI_RID_FRAG_THRESH:
2260 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2261 len = sizeof(u_int16_t);
2262 break;
2263 case WI_RID_RTS_THRESH:
2264 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
2265 len = sizeof(u_int16_t);
2266 break;
2267 case WI_RID_CNFAUTHMODE:
2268 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
2269 len = sizeof(u_int16_t);
2270 break;
2271 case WI_RID_NODENAME:
2272 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
2273 error = ENOSPC;
2274 break;
2275 }
2276 len = sc->sc_nodelen + sizeof(u_int16_t);
2277 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
2278 memcpy(&wreq.wi_val[1], sc->sc_nodename,
2279 sc->sc_nodelen);
2280 break;
2281 default:
2282 return ieee80211_cfgget(ic, cmd, data);
2283 }
2284 break;
2285 }
2286 if (error)
2287 return error;
2288 wreq.wi_len = (len + 1) / 2 + 1;
2289 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
2290 }
2291
2292 STATIC int
2293 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2294 {
2295 struct wi_softc *sc = ifp->if_softc;
2296 struct ieee80211com *ic = &sc->sc_ic;
2297 struct ifreq *ifr = (struct ifreq *)data;
2298 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2299 struct wi_req wreq;
2300 struct mbuf *m;
2301 int i, len, error;
2302
2303 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2304 if (error)
2305 return error;
2306 len = (wreq.wi_len - 1) * 2;
2307 switch (wreq.wi_type) {
2308 case WI_RID_MAC_NODE:
2309 (void)memcpy(ic->ic_myaddr, wreq.wi_val, ETHER_ADDR_LEN);
2310 IEEE80211_ADDR_COPY(LLADDR(ifp->if_sadl),ic->ic_myaddr);
2311 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
2312 IEEE80211_ADDR_LEN);
2313 break;
2314
2315 case WI_RID_DBM_ADJUST:
2316 return ENODEV;
2317
2318 case WI_RID_NODENAME:
2319 if (le16toh(wreq.wi_val[0]) * 2 > len ||
2320 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
2321 error = ENOSPC;
2322 break;
2323 }
2324 if (sc->sc_enabled) {
2325 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2326 len);
2327 if (error)
2328 break;
2329 }
2330 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
2331 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
2332 break;
2333
2334 case WI_RID_MICROWAVE_OVEN:
2335 case WI_RID_ROAMING_MODE:
2336 case WI_RID_SYSTEM_SCALE:
2337 case WI_RID_FRAG_THRESH:
2338 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
2339 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
2340 break;
2341 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
2342 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
2343 break;
2344 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
2345 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
2346 break;
2347 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
2348 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
2349 break;
2350 /* FALLTHROUGH */
2351 case WI_RID_RTS_THRESH:
2352 case WI_RID_CNFAUTHMODE:
2353 case WI_RID_MAX_DATALEN:
2354 if (sc->sc_enabled) {
2355 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2356 sizeof(u_int16_t));
2357 if (error)
2358 break;
2359 }
2360 switch (wreq.wi_type) {
2361 case WI_RID_FRAG_THRESH:
2362 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
2363 break;
2364 case WI_RID_RTS_THRESH:
2365 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
2366 break;
2367 case WI_RID_MICROWAVE_OVEN:
2368 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
2369 break;
2370 case WI_RID_ROAMING_MODE:
2371 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
2372 break;
2373 case WI_RID_SYSTEM_SCALE:
2374 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
2375 break;
2376 case WI_RID_CNFAUTHMODE:
2377 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
2378 break;
2379 case WI_RID_MAX_DATALEN:
2380 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
2381 break;
2382 }
2383 break;
2384
2385 case WI_RID_TX_RATE:
2386 switch (le16toh(wreq.wi_val[0])) {
2387 case 3:
2388 ic->ic_fixed_rate = -1;
2389 break;
2390 default:
2391 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2392 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
2393 / 2 == le16toh(wreq.wi_val[0]))
2394 break;
2395 }
2396 if (i == IEEE80211_RATE_SIZE)
2397 return EINVAL;
2398 ic->ic_fixed_rate = i;
2399 }
2400 if (sc->sc_enabled)
2401 error = wi_cfg_txrate(sc);
2402 break;
2403
2404 case WI_RID_SCAN_APS:
2405 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2406 error = wi_scan_ap(sc, 0x3fff, 0x000f);
2407 break;
2408
2409 case WI_RID_MGMT_XMIT:
2410 if (!sc->sc_enabled) {
2411 error = ENETDOWN;
2412 break;
2413 }
2414 if (ic->ic_mgtq.ifq_len > 5) {
2415 error = EAGAIN;
2416 break;
2417 }
2418 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
2419 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
2420 if (m == NULL) {
2421 error = ENOMEM;
2422 break;
2423 }
2424 IF_ENQUEUE(&ic->ic_mgtq, m);
2425 break;
2426
2427 default:
2428 if (sc->sc_enabled) {
2429 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2430 len);
2431 if (error)
2432 break;
2433 }
2434 error = ieee80211_cfgset(ic, cmd, data);
2435 break;
2436 }
2437 return error;
2438 }
2439
2440 /* Rate is 0 for hardware auto-select, otherwise rate is
2441 * 2, 4, 11, or 22 (units of 500Kbps).
