wi.c revision 1.218 1 /* $NetBSD: wi.c,v 1.218 2007/01/04 18:44:45 elad Exp $ */
2
3 /*-
4 * Copyright (c) 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1997, 1998, 1999
41 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Bill Paul.
54 * 4. Neither the name of the author nor the names of any co-contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
68 * THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
73 *
74 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
81 * from Lucent. Unlike the older cards, the new ones are programmed
82 * entirely via a firmware-driven controller called the Hermes.
83 * Unfortunately, Lucent will not release the Hermes programming manual
84 * without an NDA (if at all). What they do release is an API library
85 * called the HCF (Hardware Control Functions) which is supposed to
86 * do the device-specific operations of a device driver for you. The
87 * publically available version of the HCF library (the 'HCF Light') is
88 * a) extremely gross, b) lacks certain features, particularly support
89 * for 802.11 frames, and c) is contaminated by the GNU Public License.
90 *
91 * This driver does not use the HCF or HCF Light at all. Instead, it
92 * programs the Hermes controller directly, using information gleaned
93 * from the HCF Light code and corresponding documentation.
94 *
95 * This driver supports both the PCMCIA and ISA versions of the
96 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
97 * anything of the sort: it's actually a PCMCIA bridge adapter
98 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
99 * inserted. Consequently, you need to use the pccard support for
100 * both the ISA and PCMCIA adapters.
101 */
102
103 /*
104 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
105 * Oslo IETF plenary meeting.
106 */
107
108 #include <sys/cdefs.h>
109 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.218 2007/01/04 18:44:45 elad Exp $");
110
111 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
112 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
113 #undef WI_HISTOGRAM
114 #undef WI_RING_DEBUG
115 #define STATIC static
116
117 #include "bpfilter.h"
118
119 #include <sys/param.h>
120 #include <sys/sysctl.h>
121 #include <sys/systm.h>
122 #include <sys/callout.h>
123 #include <sys/device.h>
124 #include <sys/socket.h>
125 #include <sys/mbuf.h>
126 #include <sys/ioctl.h>
127 #include <sys/kernel.h> /* for hz */
128 #include <sys/proc.h>
129 #include <sys/kauth.h>
130
131 #include <net/if.h>
132 #include <net/if_dl.h>
133 #include <net/if_llc.h>
134 #include <net/if_media.h>
135 #include <net/if_ether.h>
136 #include <net/route.h>
137
138 #include <net80211/ieee80211_netbsd.h>
139 #include <net80211/ieee80211_var.h>
140 #include <net80211/ieee80211_ioctl.h>
141 #include <net80211/ieee80211_radiotap.h>
142 #include <net80211/ieee80211_rssadapt.h>
143
144 #if NBPFILTER > 0
145 #include <net/bpf.h>
146 #include <net/bpfdesc.h>
147 #endif
148
149 #include <machine/bus.h>
150
151 #include <dev/ic/wi_ieee.h>
152 #include <dev/ic/wireg.h>
153 #include <dev/ic/wivar.h>
154
155 STATIC int wi_init(struct ifnet *);
156 STATIC void wi_stop(struct ifnet *, int);
157 STATIC void wi_start(struct ifnet *);
158 STATIC int wi_reset(struct wi_softc *);
159 STATIC void wi_watchdog(struct ifnet *);
160 STATIC int wi_ioctl(struct ifnet *, u_long, caddr_t);
161 STATIC int wi_media_change(struct ifnet *);
162 STATIC void wi_media_status(struct ifnet *, struct ifmediareq *);
163
164 STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211_node_table *);
165 STATIC void wi_node_free(struct ieee80211_node *);
166
167 STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
168 STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
169 STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *,
170 struct ieee80211_frame *, u_int);
171 STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *);
172 STATIC void wi_rssadapt_updatestats(void *);
173 STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *);
174 STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[],
175 wi_rssdescq_t *, u_int8_t (*)[]);
176 STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]);
177
178 STATIC void wi_rx_intr(struct wi_softc *);
179 STATIC void wi_txalloc_intr(struct wi_softc *);
180 STATIC void wi_cmd_intr(struct wi_softc *);
181 STATIC void wi_tx_intr(struct wi_softc *);
182 STATIC void wi_tx_ex_intr(struct wi_softc *);
183 STATIC void wi_info_intr(struct wi_softc *);
184
185 STATIC int wi_key_delete(struct ieee80211com *, const struct ieee80211_key *);
186 STATIC int wi_key_set(struct ieee80211com *, const struct ieee80211_key *,
187 const u_int8_t[IEEE80211_ADDR_LEN]);
188 STATIC void wi_key_update_begin(struct ieee80211com *);
189 STATIC void wi_key_update_end(struct ieee80211com *);
190
191 STATIC void wi_push_packet(struct wi_softc *);
192 STATIC int wi_get_cfg(struct ifnet *, u_long, caddr_t);
193 STATIC int wi_set_cfg(struct ifnet *, u_long, caddr_t);
194 STATIC int wi_cfg_txrate(struct wi_softc *);
195 STATIC int wi_write_txrate(struct wi_softc *, int);
196 STATIC int wi_write_wep(struct wi_softc *);
197 STATIC int wi_write_multi(struct wi_softc *);
198 STATIC int wi_alloc_fid(struct wi_softc *, int, int *);
199 STATIC void wi_read_nicid(struct wi_softc *);
200 STATIC int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
201
202 STATIC int wi_cmd(struct wi_softc *, int, int, int, int);
203 STATIC int wi_cmd_start(struct wi_softc *, int, int, int, int);
204 STATIC int wi_cmd_wait(struct wi_softc *, int, int);
205 STATIC int wi_seek_bap(struct wi_softc *, int, int);
206 STATIC int wi_read_bap(struct wi_softc *, int, int, void *, int);
207 STATIC int wi_write_bap(struct wi_softc *, int, int, void *, int);
208 STATIC int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
209 STATIC int wi_read_rid(struct wi_softc *, int, void *, int *);
210 STATIC int wi_write_rid(struct wi_softc *, int, void *, int);
211
212 STATIC int wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
213 STATIC void wi_set_tim(struct ieee80211_node *, int);
214
215 STATIC int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
216 STATIC void wi_scan_result(struct wi_softc *, int, int);
217
218 STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
219 STATIC void wi_mend_flags(struct wi_softc *, enum ieee80211_state);
220
221 static inline int
222 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
223 {
224
225 val = htole16(val);
226 return wi_write_rid(sc, rid, &val, sizeof(val));
227 }
228
229 static struct timeval lasttxerror; /* time of last tx error msg */
230 static int curtxeps = 0; /* current tx error msgs/sec */
231 static int wi_txerate = 0; /* tx error rate: max msgs/sec */
232
233 #ifdef WI_DEBUG
234 #define WI_DEBUG_MAX 2
235 int wi_debug = 0;
236
237 #define DPRINTF(X) if (wi_debug) printf X
238 #define DPRINTF2(X) if (wi_debug > 1) printf X
239 #define IFF_DUMPPKTS(_ifp) \
240 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
241 static int wi_sysctl_verify_debug(SYSCTLFN_PROTO);
242 #else
243 #define DPRINTF(X)
244 #define DPRINTF2(X)
245 #define IFF_DUMPPKTS(_ifp) 0
246 #endif
247
248 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \
249 WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD)
250
251 struct wi_card_ident
252 wi_card_ident[] = {
253 /* CARD_ID CARD_NAME FIRM_TYPE */
254 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
255 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
256 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
257 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
258 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
259 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
260 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
261 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
262 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
263 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
264 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
265 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
266 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
267 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
268 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
269 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
270 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
271 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
272 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
273 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
274 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
275 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
276 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
277 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
278 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
279 { 0, NULL, 0 },
280 };
281
282 #ifndef _LKM
283 /*
284 * Setup sysctl(3) MIB, hw.wi.*
285 *
286 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
287 */
288 SYSCTL_SETUP(sysctl_wi, "sysctl wi(4) subtree setup")
289 {
290 int rc;
291 const struct sysctlnode *rnode;
292 #ifdef WI_DEBUG
293 const struct sysctlnode *cnode;
294 #endif /* WI_DEBUG */
295
296 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
297 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
298 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
299 goto err;
300
301 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
302 CTLFLAG_PERMANENT, CTLTYPE_NODE, "wi",
303 "Lucent/Prism/Symbol 802.11 controls",
304 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
305 goto err;
306
307 #ifdef WI_DEBUG
308 /* control debugging printfs */
309 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
310 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
311 "debug", SYSCTL_DESCR("Enable debugging output"),
312 wi_sysctl_verify_debug, 0, &wi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
313 goto err;
314 #endif /* WI_DEBUG */
315 return;
316 err:
317 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
318 }
319 #endif
320
321 #ifdef WI_DEBUG
322 static int
323 wi_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
324 {
325 int error, t;
326 struct sysctlnode node;
327
328 node = *rnode;
329 t = *(int*)rnode->sysctl_data;
330 node.sysctl_data = &t;
331 error = sysctl_lookup(SYSCTLFN_CALL(&node));
332 if (error || newp == NULL)
333 return (error);
334
335 if (t < lower || t > upper)
336 return (EINVAL);
337
338 *(int*)rnode->sysctl_data = t;
339
340 return (0);
341 }
342
343 static int
344 wi_sysctl_verify_debug(SYSCTLFN_ARGS)
345 {
346 return wi_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
347 0, WI_DEBUG_MAX);
348 }
349 #endif /* WI_DEBUG */
350
351 STATIC int
352 wi_read_xrid(struct wi_softc *sc, int rid, void *buf, int ebuflen)
353 {
354 int buflen, rc;
355
356 buflen = ebuflen;
357 if ((rc = wi_read_rid(sc, rid, buf, &buflen)) != 0)
358 return rc;
359
360 if (buflen < ebuflen) {
361 #ifdef WI_DEBUG
362 printf("%s: rid=%#04x read %d, expected %d\n", __func__,
363 rid, buflen, ebuflen);
364 #endif
365 return -1;
366 }
367 return 0;
368 }
369
370 int
371 wi_attach(struct wi_softc *sc, const u_int8_t *macaddr)
372 {
373 struct ieee80211com *ic = &sc->sc_ic;
374 struct ifnet *ifp = &sc->sc_if;
375 int chan, nrate, buflen;
376 u_int16_t val, chanavail;
377 struct {
378 u_int16_t nrates;
379 char rates[IEEE80211_RATE_SIZE];
380 } ratebuf;
381 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
382 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
383 };
384 int s;
385
386 s = splnet();
387
388 /* Make sure interrupts are disabled. */
389 CSR_WRITE_2(sc, WI_INT_EN, 0);
390 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
391
392 sc->sc_invalid = 0;
393
394 /* Reset the NIC. */
395 if (wi_reset(sc) != 0) {
396 sc->sc_invalid = 1;
397 splx(s);
398 return 1;
399 }
400
401 if (wi_read_xrid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
402 IEEE80211_ADDR_LEN) != 0 ||
403 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
404 if (macaddr != NULL)
405 memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN);
406 else {
407 printf(" could not get mac address, attach failed\n");
408 splx(s);
409 return 1;
410 }
411 }
412
413 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
414
415 /* Read NIC identification */
416 wi_read_nicid(sc);
417
418 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
419 ifp->if_softc = sc;
420 ifp->if_start = wi_start;
421 ifp->if_ioctl = wi_ioctl;
422 ifp->if_watchdog = wi_watchdog;
423 ifp->if_init = wi_init;
424 ifp->if_stop = wi_stop;
425 ifp->if_flags =
426 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
427 IFQ_SET_READY(&ifp->if_snd);
428
429 ic->ic_ifp = ifp;
430 ic->ic_phytype = IEEE80211_T_DS;
431 ic->ic_opmode = IEEE80211_M_STA;
432 ic->ic_caps = IEEE80211_C_AHDEMO;
433 ic->ic_state = IEEE80211_S_INIT;
434 ic->ic_max_aid = WI_MAX_AID;
435
436 /* Find available channel */
437 if (wi_read_xrid(sc, WI_RID_CHANNEL_LIST, &chanavail,
438 sizeof(chanavail)) != 0) {
439 aprint_normal("%s: using default channel list\n", sc->sc_dev.dv_xname);
440 chanavail = htole16(0x1fff); /* assume 1-13 */
441 }
442 for (chan = 16; chan > 0; chan--) {
443 if (!isset((u_int8_t*)&chanavail, chan - 1))
444 continue;
445 ic->ic_ibss_chan = &ic->ic_channels[chan];
446 ic->ic_channels[chan].ic_freq =
447 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
448 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
449 }
450
451 /* Find default IBSS channel */
452 if (wi_read_xrid(sc, WI_RID_OWN_CHNL, &val, sizeof(val)) == 0) {
453 chan = le16toh(val);
454 if (isset((u_int8_t*)&chanavail, chan - 1))
455 ic->ic_ibss_chan = &ic->ic_channels[chan];
456 }
457 if (ic->ic_ibss_chan == NULL) {
458 aprint_error("%s: no available channel\n", sc->sc_dev.dv_xname);
459 return 1;
460 }
461
462 if (sc->sc_firmware_type == WI_LUCENT) {
463 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
464 } else {
465 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
466 wi_read_xrid(sc, WI_RID_DBM_ADJUST, &val, sizeof(val)) == 0)
467 sc->sc_dbm_offset = le16toh(val);
468 else
469 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
470 }
471
472 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
473
474 /*
475 * Set flags based on firmware version.
