wi.c revision 1.25 1 /* $NetBSD: wi.c,v 1.25 2001/09/22 17:22:25 explorer Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
73 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
74
75 #include "bpfilter.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/callout.h>
80 #include <sys/device.h>
81 #include <sys/socket.h>
82 #include <sys/mbuf.h>
83 #include <sys/ioctl.h>
84 #include <sys/kernel.h> /* for hz */
85 #include <sys/proc.h>
86
87 #include <net/if.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 #include <net/if_ether.h>
91 #include <net/if_ieee80211.h>
92
93 #if NBPFILTER > 0
94 #include <net/bpf.h>
95 #include <net/bpfdesc.h>
96 #endif
97
98 #include <machine/bus.h>
99
100 #include <dev/ic/wi_ieee.h>
101 #include <dev/ic/wireg.h>
102 #include <dev/ic/wivar.h>
103
104 #define STATS_FREQUENCY (60 * hz) /* collect stats every 60 seconds */
105
106 static void wi_reset __P((struct wi_softc *));
107 static int wi_ioctl __P((struct ifnet *, u_long, caddr_t));
108 static void wi_start __P((struct ifnet *));
109 static void wi_watchdog __P((struct ifnet *));
110 static int wi_init __P((struct ifnet *));
111 static void wi_stop __P((struct ifnet *, int));
112 static void wi_rxeof __P((struct wi_softc *));
113 static void wi_txeof __P((struct wi_softc *, int));
114 static void wi_update_stats __P((struct wi_softc *));
115 static void wi_setmulti __P((struct wi_softc *));
116
117 static int wi_cmd __P((struct wi_softc *, int, int));
118 static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *));
119 static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *));
120 static int wi_read_data __P((struct wi_softc *, int,
121 int, caddr_t, int));
122 static int wi_write_data __P((struct wi_softc *, int,
123 int, caddr_t, int));
124 static int wi_seek __P((struct wi_softc *, int, int, int));
125 static int wi_alloc_nicmem __P((struct wi_softc *, int, int *));
126 static void wi_inquire_stats __P((void *));
127 static void wi_inquire_scan __P((void *));
128 static int wi_setdef __P((struct wi_softc *, struct wi_req *));
129 static int wi_getdef __P((struct wi_softc *, struct wi_req *));
130 static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int));
131
132 static int wi_media_change __P((struct ifnet *));
133 static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
134
135 static void wi_get_id __P((struct wi_softc *));
136
137 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
138 static void wi_request_fill_ssid __P((struct wi_req *,
139 struct ieee80211_nwid *));
140 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
141 struct ieee80211_nwid *));
142 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
143 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
144 static int wi_sync_media __P((struct wi_softc *, int, int));
145 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
146 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
147
148 int
149 wi_attach(sc)
150 struct wi_softc *sc;
151 {
152 struct ifnet *ifp = sc->sc_ifp;
153 struct wi_ltv_macaddr mac;
154 struct wi_ltv_gen gen;
155 static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
156 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
157 };
158 int s;
159
160 s = splnet();
161
162 callout_init(&sc->wi_stats_ch);
163 callout_init(&sc->wi_scan_ch);
164
165 /* Make sure interrupts are disabled. */
166 CSR_WRITE_2(sc, WI_INT_EN, 0);
167 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
168
169 /* Reset the NIC. */
170 wi_reset(sc);
171
172 memset(&mac, 0, sizeof(mac));
173 /* Read the station address. */
174 mac.wi_type = WI_RID_MAC_NODE;
175 mac.wi_len = 4;
176 wi_read_record(sc, (struct wi_ltv_gen *)&mac);
177 memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
178
179 /*
180 * Check if we got anything meaningful.
181 *
182 * Is it really enough just checking against null ethernet address?
183 * Or, check against possible vendor? XXX.
184 */
185 if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
186 printf("%s: could not get mac address, attach failed\n",
187 sc->sc_dev.dv_xname);
188 return 1;
189 }
190
191 printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
192
193 /* Read NIC identification */
194 wi_get_id(sc);
195
196 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
197 ifp->if_softc = sc;
198 ifp->if_start = wi_start;
199 ifp->if_ioctl = wi_ioctl;
200 ifp->if_watchdog = wi_watchdog;
201 ifp->if_init = wi_init;
202 ifp->if_stop = wi_stop;
203 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
204 #ifdef IFF_NOTRAILERS
205 ifp->if_flags |= IFF_NOTRAILERS;
206 #endif
207 IFQ_SET_READY(&ifp->if_snd);
208
209 (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
210 sizeof(WI_DEFAULT_NODENAME) - 1);
211 (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
212 sizeof(WI_DEFAULT_NETNAME) - 1);
213 (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
214 sizeof(WI_DEFAULT_IBSS) - 1);
215
216 sc->wi_portnum = WI_DEFAULT_PORT;
217 sc->wi_ptype = WI_PORTTYPE_BSS;
218 sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
219 sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
220 sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
221 sc->wi_max_data_len = WI_DEFAULT_DATALEN;
222 sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
223 sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
224 sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
225 sc->wi_roaming = WI_DEFAULT_ROAMING;
226 sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
227
228 memset(&sc->wi_results, 0, sizeof (sc->wi_results));
229
230 /*
231 * Read the default channel from the NIC. This may vary
232 * depending on the country where the NIC was purchased, so
233 * we can't hard-code a default and expect it to work for
234 * everyone.
235 */
236 gen.wi_type = WI_RID_OWN_CHNL;
237 gen.wi_len = 2;
238 wi_read_record(sc, &gen);
239 sc->wi_channel = le16toh(gen.wi_val);
240
241 memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats));
242
243 /*
244 * Find out if we support WEP on this card.
245 */
246 gen.wi_type = WI_RID_WEP_AVAIL;
247 gen.wi_len = 2;
248 wi_read_record(sc, &gen);
249 sc->wi_has_wep = le16toh(gen.wi_val);
250
251 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
252 #define IFM_AUTOADHOC \
253 IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0)
254 #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL)
255 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
256 ADD(IFM_AUTOADHOC, 0);
257 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
258 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
259 IFM_IEEE80211_ADHOC, 0), 0);
260 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
261 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
262 IFM_IEEE80211_ADHOC, 0), 0);
263 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
264 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
265 IFM_IEEE80211_ADHOC, 0), 0);
266 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
267 #undef ADD
268 ifmedia_set(&sc->sc_media, IFM_AUTOADHOC);
269
270 /*
271 * Call MI attach routines.
272 */
273 if_attach(ifp);
274 ether_ifattach(ifp, mac.wi_mac_addr);
275
276 ifp->if_baudrate = IF_Mbps(2);
277
278 /* Attach is successful. */
279 sc->sc_attached = 1;
280
281 splx(s);
282 return 0;
283 }
284
285 static void wi_rxeof(sc)
286 struct wi_softc *sc;
287 {
288 struct ifnet *ifp;
289 struct ether_header *eh;
290 struct wi_frame rx_frame;
291 struct mbuf *m;
292 int id;
293 u_int16_t msg_type;
294 u_int16_t status;
295 u_int16_t frame_ctl;
296 u_int16_t port;
297
298 ifp = sc->sc_ifp;
299
300 id = CSR_READ_2(sc, WI_RX_FID);
301
302 /* First read in the frame header */
303 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
304 ifp->if_ierrors++;
305 return;
306 }
307
308 status = le16toh(rx_frame.wi_status);
309 frame_ctl = le16toh(rx_frame.wi_frame_ctl);
310 port = (status >> 8) & 0x07;
311 msg_type = status & WI_RXSTAT_MSG_TYPE;
312
313 /*
314 * Drop packets with CRC errors here. We may want the others,
315 * since we may be doing interesting things with undecryptable
316 * packets, like analyzing them in userland.