2442 */
2443 STATIC int
2444 wi_write_txrate(struct wi_softc *sc, int rate)
2445 {
2446 u_int16_t hwrate;
2447
2448 /* rate: 0, 2, 4, 11, 22 */
2449 switch (sc->sc_firmware_type) {
2450 case WI_LUCENT:
2451 switch (rate & IEEE80211_RATE_VAL) {
2452 case 2:
2453 hwrate = 1;
2454 break;
2455 case 4:
2456 hwrate = 2;
2457 break;
2458 default:
2459 hwrate = 3; /* auto */
2460 break;
2461 case 11:
2462 hwrate = 4;
2463 break;
2464 case 22:
2465 hwrate = 5;
2466 break;
2467 }
2468 break;
2469 default:
2470 switch (rate & IEEE80211_RATE_VAL) {
2471 case 2:
2472 hwrate = 1;
2473 break;
2474 case 4:
2475 hwrate = 2;
2476 break;
2477 case 11:
2478 hwrate = 4;
2479 break;
2480 case 22:
2481 hwrate = 8;
2482 break;
2483 default:
2484 hwrate = 15; /* auto */
2485 break;
2486 }
2487 break;
2488 }
2489
2490 if (sc->sc_tx_rate == hwrate)
2491 return 0;
2492
2493 if (sc->sc_if.if_flags & IFF_DEBUG)
2494 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate,
2495 hwrate, rate);
2496
2497 sc->sc_tx_rate = hwrate;
2498
2499 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate);
2500 }
2501
2502 STATIC int
2503 wi_cfg_txrate(struct wi_softc *sc)
2504 {
2505 struct ieee80211com *ic = &sc->sc_ic;
2506 struct ieee80211_rateset *rs;
2507 int rate;
2508
2509 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2510
2511 sc->sc_tx_rate = 0; /* force write to RID */
2512
2513 if (ic->ic_fixed_rate < 0)
2514 rate = 0; /* auto */
2515 else
2516 rate = rs->rs_rates[ic->ic_fixed_rate];
2517
2518 return wi_write_txrate(sc, rate);
2519 }
2520
2521 STATIC int
2522 wi_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
2523 {
2524 int keyix;
2525
2526 if (&ic->ic_nw_keys[0] <= k && k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])
2527 keyix = k - ic->ic_nw_keys;
2528 else
2529 keyix = IEEE80211_KEYIX_NONE;
2530
2531 DPRINTF(("%s: alloc key %u\n", __func__, keyix));
2532
2533 return keyix;
2534 }
2535
2536 STATIC int
2537 wi_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2538 {
2539 struct wi_softc *sc = ic->ic_ifp->if_softc;
2540 u_int keyix = k->wk_keyix;
2541
2542 DPRINTF(("%s: delete key %u\n", __func__, keyix));
2543
2544 if (keyix >= IEEE80211_WEP_NKID)
2545 return 0;
2546 if (k->wk_keylen != 0)
2547 sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
2548
2549 return 1;
2550 }
2551
2552 static int
2553 wi_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2554 const u_int8_t mac[IEEE80211_ADDR_LEN])
2555 {
2556 struct wi_softc *sc = ic->ic_ifp->if_softc;
2557
2558 DPRINTF(("%s: set key %u\n", __func__, k->wk_keyix));
2559
2560 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2561 return 0;
2562
2563 sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
2564
2565 return 1;
2566 }
2567
2568 STATIC void
2569 wi_key_update_begin(struct ieee80211com *ic)
2570 {
2571 DPRINTF(("%s:\n", __func__));
2572 }
2573
2574 STATIC void
2575 wi_key_update_end(struct ieee80211com *ic)
2576 {