476 */
477 switch (sc->sc_firmware_type) {
478 case WI_LUCENT:
479 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
480 #ifdef WI_HERMES_AUTOINC_WAR
481 /* XXX: not confirmed, but never seen for recent firmware */
482 if (sc->sc_sta_firmware_ver < 40000) {
483 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
484 }
485 #endif
486 if (sc->sc_sta_firmware_ver >= 60000)
487 sc->sc_flags |= WI_FLAGS_HAS_MOR;
488 if (sc->sc_sta_firmware_ver >= 60006) {
489 ic->ic_caps |= IEEE80211_C_IBSS;
490 ic->ic_caps |= IEEE80211_C_MONITOR;
491 }
492 ic->ic_caps |= IEEE80211_C_PMGT;
493 sc->sc_ibss_port = 1;
494 break;
495
496 case WI_INTERSIL:
497 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
498 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
499 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
500 if (sc->sc_sta_firmware_ver > 10101)
501 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
502 if (sc->sc_sta_firmware_ver >= 800) {
503 if (sc->sc_sta_firmware_ver != 10402)
504 ic->ic_caps |= IEEE80211_C_HOSTAP;
505 ic->ic_caps |= IEEE80211_C_IBSS;
506 ic->ic_caps |= IEEE80211_C_MONITOR;
507 }
508 ic->ic_caps |= IEEE80211_C_PMGT;
509 sc->sc_ibss_port = 0;
510 sc->sc_alt_retry = 2;
511 break;
512
513 case WI_SYMBOL:
514 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
515 if (sc->sc_sta_firmware_ver >= 20000)
516 ic->ic_caps |= IEEE80211_C_IBSS;
517 sc->sc_ibss_port = 4;
518 break;
519 }
520
521 /*
522 * Find out if we support WEP on this card.
523 */
524 if (wi_read_xrid(sc, WI_RID_WEP_AVAIL, &val, sizeof(val)) == 0 &&
525 val != htole16(0))
526 ic->ic_caps |= IEEE80211_C_WEP;
527
528 /* Find supported rates. */
529 buflen = sizeof(ratebuf);
530 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 &&
531 buflen > 2) {
532 nrate = le16toh(ratebuf.nrates);
533 if (nrate > IEEE80211_RATE_SIZE)
534 nrate = IEEE80211_RATE_SIZE;
535 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates,
536 &ratebuf.rates[0], nrate);
537 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
538 } else {
539 aprint_error("%s: no supported rate list\n", sc->sc_dev.dv_xname);
540 return 1;
541 }
542
543 sc->sc_max_datalen = 2304;
544 sc->sc_rts_thresh = 2347;
545 sc->sc_frag_thresh = 2346;
546 sc->sc_system_scale = 1;
547 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
548 sc->sc_roaming_mode = 1;
549
550 callout_init(&sc->sc_rssadapt_ch);
551
552 /*
553 * Call MI attach routines.
554 */
555 if_attach(ifp);
556 ieee80211_ifattach(ic);
557
558 sc->sc_newstate = ic->ic_newstate;
559 sc->sc_set_tim = ic->ic_set_tim;
560 ic->ic_newstate = wi_newstate;
561 ic->ic_node_alloc = wi_node_alloc;
562 ic->ic_node_free = wi_node_free;
563 ic->ic_set_tim = wi_set_tim;
564
565 ic->ic_crypto.cs_key_delete = wi_key_delete;
566 ic->ic_crypto.cs_key_set = wi_key_set;
567 ic->ic_crypto.cs_key_update_begin = wi_key_update_begin;
568 ic->ic_crypto.cs_key_update_end = wi_key_update_end;
569
570 ieee80211_media_init(ic, wi_media_change, wi_media_status);
571
572 #if NBPFILTER > 0
573 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
574 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
575 #endif
576
577 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
578 sc->sc_rxtap.wr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
579 sc->sc_rxtap.wr_ihdr.it_present = htole32(WI_RX_RADIOTAP_PRESENT);
580
581 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
582 sc->sc_txtap.wt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
583 sc->sc_txtap.wt_ihdr.it_present = htole32(WI_TX_RADIOTAP_PRESENT);
584
585 /* Attach is successful. */
586 sc->sc_attached = 1;
587
588 splx(s);
589 ieee80211_announce(ic);
590 return 0;
591 }
592
593 int
594 wi_detach(struct wi_softc *sc)
595 {
596 struct ifnet *ifp = &sc->sc_if;
597 int s;
598
599 if (!sc->sc_attached)
600 return 0;
601
602 sc->sc_invalid = 1;
603 s = splnet();
604
605 wi_stop(ifp, 1);
606
607 ieee80211_ifdetach(&sc->sc_ic);
608 if_detach(ifp);
609 splx(s);
610 return 0;
611 }
612
613 #ifdef __NetBSD__
614 int
615 wi_activate(struct device *self, enum devact act)
616 {
617 struct wi_softc *sc = (struct wi_softc *)self;
618 int rv = 0, s;
619
620 s = splnet();
621 switch (act) {
622 case DVACT_ACTIVATE:
623 rv = EOPNOTSUPP;
624 break;
625
626 case DVACT_DEACTIVATE:
627 if_deactivate(&sc->sc_if);
628 break;
629 }
630 splx(s);
631 return rv;
632 }
633
634 void
635 wi_power(struct wi_softc *sc, int why)
636 {
637 struct ifnet *ifp = &sc->sc_if;
638 int s;
639
640 s = splnet();
641 switch (why) {
642 case PWR_SUSPEND:
643 case PWR_STANDBY:
644 wi_stop(ifp, 1);
645 break;
646 case PWR_RESUME:
647 if (ifp->if_flags & IFF_UP) {
648 wi_init(ifp);
649 (void)wi_intr(sc);
650 }
651 break;
652 case PWR_SOFTSUSPEND:
653 case PWR_SOFTSTANDBY:
654 case PWR_SOFTRESUME:
655 break;
656 }
657 splx(s);
658 }
659 #endif /* __NetBSD__ */
660
661 void
662 wi_shutdown(struct wi_softc *sc)
663 {
664 struct ifnet *ifp = &sc->sc_if;
665
666 if (sc->sc_attached)
667 wi_stop(ifp, 1);
668 }
669
670 int
671 wi_intr(void *arg)
672 {
673 int i;
674 struct wi_softc *sc = arg;
675 struct ifnet *ifp = &sc->sc_if;
676 u_int16_t status;
677
678 if (sc->sc_enabled == 0 ||
679 !device_is_active(&sc->sc_dev) ||
680 (ifp->if_flags & IFF_RUNNING) == 0)
681 return 0;
682
683 if ((ifp->if_flags & IFF_UP) == 0) {
684 CSR_WRITE_2(sc, WI_INT_EN, 0);
685 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
686 return 1;
687 }
688
689 /* This is superfluous on Prism, but Lucent breaks if we
690 * do not disable interrupts.
691 */
692 CSR_WRITE_2(sc, WI_INT_EN, 0);
693
694 /* maximum 10 loops per interrupt */
695 for (i = 0; i < 10; i++) {
696 status = CSR_READ_2(sc, WI_EVENT_STAT);
697 #ifdef WI_DEBUG
698 if (wi_debug > 1) {
699 printf("%s: iter %d status %#04x\n", __func__, i,
700 status);
701 }
702 #endif /* WI_DEBUG */
703 if ((status & WI_INTRS) == 0)
704 break;
705
706 sc->sc_status = status;
707
708 if (status & WI_EV_RX)
709 wi_rx_intr(sc);
710
711 if (status & WI_EV_ALLOC)
712 wi_txalloc_intr(sc);
713
714 if (status & WI_EV_TX)
715 wi_tx_intr(sc);
716
717 if (status & WI_EV_TX_EXC)
718 wi_tx_ex_intr(sc);
719
720 if (status & WI_EV_INFO)
721 wi_info_intr(sc);
722
723 CSR_WRITE_2(sc, WI_EVENT_ACK, sc->sc_status);
724
725 if (sc->sc_status & WI_EV_CMD)
726 wi_cmd_intr(sc);
727
728 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
729 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
730 !IFQ_IS_EMPTY(&ifp->if_snd))
731 wi_start(ifp);
732
733 sc->sc_status = 0;
734 }
735
736 /* re-enable interrupts */
737 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
738
739 sc->sc_status = 0;
740
741 return 1;
742 }
743
744 #define arraylen(a) (sizeof(a) / sizeof((a)[0]))
745
746 STATIC void
747 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree)
748 {
749 int i;
750 SLIST_INIT(rssdfree);
751 for (i = 0; i < arraylen(*rssd); i++) {
752 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next);
753 }
754 }
755
756 STATIC void
757 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS],
758 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE])
759 {
760 struct ieee80211_node *ni;
761 int i;
762 for (i = 0; i < arraylen(*rssd); i++) {
763 ni = (*rssd)[i].rd_desc.id_node;
764 (*rssd)[i].rd_desc.id_node = NULL;
765 if (ni != NULL && (ic->ic_ifp->if_flags & IFF_DEBUG) != 0)
766 printf("%s: cleaning outstanding rssadapt "
767 "descriptor for %s\n",
768 ic->ic_ifp->if_xname, ether_sprintf(ni->ni_macaddr));
769 if (ni != NULL)
770 ieee80211_free_node(ni);
771 }
772 memset(*txpending, 0, sizeof(*txpending));
773 wi_rssdescs_init(rssd, rssdfree);
774 }
775
776 STATIC int
777 wi_init(struct ifnet *ifp)
778 {
779 struct wi_softc *sc = ifp->if_softc;
780 struct ieee80211com *ic = &sc->sc_ic;
781 struct wi_joinreq join;
782 int i;
783 int error = 0, wasenabled;
784
785 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
786 wasenabled = sc->sc_enabled;
787 if (!sc->sc_enabled) {
788 if ((error = (*sc->sc_enable)(sc)) != 0)
789 goto out;
790 sc->sc_enabled = 1;
791 } else
792 wi_stop(ifp, 0);
793
794 /* Symbol firmware cannot be initialized more than once */
795 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled)
796 if ((error = wi_reset(sc)) != 0)
797 goto out;
798
799 /* common 802.11 configuration */
800 ic->ic_flags &= ~IEEE80211_F_IBSSON;
801 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
802 switch (ic->ic_opmode) {
803 case IEEE80211_M_STA:
804 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
805 break;
806 case IEEE80211_M_IBSS:
807 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
808 ic->ic_flags |= IEEE80211_F_IBSSON;
809 break;
810 case IEEE80211_M_AHDEMO:
811 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
812 break;
813 case IEEE80211_M_HOSTAP:
814 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
815 break;
816 case IEEE80211_M_MONITOR:
817 if (sc->sc_firmware_type == WI_LUCENT)
818 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
819 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
820 break;
821 }
822
823 /* Intersil interprets this RID as joining ESS even in IBSS mode */
824 if (sc->sc_firmware_type == WI_LUCENT &&
825 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
826 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
827 else
828 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
829 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
830 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
831 ic->ic_des_esslen);
832 wi_write_val(sc, WI_RID_OWN_CHNL,
833 ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
834 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
835 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
836 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
837 if (ic->ic_caps & IEEE80211_C_PMGT)
838 wi_write_val(sc, WI_RID_PM_ENABLED,
839 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
840
841 /* not yet common 802.11 configuration */
842 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
843 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
844 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
845 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
846
847 /* driver specific 802.11 configuration */
848 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
849 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
850 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
851 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
852 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
853 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
854 wi_cfg_txrate(sc);
855 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
856
857 #ifndef IEEE80211_NO_HOSTAP
858 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
859 sc->sc_firmware_type == WI_INTERSIL) {
860 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
861 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
862 }
863 #endif /* !IEEE80211_NO_HOSTAP */
864
865 if (sc->sc_firmware_type == WI_INTERSIL) {
866 struct ieee80211_rateset *rs =
867 &ic->ic_sup_rates[IEEE80211_MODE_11B];
868 u_int16_t basic = 0, supported = 0, rate;
869
870 for (i = 0; i < rs->rs_nrates; i++) {
871 switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
872 case 2:
873 rate = 1;
874 break;
875 case 4:
876 rate = 2;
877 break;
878 case 11:
879 rate = 4;
880 break;
881 case 22:
882 rate = 8;
883 break;
884 default:
885 rate = 0;
886 break;
887 }
888 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC)
889 basic |= rate;
890 supported |= rate;
891 }
892 wi_write_val(sc, WI_RID_BASIC_RATE, basic);
893 wi_write_val(sc, WI_RID_SUPPORT_RATE, supported);
894 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry);
895 }
896
897 /*
898 * Initialize promisc mode.