317 */
318 if (status & WI_STAT_BADCRC) {
319 ifp->if_ierrors++;
320 return;
321 }
322
323 if (port == 7) {
324 if ((le16toh(rx_frame.wi_dat_len) + 60) > MCLBYTES)
325 return;
326
327 MGETHDR(m, M_DONTWAIT, MT_DATA);
328 if (m == NULL) {
329 ifp->if_ierrors++;
330 return;
331 }
332 MCLGET(m, M_DONTWAIT);
333 if (!(m->m_flags & M_EXT)) {
334 m_freem(m);
335 ifp->if_ierrors++;
336 return;
337 }
338
339 memcpy(mtod(m, caddr_t), &rx_frame, 60);
340 m->m_pkthdr.rcvif = ifp;
341
342 m->m_pkthdr.len = m->m_len =
343 le16toh(rx_frame.wi_dat_len) + 60;
344
345 if (wi_read_data(sc, id, 60, mtod(m, caddr_t) + 60,
346 m->m_len - 60)) {
347 m_freem(m);
348 ifp->if_ierrors++;
349 return;
350 }
351
352 #if NBPFILTER > 0
353 if (ifp->if_bpf)
354 bpf_mtap(ifp->if_bpf, m);
355 #endif
356 m_freem(m);
357 return;
358 }
359
360 /*
361 * Drop undecryptable or packets with receive errors here
362 */
363 if (status & WI_STAT_ERRSTAT) {
364 ifp->if_ierrors++;
365 return;
366 }
367
368 MGETHDR(m, M_DONTWAIT, MT_DATA);
369 if (m == NULL) {
370 ifp->if_ierrors++;
371 return;
372 }
373 MCLGET(m, M_DONTWAIT);
374 if (!(m->m_flags & M_EXT)) {
375 m_freem(m);
376 ifp->if_ierrors++;
377 return;
378 }
379
380 /* Align the data after the ethernet header */
381 m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
382 - sizeof(struct ether_header);
383
384 eh = mtod(m, struct ether_header *);
385 m->m_pkthdr.rcvif = ifp;
386
387 if (le16toh(rx_frame.wi_status) == WI_STAT_1042 ||
388 le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL ||
389 le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) {
390 if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
391 printf("%s: oversized packet received "
392 "(wi_dat_len=%d, wi_status=0x%x)\n",
393 sc->sc_dev.dv_xname,
394 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
395 m_freem(m);
396 ifp->if_ierrors++;
397 return;
398 }
399 m->m_pkthdr.len = m->m_len =
400 le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
401
402 memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr,
403 ETHER_ADDR_LEN);
404 memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr,
405 ETHER_ADDR_LEN);
406 memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type,
407 sizeof(u_int16_t));
408
409 if (wi_read_data(sc, id, WI_802_11_OFFSET,
410 mtod(m, caddr_t) + sizeof(struct ether_header),
411 m->m_len + 2)) {
412 m_freem(m);
413 ifp->if_ierrors++;
414 return;
415 }
416 } else {
417 if ((le16toh(rx_frame.wi_dat_len) +
418 sizeof(struct ether_header)) > MCLBYTES) {
419 printf("%s: oversized packet received "
420 "(wi_dat_len=%d, wi_status=0x%x)\n",
421 sc->sc_dev.dv_xname,
422 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
423 m_freem(m);
424 ifp->if_ierrors++;
425 return;
426 }
427 m->m_pkthdr.len = m->m_len =
428 le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
429
430 if (wi_read_data(sc, id, WI_802_3_OFFSET,
431 mtod(m, caddr_t), m->m_len + 2)) {
432 m_freem(m);
433 ifp->if_ierrors++;
434 return;
435 }
436 }
437
438 ifp->if_ipackets++;
439
440 #if NBPFILTER > 0
441 /* Handle BPF listeners. */
442 if (ifp->if_bpf)
443 bpf_mtap(ifp->if_bpf, m);
444 #endif
445
446 /*
447 * Discard packets which are not data packets
448 */
449 if (WLAN_FC_GET_TYPE(frame_ctl) != WLAN_FC_TYPE_DATA) {
450 m_freem(m);
451 return;
452 }
453
454 /* Receive packet. */
455 (*ifp->if_input)(ifp, m);
456 }
457
458 static void wi_txeof(sc, status)
459 struct wi_softc *sc;
460 int status;
461 {
462 struct ifnet *ifp = sc->sc_ifp;
463
464 ifp->if_timer = 0;
465 ifp->if_flags &= ~IFF_OACTIVE;
466
467 if (status & WI_EV_TX_EXC)
468 ifp->if_oerrors++;
469 else
470 ifp->if_opackets++;
471
472 return;
473 }
474
475 void wi_inquire_stats(xsc)
476 void *xsc;
477 {
478 struct wi_softc *sc;
479 struct ifnet *ifp;
480
481 sc = xsc;
482 ifp = &sc->sc_ethercom.ec_if;
483
484 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
485 return;
486
487 callout_reset(&sc->wi_stats_ch, STATS_FREQUENCY, wi_inquire_stats, sc);
488
489 /* Don't do this while we're transmitting */
490 if (ifp->if_flags & IFF_OACTIVE)
491 return;
492
493 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
494 }
495
496 void wi_inquire_scan(xsc)
497 void *xsc;
498 {
499 struct wi_softc *sc;
500 struct ifnet *ifp;
501
502 sc = xsc;
503 ifp = &sc->sc_ethercom.ec_if;
504
505 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
506 return;
507
508 if (sc->wi_results.scanning > 0)
509 callout_reset(&sc->wi_scan_ch, sc->wi_results.scanning,
510 wi_inquire_scan, sc);
511 else
512 callout_stop(&sc->wi_scan_ch);
513
514 /* Don't do this while we're transmitting */
515 if (ifp->if_flags & IFF_OACTIVE)
516 return;
517
518 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS);
519 }
520
521 void wi_update_stats(sc)
522 struct wi_softc *sc;
523 {
524 struct wi_ltv_gen gen;
525 u_int16_t id;
526 struct ifnet *ifp;
527 u_int32_t *ptr;
528 int len, i;
529 u_int16_t t;
530
531 ifp = &sc->sc_ethercom.ec_if;
532
533 id = CSR_READ_2(sc, WI_INFO_FID);
534
535 wi_read_data(sc, id, 0, (char *)&gen, 4);
536
537 switch (gen.wi_type) {
538 case WI_INFO_COUNTERS:
539 /* some card versions have a larger stats structure */
540 len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
541 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
542 ptr = (u_int32_t *)&sc->wi_stats;
543
544 for (i = 0; i < len; i++) {
545 t = CSR_READ_2(sc, WI_DATA1);
546 #ifdef WI_HERMES_STATS_WAR
547 if (t > 0xF000)
548 t = ~t & 0xFFFF;
549 #endif
550 ptr[i] += t;
551 }
552
553 ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
554 sc->wi_stats.wi_tx_multi_retries +
555 sc->wi_stats.wi_tx_retry_limit;
556 break;
557
558 case WI_INFO_SCAN_RESULTS:
559 microtime(&sc->wi_results.lastscan);
560 for (i = 0 ; i < gen.wi_len - 1 ; i++) {
561 t = CSR_READ_2(sc, WI_DATA1);
562 if (i < WI_SCAN_RESULTS_MAXLEN)
563 sc->wi_results.scan_results[i] = t;
564 }
565 if (gen.wi_len - 1 <= WI_SCAN_RESULTS_MAXLEN) {
566 sc->wi_results.len = gen.wi_len - 1;
567 sc->wi_results.truncated = 0;
568 } else {
569 sc->wi_results.len = WI_SCAN_RESULTS_MAXLEN;
570 sc->wi_results.truncated = 1;
571 }
572 break;
573
574 default:
575 #if 0
576 printf("Got info type: %04x\n", gen.wi_type);
577 #endif
578 for (i = 0; i < gen.wi_len; i++) {
579 t = CSR_READ_2(sc, WI_DATA1);
580 #if 0
581 printf("[0x%02x] = 0x%04x\n", i, t);
582 #endif
583 }
584 break;
585 }
586 }
587
588 int wi_intr(arg)
589 void *arg;
590 {
591 struct wi_softc *sc = arg;
592 struct ifnet *ifp;
593 u_int16_t status;
594
595 if (sc->sc_enabled == 0 ||
596 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
597 (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
598 return (0);
599
600 ifp = &sc->sc_ethercom.ec_if;
601
602 if (!(ifp->if_flags & IFF_UP)) {
603 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
604 CSR_WRITE_2(sc, WI_INT_EN, 0);
605 return 1;
606 }
607
608 /* Disable interrupts. */
609 CSR_WRITE_2(sc, WI_INT_EN, 0);
610
611 status = CSR_READ_2(sc, WI_EVENT_STAT);
612 CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
613
614 if (status & WI_EV_RX) {
615 wi_rxeof(sc);
616 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
617 }
618
619 if (status & WI_EV_TX) {
620 wi_txeof(sc, status);
621 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
622 }
623
624 if (status & WI_EV_ALLOC) {
625 int id;
626 id = CSR_READ_2(sc, WI_ALLOC_FID);
627 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
628 if (id == sc->wi_tx_data_id)
629 wi_txeof(sc, status);
630 }
631
632 if (status & WI_EV_INFO) {
633 wi_update_stats(sc);
634 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
635 }
636
637 if (status & WI_EV_TX_EXC) {
638 wi_txeof(sc, status);
639 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
640 }
641
642 if (status & WI_EV_INFO_DROP) {
643 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
644 }
645
646 /* Re-enable interrupts. */