2577 struct ifnet *ifp = ic->ic_ifp;
2578 struct wi_softc *sc = ifp->if_softc;
2579
2580 DPRINTF(("%s:\n", __func__));
2581
2582 if ((sc->sc_flags & WI_FLAGS_WEP_VALID) != 0)
2583 return;
2584 if ((ic->ic_caps & IEEE80211_C_WEP) != 0 && sc->sc_enabled &&
2585 !sc->sc_invalid)
2586 (void)wi_write_wep(sc);
2587 }
2588
2589 STATIC int
2590 wi_write_wep(struct wi_softc *sc)
2591 {
2592 struct ifnet *ifp = &sc->sc_if;
2593 struct ieee80211com *ic = &sc->sc_ic;
2594 int error = 0;
2595 int i, keylen;
2596 u_int16_t val;
2597 struct wi_key wkey[IEEE80211_WEP_NKID];
2598
2599 if ((ifp->if_flags & IFF_RUNNING) != 0)
2600 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
2601
2602 switch (sc->sc_firmware_type) {
2603 case WI_LUCENT:
2604 val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0;
2605 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2606 if (error)
2607 break;
2608 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_def_txkey);
2609 if (error)
2610 break;
2611 memset(wkey, 0, sizeof(wkey));
2612 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2613 keylen = ic->ic_nw_keys[i].wk_keylen;
2614 wkey[i].wi_keylen = htole16(keylen);
2615 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2616 keylen);
2617 }
2618 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2619 wkey, sizeof(wkey));
2620 break;
2621
2622 case WI_INTERSIL:
2623 case WI_SYMBOL:
2624 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2625 /*
2626 * ONLY HWB3163 EVAL-CARD Firmware version
2627 * less than 0.8 variant2
2628 *
2629 * If promiscuous mode disable, Prism2 chip
2630 * does not work with WEP .
2631 * It is under investigation for details.
2632 * (ichiro (at) NetBSD.org)
2633 */
2634 if (sc->sc_firmware_type == WI_INTERSIL &&
2635 sc->sc_sta_firmware_ver < 802 ) {
2636 /* firm ver < 0.8 variant 2 */
2637 wi_write_val(sc, WI_RID_PROMISC, 1);
2638 }
2639 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2640 sc->sc_cnfauthmode);
2641 val = PRIVACY_INVOKED;
2642 if ((sc->sc_ic_flags & IEEE80211_F_DROPUNENC) != 0)
2643 val |= EXCLUDE_UNENCRYPTED;
2644 #ifndef IEEE80211_NO_HOSTAP
2645 /*
2646 * Encryption firmware has a bug for HostAP mode.
2647 */
2648 if (sc->sc_firmware_type == WI_INTERSIL &&
2649 ic->ic_opmode == IEEE80211_M_HOSTAP)
2650 val |= HOST_ENCRYPT;
2651 #endif /* !IEEE80211_NO_HOSTAP */
2652 } else {
2653 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2654 IEEE80211_AUTH_OPEN);
2655 val = HOST_ENCRYPT | HOST_DECRYPT;
2656 }
2657 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2658 if (error)
2659 break;
2660 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2661 ic->ic_def_txkey);
2662 if (error)
2663 break;
2664 /*
2665 * It seems that the firmware accept 104bit key only if
2666 * all the keys have 104bit length. We get the length of
2667 * the transmit key and use it for all other keys.
2668 * Perhaps we should use software WEP for such situation.