899 * Being in Host-AP mode causes a great
900 * deal of pain if promiscuous mode is set.
901 * Therefore we avoid confusing the firmware
902 * and always reset promisc mode in Host-AP
903 * mode. Host-AP sees all the packets anyway.
904 */
905 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
906 (ifp->if_flags & IFF_PROMISC) != 0) {
907 wi_write_val(sc, WI_RID_PROMISC, 1);
908 } else {
909 wi_write_val(sc, WI_RID_PROMISC, 0);
910 }
911
912 /* Configure WEP. */
913 if (ic->ic_caps & IEEE80211_C_WEP) {
914 sc->sc_cnfauthmode = ic->ic_bss->ni_authmode;
915 wi_write_wep(sc);
916 }
917
918 /* Set multicast filter. */
919 wi_write_multi(sc);
920
921 sc->sc_txalloc = 0;
922 sc->sc_txalloced = 0;
923 sc->sc_txqueue = 0;
924 sc->sc_txqueued = 0;
925 sc->sc_txstart = 0;
926 sc->sc_txstarted = 0;
927
928 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
929 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
930 if (sc->sc_firmware_type == WI_SYMBOL)
931 sc->sc_buflen = 1585; /* XXX */
932 for (i = 0; i < WI_NTXBUF; i++) {
933 error = wi_alloc_fid(sc, sc->sc_buflen,
934 &sc->sc_txd[i].d_fid);
935 if (error) {
936 printf("%s: tx buffer allocation failed\n",
937 sc->sc_dev.dv_xname);
938 goto out;
939 }
940 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
941 sc->sc_txd[i].d_fid));
942 ++sc->sc_txalloced;
943 }
944 }
945
946 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree);
947
948 /* Enable desired port */
949 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
950 ifp->if_flags |= IFF_RUNNING;
951 ifp->if_flags &= ~IFF_OACTIVE;
952 ic->ic_state = IEEE80211_S_INIT;
953
954 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
955 ic->ic_opmode == IEEE80211_M_IBSS ||
956 ic->ic_opmode == IEEE80211_M_MONITOR ||
957 ic->ic_opmode == IEEE80211_M_HOSTAP)
958 ieee80211_create_ibss(ic, ic->ic_ibss_chan);
959
960 /* Enable interrupts */
961 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
962
963 #ifndef IEEE80211_NO_HOSTAP
964 if (!wasenabled &&
965 ic->ic_opmode == IEEE80211_M_HOSTAP &&
966 sc->sc_firmware_type == WI_INTERSIL) {
967 /* XXX: some card need to be re-enabled for hostap */
968 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
969 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
970 }
971 #endif /* !IEEE80211_NO_HOSTAP */
972
973 if (ic->ic_opmode == IEEE80211_M_STA &&
974 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
975 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
976 memset(&join, 0, sizeof(join));
977 if (ic->ic_flags & IEEE80211_F_DESBSSID)
978 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
979 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
980 join.wi_chan =
981 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan));
982 /* Lucent firmware does not support the JOIN RID. */
983 if (sc->sc_firmware_type != WI_LUCENT)
984 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
985 }
986
987 out:
988 if (error) {
989 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
990 wi_stop(ifp, 0);
991 }
992 DPRINTF(("wi_init: return %d\n", error));
993 return error;
994 }
995
996 STATIC void
997 wi_txcmd_wait(struct wi_softc *sc)
998 {
999 KASSERT(sc->sc_txcmds == 1);
1000 if (sc->sc_status & WI_EV_CMD) {
1001 sc->sc_status &= ~WI_EV_CMD;
1002 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1003 } else
1004 (void)wi_cmd_wait(sc, WI_CMD_TX | WI_RECLAIM, 0);
1005 }
1006
1007 STATIC void
1008 wi_stop(struct ifnet *ifp, int disable)
1009 {
1010 struct wi_softc *sc = ifp->if_softc;
1011 struct ieee80211com *ic = &sc->sc_ic;
1012 int s;
1013
1014 if (!sc->sc_enabled)
1015 return;
1016
1017 s = splnet();
1018
1019 DPRINTF(("wi_stop: disable %d\n", disable));
1020
1021 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1022
1023 /* wait for tx command completion (deassoc, deauth) */
1024 while (sc->sc_txcmds > 0) {
1025 wi_txcmd_wait(sc);
1026 wi_cmd_intr(sc);
1027 }
1028
1029 /* TBD wait for deassoc, deauth tx completion? */
1030
1031 if (!sc->sc_invalid) {
1032 CSR_WRITE_2(sc, WI_INT_EN, 0);
1033 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
1034 }
1035
1036 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1037 &sc->sc_txpending);
1038
1039 sc->sc_tx_timer = 0;
1040 sc->sc_scan_timer = 0;
1041 sc->sc_false_syns = 0;
1042 sc->sc_naps = 0;
1043 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1044 ifp->if_timer = 0;
1045
1046 if (disable) {
1047 if (sc->sc_disable)
1048 (*sc->sc_disable)(sc);
1049 sc->sc_enabled = 0;
1050 }
1051 splx(s);
1052 }
1053
1054 /*
1055 * Choose a data rate for a packet len bytes long that suits the packet
1056 * type and the wireless conditions.
1057 *
1058 * TBD Adapt fragmentation threshold.
1059 */
1060 STATIC int
1061 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni,
1062 struct ieee80211_frame *wh, u_int len)
1063 {
1064 struct wi_softc *sc = ic->ic_ifp->if_softc;
1065 struct wi_node *wn = (void*)ni;
1066 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt;
1067 int do_not_adapt, i, rateidx, s;
1068
1069 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) &&
1070 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0;
1071
1072 s = splnet();
1073
1074 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len,
1075 ic->ic_fixed_rate,
1076 ((ic->ic_ifp->if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_ifp->if_xname,
1077 do_not_adapt);
1078
1079 ni->ni_txrate = rateidx;
1080
1081 if (ic->ic_opmode != IEEE80211_M_HOSTAP) {
1082 /* choose the slowest pending rate so that we don't
1083 * accidentally send a packet on the MAC's queue
1084 * too fast. TBD find out if the MAC labels Tx
1085 * packets w/ rate when enqueued or dequeued.
1086 */
1087 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++);
1088 rateidx = i;
1089 }
1090
1091 splx(s);
1092 return (rateidx);
1093 }
1094
1095 STATIC void
1096 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1097 {
1098 struct wi_node *wn;
1099 if (id->id_node == NULL)
1100 return;
1101
1102 wn = (void*)id->id_node;
1103 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id);
1104 }
1105
1106 STATIC void
1107 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1108 {
1109 struct ieee80211_node *ni;
1110 struct wi_node *wn;
1111 int s;
1112
1113 s = splnet();
1114
1115 if ((ni = id->id_node) == NULL) {
1116 DPRINTF(("wi_lower_rate: missing node\n"));
1117 goto out;
1118 }
1119
1120 wn = (void *)ni;
1121
1122 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id);
1123 out:
1124 splx(s);
1125 return;
1126 }
1127
1128 STATIC void
1129 wi_start(struct ifnet *ifp)
1130 {
1131 struct wi_softc *sc = ifp->if_softc;
1132 struct ieee80211com *ic = &sc->sc_ic;
1133 struct ether_header *eh;
1134 struct ieee80211_node *ni;
1135 struct ieee80211_frame *wh;
1136 struct ieee80211_rateset *rs;
1137 struct wi_rssdesc *rd;
1138 struct ieee80211_rssdesc *id;
1139 struct mbuf *m0;
1140 struct wi_frame frmhdr;
1141 int cur, fid, off, rateidx;
1142
1143 if (!sc->sc_enabled || sc->sc_invalid)
1144 return;
1145 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
1146 return;
1147
1148 memset(&frmhdr, 0, sizeof(frmhdr));
1149 cur = sc->sc_txqueue;
1150 for (;;) {
1151 ni = ic->ic_bss;
1152 if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) {
1153 ifp->if_flags |= IFF_OACTIVE;
1154 break;
1155 }
1156 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
1157 IF_DEQUEUE(&ic->ic_mgtq, m0);
1158 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
1159 (caddr_t)&frmhdr.wi_ehdr);
1160 frmhdr.wi_ehdr.ether_type = 0;
1161 wh = mtod(m0, struct ieee80211_frame *);
1162 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1163 m0->m_pkthdr.rcvif = NULL;
1164 } else if (ic->ic_state == IEEE80211_S_RUN) {
1165 IFQ_POLL(&ifp->if_snd, m0);
1166 if (m0 == NULL)
1167 break;
1168 IFQ_DEQUEUE(&ifp->if_snd, m0);
1169 ifp->if_opackets++;
1170 m_copydata(m0, 0, ETHER_HDR_LEN,
1171 (caddr_t)&frmhdr.wi_ehdr);
1172 #if NBPFILTER > 0
1173 if (ifp->if_bpf)
1174 bpf_mtap(ifp->if_bpf, m0);
1175 #endif
1176
1177 eh = mtod(m0, struct ether_header *);
1178 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1179 if (ni == NULL) {
1180 ifp->if_oerrors++;
1181 continue;
1182 }
1183 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1184 (m0->m_flags & M_PWR_SAV) == 0) {
1185 ieee80211_pwrsave(ic, ni, m0);
1186 goto next;
1187 }
1188 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
1189 ieee80211_free_node(ni);
1190 ifp->if_oerrors++;
1191 continue;
1192 }
1193 wh = mtod(m0, struct ieee80211_frame *);
1194 } else
1195 break;
1196 #if NBPFILTER > 0
1197 if (ic->ic_rawbpf)
1198 bpf_mtap(ic->ic_rawbpf, m0);
1199 #endif
1200 frmhdr.wi_tx_ctl =
1201 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK);
1202 #ifndef IEEE80211_NO_HOSTAP
1203 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1204 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
1205 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1206 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
1207 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1208 m_freem(m0);
1209 ifp->if_oerrors++;
1210 goto next;
1211 }
1212 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
1213 }
1214 #endif /* !IEEE80211_NO_HOSTAP */
1215
1216 rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len);
1217 rs = &ni->ni_rates;
1218
1219 #if NBPFILTER > 0
1220 if (sc->sc_drvbpf) {
1221 struct wi_tx_radiotap_header *tap = &sc->sc_txtap;
1222
1223 tap->wt_rate = rs->rs_rates[rateidx];
1224 tap->wt_chan_freq =
1225 htole16(ic->ic_bss->ni_chan->ic_freq);
1226 tap->wt_chan_flags =
1227 htole16(ic->ic_bss->ni_chan->ic_flags);
1228 /* TBD tap->wt_flags */
1229
1230 bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0);
1231 }
1232 #endif
1233
1234 rd = SLIST_FIRST(&sc->sc_rssdfree);
1235 id = &rd->rd_desc;
1236 id->id_len = m0->m_pkthdr.len;
1237 id->id_rateidx = ni->ni_txrate;
1238 id->id_rssi = ni->ni_rssi;
1239
1240 frmhdr.wi_tx_idx = rd - sc->sc_rssd;
1241
1242 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1243 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] &
1244 IEEE80211_RATE_VAL);
1245 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA)
1246 (void)wi_write_txrate(sc, rs->rs_rates[rateidx]);
1247
1248 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
1249 (caddr_t)&frmhdr.wi_whdr);
1250 m_adj(m0, sizeof(struct ieee80211_frame));
1251 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
1252 if (IFF_DUMPPKTS(ifp))
1253 wi_dump_pkt(&frmhdr, ni, -1);
1254 fid = sc->sc_txd[cur].d_fid;
1255 off = sizeof(frmhdr);
1256 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
1257 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
1258 printf("%s: %s write fid %x failed\n",
1259 sc->sc_dev.dv_xname, __func__, fid);
1260 ifp->if_oerrors++;
1261 m_freem(m0);
1262 goto next;
1263 }
1264 m_freem(m0);
1265 sc->sc_txpending[ni->ni_txrate]++;
1266 --sc->sc_txalloced;
1267 if (sc->sc_txqueued++ == 0) {
1268 #ifdef DIAGNOSTIC
1269 if (cur != sc->sc_txstart)
1270 printf("%s: ring is desynchronized\n",
1271 sc->sc_dev.dv_xname);
1272 #endif
1273 wi_push_packet(sc);
1274 } else {
1275 #ifdef WI_RING_DEBUG
1276 printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1277 sc->sc_dev.dv_xname, fid,
1278 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1279 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1280 #endif
1281 }
1282 sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF;
1283 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next);
1284 id->id_node = ni;
1285 continue;
1286 next:
1287 if (ni != NULL)
1288 ieee80211_free_node(ni);
1289 }
1290 }
1291
1292
1293 STATIC int
1294 wi_reset(struct wi_softc *sc)
1295 {
1296 int i, error;
1297
1298 DPRINTF(("wi_reset\n"));
1299
1300 if (sc->sc_reset)
1301 (*sc->sc_reset)(sc);
1302
1303 error = 0;
1304 for (i = 0; i < 5; i++) {
1305 if (sc->sc_invalid)
1306 return ENXIO;
1307 DELAY(20*1000); /* XXX: way too long! */
1308 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
1309 break;
1310 }
1311 if (error) {
1312 printf("%s: init failed\n", sc->sc_dev.dv_xname);
1313 return error;
1314 }
1315 CSR_WRITE_2(sc, WI_INT_EN, 0);
1316 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
1317
1318 /* Calibrate timer. */
1319 wi_write_val(sc, WI_RID_TICK_TIME, 0);
1320 return 0;
1321 }
1322
1323 STATIC void
1324 wi_watchdog(struct ifnet *ifp)
1325 {
1326 struct wi_softc *sc = ifp->if_softc;
1327
1328 ifp->if_timer = 0;
1329 if (!sc->sc_enabled)
1330 return;
1331
1332 if (sc->sc_tx_timer) {
1333 if (--sc->sc_tx_timer == 0) {
1334 printf("%s: device timeout\n", ifp->if_xname);
1335 ifp->if_oerrors++;
1336 wi_init(ifp);
1337 return;
1338 }
1339 ifp->if_timer = 1;
1340 }
1341
1342 if (sc->sc_scan_timer) {
1343 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
1344 sc->sc_firmware_type == WI_INTERSIL) {
1345 DPRINTF(("wi_watchdog: inquire scan\n"));
1346 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1347 }
1348 if (sc->sc_scan_timer)
1349 ifp->if_timer = 1;
1350 }
1351
1352 /* TODO: rate control */
1353 ieee80211_watchdog(&sc->sc_ic);
1354 }
1355
1356 STATIC int
1357 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1358 {
1359 struct wi_softc *sc = ifp->if_softc;
1360 struct ieee80211com *ic = &sc->sc_ic;
1361 struct ifreq *ifr = (struct ifreq *)data;
1362 int s, error = 0;
1363
1364 if (!device_is_active(&sc->sc_dev))
1365 return ENXIO;
1366
1367 s = splnet();
1368
1369 switch (cmd) {
1370 case SIOCSIFFLAGS:
1371 /*
1372 * Can't do promisc and hostap at the same time. If all that's
1373 * changing is the promisc flag, try to short-circuit a call to
1374 * wi_init() by just setting PROMISC in the hardware.