647 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
648
649 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
650 wi_start(ifp);
651
652 return 1;
653 }
654
655 static int
656 wi_cmd(sc, cmd, val)
657 struct wi_softc *sc;
658 int cmd;
659 int val;
660 {
661 int i, s = 0;
662
663 /* wait for the busy bit to clear */
664 for (i = 0; i < WI_TIMEOUT; i++) {
665 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
666 break;
667 }
668
669 CSR_WRITE_2(sc, WI_PARAM0, val);
670 CSR_WRITE_2(sc, WI_PARAM1, 0);
671 CSR_WRITE_2(sc, WI_PARAM2, 0);
672 CSR_WRITE_2(sc, WI_COMMAND, cmd);
673
674 /* wait for the cmd completed bit */
675 for (i = 0; i < WI_TIMEOUT; i++) {
676 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
677 break;
678 DELAY(1);
679 }
680
681 /* Ack the command */
682 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
683
684 s = CSR_READ_2(sc, WI_STATUS);
685 if (s & WI_STAT_CMD_RESULT)
686 return(EIO);
687
688 if (i == WI_TIMEOUT)
689 return(ETIMEDOUT);
690
691 return(0);
692 }
693
694 static void
695 wi_reset(sc)
696 struct wi_softc *sc;
697 {
698 DELAY(100*1000); /* 100 m sec */
699 if (wi_cmd(sc, WI_CMD_INI, 0))
700 printf("%s: init failed\n", sc->sc_dev.dv_xname);
701 CSR_WRITE_2(sc, WI_INT_EN, 0);
702 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
703
704 /* Calibrate timer. */
705 WI_SETVAL(WI_RID_TICK_TIME, 8);
706
707 return;
708 }
709
710 /*
711 * Read an LTV record from the NIC.
712 */
713 static int wi_read_record(sc, ltv)
714 struct wi_softc *sc;
715 struct wi_ltv_gen *ltv;
716 {
717 u_int16_t *ptr;
718 int len, code;
719 struct wi_ltv_gen *oltv, p2ltv;
720
721 if (sc->sc_prism2) {
722 oltv = ltv;
723 switch (ltv->wi_type) {
724 case WI_RID_ENCRYPTION:
725 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
726 p2ltv.wi_len = 2;
727 ltv = &p2ltv;
728 break;
729 case WI_RID_TX_CRYPT_KEY:
730 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
731 p2ltv.wi_len = 2;
732 ltv = &p2ltv;
733 break;
734 }
735 }
736
737 /* Tell the NIC to enter record read mode. */
738 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
739 return(EIO);
740
741 /* Seek to the record. */
742 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
743 return(EIO);
744
745 /*
746 * Read the length and record type and make sure they
747 * match what we expect (this verifies that we have enough
748 * room to hold all of the returned data).
749 */
750 len = CSR_READ_2(sc, WI_DATA1);
751 if (len > ltv->wi_len)
752 return(ENOSPC);
753 code = CSR_READ_2(sc, WI_DATA1);
754 if (code != ltv->wi_type)
755 return(EIO);
756
757 ltv->wi_len = len;
758 ltv->wi_type = code;
759
760 /* Now read the data. */
761 ptr = <v->wi_val;
762 if (ltv->wi_len > 1)
763 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
764
765 if (sc->sc_prism2) {
766 int v;
767
768 switch (oltv->wi_type) {
769 case WI_RID_TX_RATE:
770 case WI_RID_CUR_TX_RATE:
771 switch (le16toh(ltv->wi_val)) {
772 case 1: v = 1; break;
773 case 2: v = 2; break;
774 case 3: v = 6; break;
775 case 4: v = 5; break;
776 case 7: v = 7; break;
777 case 8: v = 11; break;
778 case 15: v = 3; break;
779 default: v = 0x100 + le16toh(ltv->wi_val); break;
780 }
781 oltv->wi_val = htole16(v);
782 break;
783 case WI_RID_ENCRYPTION:
784 oltv->wi_len = 2;
785 if (le16toh(ltv->wi_val) & 0x01)
786 oltv->wi_val = htole16(1);
787 else
788 oltv->wi_val = htole16(0);
789 break;
790 case WI_RID_TX_CRYPT_KEY:
791 oltv->wi_len = 2;
792 oltv->wi_val = ltv->wi_val;
793 break;
794 case WI_RID_AUTH_CNTL:
795 oltv->wi_len = 2;
796 if (le16toh(ltv->wi_val) & 0x01)
797 oltv->wi_val = htole16(1);
798 else if (le16toh(ltv->wi_val) & 0x02)
799 oltv->wi_val = htole16(2);
800 break;
801 }
802 }
803
804 return(0);
805 }
806
807 /*
808 * Same as read, except we inject data instead of reading it.
809 */
810 static int wi_write_record(sc, ltv)
811 struct wi_softc *sc;
812 struct wi_ltv_gen *ltv;
813 {
814 u_int16_t *ptr;
815 int i;
816 struct wi_ltv_gen p2ltv;
817
818 if (sc->sc_prism2) {
819 int v;
820
821 switch (ltv->wi_type) {
822 case WI_RID_TX_RATE:
823 p2ltv.wi_type = WI_RID_TX_RATE;
824 p2ltv.wi_len = 2;
825 switch (le16toh(ltv->wi_val)) {
826 case 1: v = 1; break;
827 case 2: v = 2; break;
828 case 3: v = 15; break;
829 case 5: v = 4; break;
830 case 6: v = 3; break;
831 case 7: v = 7; break;
832 case 11: v = 8; break;
833 default: return EINVAL;
834 }
835 p2ltv.wi_val = htole16(v);
836 ltv = &p2ltv;
837 break;
838 case WI_RID_ENCRYPTION:
839 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
840 p2ltv.wi_len = 2;
841 if (le16toh(ltv->wi_val))
842 p2ltv.wi_val = htole16(0x03);
843 else
844 p2ltv.wi_val = htole16(0x90);
845 ltv = &p2ltv;
846 break;
847 case WI_RID_TX_CRYPT_KEY:
848 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
849 p2ltv.wi_len = 2;
850 p2ltv.wi_val = ltv->wi_val;
851 ltv = &p2ltv;
852 break;
853 case WI_RID_DEFLT_CRYPT_KEYS:
854 {
855 int error;
856 struct wi_ltv_str ws;
857 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv;
858 for (i = 0; i < 4; i++) {
859 ws.wi_len = 4;
860 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
861 memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 5);
862 ws.wi_str[5] = '\0';
863 error = wi_write_record(sc,
864 (struct wi_ltv_gen *)&ws);
865 if (error)
866 return error;
867 }
868 return 0;
869 }
870 case WI_RID_AUTH_CNTL:
871 p2ltv.wi_type = WI_RID_AUTH_CNTL;
872 p2ltv.wi_len = 2;
873 if (le16toh(ltv->wi_val) == 1)
874 p2ltv.wi_val = htole16(0x01);
875 else if (le16toh(ltv->wi_val) == 2)
876 p2ltv.wi_val = htole16(0x02);
877 ltv = &p2ltv;
878 break;
879 }
880 }
881
882 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
883 return(EIO);
884
885 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
886 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
887
888 /* Write data */
889 ptr = <v->wi_val;
890 if (ltv->wi_len > 1)
891 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
892
893 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
894 return(EIO);
895
896 return(0);
897 }
898
899 static int wi_seek(sc, id, off, chan)
900 struct wi_softc *sc;
901 int id, off, chan;
902 {
903 int i;
904 int selreg, offreg;
905 int status;
906
907 switch (chan) {
908 case WI_BAP0:
909 selreg = WI_SEL0;
910 offreg = WI_OFF0;
911 break;
912 case WI_BAP1:
913 selreg = WI_SEL1;
914 offreg = WI_OFF1;
915 break;
916 default:
917 printf("%s: invalid data path: %x\n",
918 sc->sc_dev.dv_xname, chan);
919 return(EIO);
920 }
921
922 CSR_WRITE_2(sc, selreg, id);
923 CSR_WRITE_2(sc, offreg, off);
924
925 for (i = 0; i < WI_TIMEOUT; i++) {
926 status = CSR_READ_2(sc, offreg);
927 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
928 break;
929 }
930
931 if (i == WI_TIMEOUT) {
932 printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
933 sc->sc_dev.dv_xname, id, off, status);
934 return(ETIMEDOUT);
935 }
936 return(0);
937 }
938
939 static int wi_read_data(sc, id, off, buf, len)
940 struct wi_softc *sc;
941 int id, off;
942 caddr_t buf;
943 int len;
944 {
945 u_int16_t *ptr;
946
947 if (wi_seek(sc, id, off, WI_BAP1))
948 return(EIO);
949
950 ptr = (u_int16_t *)buf;
951 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
952
953 return(0);
954 }
955
956 /*
957 * According to the comments in the HCF Light code, there is a bug in
958 * the Hermes (or possibly in certain Hermes firmware revisions) where
959 * the chip's internal autoincrement counter gets thrown off during
960 * data writes: the autoincrement is missed, causing one data word to
961 * be overwritten and subsequent words to be written to the wrong memory
962 * locations. The end result is that we could end up transmitting bogus
963 * frames without realizing it. The workaround for this is to write a
964 * couple of extra guard words after the end of the transfer, then
965 * attempt to read then back. If we fail to locate the guard words where
966 * we expect them, we preform the transfer over again.