2669 */
2670 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
2671 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
2672 keylen = 13; /* No keys => 104bit ok */
2673 else
2674 keylen = ic->ic_nw_keys[ic->ic_def_txkey].wk_keylen;
2675
2676 if (keylen > IEEE80211_WEP_KEYLEN)
2677 keylen = 13; /* 104bit keys */
2678 else
2679 keylen = IEEE80211_WEP_KEYLEN;
2680 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2681 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2682 ic->ic_nw_keys[i].wk_key, keylen);
2683 if (error)
2684 break;
2685 }
2686 break;
2687 }
2688 if ((ifp->if_flags & IFF_RUNNING) != 0)
2689 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
2690 if (error == 0)
2691 sc->sc_flags |= WI_FLAGS_WEP_VALID;
2692 return error;
2693 }
2694
2695 /* Must be called at proper protection level! */
2696 STATIC int
2697 wi_cmd_start(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2698 {
2699 #ifdef WI_HISTOGRAM
2700 static int hist1[11];
2701 static int hist1count;
2702 #endif
2703 int i;
2704
2705 /* wait for the busy bit to clear */
2706 for (i = 500; i > 0; i--) { /* 5s */
2707 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2708 break;
2709 if (sc->sc_invalid)
2710 return ENXIO;
2711 DELAY(1000); /* 1 m sec */
2712 }
2713 if (i == 0) {
2714 printf("%s: wi_cmd: busy bit won't clear.\n",
2715 sc->sc_dev.dv_xname);
2716 return(ETIMEDOUT);
2717 }
2718 #ifdef WI_HISTOGRAM
2719 if (i > 490)
2720 hist1[500 - i]++;
2721 else
2722 hist1[10]++;
2723 if (++hist1count == 1000) {
2724 hist1count = 0;
2725 printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n",
2726 sc->sc_dev.dv_xname,
2727 hist1[0], hist1[1], hist1[2], hist1[3], hist1[4],
2728 hist1[5], hist1[6], hist1[7], hist1[8], hist1[9],
2729 hist1[10]);
2730 }
2731 #endif
2732 CSR_WRITE_2(sc, WI_PARAM0, val0);
2733 CSR_WRITE_2(sc, WI_PARAM1, val1);
2734 CSR_WRITE_2(sc, WI_PARAM2, val2);
2735 CSR_WRITE_2(sc, WI_COMMAND, cmd);
2736
2737 return 0;
2738 }
2739
2740 STATIC int
2741 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2742 {
2743 int rc;
2744
2745 #ifdef WI_DEBUG
2746 if (wi_debug) {
2747 printf("%s: [enter] %d txcmds outstanding\n", __func__,
2748 sc->sc_txcmds);
2749 }
2750 #endif
2751 if (sc->sc_txcmds > 0)
2752 wi_txcmd_wait(sc);
2753
2754 if ((rc = wi_cmd_start(sc, cmd, val0, val1, val2)) != 0)
2755 return rc;
2756
2757 if (cmd == WI_CMD_INI) {
2758 /* XXX: should sleep here. */
2759 if (sc->sc_invalid)
2760 return ENXIO;
2761 DELAY(100*1000);
2762 }
2763 rc = wi_cmd_wait(sc, cmd, val0);
2764
2765 #ifdef WI_DEBUG
2766 if (wi_debug) {
2767 printf("%s: [ ] %d txcmds outstanding\n", __func__,
2768 sc->sc_txcmds);
2769 }
2770 #endif
2771 if (sc->sc_txcmds > 0)
2772 wi_cmd_intr(sc);
2773
2774 #ifdef WI_DEBUG
2775 if (wi_debug) {
2776 printf("%s: [leave] %d txcmds outstanding\n", __func__,
2777 sc->sc_txcmds);
2778 }
2779 #endif
2780 return rc;
2781 }
2782
2783 STATIC int
2784 wi_cmd_wait(struct wi_softc *sc, int cmd, int val0)
2785 {
2786 #ifdef WI_HISTOGRAM
2787 static int hist2[11];
2788 static int hist2count;
2789 #endif
2790 int i, status;
2791 #ifdef WI_DEBUG
2792 if (wi_debug > 1)
2793 printf("%s: cmd=%#x, arg=%#x\n", __func__, cmd, val0);
2794 #endif /* WI_DEBUG */
2795
2796 /* wait for the cmd completed bit */
2797 for (i = 0; i < WI_TIMEOUT; i++) {
2798 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
2799 break;
2800 if (sc->sc_invalid)
2801 return ENXIO;
2802 DELAY(WI_DELAY);
2803 }
2804
2805 #ifdef WI_HISTOGRAM
2806 if (i < 100)
2807 hist2[i/10]++;
2808 else
2809 hist2[10]++;
2810 if (++hist2count == 1000) {
2811 hist2count = 0;
2812 printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n",