1375 */
1376 if (ifp->if_flags & IFF_UP) {
1377 if (sc->sc_enabled) {
1378 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1379 (ifp->if_flags & IFF_PROMISC) != 0)
1380 wi_write_val(sc, WI_RID_PROMISC, 1);
1381 else
1382 wi_write_val(sc, WI_RID_PROMISC, 0);
1383 } else
1384 error = wi_init(ifp);
1385 } else if (sc->sc_enabled)
1386 wi_stop(ifp, 1);
1387 break;
1388 case SIOCSIFMEDIA:
1389 case SIOCGIFMEDIA:
1390 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1391 break;
1392 case SIOCADDMULTI:
1393 case SIOCDELMULTI:
1394 error = (cmd == SIOCADDMULTI) ?
1395 ether_addmulti(ifr, &sc->sc_ec) :
1396 ether_delmulti(ifr, &sc->sc_ec);
1397 if (error == ENETRESET) {
1398 if (ifp->if_flags & IFF_RUNNING) {
1399 /* do not rescan */
1400 error = wi_write_multi(sc);
1401 } else
1402 error = 0;
1403 }
1404 break;
1405 case SIOCGIFGENERIC:
1406 error = wi_get_cfg(ifp, cmd, data);
1407 break;
1408 case SIOCSIFGENERIC:
1409 error = kauth_authorize_generic(curlwp->l_cred,
1410 KAUTH_GENERIC_ISSUSER, NULL);
1411 if (error)
1412 break;
1413 error = wi_set_cfg(ifp, cmd, data);
1414 if (error == ENETRESET) {
1415 if (ifp->if_flags & IFF_RUNNING)
1416 error = wi_init(ifp);
1417 else
1418 error = 0;
1419 }
1420 break;
1421 case SIOCS80211BSSID:
1422 if (sc->sc_firmware_type == WI_LUCENT) {
1423 error = ENODEV;
1424 break;
1425 }
1426 /* fall through */
1427 default:
1428 ic->ic_flags |= sc->sc_ic_flags;
1429 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1430 sc->sc_ic_flags = ic->ic_flags & IEEE80211_F_DROPUNENC;
1431 if (error == ENETRESET) {
1432 if (sc->sc_enabled)
1433 error = wi_init(ifp);
1434 else
1435 error = 0;
1436 }
1437 break;
1438 }
1439 wi_mend_flags(sc, ic->ic_state);
1440 splx(s);
1441 return error;
1442 }
1443
1444 STATIC int
1445 wi_media_change(struct ifnet *ifp)
1446 {
1447 struct wi_softc *sc = ifp->if_softc;
1448 struct ieee80211com *ic = &sc->sc_ic;
1449 int error;
1450
1451 error = ieee80211_media_change(ifp);
1452 if (error == ENETRESET) {
1453 if (sc->sc_enabled)
1454 error = wi_init(ifp);
1455 else
1456 error = 0;
1457 }
1458 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1459
1460 return error;
1461 }
1462
1463 STATIC void
1464 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1465 {
1466 struct wi_softc *sc = ifp->if_softc;
1467 struct ieee80211com *ic = &sc->sc_ic;
1468 u_int16_t val;
1469 int rate;
1470
1471 if (sc->sc_enabled == 0) {
1472 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1473 imr->ifm_status = 0;
1474 return;
1475 }
1476
1477 imr->ifm_status = IFM_AVALID;
1478 imr->ifm_active = IFM_IEEE80211;
1479 if (ic->ic_state == IEEE80211_S_RUN &&
1480 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1481 imr->ifm_status |= IFM_ACTIVE;
1482 if (wi_read_xrid(sc, WI_RID_CUR_TX_RATE, &val, sizeof(val)) == 0) {
1483 /* convert to 802.11 rate */
1484 val = le16toh(val);
1485 rate = val * 2;
1486 if (sc->sc_firmware_type == WI_LUCENT) {
1487 if (rate == 10)
1488 rate = 11; /* 5.5Mbps */
1489 } else {
1490 if (rate == 4*2)
1491 rate = 11; /* 5.5Mbps */
1492 else if (rate == 8*2)
1493 rate = 22; /* 11Mbps */
1494 }
1495 } else
1496 rate = 0;
1497 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1498 switch (ic->ic_opmode) {
1499 case IEEE80211_M_STA:
1500 break;
1501 case IEEE80211_M_IBSS:
1502 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1503 break;
1504 case IEEE80211_M_AHDEMO:
1505 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1506 break;
1507 case IEEE80211_M_HOSTAP:
1508 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1509 break;
1510 case IEEE80211_M_MONITOR:
1511 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1512 break;
1513 }
1514 }
1515
1516 STATIC struct ieee80211_node *
1517 wi_node_alloc(struct ieee80211_node_table *nt)
1518 {
1519 struct wi_node *wn =
1520 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1521 return wn ? &wn->wn_node : NULL;
1522 }
1523
1524 STATIC void
1525 wi_node_free(struct ieee80211_node *ni)
1526 {
1527 struct wi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1528 int i;
1529
1530 for (i = 0; i < WI_NTXRSS; i++) {
1531 if (sc->sc_rssd[i].rd_desc.id_node == ni)
1532 sc->sc_rssd[i].rd_desc.id_node = NULL;
1533 }
1534 free(ni, M_DEVBUF);
1535 }
1536
1537 STATIC void
1538 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1539 {
1540 struct ieee80211com *ic = &sc->sc_ic;
1541 struct ieee80211_node *ni = ic->ic_bss;
1542 struct ifnet *ifp = &sc->sc_if;
1543
1544 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1545 return;
1546
1547 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
1548 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1549
1550 /* In promiscuous mode, the BSSID field is not a reliable
1551 * indicator of the firmware's BSSID. Damp spurious
1552 * change-of-BSSID indications.
1553 */
1554 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1555 !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns,
1556 WI_MAX_FALSE_SYNS))
1557 return;
1558
1559 sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1);
1560 /*
1561 * XXX hack; we should create a new node with the new bssid
1562 * and replace the existing ic_bss with it but since we don't
1563 * process management frames to collect state we cheat by
1564 * reusing the existing node as we know wi_newstate will be
1565 * called and it will overwrite the node state.
1566 */
1567 ieee80211_sta_join(ic, ieee80211_ref_node(ni));
1568 }
1569
1570 static inline void
1571 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni,
1572 struct ieee80211_frame *wh, int rssi)
1573 {
1574 struct wi_node *wn;
1575
1576 if (ni == NULL) {
1577 printf("%s: null node", __func__);
1578 return;
1579 }
1580
1581 wn = (void*)ni;
1582 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi);
1583 }
1584
1585 STATIC void
1586 wi_rx_intr(struct wi_softc *sc)
1587 {
1588 struct ieee80211com *ic = &sc->sc_ic;
1589 struct ifnet *ifp = &sc->sc_if;
1590 struct ieee80211_node *ni;
1591 struct wi_frame frmhdr;
1592 struct mbuf *m;
1593 struct ieee80211_frame *wh;
1594 int fid, len, off, rssi;
1595 u_int8_t dir;
1596 u_int16_t status;
1597 u_int32_t rstamp;
1598
1599 fid = CSR_READ_2(sc, WI_RX_FID);
1600
1601 /* First read in the frame header */
1602 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1603 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1604 __func__, fid);
1605 ifp->if_ierrors++;
1606 return;
1607 }
1608
1609 if (IFF_DUMPPKTS(ifp))
1610 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1611
1612 /*
1613 * Drop undecryptable or packets with receive errors here
1614 */
1615 status = le16toh(frmhdr.wi_status);
1616 if ((status & WI_STAT_ERRSTAT) != 0 &&
1617 ic->ic_opmode != IEEE80211_M_MONITOR) {
1618 ifp->if_ierrors++;
1619 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1620 return;
1621 }
1622 rssi = frmhdr.wi_rx_signal;
1623 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1624 le16toh(frmhdr.wi_rx_tstamp1);
1625
1626 len = le16toh(frmhdr.wi_dat_len);
1627 off = ALIGN(sizeof(struct ieee80211_frame));
1628
1629 /* Sometimes the PRISM2.x returns bogusly large frames. Except
1630 * in monitor mode, just throw them away.
1631 */
1632 if (off + len > MCLBYTES) {
1633 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1634 ifp->if_ierrors++;
1635 DPRINTF(("wi_rx_intr: oversized packet\n"));
1636 return;
1637 } else
1638 len = 0;
1639 }
1640
1641 MGETHDR(m, M_DONTWAIT, MT_DATA);
1642 if (m == NULL) {
1643 ifp->if_ierrors++;
1644 DPRINTF(("wi_rx_intr: MGET failed\n"));
1645 return;
1646 }
1647 if (off + len > MHLEN) {
1648 MCLGET(m, M_DONTWAIT);
1649 if ((m->m_flags & M_EXT) == 0) {
1650 m_freem(m);
1651 ifp->if_ierrors++;
1652 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1653 return;
1654 }
1655 }
1656
1657 m->m_data += off - sizeof(struct ieee80211_frame);
1658 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1659 wi_read_bap(sc, fid, sizeof(frmhdr),
1660 m->m_data + sizeof(struct ieee80211_frame), len);
1661 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1662 m->m_pkthdr.rcvif = ifp;
1663
1664 wh = mtod(m, struct ieee80211_frame *);
1665 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1666 /*
1667 * WEP is decrypted by hardware. Clear WEP bit
1668 * header for ieee80211_input().