967 */
968 static int wi_write_data(sc, id, off, buf, len)
969 struct wi_softc *sc;
970 int id, off;
971 caddr_t buf;
972 int len;
973 {
974 u_int16_t *ptr;
975
976 #ifdef WI_HERMES_AUTOINC_WAR
977 again:
978 #endif
979
980 if (wi_seek(sc, id, off, WI_BAP0))
981 return(EIO);
982
983 ptr = (u_int16_t *)buf;
984 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
985
986 #ifdef WI_HERMES_AUTOINC_WAR
987 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
988 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
989
990 if (wi_seek(sc, id, off + len, WI_BAP0))
991 return(EIO);
992
993 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
994 CSR_READ_2(sc, WI_DATA0) != 0x5678)
995 goto again;
996 #endif
997
998 return(0);
999 }
1000
1001 /*
1002 * Allocate a region of memory inside the NIC and zero
1003 * it out.
1004 */
1005 static int wi_alloc_nicmem(sc, len, id)
1006 struct wi_softc *sc;
1007 int len;
1008 int *id;
1009 {
1010 int i;
1011
1012 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
1013 printf("%s: failed to allocate %d bytes on NIC\n",
1014 sc->sc_dev.dv_xname, len);
1015 return(ENOMEM);
1016 }
1017
1018 for (i = 0; i < WI_TIMEOUT; i++) {
1019 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1020 break;
1021 }
1022
1023 if (i == WI_TIMEOUT) {
1024 printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
1025 return(ETIMEDOUT);
1026 }
1027
1028 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1029 *id = CSR_READ_2(sc, WI_ALLOC_FID);
1030
1031 if (wi_seek(sc, *id, 0, WI_BAP0)) {
1032 printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
1033 return(EIO);
1034 }
1035
1036 for (i = 0; i < len / 2; i++)
1037 CSR_WRITE_2(sc, WI_DATA0, 0);
1038
1039 return(0);
1040 }
1041
1042 static void wi_setmulti(sc)
1043 struct wi_softc *sc;
1044 {
1045 struct ifnet *ifp;
1046 int i = 0;
1047 struct wi_ltv_mcast mcast;
1048 struct ether_multi *enm;
1049 struct ether_multistep estep;
1050 struct ethercom *ec = &sc->sc_ethercom;
1051
1052 ifp = &sc->sc_ethercom.ec_if;
1053
1054 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1055 allmulti:
1056 ifp->if_flags |= IFF_ALLMULTI;
1057 memset((char *)&mcast, 0, sizeof(mcast));
1058 mcast.wi_type = WI_RID_MCAST;
1059 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
1060
1061 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1062 return;
1063 }
1064
1065 i = 0;
1066 ETHER_FIRST_MULTI(estep, ec, enm);
1067 while (enm != NULL) {
1068 /* Punt on ranges or too many multicast addresses. */
1069 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1070 ETHER_ADDR_LEN) != 0 ||
1071 i >= 16)
1072 goto allmulti;
1073
1074 memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo,
1075 ETHER_ADDR_LEN);
1076 i++;
1077 ETHER_NEXT_MULTI(estep, enm);
1078 }
1079
1080 ifp->if_flags &= ~IFF_ALLMULTI;
1081 mcast.wi_type = WI_RID_MCAST;
1082 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
1083 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1084 }
1085
1086 static int
1087 wi_setdef(sc, wreq)
1088 struct wi_softc *sc;
1089 struct wi_req *wreq;
1090 {
1091 struct sockaddr_dl *sdl;
1092 struct ifnet *ifp;
1093 int error = 0;
1094
1095 ifp = &sc->sc_ethercom.ec_if;
1096
1097 switch(wreq->wi_type) {
1098 case WI_RID_MAC_NODE:
1099 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1100 memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val,
1101 ETHER_ADDR_LEN);
1102 memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN);
1103 break;
1104 case WI_RID_PORTTYPE:
1105 error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
1106 break;
1107 case WI_RID_TX_RATE:
1108 error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
1109 break;
1110 case WI_RID_MAX_DATALEN:
1111 sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1112 break;
1113 case WI_RID_RTS_THRESH:
1114 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1115 break;
1116 case WI_RID_SYSTEM_SCALE:
1117 sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1118 break;
1119 case WI_RID_CREATE_IBSS:
1120 sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1121 break;
1122 case WI_RID_OWN_CHNL:
1123 sc->wi_channel = le16toh(wreq->wi_val[0]);
1124 break;
1125 case WI_RID_NODENAME:
1126 error = wi_set_ssid(&sc->wi_nodeid,
1127 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1128 break;
1129 case WI_RID_DESIRED_SSID:
1130 error = wi_set_ssid(&sc->wi_netid,
1131 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1132 break;
1133 case WI_RID_OWN_SSID:
1134 error = wi_set_ssid(&sc->wi_ibssid,
1135 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1136 break;
1137 case WI_RID_PM_ENABLED:
1138 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1139 break;
1140 case WI_RID_MICROWAVE_OVEN:
1141 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1142 break;
1143 case WI_RID_MAX_SLEEP:
1144 sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1145 break;
1146 case WI_RID_AUTH_CNTL:
1147 sc->wi_authtype = le16toh(wreq->wi_val[0]);
1148 break;
1149 case WI_RID_ROAMING_MODE:
1150 sc->wi_roaming = le16toh(wreq->wi_val[0]);
1151 break;
1152 case WI_RID_ENCRYPTION:
1153 sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1154 break;
1155 case WI_RID_TX_CRYPT_KEY:
1156 sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1157 break;
1158 case WI_RID_DEFLT_CRYPT_KEYS:
1159 memcpy((char *)&sc->wi_keys, (char *)wreq,
1160 sizeof(struct wi_ltv_keys));
1161 break;
1162 default:
1163 error = EINVAL;
1164 break;
1165 }
1166
1167 return (error);
1168 }
1169
1170 static int
1171 wi_getdef(sc, wreq)
1172 struct wi_softc *sc;
1173 struct wi_req *wreq;
1174 {
1175 struct sockaddr_dl *sdl;
1176 struct ifnet *ifp;
1177 int error = 0;
1178
1179 ifp = &sc->sc_ethercom.ec_if;
1180
1181 wreq->wi_len = 2; /* XXX */
1182 switch (wreq->wi_type) {
1183 case WI_RID_MAC_NODE:
1184 wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
1185 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1186 memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN);
1187 memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1188 break;
1189 case WI_RID_PORTTYPE:
1190 wreq->wi_val[0] = htole16(sc->wi_ptype);
1191 break;
1192 case WI_RID_TX_RATE:
1193 wreq->wi_val[0] = htole16(sc->wi_tx_rate);
1194 break;
1195 case WI_RID_MAX_DATALEN:
1196 wreq->wi_val[0] = htole16(sc->wi_max_data_len);
1197 break;
1198 case WI_RID_RTS_THRESH:
1199 wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
1200 break;
1201 case WI_RID_SYSTEM_SCALE:
1202 wreq->wi_val[0] = htole16(sc->wi_ap_density);
1203 break;
1204 case WI_RID_CREATE_IBSS:
1205 wreq->wi_val[0] = htole16(sc->wi_create_ibss);
1206 break;
1207 case WI_RID_OWN_CHNL:
1208 wreq->wi_val[0] = htole16(sc->wi_channel);
1209 break;
1210 case WI_RID_NODENAME:
1211 wi_request_fill_ssid(wreq, &sc->wi_nodeid);
1212 break;
1213 case WI_RID_DESIRED_SSID:
1214 wi_request_fill_ssid(wreq, &sc->wi_netid);
1215 break;
1216 case WI_RID_OWN_SSID:
1217 wi_request_fill_ssid(wreq, &sc->wi_ibssid);
1218 break;
1219 case WI_RID_PM_ENABLED:
1220 wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
1221 break;
1222 case WI_RID_MICROWAVE_OVEN:
1223 wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
1224 break;
1225 case WI_RID_MAX_SLEEP:
1226 wreq->wi_val[0] = htole16(sc->wi_max_sleep);
1227 break;
1228 case WI_RID_AUTH_CNTL:
1229 wreq->wi_val[0] = htole16(sc->wi_authtype);
1230 break;
1231 case WI_RID_ROAMING_MODE:
1232 wreq->wi_val[0] = htole16(sc->wi_roaming);
1233 break;
1234 case WI_RID_WEP_AVAIL:
1235 wreq->wi_val[0] = htole16(sc->wi_has_wep);
1236 break;
1237 case WI_RID_ENCRYPTION:
1238 wreq->wi_val[0] = htole16(sc->wi_use_wep);
1239 break;
1240 case WI_RID_TX_CRYPT_KEY:
1241 wreq->wi_val[0] = htole16(sc->wi_tx_key);
1242 break;
1243 case WI_RID_DEFLT_CRYPT_KEYS:
1244 wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
1245 memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
1246 break;
1247 default:
1248 #if 0
1249 error = EIO;
1250 #else
1251 #ifdef WI_DEBUG
1252 printf("%s: wi_getdef: unknown request %d\n",
1253 sc->sc_dev.dv_xname, wreq->wi_type);
1254 #endif
1255 #endif
1256 break;
1257 }
1258
1259 return (error);
1260 }
1261
1262 static int
1263 wi_ioctl(ifp, command, data)
1264 struct ifnet *ifp;
1265 u_long command;
1266 caddr_t data;
1267 {
1268 int i, s, error = 0;
1269 struct wi_softc *sc = ifp->if_softc;
1270 struct wi_req wreq;
1271 struct ifreq *ifr;
1272 struct ifdrv *ifd;
1273 struct proc *p = curproc;
1274 struct ieee80211_nwid nwid;
1275
1276 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1277 return (ENXIO);
1278
1279 s = splnet();
1280
1281 ifr = (struct ifreq *)data;
1282 switch (command) {
1283 case SIOCSIFADDR:
1284 case SIOCGIFADDR:
1285 case SIOCSIFMTU:
1286 error = ether_ioctl(ifp, command, data);
1287 break;
1288 case SIOCSIFFLAGS:
1289 if (ifp->if_flags & IFF_UP) {
1290 if (ifp->if_flags & IFF_RUNNING &&
1291 ifp->if_flags & IFF_PROMISC &&
1292 !(sc->wi_if_flags & IFF_PROMISC)) {
1293 WI_SETVAL(WI_RID_PROMISC, 1);
1294 } else if (ifp->if_flags & IFF_RUNNING &&
1295 !(ifp->if_flags & IFF_PROMISC) &&
1296 sc->wi_if_flags & IFF_PROMISC) {
1297 WI_SETVAL(WI_RID_PROMISC, 0);
1298 }
1299 wi_init(ifp);
1300 } else {
1301 if (ifp->if_flags & IFF_RUNNING) {
1302 wi_stop(ifp, 0);
1303 }
1304 }
1305 sc->wi_if_flags = ifp->if_flags;
1306
1307 if (!(ifp->if_flags & IFF_UP)) {
1308 if (sc->sc_enabled) {
1309 if (sc->sc_disable)
1310 (*sc->sc_disable)(sc);
1311 sc->sc_enabled = 0;
1312 ifp->if_flags &= ~IFF_RUNNING;
1313 }
1314 }
1315 error = 0;
1316 break;
1317 case SIOCADDMULTI:
1318 case SIOCDELMULTI:
1319 error = (command == SIOCADDMULTI) ?
1320 ether_addmulti(ifr, &sc->sc_ethercom) :
1321 ether_delmulti(ifr, &sc->sc_ethercom);
1322 if (error == ENETRESET) {
1323 if (sc->sc_enabled != 0) {
1324 /*
1325 * Multicast list has changed. Set the
1326 * hardware filter accordingly.
1327 */
1328 wi_setmulti(sc);
1329 }
1330 error = 0;
1331 }
1332 break;
1333 case SIOCSIFMEDIA:
1334 case SIOCGIFMEDIA:
1335 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1336 break;
1337 case SIOCGWAVELAN:
1338 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1339 if (error)
1340 break;
1341 switch (wreq.wi_type) {
1342 case WI_RID_IFACE_STATS:
1343 /* XXX native byte order */
1344 memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats,
1345 sizeof(sc->wi_stats));
1346 wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1347 break;
1348 case WI_RID_DEFLT_CRYPT_KEYS:
1349 /* For non-root user, return all-zeroes keys */
1350 if (suser(p->p_ucred, &p->p_acflag))
1351 memset((char *)&wreq, 0,
1352 sizeof(struct wi_ltv_keys));
1353 else
1354 memcpy((char *)&wreq, (char *)&sc->wi_keys,
1355 sizeof(struct wi_ltv_keys));
1356 break;
1357 default:
1358 if (sc->sc_enabled == 0)
1359 error = wi_getdef(sc, &wreq);
1360 else if (wi_read_record(sc,
1361 (struct wi_ltv_gen *)&wreq))
1362 error = EINVAL;
1363 break;
1364 }
1365 if (error == 0)
1366 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1367 break;
1368
1369 case SIOCSWAVELAN:
1370 error = suser(p->p_ucred, &p->p_acflag);
1371 if (error)
1372 break;
1373 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1374 if (error)
1375 break;
1376 switch (wreq.wi_type) {
1377 case WI_RID_IFACE_STATS:
1378 error = EINVAL;
1379 break;
1380 case WI_RID_MGMT_XMIT:
1381 error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1382 wreq.wi_len);
1383 break;
1384
1385 default:
1386 if (sc->sc_enabled != 0)
1387 error = wi_write_record(sc,
1388 (struct wi_ltv_gen *)&wreq);
1389 if (error == 0)
1390 error = wi_setdef(sc, &wreq);
1391 if (error == 0 && sc->sc_enabled != 0)
1392 /* Reinitialize WaveLAN. */
1393 wi_init(ifp);
1394 break;
1395 }
1396 break;
1397
1398 case SIOCSDRVSPEC:
1399 error = suser(p->p_ucred, &p->p_acflag);
1400 if (error)
1401 break;
1402 ifd = (struct ifdrv *)data;
1403 switch (ifd->ifd_cmd) {
1404 case WI_IOCTL_SET_SCAN:
1405 error = copyin(ifd->ifd_data, &i, sizeof (i));
1406 if (error)
1407 break;
1408
1409 sc->wi_results.scanning = i;
1410 if (sc->wi_results.scanning > 0)
1411 callout_reset(&sc->wi_scan_ch,
1412 sc->wi_results.scanning,
1413 wi_inquire_scan, sc);
1414 else
1415 callout_stop(&sc->wi_scan_ch);
1416 break;
1417
1418 /*
1419 * Experimental XXXMLG
1420 */
1421 case WI_IOCTL_SET_TESTMODE:
1422 error = copyin(ifd->ifd_data, &i, sizeof (i));
1423 if (error)
1424 break;
1425 if (i) {
1426 wi_cmd(sc, WI_CMD_TEST | WI_TEST_MONITOR << 8,
1427 0);
1428 printf("wi test mode enabled\n");
1429 } else {
1430 wi_cmd(sc, WI_CMD_TEST | WI_TEST_STOP << 8, 0);
1431 printf("wi test mode disabled\n");
1432 }
1433 break;
1434
1435 default:
1436 error = EINVAL;
1437 break;
1438 }
1439 break;
1440
1441 case SIOCGDRVSPEC:
1442 ifd = (struct ifdrv *)data;
1443 switch (ifd->ifd_cmd) {
1444 case WI_IOCTL_GET_SCAN_RESULTS:
1445 error = copyout(&sc->wi_results, ifd->ifd_data,
1446 sizeof(struct wi_scan_results));
1447 break;
1448
1449 default:
1450 error = EINVAL;
1451 break;
1452 }
1453 break;
1454
1455 case SIOCG80211NWID:
1456 if (sc->sc_enabled == 0) {
1457 /* Return the desired ID */
1458 error = copyout(&sc->wi_netid, ifr->ifr_data,
1459 sizeof(sc->wi_netid));
1460 } else {
1461 wreq.wi_type = WI_RID_CURRENT_SSID;
1462 wreq.wi_len = WI_MAX_DATALEN;
1463 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
1464 le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
1465 error = EINVAL;
1466 else {
1467 wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
1468 le16toh(wreq.wi_val[0]));
1469 error = copyout(&nwid, ifr->ifr_data,
1470 sizeof(nwid));
1471 }
1472 }
1473 break;
1474 case SIOCS80211NWID:
1475 error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
1476 if (error != 0)
1477 break;
1478 if (nwid.i_len > IEEE80211_NWID_LEN) {
1479 error = EINVAL;
1480 break;
1481 }
1482 if (sc->wi_netid.i_len == nwid.i_len &&
1483 memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