2813 sc->sc_dev.dv_xname,
2814 hist2[0], hist2[1], hist2[2], hist2[3], hist2[4],
2815 hist2[5], hist2[6], hist2[7], hist2[8], hist2[9],
2816 hist2[10]);
2817 }
2818 #endif
2819
2820 status = CSR_READ_2(sc, WI_STATUS);
2821
2822 if (i == WI_TIMEOUT) {
2823 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
2824 sc->sc_dev.dv_xname, cmd, val0);
2825 return ETIMEDOUT;
2826 }
2827
2828 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2829
2830 if (status & WI_STAT_CMD_RESULT) {
2831 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
2832 sc->sc_dev.dv_xname, cmd, val0);
2833 return EIO;
2834 }
2835 return 0;
2836 }
2837
2838 STATIC int
2839 wi_seek_bap(struct wi_softc *sc, int id, int off)
2840 {
2841 #ifdef WI_HISTOGRAM
2842 static int hist4[11];
2843 static int hist4count;
2844 #endif
2845 int i, status;
2846
2847 CSR_WRITE_2(sc, WI_SEL0, id);
2848 CSR_WRITE_2(sc, WI_OFF0, off);
2849
2850 for (i = 0; ; i++) {
2851 status = CSR_READ_2(sc, WI_OFF0);
2852 if ((status & WI_OFF_BUSY) == 0)
2853 break;
2854 if (i == WI_TIMEOUT) {
2855 printf("%s: timeout in wi_seek to %x/%x\n",
2856 sc->sc_dev.dv_xname, id, off);
2857 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2858 return ETIMEDOUT;
2859 }
2860 if (sc->sc_invalid)
2861 return ENXIO;
2862 DELAY(2);
2863 }
2864 #ifdef WI_HISTOGRAM
2865 if (i < 100)
2866 hist4[i/10]++;
2867 else
2868 hist4[10]++;
2869 if (++hist4count == 2500) {
2870 hist4count = 0;
2871 printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n",
2872 sc->sc_dev.dv_xname,
2873 hist4[0], hist4[1], hist4[2], hist4[3], hist4[4],
2874 hist4[5], hist4[6], hist4[7], hist4[8], hist4[9],
2875 hist4[10]);
2876 }
2877 #endif
2878 if (status & WI_OFF_ERR) {
2879 printf("%s: failed in wi_seek to %x/%x\n",
2880 sc->sc_dev.dv_xname, id, off);
2881 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2882 return EIO;
2883 }
2884 sc->sc_bap_id = id;
2885 sc->sc_bap_off = off;
2886 return 0;
2887 }
2888
2889 STATIC int
2890 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2891 {
2892 int error, cnt;
2893
2894 if (buflen == 0)
2895 return 0;
2896 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2897 if ((error = wi_seek_bap(sc, id, off)) != 0)
2898 return error;
2899 }
2900 cnt = (buflen + 1) / 2;
2901 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2902 sc->sc_bap_off += cnt * 2;
2903 return 0;
2904 }
2905
2906 STATIC int
2907 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2908 {
2909 int error, cnt;
2910
2911 if (buflen == 0)
2912 return 0;
2913
2914 #ifdef WI_HERMES_AUTOINC_WAR
2915 again:
2916 #endif
2917 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2918 if ((error = wi_seek_bap(sc, id, off)) != 0)
2919 return error;
2920 }
2921 cnt = (buflen + 1) / 2;
2922 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2923 sc->sc_bap_off += cnt * 2;
2924
2925 #ifdef WI_HERMES_AUTOINC_WAR
2926 /*
2927 * According to the comments in the HCF Light code, there is a bug
2928 * in the Hermes (or possibly in certain Hermes firmware revisions)
2929 * where the chip's internal autoincrement counter gets thrown off
2930 * during data writes: the autoincrement is missed, causing one
2931 * data word to be overwritten and subsequent words to be written to
2932 * the wrong memory locations. The end result is that we could end
2933 * up transmitting bogus frames without realizing it. The workaround
2934 * for this is to write a couple of extra guard words after the end
2935 * of the transfer, then attempt to read then back. If we fail to
2936 * locate the guard words where we expect them, we preform the
2937 * transfer over again.