1669 */
1670 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1671 }
1672 #if NBPFILTER > 0
1673 if (sc->sc_drvbpf) {
1674 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap;
1675
1676 tap->wr_rate = frmhdr.wi_rx_rate / 5;
1677 tap->wr_antsignal = frmhdr.wi_rx_signal;
1678 tap->wr_antnoise = frmhdr.wi_rx_silence;
1679 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1680 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1681 if (frmhdr.wi_status & WI_STAT_PCF)
1682 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1683
1684 /* XXX IEEE80211_RADIOTAP_F_WEP */
1685 bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m);
1686 }
1687 #endif
1688
1689 /* synchronize driver's BSSID with firmware's BSSID */
1690 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1691 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1692 wi_sync_bssid(sc, wh->i_addr3);
1693
1694 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1695
1696 ieee80211_input(ic, m, ni, rssi, rstamp);
1697
1698 wi_rssadapt_input(ic, ni, wh, rssi);
1699
1700 /*
1701 * The frame may have caused the node to be marked for
1702 * reclamation (e.g. in response to a DEAUTH message)
1703 * so use release_node here instead of unref_node.
1704 */
1705 ieee80211_free_node(ni);
1706 }
1707
1708 STATIC void
1709 wi_tx_ex_intr(struct wi_softc *sc)
1710 {
1711 struct ieee80211com *ic = &sc->sc_ic;
1712 struct ifnet *ifp = &sc->sc_if;
1713 struct ieee80211_node *ni;
1714 struct ieee80211_rssdesc *id;
1715 struct wi_rssdesc *rssd;
1716 struct wi_frame frmhdr;
1717 int fid;
1718 u_int16_t status;
1719
1720 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1721 /* Read in the frame header */
1722 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1723 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1724 __func__, fid);
1725 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1726 &sc->sc_txpending);
1727 goto out;
1728 }
1729
1730 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1731 printf("%s: %s bad idx %02x\n",
1732 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1733 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1734 &sc->sc_txpending);
1735 goto out;
1736 }
1737
1738 status = le16toh(frmhdr.wi_status);
1739
1740 /*
1741 * Spontaneous station disconnects appear as xmit
1742 * errors. Don't announce them and/or count them
1743 * as an output error.
1744 */
1745 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1746 printf("%s: tx failed", sc->sc_dev.dv_xname);
1747 if (status & WI_TXSTAT_RET_ERR)
1748 printf(", retry limit exceeded");
1749 if (status & WI_TXSTAT_AGED_ERR)
1750 printf(", max transmit lifetime exceeded");
1751 if (status & WI_TXSTAT_DISCONNECT)
1752 printf(", port disconnected");
1753 if (status & WI_TXSTAT_FORM_ERR)
1754 printf(", invalid format (data len %u src %s)",
1755 le16toh(frmhdr.wi_dat_len),
1756 ether_sprintf(frmhdr.wi_ehdr.ether_shost));
1757 if (status & ~0xf)
1758 printf(", status=0x%x", status);
1759 printf("\n");
1760 }
1761 ifp->if_oerrors++;
1762 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1763 id = &rssd->rd_desc;
1764 if ((status & WI_TXSTAT_RET_ERR) != 0)
1765 wi_lower_rate(ic, id);
1766
1767 ni = id->id_node;
1768 id->id_node = NULL;
1769
1770 if (ni == NULL) {
1771 printf("%s: %s null node, rssdesc %02x\n",
1772 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1773 goto out;
1774 }
1775
1776 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1777 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1778 __func__, id->id_rateidx);
1779 sc->sc_txpending[id->id_rateidx] = 0;
1780 }
1781 if (ni != NULL)
1782 ieee80211_free_node(ni);
1783 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1784 out:
1785 ifp->if_flags &= ~IFF_OACTIVE;
1786 }
1787
1788 STATIC void
1789 wi_txalloc_intr(struct wi_softc *sc)
1790 {
1791 int fid, cur;
1792
1793 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1794
1795 cur = sc->sc_txalloc;
1796 #ifdef DIAGNOSTIC
1797 if (sc->sc_txstarted == 0) {
1798 printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1799 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1800 sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1801 return;
1802 }
1803 #endif
1804 --sc->sc_txstarted;
1805 ++sc->sc_txalloced;
1806 sc->sc_txd[cur].d_fid = fid;
1807 sc->sc_txalloc = (cur + 1) % WI_NTXBUF;
1808 #ifdef WI_RING_DEBUG
1809 printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1810 sc->sc_dev.dv_xname, fid,
1811 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1812 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1813 #endif
1814 }
1815
1816 STATIC void
1817 wi_cmd_intr(struct wi_softc *sc)
1818 {
1819 struct ifnet *ifp = &sc->sc_if;
1820
1821 if (sc->sc_invalid)
1822 return;
1823 #ifdef WI_DEBUG
1824 if (wi_debug > 1)
1825 printf("%s: %d txcmds outstanding\n", __func__, sc->sc_txcmds);
1826 #endif
1827 KASSERT(sc->sc_txcmds > 0);
1828
1829 --sc->sc_txcmds;
1830
1831 if (--sc->sc_txqueued == 0) {
1832 sc->sc_tx_timer = 0;
1833 ifp->if_flags &= ~IFF_OACTIVE;
1834 #ifdef WI_RING_DEBUG
1835 printf("%s: cmd , alloc %d queue %d start %d alloced %d queued %d started %d\n",
1836 sc->sc_dev.dv_xname,
1837 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1838 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1839 #endif
1840 } else
1841 wi_push_packet(sc);
1842 }
1843
1844 STATIC void
1845 wi_push_packet(struct wi_softc *sc)
1846 {
1847 struct ifnet *ifp = &sc->sc_if;
1848 int cur, fid;
1849
1850 cur = sc->sc_txstart;
1851 fid = sc->sc_txd[cur].d_fid;
1852
1853 KASSERT(sc->sc_txcmds == 0);
1854
1855 if (wi_cmd_start(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
1856 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1857 /* XXX ring might have a hole */
1858 }
1859
1860 if (sc->sc_txcmds++ > 0)
1861 printf("%s: %d tx cmds pending!!!\n", __func__, sc->sc_txcmds);
1862
1863 ++sc->sc_txstarted;
1864 #ifdef DIAGNOSTIC
1865 if (sc->sc_txstarted > WI_NTXBUF)
1866 printf("%s: too many buffers started\n", sc->sc_dev.dv_xname);
1867 #endif
1868 sc->sc_txstart = (cur + 1) % WI_NTXBUF;
1869 sc->sc_tx_timer = 5;
1870 ifp->if_timer = 1;
1871 #ifdef WI_RING_DEBUG
1872 printf("%s: push %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1873 sc->sc_dev.dv_xname, fid,
1874 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1875 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1876 #endif
1877 }
1878
1879 STATIC void
1880 wi_tx_intr(struct wi_softc *sc)
1881 {
1882 struct ieee80211com *ic = &sc->sc_ic;
1883 struct ifnet *ifp = &sc->sc_if;
1884 struct ieee80211_node *ni;
1885 struct ieee80211_rssdesc *id;
1886 struct wi_rssdesc *rssd;
1887 struct wi_frame frmhdr;
1888 int fid;
1889
1890 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1891 /* Read in the frame header */
1892 if (wi_read_bap(sc, fid, offsetof(struct wi_frame, wi_tx_swsup2),
1893 &frmhdr.wi_tx_swsup2, 2) != 0) {
1894 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1895 __func__, fid);
1896 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1897 &sc->sc_txpending);
1898 goto out;
1899 }
1900
1901 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1902 printf("%s: %s bad idx %02x\n",
1903 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1904 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1905 &sc->sc_txpending);
1906 goto out;
1907 }
1908
1909 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1910 id = &rssd->rd_desc;
1911 wi_raise_rate(ic, id);
1912
1913 ni = id->id_node;
1914 id->id_node = NULL;
1915
1916 if (ni == NULL) {
1917 printf("%s: %s null node, rssdesc %02x\n",
1918 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1919 goto out;
1920 }
1921
1922 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1923 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1924 __func__, id->id_rateidx);
1925 sc->sc_txpending[id->id_rateidx] = 0;
1926 }
1927 if (ni != NULL)
1928 ieee80211_free_node(ni);
1929 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1930 out:
1931 ifp->if_flags &= ~IFF_OACTIVE;
1932 }
1933
1934 STATIC void
1935 wi_info_intr(struct wi_softc *sc)
1936 {
1937 struct ieee80211com *ic = &sc->sc_ic;
1938 struct ifnet *ifp = &sc->sc_if;
1939 int i, fid, len, off;
1940 u_int16_t ltbuf[2];
1941 u_int16_t stat;
1942 u_int32_t *ptr;
1943
1944 fid = CSR_READ_2(sc, WI_INFO_FID);
1945 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1946
1947 switch (le16toh(ltbuf[1])) {
1948
1949 case WI_INFO_LINK_STAT:
1950 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1951 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1952 switch (le16toh(stat)) {
1953 case CONNECTED:
1954 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1955 if (ic->ic_state == IEEE80211_S_RUN &&
1956 ic->ic_opmode != IEEE80211_M_IBSS)
1957 break;
1958 /* FALLTHROUGH */
1959 case AP_CHANGE:
1960 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1961 break;
1962 case AP_IN_RANGE:
1963 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1964 break;
1965 case AP_OUT_OF_RANGE:
1966 if (sc->sc_firmware_type == WI_SYMBOL &&
1967 sc->sc_scan_timer > 0) {
1968 if (wi_cmd(sc, WI_CMD_INQUIRE,
1969 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1970 sc->sc_scan_timer = 0;
1971 break;
1972 }
1973 if (ic->ic_opmode == IEEE80211_M_STA)
1974 sc->sc_flags |= WI_FLAGS_OUTRANGE;
1975 break;
1976 case DISCONNECTED:
1977 case ASSOC_FAILED:
1978 if (ic->ic_opmode == IEEE80211_M_STA)
1979 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1980 break;
1981 }
1982 break;
1983
1984 case WI_INFO_COUNTERS:
1985 /* some card versions have a larger stats structure */
1986 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1987 ptr = (u_int32_t *)&sc->sc_stats;
1988 off = sizeof(ltbuf);
1989 for (i = 0; i < len; i++, off += 2, ptr++) {
1990 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1991 stat = le16toh(stat);
1992 #ifdef WI_HERMES_STATS_WAR
1993 if (stat & 0xf000)
1994 stat = ~stat;
1995 #endif
1996 *ptr += stat;
1997 }
1998 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1999 sc->sc_stats.wi_tx_multi_retries +
2000 sc->sc_stats.wi_tx_retry_limit;
2001 break;
2002
2003 case WI_INFO_SCAN_RESULTS:
2004 case WI_INFO_HOST_SCAN_RESULTS:
2005 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
2006 break;
2007
2008 default:
2009 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
2010 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
2011 break;
2012 }
2013 }
2014
2015 STATIC int
2016 wi_write_multi(struct wi_softc *sc)
2017 {
2018 struct ifnet *ifp = &sc->sc_if;
2019 int n;
2020 struct wi_mcast mlist;
2021 struct ether_multi *enm;
2022 struct ether_multistep estep;
2023
2024 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2025 allmulti:
2026 ifp->if_flags |= IFF_ALLMULTI;
2027 memset(&mlist, 0, sizeof(mlist));
2028 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
2029 sizeof(mlist));
2030 }
2031
2032 n = 0;
2033 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
2034 while (enm != NULL) {
2035 /* Punt on ranges or too many multicast addresses. */
2036 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
2037 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
2038 goto allmulti;
2039
2040 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
2041 n++;
2042 ETHER_NEXT_MULTI(estep, enm);
2043 }
2044 ifp->if_flags &= ~IFF_ALLMULTI;
2045 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
2046 IEEE80211_ADDR_LEN * n);
2047 }
2048
2049
2050 STATIC void
2051 wi_read_nicid(struct wi_softc *sc)
2052 {
2053 struct wi_card_ident *id;
2054 char *p;