1484 break;
1485 wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
1486 if (sc->sc_enabled != 0)
1487 /* Reinitialize WaveLAN. */
1488 wi_init(ifp);
1489 break;
1490 case SIOCS80211NWKEY:
1491 error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
1492 break;
1493 case SIOCG80211NWKEY:
1494 error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
1495 break;
1496 case SIOCS80211POWER:
1497 error = wi_set_pm(sc, (struct ieee80211_power *)data);
1498 break;
1499 case SIOCG80211POWER:
1500 error = wi_get_pm(sc, (struct ieee80211_power *)data);
1501 break;
1502
1503 default:
1504 error = EINVAL;
1505 break;
1506 }
1507
1508 splx(s);
1509 return (error);
1510 }
1511
1512 static int
1513 wi_init(ifp)
1514 struct ifnet *ifp;
1515 {
1516 struct wi_softc *sc = ifp->if_softc;
1517 struct wi_req wreq;
1518 struct wi_ltv_macaddr mac;
1519 int error, id = 0;
1520
1521 if (!sc->sc_enabled) {
1522 if ((error = (*sc->sc_enable)(sc)) != 0)
1523 goto out;
1524 sc->sc_enabled = 1;
1525 }
1526
1527 wi_stop(ifp, 0);
1528 wi_reset(sc);
1529
1530 /* Program max data length. */
1531 WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1532
1533 /* Enable/disable IBSS creation. */
1534 WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1535
1536 /* Set the port type. */
1537 WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1538
1539 /* Program the RTS/CTS threshold. */
1540 WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1541
1542 /* Program the TX rate */
1543 WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1544
1545 /* Access point density */
1546 WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1547
1548 /* Power Management Enabled */
1549 WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1550
1551 /* Power Managment Max Sleep */
1552 WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1553
1554 /* Roaming type */
1555 WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
1556
1557 /* Specify the IBSS name */
1558 wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
1559
1560 /* Specify the network name */
1561 wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
1562
1563 /* Specify the frequency to use */
1564 WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1565
1566 /* Program the nodename. */
1567 wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
1568
1569 /* Set our MAC address. */
1570 mac.wi_len = 4;
1571 mac.wi_type = WI_RID_MAC_NODE;
1572 memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
1573 wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1574
1575 /* Initialize promisc mode. */
1576 if (ifp->if_flags & IFF_PROMISC) {
1577 WI_SETVAL(WI_RID_PROMISC, 1);
1578 } else {
1579 WI_SETVAL(WI_RID_PROMISC, 0);
1580 }
1581
1582 /* Configure WEP. */
1583 if (sc->wi_has_wep) {
1584 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1585 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1586 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1587 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1588 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1589 if (sc->sc_prism2 && sc->wi_use_wep) {
1590 /*
1591 * ONLY HWB3163 EVAL-CARD Firmware version
1592 * less than 0.8 variant3
1593 *
1594 * If promiscuous mode disable, Prism2 chip
1595 * does not work with WEP .
1596 * It is under investigation for details.
1597 * (ichiro (at) netbsd.org)
1598 */
1599 if (sc->sc_prism2_ver < 83 ) {
1600 /* firm ver < 0.8 variant 3 */
1601 WI_SETVAL(WI_RID_PROMISC, 1);
1602 }
1603 WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
1604 }
1605 }
1606
1607 /* Set multicast filter. */
1608 wi_setmulti(sc);
1609
1610 /* Enable desired port */
1611 wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
1612
1613 if ((error = wi_alloc_nicmem(sc,
1614 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1615 printf("%s: tx buffer allocation failed\n",
1616 sc->sc_dev.dv_xname);
1617 goto out;
1618 }
1619 sc->wi_tx_data_id = id;
1620
1621 if ((error = wi_alloc_nicmem(sc,
1622 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1623 printf("%s: mgmt. buffer allocation failed\n",
1624 sc->sc_dev.dv_xname);
1625 goto out;
1626 }
1627 sc->wi_tx_mgmt_id = id;
1628
1629 /* Enable interrupts */
1630 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1631
1632 ifp->if_flags |= IFF_RUNNING;
1633 ifp->if_flags &= ~IFF_OACTIVE;
1634
1635 callout_reset(&sc->wi_stats_ch, STATS_FREQUENCY, wi_inquire_stats, sc);
1636
1637 out:
1638 if (error) {
1639 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1640 ifp->if_timer = 0;
1641 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1642 }
1643 return (error);
1644 }
1645
1646 static void
1647 wi_start(ifp)
1648 struct ifnet *ifp;
1649 {
1650 struct wi_softc *sc;
1651 struct mbuf *m0;
1652 struct wi_frame tx_frame;
1653 struct ether_header *eh;
1654 int id;
1655
1656 sc = ifp->if_softc;
1657
1658 if (ifp->if_flags & IFF_OACTIVE)
1659 return;
1660
1661 IFQ_DEQUEUE(&ifp->if_snd, m0);
1662 if (m0 == NULL)
1663 return;
1664
1665 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1666 id = sc->wi_tx_data_id;
1667 eh = mtod(m0, struct ether_header *);
1668
1669 /*
1670 * Use RFC1042 encoding for IP and ARP datagrams,
1671 * 802.3 for anything else.
1672 */
1673 if (ntohs(eh->ether_type) == ETHERTYPE_IP ||
1674 ntohs(eh->ether_type) == ETHERTYPE_ARP ||
1675 ntohs(eh->ether_type) == ETHERTYPE_REVARP ||
1676 ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
1677 memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost,
1678 ETHER_ADDR_LEN);
1679 memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost,
1680 ETHER_ADDR_LEN);
1681 memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost,
1682 ETHER_ADDR_LEN);
1683 memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost,
1684 ETHER_ADDR_LEN);
1685
1686 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1687 tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
1688 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1689 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1690 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1691 tx_frame.wi_type = eh->ether_type;
1692
1693 m_copydata(m0, sizeof(struct ether_header),
1694 m0->m_pkthdr.len - sizeof(struct ether_header),
1695 (caddr_t)&sc->wi_txbuf);
1696
1697 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1698 sizeof(struct wi_frame));
1699 wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1700 (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1701 } else {
1702 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
1703
1704 m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1705
1706 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1707 sizeof(struct wi_frame));
1708 wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1709 m0->m_pkthdr.len + 2);
1710 }
1711
1712 #if NBPFILTER > 0
1713 /*
1714 * If there's a BPF listener, bounce a copy of
1715 * this frame to him.