2938 */
2939 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2940 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2941 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2942 wi_seek_bap(sc, id, sc->sc_bap_off);
2943 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2944 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2945 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2946 printf("%s: detect auto increment bug, try again\n",
2947 sc->sc_dev.dv_xname);
2948 goto again;
2949 }
2950 }
2951 #endif
2952 return 0;
2953 }
2954
2955 STATIC int
2956 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2957 {
2958 int error, len;
2959 struct mbuf *m;
2960
2961 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2962 if (m->m_len == 0)
2963 continue;
2964
2965 len = min(m->m_len, totlen);
2966
2967 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2968 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2969 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2970 totlen);
2971 }
2972
2973 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2974 return error;
2975
2976 off += m->m_len;
2977 totlen -= len;
2978 }
2979 return 0;
2980 }
2981
2982 STATIC int
2983 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2984 {
2985 int i;
2986
2987 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2988 printf("%s: failed to allocate %d bytes on NIC\n",
2989 sc->sc_dev.dv_xname, len);
2990 return ENOMEM;
2991 }
2992
2993 for (i = 0; i < WI_TIMEOUT; i++) {
2994 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2995 break;
2996 DELAY(1);
2997 }
2998 if (i == WI_TIMEOUT) {
2999 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
3000 return ETIMEDOUT;
3001 }
3002 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
3003 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
3004 return 0;
3005 }
3006
3007 STATIC int
3008 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
3009 {
3010 int error, len;
3011 u_int16_t ltbuf[2];
3012
3013 /* Tell the NIC to enter record read mode. */
3014 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
3015 if (error)
3016 return error;
3017
3018 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
3019 if (error)
3020 return error;
3021
3022 if (le16toh(ltbuf[0]) == 0)
3023 return EOPNOTSUPP;
3024 if (le16toh(ltbuf[1]) != rid) {
3025 printf("%s: record read mismatch, rid=%x, got=%x\n",
3026 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
3027 return EIO;
3028 }
3029 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
3030 if (*buflenp < len) {
3031 printf("%s: record buffer is too small, "
3032 "rid=%x, size=%d, len=%d\n",
3033 sc->sc_dev.dv_xname, rid, *buflenp, len);
3034 return ENOSPC;
3035 }
3036 *buflenp = len;
3037 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
3038 }
3039
3040 STATIC int
3041 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
3042 {
3043 int error;
3044 u_int16_t ltbuf[2];
3045
3046 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
3047 ltbuf[1] = htole16(rid);
3048
3049 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
3050 if (error)
3051 return error;
3052 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
3053 if (error)
3054 return error;
3055
3056 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
3057 }
3058
3059 STATIC void
3060 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni)
3061 {
3062 struct wi_node *wn = (void*)ni;
3063 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt);
3064 }
3065
3066 STATIC void
3067 wi_rssadapt_updatestats(void *arg)
3068 {
3069 struct wi_softc *sc = arg;
3070 struct ieee80211com *ic = &sc->sc_ic;
3071 ieee80211_iterate_nodes(&ic->ic_sta, wi_rssadapt_updatestats_cb, arg);
3072 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
3073 ic->ic_state == IEEE80211_S_RUN)
3074 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
3075 wi_rssadapt_updatestats, arg);
3076 }
3077
3078 /*
3079 * In HOSTAP mode, restore IEEE80211_F_DROPUNENC when operating
3080 * with WEP enabled so that the AP drops unencoded frames at the
3081 * 802.11 layer.
3082 *
3083 * In all other modes, clear IEEE80211_F_DROPUNENC when operating
3084 * with WEP enabled so we don't drop unencoded frames at the 802.11
3085 * layer. This is necessary because we must strip the WEP bit from
3086 * the 802.11 header before passing frames to ieee80211_input
3087 * because the card has already stripped the WEP crypto header from
3088 * the packet.