2055 int len;
2056 u_int16_t ver[4];
2057
2058 /* getting chip identity */
2059 memset(ver, 0, sizeof(ver));
2060 len = sizeof(ver);
2061 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
2062 printf("%s: using ", sc->sc_dev.dv_xname);
2063 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
2064
2065 sc->sc_firmware_type = WI_NOTYPE;
2066 for (id = wi_card_ident; id->card_name != NULL; id++) {
2067 if (le16toh(ver[0]) == id->card_id) {
2068 printf("%s", id->card_name);
2069 sc->sc_firmware_type = id->firm_type;
2070 break;
2071 }
2072 }
2073 if (sc->sc_firmware_type == WI_NOTYPE) {
2074 if (le16toh(ver[0]) & 0x8000) {
2075 printf("Unknown PRISM2 chip");
2076 sc->sc_firmware_type = WI_INTERSIL;
2077 } else {
2078 printf("Unknown Lucent chip");
2079 sc->sc_firmware_type = WI_LUCENT;
2080 }
2081 }
2082
2083 /* get primary firmware version (Only Prism chips) */
2084 if (sc->sc_firmware_type != WI_LUCENT) {
2085 memset(ver, 0, sizeof(ver));
2086 len = sizeof(ver);
2087 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
2088 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
2089 le16toh(ver[3]) * 100 + le16toh(ver[1]);
2090 }
2091
2092 /* get station firmware version */
2093 memset(ver, 0, sizeof(ver));
2094 len = sizeof(ver);
2095 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
2096 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
2097 le16toh(ver[3]) * 100 + le16toh(ver[1]);
2098 if (sc->sc_firmware_type == WI_INTERSIL &&
2099 (sc->sc_sta_firmware_ver == 10102 ||
2100 sc->sc_sta_firmware_ver == 20102)) {
2101 char ident[12];
2102 memset(ident, 0, sizeof(ident));
2103 len = sizeof(ident);
2104 /* value should be the format like "V2.00-11" */
2105 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
2106 *(p = (char *)ident) >= 'A' &&
2107 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
2108 sc->sc_firmware_type = WI_SYMBOL;
2109 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
2110 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
2111 (p[6] - '0') * 10 + (p[7] - '0');
2112 }
2113 }
2114
2115 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
2116 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
2117 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
2118 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
2119 printf("Primary (%u.%u.%u), ",
2120 sc->sc_pri_firmware_ver / 10000,
2121 (sc->sc_pri_firmware_ver % 10000) / 100,
2122 sc->sc_pri_firmware_ver % 100);
2123 printf("Station (%u.%u.%u)\n",
2124 sc->sc_sta_firmware_ver / 10000,
2125 (sc->sc_sta_firmware_ver % 10000) / 100,
2126 sc->sc_sta_firmware_ver % 100);
2127 }
2128
2129 STATIC int
2130 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
2131 {
2132 struct wi_ssid ssid;
2133
2134 if (buflen > IEEE80211_NWID_LEN)
2135 return ENOBUFS;
2136 memset(&ssid, 0, sizeof(ssid));
2137 ssid.wi_len = htole16(buflen);
2138 memcpy(ssid.wi_ssid, buf, buflen);
2139 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
2140 }
2141
2142 STATIC int
2143 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2144 {
2145 struct wi_softc *sc = ifp->if_softc;
2146 struct ieee80211com *ic = &sc->sc_ic;
2147 struct ifreq *ifr = (struct ifreq *)data;
2148 struct wi_req wreq;
2149 int len, n, error;
2150
2151 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2152 if (error)
2153 return error;
2154 len = (wreq.wi_len - 1) * 2;
2155 if (len < sizeof(u_int16_t))
2156 return ENOSPC;
2157 if (len > sizeof(wreq.wi_val))
2158 len = sizeof(wreq.wi_val);
2159
2160 switch (wreq.wi_type) {
2161
2162 case WI_RID_IFACE_STATS:
2163 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
2164 if (len < sizeof(sc->sc_stats))
2165 error = ENOSPC;
2166 else
2167 len = sizeof(sc->sc_stats);
2168 break;
2169
2170 case WI_RID_ENCRYPTION:
2171 case WI_RID_TX_CRYPT_KEY:
2172 case WI_RID_DEFLT_CRYPT_KEYS:
2173 case WI_RID_TX_RATE:
2174 return ieee80211_cfgget(ic, cmd, data);
2175
2176 case WI_RID_MICROWAVE_OVEN:
2177 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
2178 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2179 &len);
2180 break;
2181 }
2182 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
2183 len = sizeof(u_int16_t);
2184 break;
2185
2186 case WI_RID_DBM_ADJUST:
2187 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
2188 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2189 &len);
2190 break;
2191 }
2192 wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
2193 len = sizeof(u_int16_t);
2194 break;
2195
2196 case WI_RID_ROAMING_MODE:
2197 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
2198 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2199 &len);
2200 break;
2201 }
2202 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
2203 len = sizeof(u_int16_t);
2204 break;
2205
2206 case WI_RID_SYSTEM_SCALE:
2207 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
2208 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2209 &len);
2210 break;
2211 }
2212 wreq.wi_val[0] = htole16(sc->sc_system_scale);
2213 len = sizeof(u_int16_t);
2214 break;
2215
2216 case WI_RID_FRAG_THRESH:
2217 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
2218 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2219 &len);
2220 break;
2221 }
2222 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2223 len = sizeof(u_int16_t);
2224 break;
2225
2226 case WI_RID_READ_APS:
2227 #ifndef IEEE80211_NO_HOSTAP
2228 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2229 return ieee80211_cfgget(ic, cmd, data);
2230 #endif /* !IEEE80211_NO_HOSTAP */
2231 if (sc->sc_scan_timer > 0) {
2232 error = EINPROGRESS;
2233 break;
2234 }
2235 n = sc->sc_naps;
2236 if (len < sizeof(n)) {
2237 error = ENOSPC;
2238 break;
2239 }
2240 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
2241 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
2242 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
2243 memcpy(wreq.wi_val, &n, sizeof(n));
2244 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
2245 sizeof(struct wi_apinfo) * n);
2246 break;
2247
2248 default:
2249 if (sc->sc_enabled) {
2250 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2251 &len);
2252 break;
2253 }
2254 switch (wreq.wi_type) {
2255 case WI_RID_MAX_DATALEN:
2256 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
2257 len = sizeof(u_int16_t);
2258 break;
2259 case WI_RID_FRAG_THRESH:
2260 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2261 len = sizeof(u_int16_t);
2262 break;
2263 case WI_RID_RTS_THRESH:
2264 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
2265 len = sizeof(u_int16_t);
2266 break;
2267 case WI_RID_CNFAUTHMODE:
2268 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
2269 len = sizeof(u_int16_t);
2270 break;
2271 case WI_RID_NODENAME:
2272 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
2273 error = ENOSPC;
2274 break;
2275 }
2276 len = sc->sc_nodelen + sizeof(u_int16_t);
2277 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
2278 memcpy(&wreq.wi_val[1], sc->sc_nodename,
2279 sc->sc_nodelen);
2280 break;
2281 default:
2282 return ieee80211_cfgget(ic, cmd, data);
2283 }
2284 break;
2285 }
2286 if (error)
2287 return error;
2288 wreq.wi_len = (len + 1) / 2 + 1;
2289 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
2290 }
2291
2292 STATIC int
2293 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2294 {
2295 struct wi_softc *sc = ifp->if_softc;
2296 struct ieee80211com *ic = &sc->sc_ic;
2297 struct ifreq *ifr = (struct ifreq *)data;
2298 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2299 struct wi_req wreq;
2300 struct mbuf *m;
2301 int i, len, error;
2302
2303 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2304 if (error)
2305 return error;
2306 len = (wreq.wi_len - 1) * 2;
2307 switch (wreq.wi_type) {
2308 case WI_RID_MAC_NODE:
2309 (void)memcpy(ic->ic_myaddr, wreq.wi_val, ETHER_ADDR_LEN);
2310 IEEE80211_ADDR_COPY(LLADDR(ifp->if_sadl),ic->ic_myaddr);
2311 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
2312 IEEE80211_ADDR_LEN);
2313 break;
2314
2315 case WI_RID_DBM_ADJUST:
2316 return ENODEV;
2317
2318 case WI_RID_NODENAME:
2319 if (le16toh(wreq.wi_val[0]) * 2 > len ||
2320 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
2321 error = ENOSPC;
2322 break;
2323 }
2324 if (sc->sc_enabled) {
2325 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2326 len);
2327 if (error)
2328 break;
2329 }
2330 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
2331 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
2332 break;
2333
2334 case WI_RID_MICROWAVE_OVEN:
2335 case WI_RID_ROAMING_MODE:
2336 case WI_RID_SYSTEM_SCALE:
2337 case WI_RID_FRAG_THRESH:
2338 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
2339 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
2340 break;
2341 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
2342 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
2343 break;
2344 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
2345 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
2346 break;
2347 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
2348 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
2349 break;
2350 /* FALLTHROUGH */
2351 case WI_RID_RTS_THRESH:
2352 case WI_RID_CNFAUTHMODE:
2353 case WI_RID_MAX_DATALEN:
2354 if (sc->sc_enabled) {
2355 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2356 sizeof(u_int16_t));
2357 if (error)
2358 break;
2359 }
2360 switch (wreq.wi_type) {
2361 case WI_RID_FRAG_THRESH:
2362 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
2363 break;
2364 case WI_RID_RTS_THRESH:
2365 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
2366 break;
2367 case WI_RID_MICROWAVE_OVEN:
2368 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
2369 break;
2370 case WI_RID_ROAMING_MODE:
2371 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
2372 break;
2373 case WI_RID_SYSTEM_SCALE:
2374 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
2375 break;
2376 case WI_RID_CNFAUTHMODE:
2377 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
2378 break;
2379 case WI_RID_MAX_DATALEN:
2380 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
2381 break;
2382 }
2383 break;
2384
2385 case WI_RID_TX_RATE:
2386 switch (le16toh(wreq.wi_val[0])) {
2387 case 3:
2388 ic->ic_fixed_rate = -1;
2389 break;
2390 default:
2391 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2392 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
2393 / 2 == le16toh(wreq.wi_val[0]))
2394 break;
2395 }
2396 if (i == IEEE80211_RATE_SIZE)
2397 return EINVAL;
2398 ic->ic_fixed_rate = i;
2399 }
2400 if (sc->sc_enabled)
2401 error = wi_cfg_txrate(sc);
2402 break;
2403
2404 case WI_RID_SCAN_APS:
2405 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2406 error = wi_scan_ap(sc, 0x3fff, 0x000f);
2407 break;
2408
2409 case WI_RID_MGMT_XMIT:
2410 if (!sc->sc_enabled) {
2411 error = ENETDOWN;
2412 break;
2413 }
2414 if (ic->ic_mgtq.ifq_len > 5) {
2415 error = EAGAIN;
2416 break;
2417 }
2418 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
2419 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
2420 if (m == NULL) {
2421 error = ENOMEM;
2422 break;
2423 }
2424 IF_ENQUEUE(&ic->ic_mgtq, m);
2425 break;
2426
2427 default:
2428 if (sc->sc_enabled) {
2429 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2430 len);
2431 if (error)
2432 break;
2433 }
2434 error = ieee80211_cfgset(ic, cmd, data);
2435 break;
2436 }
2437 return error;
2438 }
2439
2440 /* Rate is 0 for hardware auto-select, otherwise rate is
2441 * 2, 4, 11, or 22 (units of 500Kbps).