1716 */
1717 if (ifp->if_bpf)
1718 bpf_mtap(ifp->if_bpf, m0);
1719 #endif
1720
1721 m_freem(m0);
1722
1723 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1724 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1725
1726 ifp->if_flags |= IFF_OACTIVE;
1727
1728 /*
1729 * Set a timeout in case the chip goes out to lunch.
1730 */
1731 ifp->if_timer = 5;
1732
1733 return;
1734 }
1735
1736 static int
1737 wi_mgmt_xmit(sc, data, len)
1738 struct wi_softc *sc;
1739 caddr_t data;
1740 int len;
1741 {
1742 struct wi_frame tx_frame;
1743 int id;
1744 struct wi_80211_hdr *hdr;
1745 caddr_t dptr;
1746
1747 hdr = (struct wi_80211_hdr *)data;
1748 dptr = data + sizeof(struct wi_80211_hdr);
1749
1750 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1751 id = sc->wi_tx_mgmt_id;
1752
1753 memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr,
1754 sizeof(struct wi_80211_hdr));
1755
1756 tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
1757 tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1758
1759 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1760 wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1761 (len - sizeof(struct wi_80211_hdr)) + 2);
1762
1763 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1764 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1765 return(EIO);
1766 }
1767
1768 return(0);
1769 }
1770
1771 static void
1772 wi_stop(ifp, disable)
1773 struct ifnet *ifp;
1774 {
1775 struct wi_softc *sc = ifp->if_softc;
1776
1777 CSR_WRITE_2(sc, WI_INT_EN, 0);
1778 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1779
1780 callout_stop(&sc->wi_stats_ch);
1781 callout_stop(&sc->wi_scan_ch);
1782
1783 if (disable) {
1784 if (sc->sc_enabled) {
1785 if (sc->sc_disable)
1786 (*sc->sc_disable)(sc);
1787 sc->sc_enabled = 0;
1788 }
1789 }
1790
1791 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1792 ifp->if_timer = 0;
1793 }
1794
1795 static void
1796 wi_watchdog(ifp)
1797 struct ifnet *ifp;
1798 {
1799 struct wi_softc *sc;
1800
1801 sc = ifp->if_softc;
1802
1803 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1804
1805 wi_init(ifp);
1806
1807 ifp->if_oerrors++;
1808
1809 return;
1810 }
1811
1812 void
1813 wi_shutdown(sc)
1814 struct wi_softc *sc;
1815 {
1816 int s;
1817
1818 s = splnet();
1819 if (sc->sc_enabled) {
1820 if (sc->sc_disable)
1821 (*sc->sc_disable)(sc);
1822 sc->sc_enabled = 0;
1823 }
1824 splx(s);
1825 }
1826
1827 int
1828 wi_activate(self, act)
1829 struct device *self;
1830 enum devact act;
1831 {
1832 struct wi_softc *sc = (struct wi_softc *)self;
1833 int rv = 0, s;
1834
1835 s = splnet();
1836 switch (act) {
1837 case DVACT_ACTIVATE:
1838 rv = EOPNOTSUPP;
1839 break;
1840
1841 case DVACT_DEACTIVATE:
1842 if_deactivate(&sc->sc_ethercom.ec_if);
1843 break;
1844 }
1845 splx(s);
1846 return (rv);
1847 }
1848
1849 static void
1850 wi_get_id(sc)
1851 struct wi_softc *sc;
1852 {
1853 struct wi_ltv_ver ver;
1854
1855 /* getting chip identity */
1856 memset(&ver, 0, sizeof(ver));
1857 ver.wi_type = WI_RID_CARDID;
1858 ver.wi_len = 5;
1859 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1860 printf("%s: using ", sc->sc_dev.dv_xname);
1861 switch (le16toh(ver.wi_ver[0])) {
1862 case WI_NIC_EVB2:
1863 printf("RF:PRISM2 MAC:HFA3841");
1864 sc->sc_prism2 = 1;
1865 break;
1866 case WI_NIC_HWB3763:
1867 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3763 rev.B");
1868 sc->sc_prism2 = 1;
1869 break;
1870 case WI_NIC_HWB3163:
1871 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.A");
1872 sc->sc_prism2 = 1;
1873 break;
1874 case WI_NIC_HWB3163B:
1875 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.B");
1876 sc->sc_prism2 = 1;
1877 break;
1878 case WI_NIC_EVB3:
1879 printf("RF:PRISM2 MAC:HFA3842");
1880 sc->sc_prism2 = 1;
1881 break;
1882 case WI_NIC_HWB1153:
1883 printf("RF:PRISM1 MAC:HFA3841 CARD:HWB1153");
1884 sc->sc_prism2 = 1;
1885 break;
1886 case WI_NIC_P2_SST:
1887 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163-SST-flash");
1888 sc->sc_prism2 = 1;
1889 break;
1890 case WI_NIC_PRISM2_5:
1891 printf("RF:PRISM2.5 MAC:ISL3873");
1892 sc->sc_prism2 = 1;
1893 break;
1894 default:
1895 printf("Lucent chip or unknown chip\n");
1896 sc->sc_prism2 = 0;
1897 break;
1898 }
1899
1900 if (sc->sc_prism2) {
1901 /* try to get prism2 firm version */
1902 memset(&ver, 0, sizeof(ver));
1903 ver.wi_type = WI_RID_IDENT;
1904 ver.wi_len = 5;
1905 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1906 LE16TOH(ver.wi_ver[1]);
1907 LE16TOH(ver.wi_ver[2]);
1908 LE16TOH(ver.wi_ver[3]);
1909 printf(", Firmware: %i.%i variant %i\n", ver.wi_ver[2],
1910 ver.wi_ver[3], ver.wi_ver[1]);
1911 sc->sc_prism2_ver = ver.wi_ver[2] * 100 +
1912 ver.wi_ver[3] * 10 + ver.wi_ver[1];
1913 }
1914
1915 return;
1916 }
1917
1918 int
1919 wi_detach(sc)
1920 struct wi_softc *sc;
1921 {
1922 struct ifnet *ifp = sc->sc_ifp;
1923 int s;
1924
1925 if (!sc->sc_attached)
1926 return (0);
1927
1928 s = splnet();
1929 callout_stop(&sc->wi_stats_ch);
1930 callout_stop(&sc->wi_scan_ch);
1931
1932 /* Delete all remaining media. */
1933 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
1934
1935 ether_ifdetach(ifp);
1936 if_detach(ifp);
1937 if (sc->sc_enabled) {
1938 if (sc->sc_disable)
1939 (*sc->sc_disable)(sc);
1940 sc->sc_enabled = 0;
1941 }
1942 splx(s);
1943 return (0);
1944 }
1945
1946 void
1947 wi_power(sc, why)
1948 struct wi_softc *sc;
1949 int why;
1950 {
1951 int s;
1952
1953 if (!sc->sc_enabled)
1954 return;
1955
1956 s = splnet();
1957 switch (why) {
1958 case PWR_SUSPEND:
1959 case PWR_STANDBY:
1960 wi_stop(sc->sc_ifp, 0);
1961 if (sc->sc_enabled) {
1962 if (sc->sc_disable)
1963 (*sc->sc_disable)(sc);
1964 }
1965 break;
1966 case PWR_RESUME:
1967 sc->sc_enabled = 0;
1968 wi_init(sc->sc_ifp);
1969 (void)wi_intr(sc);
1970 break;
1971 case PWR_SOFTSUSPEND:
1972 case PWR_SOFTSTANDBY:
1973 case PWR_SOFTRESUME:
1974 break;
1975 }
1976 splx(s);
1977 }
1978
1979 static int
1980 wi_set_ssid(ws, id, len)
1981 struct ieee80211_nwid *ws;
1982 u_int8_t *id;
1983 int len;
1984 {
1985
1986 if (len > IEEE80211_NWID_LEN)
1987 return (EINVAL);
1988 ws->i_len = len;
1989 memcpy(ws->i_nwid, id, len);
1990 return (0);
1991 }
1992
1993 static void
1994 wi_request_fill_ssid(wreq, ws)
1995 struct wi_req *wreq;
1996 struct ieee80211_nwid *ws;