3089 */
3090 STATIC void
3091 wi_mend_flags(struct wi_softc *sc, enum ieee80211_state nstate)
3092 {
3093 struct ieee80211com *ic = &sc->sc_ic;
3094
3095 if (nstate == IEEE80211_S_RUN &&
3096 (ic->ic_flags & IEEE80211_F_PRIVACY) != 0 &&
3097 ic->ic_opmode != IEEE80211_M_HOSTAP)
3098 ic->ic_flags &= ~IEEE80211_F_DROPUNENC;
3099 else
3100 ic->ic_flags |= sc->sc_ic_flags;
3101
3102 DPRINTF(("%s: state %d, "
3103 "ic->ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 ", "
3104 "sc->sc_ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 "\n",
3105 __func__, nstate,
3106 ic->ic_flags & IEEE80211_F_DROPUNENC,
3107 sc->sc_ic_flags & IEEE80211_F_DROPUNENC));
3108 }
3109
3110 STATIC int
3111 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3112 {
3113 struct ifnet *ifp = ic->ic_ifp;
3114 struct wi_softc *sc = ifp->if_softc;
3115 struct ieee80211_node *ni = ic->ic_bss;
3116 u_int16_t val;
3117 struct wi_ssid ssid;
3118 struct wi_macaddr bssid, old_bssid;
3119 enum ieee80211_state ostate;
3120 #ifdef WI_DEBUG
3121 static const char *stname[] =
3122 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
3123 #endif /* WI_DEBUG */
3124
3125 ostate = ic->ic_state;
3126 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
3127
3128 switch (nstate) {
3129 case IEEE80211_S_INIT:
3130 if (ic->ic_opmode != IEEE80211_M_MONITOR)
3131 callout_stop(&sc->sc_rssadapt_ch);
3132 ic->ic_flags &= ~IEEE80211_F_SIBSS;
3133 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
3134 break;
3135
3136 case IEEE80211_S_SCAN:
3137 case IEEE80211_S_AUTH:
3138 case IEEE80211_S_ASSOC:
3139 ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */
3140 wi_mend_flags(sc, nstate);
3141 return 0;
3142
3143 case IEEE80211_S_RUN:
3144 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
3145 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid);
3146 wi_read_xrid(sc, WI_RID_CURRENT_BSSID, &bssid,
3147 IEEE80211_ADDR_LEN);
3148 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid);
3149 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid);
3150 wi_read_xrid(sc, WI_RID_CURRENT_CHAN, &val, sizeof(val));
3151 if (!isset(ic->ic_chan_avail, le16toh(val)))
3152 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname,
3153 le16toh(val));
3154 ni->ni_chan = &ic->ic_channels[le16toh(val)];
3155
3156 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3157 #ifndef IEEE80211_NO_HOSTAP
3158 ni->ni_esslen = ic->ic_des_esslen;
3159 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
3160 ni->ni_rates = ic->ic_sup_rates[
3161 ieee80211_chan2mode(ic, ni->ni_chan)];
3162 ni->ni_intval = ic->ic_lintval;
3163 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
3164 if (ic->ic_flags & IEEE80211_F_PRIVACY)
3165 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
3166 #endif /* !IEEE80211_NO_HOSTAP */
3167 } else {
3168 wi_read_xrid(sc, WI_RID_CURRENT_SSID, &ssid,
3169 sizeof(ssid));
3170 ni->ni_esslen = le16toh(ssid.wi_len);
3171 if (ni->ni_esslen > IEEE80211_NWID_LEN)
3172 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
3173 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
3174 ni->ni_rates = ic->ic_sup_rates[
3175 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/
3176 }
3177 if (ic->ic_opmode != IEEE80211_M_MONITOR)
3178 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
3179 wi_rssadapt_updatestats, sc);
3180 /* Trigger routing socket messages. XXX Copied from
3181 * ieee80211_newstate.
3182 */
3183 if (ic->ic_opmode == IEEE80211_M_STA)
3184 ieee80211_notify_node_join(ic, ic->ic_bss,
3185 arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
3186 break;
3187 }
3188 wi_mend_flags(sc, nstate);
3189 return (*sc->sc_newstate)(ic, nstate, arg);
3190 }
3191
3192 STATIC void
3193 wi_set_tim(struct ieee80211com *ic, struct ieee80211_node *ni, int set)
3194 {
3195 struct wi_softc *sc = ic->ic_ifp->if_softc;
3196
3197 (*sc->sc_set_tim)(ic, ni, set);
3198
3199 if ((ic->ic_flags & IEEE80211_F_TIMUPDATE) == 0)
3200 return;
3201
3202 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
3203
3204 (void)wi_write_val(sc, WI_RID_SET_TIM,
3205 IEEE80211_AID(ni->ni_associd) | (set ? 0x8000 : 0));
3206 }
3207
3208 STATIC int
3209 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
3210 {
3211 int error = 0;
3212 u_int16_t val[2];
3213
3214 if (!sc->sc_enabled)
3215 return ENXIO;
3216 switch (sc->sc_firmware_type) {
3217 case WI_LUCENT:
3218 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
3219 break;
3220 case WI_INTERSIL:
3221 val[0] = htole16(chanmask); /* channel */
3222 val[1] = htole16(txrate); /* tx rate */
3223 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
3224 break;
3225 case WI_SYMBOL:
3226 /*
3227 * XXX only supported on 3.x ?