2442 */
2443 STATIC int
2444 wi_write_txrate(struct wi_softc *sc, int rate)
2445 {
2446 u_int16_t hwrate;
2447
2448 /* rate: 0, 2, 4, 11, 22 */
2449 switch (sc->sc_firmware_type) {
2450 case WI_LUCENT:
2451 switch (rate & IEEE80211_RATE_VAL) {
2452 case 2:
2453 hwrate = 1;
2454 break;
2455 case 4:
2456 hwrate = 2;
2457 break;
2458 default:
2459 hwrate = 3; /* auto */
2460 break;
2461 case 11:
2462 hwrate = 4;
2463 break;
2464 case 22:
2465 hwrate = 5;
2466 break;
2467 }
2468 break;
2469 default:
2470 switch (rate & IEEE80211_RATE_VAL) {
2471 case 2:
2472 hwrate = 1;
2473 break;
2474 case 4:
2475 hwrate = 2;
2476 break;
2477 case 11:
2478 hwrate = 4;
2479 break;
2480 case 22:
2481 hwrate = 8;
2482 break;
2483 default:
2484 hwrate = 15; /* auto */
2485 break;
2486 }
2487 break;
2488 }
2489
2490 if (sc->sc_tx_rate == hwrate)
2491 return 0;
2492
2493 if (sc->sc_if.if_flags & IFF_DEBUG)
2494 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate,
2495 hwrate, rate);
2496
2497 sc->sc_tx_rate = hwrate;
2498
2499 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate);
2500 }
2501
2502 STATIC int
2503 wi_cfg_txrate(struct wi_softc *sc)
2504 {
2505 struct ieee80211com *ic = &sc->sc_ic;
2506 struct ieee80211_rateset *rs;
2507 int rate;
2508
2509 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2510
2511 sc->sc_tx_rate = 0; /* force write to RID */
2512
2513 if (ic->ic_fixed_rate < 0)
2514 rate = 0; /* auto */
2515 else
2516 rate = rs->rs_rates[ic->ic_fixed_rate];
2517
2518 return wi_write_txrate(sc, rate);
2519 }
2520
2521 STATIC int
2522 wi_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2523 {
2524 struct wi_softc *sc = ic->ic_ifp->if_softc;
2525 u_int keyix = k->wk_keyix;
2526
2527 DPRINTF(("%s: delete key %u\n", __func__, keyix));
2528
2529 if (keyix >= IEEE80211_WEP_NKID)
2530 return 0;
2531 if (k->wk_keylen != 0)
2532 sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
2533
2534 return 1;
2535 }
2536
2537 static int
2538 wi_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2539 const u_int8_t mac[IEEE80211_ADDR_LEN])
2540 {
2541 struct wi_softc *sc = ic->ic_ifp->if_softc;
2542
2543 DPRINTF(("%s: set key %u\n", __func__, k->wk_keyix));
2544
2545 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2546 return 0;
2547
2548 sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
2549
2550 return 1;
2551 }
2552
2553 STATIC void
2554 wi_key_update_begin(struct ieee80211com *ic)
2555 {
2556 DPRINTF(("%s:\n", __func__));
2557 }
2558
2559 STATIC void
2560 wi_key_update_end(struct ieee80211com *ic)
2561 {
2562 struct ifnet *ifp = ic->ic_ifp;
2563 struct wi_softc *sc = ifp->if_softc;
2564
2565 DPRINTF(("%s:\n", __func__));
2566
2567 if ((sc->sc_flags & WI_FLAGS_WEP_VALID) != 0)
2568 return;
2569 if ((ic->ic_caps & IEEE80211_C_WEP) != 0 && sc->sc_enabled &&
2570 !sc->sc_invalid)
2571 (void)wi_write_wep(sc);
2572 }
2573
2574 STATIC int
2575 wi_write_wep(struct wi_softc *sc)
2576 {
2577 struct ifnet *ifp = &sc->sc_if;
2578 struct ieee80211com *ic = &sc->sc_ic;
2579 int error = 0;
2580 int i, keylen;
2581 u_int16_t val;
2582 struct wi_key wkey[IEEE80211_WEP_NKID];
2583
2584 if ((ifp->if_flags & IFF_RUNNING) != 0)
2585 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
2586
2587 switch (sc->sc_firmware_type) {
2588 case WI_LUCENT:
2589 val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0;
2590 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2591 if (error)
2592 break;
2593 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_def_txkey);
2594 if (error)
2595 break;
2596 memset(wkey, 0, sizeof(wkey));
2597 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2598 keylen = ic->ic_nw_keys[i].wk_keylen;
2599 wkey[i].wi_keylen = htole16(keylen);
2600 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2601 keylen);
2602 }
2603 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2604 wkey, sizeof(wkey));
2605 break;
2606
2607 case WI_INTERSIL:
2608 case WI_SYMBOL:
2609 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2610 /*
2611 * ONLY HWB3163 EVAL-CARD Firmware version
2612 * less than 0.8 variant2
2613 *
2614 * If promiscuous mode disable, Prism2 chip
2615 * does not work with WEP .
2616 * It is under investigation for details.
2617 * (ichiro (at) NetBSD.org)
2618 */
2619 if (sc->sc_firmware_type == WI_INTERSIL &&
2620 sc->sc_sta_firmware_ver < 802 ) {
2621 /* firm ver < 0.8 variant 2 */
2622 wi_write_val(sc, WI_RID_PROMISC, 1);
2623 }
2624 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2625 sc->sc_cnfauthmode);
2626 val = PRIVACY_INVOKED;
2627 if ((sc->sc_ic_flags & IEEE80211_F_DROPUNENC) != 0)
2628 val |= EXCLUDE_UNENCRYPTED;
2629 #ifndef IEEE80211_NO_HOSTAP
2630 /*
2631 * Encryption firmware has a bug for HostAP mode.
2632 */
2633 if (sc->sc_firmware_type == WI_INTERSIL &&
2634 ic->ic_opmode == IEEE80211_M_HOSTAP)
2635 val |= HOST_ENCRYPT;
2636 #endif /* !IEEE80211_NO_HOSTAP */
2637 } else {
2638 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2639 IEEE80211_AUTH_OPEN);
2640 val = HOST_ENCRYPT | HOST_DECRYPT;
2641 }
2642 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2643 if (error)
2644 break;
2645 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2646 ic->ic_def_txkey);
2647 if (error)
2648 break;
2649 /*
2650 * It seems that the firmware accept 104bit key only if
2651 * all the keys have 104bit length. We get the length of
2652 * the transmit key and use it for all other keys.
2653 * Perhaps we should use software WEP for such situation.
2654 */
2655 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
2656 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
2657 keylen = 13; /* No keys => 104bit ok */
2658 else
2659 keylen = ic->ic_nw_keys[ic->ic_def_txkey].wk_keylen;
2660
2661 if (keylen > IEEE80211_WEP_KEYLEN)
2662 keylen = 13; /* 104bit keys */
2663 else
2664 keylen = IEEE80211_WEP_KEYLEN;
2665 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2666 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2667 ic->ic_nw_keys[i].wk_key, keylen);
2668 if (error)
2669 break;
2670 }
2671 break;
2672 }
2673 if ((ifp->if_flags & IFF_RUNNING) != 0)
2674 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
2675 if (error == 0)
2676 sc->sc_flags |= WI_FLAGS_WEP_VALID;
2677 return error;
2678 }
2679
2680 /* Must be called at proper protection level! */
2681 STATIC int
2682 wi_cmd_start(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2683 {
2684 #ifdef WI_HISTOGRAM
2685 static int hist1[11];
2686 static int hist1count;
2687 #endif
2688 int i;
2689
2690 /* wait for the busy bit to clear */
2691 for (i = 500; i > 0; i--) { /* 5s */
2692 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2693 break;
2694 if (sc->sc_invalid)
2695 return ENXIO;
2696 DELAY(1000); /* 1 m sec */
2697 }
2698 if (i == 0) {
2699 printf("%s: wi_cmd: busy bit won't clear.\n",
2700 sc->sc_dev.dv_xname);
2701 return(ETIMEDOUT);
2702 }
2703 #ifdef WI_HISTOGRAM
2704 if (i > 490)
2705 hist1[500 - i]++;
2706 else
2707 hist1[10]++;
2708 if (++hist1count == 1000) {
2709 hist1count = 0;
2710 printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n",
2711 sc->sc_dev.dv_xname,
2712 hist1[0], hist1[1], hist1[2], hist1[3], hist1[4],
2713 hist1[5], hist1[6], hist1[7], hist1[8], hist1[9],
2714 hist1[10]);
2715 }
2716 #endif
2717 CSR_WRITE_2(sc, WI_PARAM0, val0);
2718 CSR_WRITE_2(sc, WI_PARAM1, val1);
2719 CSR_WRITE_2(sc, WI_PARAM2, val2);
2720 CSR_WRITE_2(sc, WI_COMMAND, cmd);
2721
2722 return 0;
2723 }
2724
2725 STATIC int
2726 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2727 {
2728 int rc;
2729
2730 #ifdef WI_DEBUG
2731 if (wi_debug) {
2732 printf("%s: [enter] %d txcmds outstanding\n", __func__,
2733 sc->sc_txcmds);
2734 }
2735 #endif
2736 if (sc->sc_txcmds > 0)
2737 wi_txcmd_wait(sc);
2738
2739 if ((rc = wi_cmd_start(sc, cmd, val0, val1, val2)) != 0)
2740 return rc;
2741
2742 if (cmd == WI_CMD_INI) {
2743 /* XXX: should sleep here. */
2744 if (sc->sc_invalid)
2745 return ENXIO;
2746 DELAY(100*1000);
2747 }
2748 rc = wi_cmd_wait(sc, cmd, val0);
2749
2750 #ifdef WI_DEBUG
2751 if (wi_debug) {
2752 printf("%s: [ ] %d txcmds outstanding\n", __func__,
2753 sc->sc_txcmds);
2754 }
2755 #endif
2756 if (sc->sc_txcmds > 0)
2757 wi_cmd_intr(sc);
2758
2759 #ifdef WI_DEBUG
2760 if (wi_debug) {
2761 printf("%s: [leave] %d txcmds outstanding\n", __func__,
2762 sc->sc_txcmds);
2763 }
2764 #endif
2765 return rc;
2766 }
2767
2768 STATIC int
2769 wi_cmd_wait(struct wi_softc *sc, int cmd, int val0)
2770 {
2771 #ifdef WI_HISTOGRAM
2772 static int hist2[11];
2773 static int hist2count;
2774 #endif
2775 int i, status;
2776 #ifdef WI_DEBUG
2777 if (wi_debug > 1)
2778 printf("%s: cmd=%#x, arg=%#x\n", __func__, cmd, val0);
2779 #endif /* WI_DEBUG */
2780
2781 /* wait for the cmd completed bit */
2782 for (i = 0; i < WI_TIMEOUT; i++) {
2783 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
2784 break;
2785 if (sc->sc_invalid)
2786 return ENXIO;
2787 DELAY(WI_DELAY);
2788 }
2789
2790 #ifdef WI_HISTOGRAM
2791 if (i < 100)
2792 hist2[i/10]++;
2793 else
2794 hist2[10]++;
2795 if (++hist2count == 1000) {
2796 hist2count = 0;
2797 printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n",
2798 sc->sc_dev.dv_xname,
2799 hist2[0], hist2[1], hist2[2], hist2[3], hist2[4],
2800 hist2[5], hist2[6], hist2[7], hist2[8], hist2[9],
2801 hist2[10]);
2802 }
2803 #endif
2804
2805 status = CSR_READ_2(sc, WI_STATUS);
2806
2807 if (i == WI_TIMEOUT) {
2808 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
2809 sc->sc_dev.dv_xname, cmd, val0);
2810 return ETIMEDOUT;
2811 }
2812
2813 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2814
2815 if (status & WI_STAT_CMD_RESULT) {
2816 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
2817 sc->sc_dev.dv_xname, cmd, val0);
2818 return EIO;
2819 }
2820 return 0;
2821 }
2822
2823 STATIC int
2824 wi_seek_bap(struct wi_softc *sc, int id, int off)
2825 {
2826 #ifdef WI_HISTOGRAM
2827 static int hist4[11];
2828 static int hist4count;
2829 #endif
2830 int i, status;
2831
2832 CSR_WRITE_2(sc, WI_SEL0, id);
2833 CSR_WRITE_2(sc, WI_OFF0, off);
2834
2835 for (i = 0; ; i++) {
2836 status = CSR_READ_2(sc, WI_OFF0);
2837 if ((status & WI_OFF_BUSY) == 0)
2838 break;
2839 if (i == WI_TIMEOUT) {
2840 printf("%s: timeout in wi_seek to %x/%x\n",
2841 sc->sc_dev.dv_xname, id, off);
2842 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2843 return ETIMEDOUT;
2844 }
2845 if (sc->sc_invalid)
2846 return ENXIO;
2847 DELAY(2);
2848 }
2849 #ifdef WI_HISTOGRAM
2850 if (i < 100)
2851 hist4[i/10]++;
2852 else
2853 hist4[10]++;
2854 if (++hist4count == 2500) {
2855 hist4count = 0;
2856 printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n",
2857 sc->sc_dev.dv_xname,
2858 hist4[0], hist4[1], hist4[2], hist4[3], hist4[4],
2859 hist4[5], hist4[6], hist4[7], hist4[8], hist4[9],
2860 hist4[10]);
2861 }
2862 #endif
2863 if (status & WI_OFF_ERR) {
2864 printf("%s: failed in wi_seek to %x/%x\n",
2865 sc->sc_dev.dv_xname, id, off);
2866 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2867 return EIO;
2868 }
2869 sc->sc_bap_id = id;
2870 sc->sc_bap_off = off;
2871 return 0;
2872 }
2873
2874 STATIC int
2875 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2876 {
2877 int error, cnt;
2878
2879 if (buflen == 0)
2880 return 0;
2881 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2882 if ((error = wi_seek_bap(sc, id, off)) != 0)
2883 return error;
2884 }
2885 cnt = (buflen + 1) / 2;
2886 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2887 sc->sc_bap_off += cnt * 2;
2888 return 0;
2889 }
2890
2891 STATIC int
2892 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2893 {
2894 int error, cnt;
2895
2896 if (buflen == 0)
2897 return 0;
2898
2899 #ifdef WI_HERMES_AUTOINC_WAR
2900 again:
2901 #endif
2902 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2903 if ((error = wi_seek_bap(sc, id, off)) != 0)
2904 return error;
2905 }
2906 cnt = (buflen + 1) / 2;
2907 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2908 sc->sc_bap_off += cnt * 2;
2909
2910 #ifdef WI_HERMES_AUTOINC_WAR
2911 /*
2912 * According to the comments in the HCF Light code, there is a bug
2913 * in the Hermes (or possibly in certain Hermes firmware revisions)
2914 * where the chip's internal autoincrement counter gets thrown off
2915 * during data writes: the autoincrement is missed, causing one
2916 * data word to be overwritten and subsequent words to be written to
2917 * the wrong memory locations. The end result is that we could end
2918 * up transmitting bogus frames without realizing it. The workaround
2919 * for this is to write a couple of extra guard words after the end
2920 * of the transfer, then attempt to read then back. If we fail to
2921 * locate the guard words where we expect them, we preform the
2922 * transfer over again.