1997 {
1998 int len = ws->i_len;
1999
2000 memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
2001 wreq->wi_val[0] = htole16(len);
2002 wreq->wi_len = roundup(len, 2) / 2 + 2;
2003 memcpy(&wreq->wi_val[1], ws->i_nwid, len);
2004 }
2005
2006 static int
2007 wi_write_ssid(sc, type, wreq, ws)
2008 struct wi_softc *sc;
2009 int type;
2010 struct wi_req *wreq;
2011 struct ieee80211_nwid *ws;
2012 {
2013
2014 wreq->wi_type = type;
2015 wi_request_fill_ssid(wreq, ws);
2016 return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
2017 }
2018
2019 static int
2020 wi_sync_media(sc, ptype, txrate)
2021 struct wi_softc *sc;
2022 int ptype;
2023 int txrate;
2024 {
2025 int media = sc->sc_media.ifm_cur->ifm_media;
2026 int options = IFM_OPTIONS(media);
2027 int subtype;
2028
2029 switch (txrate) {
2030 case 1:
2031 subtype = IFM_IEEE80211_DS1;
2032 break;
2033 case 2:
2034 subtype = IFM_IEEE80211_DS2;
2035 break;
2036 case 3:
2037 subtype = IFM_AUTO;
2038 break;
2039 case 11:
2040 subtype = IFM_IEEE80211_DS11;
2041 break;
2042 default:
2043 subtype = IFM_MANUAL; /* Unable to represent */
2044 break;
2045 }
2046 switch (ptype) {
2047 case WI_PORTTYPE_ADHOC:
2048 options |= IFM_IEEE80211_ADHOC;
2049 break;
2050 case WI_PORTTYPE_BSS:
2051 options &= ~IFM_IEEE80211_ADHOC;
2052 break;
2053 default:
2054 subtype = IFM_MANUAL; /* Unable to represent */
2055 break;
2056 }
2057 media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
2058 IFM_INST(media));
2059 if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
2060 return (EINVAL);
2061 ifmedia_set(&sc->sc_media, media);
2062 sc->wi_ptype = ptype;
2063 sc->wi_tx_rate = txrate;
2064 return (0);
2065 }
2066
2067 static int
2068 wi_media_change(ifp)
2069 struct ifnet *ifp;
2070 {
2071 struct wi_softc *sc = ifp->if_softc;
2072 int otype = sc->wi_ptype;
2073 int orate = sc->wi_tx_rate;
2074
2075 if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2076 sc->wi_ptype = WI_PORTTYPE_ADHOC;
2077 else
2078 sc->wi_ptype = WI_PORTTYPE_BSS;
2079
2080 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
2081 case IFM_IEEE80211_DS1:
2082 sc->wi_tx_rate = 1;
2083 break;
2084 case IFM_IEEE80211_DS2:
2085 sc->wi_tx_rate = 2;
2086 break;
2087 case IFM_AUTO:
2088 sc->wi_tx_rate = 3;
2089 break;
2090 case IFM_IEEE80211_DS11:
2091 sc->wi_tx_rate = 11;
2092 break;
2093 }
2094
2095 if (sc->sc_enabled != 0) {
2096 if (otype != sc->wi_ptype ||
2097 orate != sc->wi_tx_rate)
2098 wi_init(ifp);
2099 }
2100
2101 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
2102
2103 return (0);
2104 }
2105
2106 static void
2107 wi_media_status(ifp, imr)
2108 struct ifnet *ifp;
2109 struct ifmediareq *imr;
2110 {
2111 struct wi_softc *sc = ifp->if_softc;
2112
2113 if (sc->sc_enabled == 0) {
2114 imr->ifm_active = IFM_IEEE80211|IFM_NONE;
2115 imr->ifm_status = 0;
2116 return;
2117 }
2118
2119 imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
2120 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2121 }
2122
2123 static int
2124 wi_set_nwkey(sc, nwkey)
2125 struct wi_softc *sc;
2126 struct ieee80211_nwkey *nwkey;
2127 {
2128 int i, error;
2129 size_t len;
2130 struct wi_req wreq;
2131 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
2132
2133 if (!sc->wi_has_wep)
2134 return ENODEV;
2135 if (nwkey->i_defkid <= 0 ||
2136 nwkey->i_defkid > IEEE80211_WEP_NKID)
2137 return EINVAL;
2138 memcpy(wk, &sc->wi_keys, sizeof(*wk));
2139 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2140 if (nwkey->i_key[i].i_keydat == NULL)
2141 continue;
2142 len = nwkey->i_key[i].i_keylen;
2143 if (len > sizeof(wk->wi_keys[i].wi_keydat))
2144 return EINVAL;
2145 error = copyin(nwkey->i_key[i].i_keydat,
2146 wk->wi_keys[i].wi_keydat, len);
2147 if (error)
2148 return error;
2149 wk->wi_keys[i].wi_keylen = htole16(len);
2150 }
2151
2152 wk->wi_len = (sizeof(*wk) / 2) + 1;
2153 wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2154 if (sc->sc_enabled != 0) {
2155 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2156 if (error)
2157 return error;
2158 }
2159 error = wi_setdef(sc, &wreq);
2160 if (error)
2161 return error;
2162
2163 wreq.wi_len = 2;
2164 wreq.wi_type = WI_RID_TX_CRYPT_KEY;
2165 wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
2166 if (sc->sc_enabled != 0) {
2167 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2168 if (error)
2169 return error;
2170 }
2171 error = wi_setdef(sc, &wreq);
2172 if (error)
2173 return error;
2174
2175 wreq.wi_type = WI_RID_ENCRYPTION;
2176 wreq.wi_val[0] = htole16(nwkey->i_wepon);
2177 if (sc->sc_enabled != 0) {
2178 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2179 if (error)
2180 return error;
2181 }
2182 error = wi_setdef(sc, &wreq);
2183 if (error)
2184 return error;
2185
2186 if (sc->sc_enabled != 0)
2187 wi_init(&sc->sc_ethercom.ec_if);
2188 return 0;
2189 }
2190
2191 static int
2192 wi_get_nwkey(sc, nwkey)
2193 struct wi_softc *sc;
2194 struct ieee80211_nwkey *nwkey;
2195 {
2196 int i, len, error;
2197 struct wi_ltv_keys *wk = &sc->wi_keys;
2198
2199 if (!sc->wi_has_wep)
2200 return ENODEV;
2201 nwkey->i_wepon = sc->wi_use_wep;
2202 nwkey->i_defkid = sc->wi_tx_key + 1;
2203
2204 /* do not show any keys to non-root user */
2205 error = suser(curproc->p_ucred, &curproc->p_acflag);
2206 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2207 if (nwkey->i_key[i].i_keydat == NULL)
2208 continue;
2209 /* error holds results of suser() for the first time */
2210 if (error)
2211 return error;
2212 len = le16toh(wk->wi_keys[i].wi_keylen);
2213 if (nwkey->i_key[i].i_keylen < len)
2214 return ENOSPC;
2215 nwkey->i_key[i].i_keylen = len;
2216 error = copyout(wk->wi_keys[i].wi_keydat,
2217 nwkey->i_key[i].i_keydat, len);
2218 if (error)
2219 return error;
2220 }
2221 return 0;
2222 }
2223
2224 static int
2225 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
2226 {
2227
2228 sc->wi_pm_enabled = power->i_enabled;
2229 sc->wi_max_sleep = power->i_maxsleep;
2230
2231 if (sc->sc_enabled)
2232 return (wi_init(&sc->sc_ethercom.ec_if));
2233
2234 return (0);
2235 }
2236
2237 static int
2238 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
2239 {
2240
2241 power->i_enabled = sc->wi_pm_enabled;
2242 power->i_maxsleep = sc->wi_max_sleep;
2243
2244 return (0);
2245 }
2246