3228 */
3229 val[0] = htole16(BSCAN_BCAST | BSCAN_ONETIME);
3230 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
3231 val, sizeof(val[0]));
3232 break;
3233 }
3234 if (error == 0) {
3235 sc->sc_scan_timer = WI_SCAN_WAIT;
3236 sc->sc_if.if_timer = 1;
3237 DPRINTF(("wi_scan_ap: start scanning, "
3238 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate));
3239 }
3240 return error;
3241 }
3242
3243 STATIC void
3244 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
3245 {
3246 #define N(a) (sizeof (a) / sizeof (a[0]))
3247 int i, naps, off, szbuf;
3248 struct wi_scan_header ws_hdr; /* Prism2 header */
3249 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
3250 struct wi_apinfo *ap;
3251
3252 off = sizeof(u_int16_t) * 2;
3253 memset(&ws_hdr, 0, sizeof(ws_hdr));
3254 switch (sc->sc_firmware_type) {
3255 case WI_INTERSIL:
3256 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
3257 off += sizeof(ws_hdr);
3258 szbuf = sizeof(struct wi_scan_data_p2);
3259 break;
3260 case WI_SYMBOL:
3261 szbuf = sizeof(struct wi_scan_data_p2) + 6;
3262 break;
3263 case WI_LUCENT:
3264 szbuf = sizeof(struct wi_scan_data);
3265 break;
3266 default:
3267 printf("%s: wi_scan_result: unknown firmware type %u\n",
3268 sc->sc_dev.dv_xname, sc->sc_firmware_type);
3269 naps = 0;
3270 goto done;
3271 }
3272 naps = (cnt * 2 + 2 - off) / szbuf;
3273 if (naps > N(sc->sc_aps))
3274 naps = N(sc->sc_aps);
3275 sc->sc_naps = naps;
3276 /* Read Data */
3277 ap = sc->sc_aps;
3278 memset(&ws_dat, 0, sizeof(ws_dat));
3279 for (i = 0; i < naps; i++, ap++) {
3280 wi_read_bap(sc, fid, off, &ws_dat,
3281 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
3282 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
3283 ether_sprintf(ws_dat.wi_bssid)));
3284 off += szbuf;
3285 ap->scanreason = le16toh(ws_hdr.wi_reason);
3286 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
3287 ap->channel = le16toh(ws_dat.wi_chid);
3288 ap->signal = le16toh(ws_dat.wi_signal);
3289 ap->noise = le16toh(ws_dat.wi_noise);
3290 ap->quality = ap->signal - ap->noise;
3291 ap->capinfo = le16toh(ws_dat.wi_capinfo);
3292 ap->interval = le16toh(ws_dat.wi_interval);
3293 ap->rate = le16toh(ws_dat.wi_rate);
3294 ap->namelen = le16toh(ws_dat.wi_namelen);
3295 if (ap->namelen > sizeof(ap->name))
3296 ap->namelen = sizeof(ap->name);
3297 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
3298 }
3299 done:
3300 /* Done scanning */
3301 sc->sc_scan_timer = 0;
3302 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
3303 #undef N
3304 }
3305
3306 STATIC void
3307 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
3308 {
3309 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
3310 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL
3311 : -1,
3312 rssi);
3313 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
3314 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
3315 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
3316 printf(" rx_signal %u rx_rate %u rx_flow %u\n",
3317 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
3318 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
3319 wh->wi_tx_rtry, wh->wi_tx_rate,
3320 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
3321 printf(" ehdr dst %s src %s type 0x%x\n",
3322 ether_sprintf(wh->wi_ehdr.ether_dhost),
3323 ether_sprintf(wh->wi_ehdr.ether_shost),
3324 wh->wi_ehdr.ether_type);
3325 }
3326