2923 */
2924 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2925 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2926 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2927 wi_seek_bap(sc, id, sc->sc_bap_off);
2928 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2929 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2930 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2931 printf("%s: detect auto increment bug, try again\n",
2932 sc->sc_dev.dv_xname);
2933 goto again;
2934 }
2935 }
2936 #endif
2937 return 0;
2938 }
2939
2940 STATIC int
2941 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2942 {
2943 int error, len;
2944 struct mbuf *m;
2945
2946 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2947 if (m->m_len == 0)
2948 continue;
2949
2950 len = min(m->m_len, totlen);
2951
2952 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2953 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2954 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2955 totlen);
2956 }
2957
2958 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2959 return error;
2960
2961 off += m->m_len;
2962 totlen -= len;
2963 }
2964 return 0;
2965 }
2966
2967 STATIC int
2968 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2969 {
2970 int i;
2971
2972 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2973 printf("%s: failed to allocate %d bytes on NIC\n",
2974 sc->sc_dev.dv_xname, len);
2975 return ENOMEM;
2976 }
2977
2978 for (i = 0; i < WI_TIMEOUT; i++) {
2979 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2980 break;
2981 DELAY(1);
2982 }
2983 if (i == WI_TIMEOUT) {
2984 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
2985 return ETIMEDOUT;
2986 }
2987 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
2988 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2989 return 0;
2990 }
2991
2992 STATIC int
2993 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2994 {
2995 int error, len;
2996 u_int16_t ltbuf[2];
2997
2998 /* Tell the NIC to enter record read mode. */
2999 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
3000 if (error)
3001 return error;
3002
3003 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
3004 if (error)
3005 return error;
3006
3007 if (le16toh(ltbuf[0]) == 0)
3008 return EOPNOTSUPP;
3009 if (le16toh(ltbuf[1]) != rid) {
3010 printf("%s: record read mismatch, rid=%x, got=%x\n",
3011 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
3012 return EIO;
3013 }
3014 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
3015 if (*buflenp < len) {
3016 printf("%s: record buffer is too small, "
3017 "rid=%x, size=%d, len=%d\n",
3018 sc->sc_dev.dv_xname, rid, *buflenp, len);
3019 return ENOSPC;
3020 }
3021 *buflenp = len;
3022 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
3023 }
3024
3025 STATIC int
3026 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
3027 {
3028 int error;
3029 u_int16_t ltbuf[2];
3030
3031 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
3032 ltbuf[1] = htole16(rid);
3033
3034 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
3035 if (error)
3036 return error;
3037 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
3038 if (error)
3039 return error;
3040
3041 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
3042 }
3043
3044 STATIC void
3045 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni)
3046 {
3047 struct wi_node *wn = (void*)ni;
3048 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt);
3049 }
3050
3051 STATIC void
3052 wi_rssadapt_updatestats(void *arg)
3053 {
3054 struct wi_softc *sc = arg;
3055 struct ieee80211com *ic = &sc->sc_ic;
3056 ieee80211_iterate_nodes(&ic->ic_sta, wi_rssadapt_updatestats_cb, arg);
3057 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
3058 ic->ic_state == IEEE80211_S_RUN)
3059 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
3060 wi_rssadapt_updatestats, arg);
3061 }
3062
3063 /*
3064 * In HOSTAP mode, restore IEEE80211_F_DROPUNENC when operating
3065 * with WEP enabled so that the AP drops unencoded frames at the
3066 * 802.11 layer.
3067 *
3068 * In all other modes, clear IEEE80211_F_DROPUNENC when operating
3069 * with WEP enabled so we don't drop unencoded frames at the 802.11
3070 * layer. This is necessary because we must strip the WEP bit from
3071 * the 802.11 header before passing frames to ieee80211_input
3072 * because the card has already stripped the WEP crypto header from
3073 * the packet.
3074 */
3075 STATIC void
3076 wi_mend_flags(struct wi_softc *sc, enum ieee80211_state nstate)
3077 {
3078 struct ieee80211com *ic = &sc->sc_ic;
3079
3080 if (nstate == IEEE80211_S_RUN &&
3081 (ic->ic_flags & IEEE80211_F_PRIVACY) != 0 &&
3082 ic->ic_opmode != IEEE80211_M_HOSTAP)
3083 ic->ic_flags &= ~IEEE80211_F_DROPUNENC;
3084 else
3085 ic->ic_flags |= sc->sc_ic_flags;
3086
3087 DPRINTF(("%s: state %d, "
3088 "ic->ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 ", "
3089 "sc->sc_ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 "\n",
3090 __func__, nstate,
3091 ic->ic_flags & IEEE80211_F_DROPUNENC,
3092 sc->sc_ic_flags & IEEE80211_F_DROPUNENC));
3093 }
3094
3095 STATIC int
3096 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3097 {
3098 struct ifnet *ifp = ic->ic_ifp;
3099 struct wi_softc *sc = ifp->if_softc;
3100 struct ieee80211_node *ni = ic->ic_bss;
3101 u_int16_t val;
3102 struct wi_ssid ssid;
3103 struct wi_macaddr bssid, old_bssid;
3104 enum ieee80211_state ostate;
3105 #ifdef WI_DEBUG
3106 static const char *stname[] =
3107 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
3108 #endif /* WI_DEBUG */
3109
3110 ostate = ic->ic_state;
3111 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
3112
3113 switch (nstate) {
3114 case IEEE80211_S_INIT:
3115 if (ic->ic_opmode != IEEE80211_M_MONITOR)
3116 callout_stop(&sc->sc_rssadapt_ch);
3117 ic->ic_flags &= ~IEEE80211_F_SIBSS;
3118 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
3119 break;
3120
3121 case IEEE80211_S_SCAN:
3122 case IEEE80211_S_AUTH:
3123 case IEEE80211_S_ASSOC:
3124 ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */
3125 wi_mend_flags(sc, nstate);
3126 return 0;
3127
3128 case IEEE80211_S_RUN:
3129 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
3130 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid);
3131 wi_read_xrid(sc, WI_RID_CURRENT_BSSID, &bssid,
3132 IEEE80211_ADDR_LEN);
3133 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid);
3134 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid);
3135 wi_read_xrid(sc, WI_RID_CURRENT_CHAN, &val, sizeof(val));
3136 if (!isset(ic->ic_chan_avail, le16toh(val)))
3137 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname,
3138 le16toh(val));
3139 ni->ni_chan = &ic->ic_channels[le16toh(val)];
3140
3141 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3142 #ifndef IEEE80211_NO_HOSTAP
3143 ni->ni_esslen = ic->ic_des_esslen;
3144 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
3145 ni->ni_rates = ic->ic_sup_rates[
3146 ieee80211_chan2mode(ic, ni->ni_chan)];
3147 ni->ni_intval = ic->ic_lintval;
3148 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
3149 if (ic->ic_flags & IEEE80211_F_PRIVACY)
3150 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
3151 #endif /* !IEEE80211_NO_HOSTAP */
3152 } else {
3153 wi_read_xrid(sc, WI_RID_CURRENT_SSID, &ssid,
3154 sizeof(ssid));
3155 ni->ni_esslen = le16toh(ssid.wi_len);
3156 if (ni->ni_esslen > IEEE80211_NWID_LEN)
3157 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
3158 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
3159 ni->ni_rates = ic->ic_sup_rates[
3160 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/
3161 }
3162 if (ic->ic_opmode != IEEE80211_M_MONITOR)
3163 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
3164 wi_rssadapt_updatestats, sc);
3165 /* Trigger routing socket messages. XXX Copied from
3166 * ieee80211_newstate.
3167 */
3168 if (ic->ic_opmode == IEEE80211_M_STA)
3169 ieee80211_notify_node_join(ic, ic->ic_bss,
3170 arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
3171 break;
3172 }
3173 wi_mend_flags(sc, nstate);
3174 return (*sc->sc_newstate)(ic, nstate, arg);
3175 }
3176
3177 STATIC void
3178 wi_set_tim(struct ieee80211_node *ni, int set)
3179 {
3180 struct ieee80211com *ic = ni->ni_ic;
3181 struct wi_softc *sc = ic->ic_ifp->if_softc;
3182
3183 (*sc->sc_set_tim)(ni, set);
3184
3185 if ((ic->ic_flags & IEEE80211_F_TIMUPDATE) == 0)
3186 return;
3187
3188 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
3189
3190 (void)wi_write_val(sc, WI_RID_SET_TIM,
3191 IEEE80211_AID(ni->ni_associd) | (set ? 0x8000 : 0));
3192 }
3193
3194 STATIC int
3195 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
3196 {
3197 int error = 0;
3198 u_int16_t val[2];
3199
3200 if (!sc->sc_enabled)
3201 return ENXIO;
3202 switch (sc->sc_firmware_type) {
3203 case WI_LUCENT:
3204 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
3205 break;
3206 case WI_INTERSIL:
3207 val[0] = htole16(chanmask); /* channel */
3208 val[1] = htole16(txrate); /* tx rate */
3209 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
3210 break;
3211 case WI_SYMBOL:
3212 /*
3213 * XXX only supported on 3.x ?
3214 */
3215 val[0] = htole16(BSCAN_BCAST | BSCAN_ONETIME);
3216 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
3217 val, sizeof(val[0]));
3218 break;
3219 }
3220 if (error == 0) {
3221 sc->sc_scan_timer = WI_SCAN_WAIT;
3222 sc->sc_if.if_timer = 1;
3223 DPRINTF(("wi_scan_ap: start scanning, "
3224 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate));
3225 }
3226 return error;
3227 }
3228
3229 STATIC void
3230 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
3231 {
3232 #define N(a) (sizeof (a) / sizeof (a[0]))
3233 int i, naps, off, szbuf;
3234 struct wi_scan_header ws_hdr; /* Prism2 header */
3235 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
3236 struct wi_apinfo *ap;
3237
3238 off = sizeof(u_int16_t) * 2;
3239 memset(&ws_hdr, 0, sizeof(ws_hdr));
3240 switch (sc->sc_firmware_type) {
3241 case WI_INTERSIL:
3242 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
3243 off += sizeof(ws_hdr);
3244 szbuf = sizeof(struct wi_scan_data_p2);
3245 break;
3246 case WI_SYMBOL:
3247 szbuf = sizeof(struct wi_scan_data_p2) + 6;
3248 break;
3249 case WI_LUCENT:
3250 szbuf = sizeof(struct wi_scan_data);
3251 break;
3252 default:
3253 printf("%s: wi_scan_result: unknown firmware type %u\n",
3254 sc->sc_dev.dv_xname, sc->sc_firmware_type);
3255 naps = 0;
3256 goto done;
3257 }
3258 naps = (cnt * 2 + 2 - off) / szbuf;
3259 if (naps > N(sc->sc_aps))
3260 naps = N(sc->sc_aps);
3261 sc->sc_naps = naps;
3262 /* Read Data */
3263 ap = sc->sc_aps;
3264 memset(&ws_dat, 0, sizeof(ws_dat));
3265 for (i = 0; i < naps; i++, ap++) {
3266 wi_read_bap(sc, fid, off, &ws_dat,
3267 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
3268 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
3269 ether_sprintf(ws_dat.wi_bssid)));
3270 off += szbuf;
3271 ap->scanreason = le16toh(ws_hdr.wi_reason);
3272 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
3273 ap->channel = le16toh(ws_dat.wi_chid);
3274 ap->signal = le16toh(ws_dat.wi_signal);
3275 ap->noise = le16toh(ws_dat.wi_noise);
3276 ap->quality = ap->signal - ap->noise;
3277 ap->capinfo = le16toh(ws_dat.wi_capinfo);
3278 ap->interval = le16toh(ws_dat.wi_interval);
3279 ap->rate = le16toh(ws_dat.wi_rate);
3280 ap->namelen = le16toh(ws_dat.wi_namelen);
3281 if (ap->namelen > sizeof(ap->name))
3282 ap->namelen = sizeof(ap->name);
3283 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
3284 }
3285 done:
3286 /* Done scanning */
3287 sc->sc_scan_timer = 0;
3288 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
3289 #undef N
3290 }
3291
3292 STATIC void
3293 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
3294 {
3295 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
3296 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL
3297 : -1,
3298 rssi);
3299 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
3300 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
3301 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
3302 printf(" rx_signal %u rx_rate %u rx_flow %u\n",
3303 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
3304 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
3305 wh->wi_tx_rtry, wh->wi_tx_rate,
3306 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
3307 printf(" ehdr dst %s src %s type 0x%x\n",
3308 ether_sprintf(wh->wi_ehdr.ether_dhost),
3309 ether_sprintf(wh->wi_ehdr.ether_shost),
3310 wh->wi_ehdr.ether_type);
3311 }
3312