wi.c revision 1.255 1 /* $NetBSD: wi.c,v 1.255 2020/01/30 04:56:11 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1997, 1998, 1999
34 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by Bill Paul.
47 * 4. Neither the name of the author nor the names of any co-contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
55 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
56 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
57 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
58 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
59 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
61 * THE POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 /*
65 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
66 *
67 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
68 * Electrical Engineering Department
69 * Columbia University, New York City
70 */
71
72 /*
73 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
74 * from Lucent. Unlike the older cards, the new ones are programmed
75 * entirely via a firmware-driven controller called the Hermes.
76 * Unfortunately, Lucent will not release the Hermes programming manual
77 * without an NDA (if at all). What they do release is an API library
78 * called the HCF (Hardware Control Functions) which is supposed to
79 * do the device-specific operations of a device driver for you. The
80 * publically available version of the HCF library (the 'HCF Light') is
81 * a) extremely gross, b) lacks certain features, particularly support
82 * for 802.11 frames, and c) is contaminated by the GNU Public License.
83 *
84 * This driver does not use the HCF or HCF Light at all. Instead, it
85 * programs the Hermes controller directly, using information gleaned
86 * from the HCF Light code and corresponding documentation.
87 *
88 * This driver supports both the PCMCIA and ISA versions of the
89 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
90 * anything of the sort: it's actually a PCMCIA bridge adapter
91 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
92 * inserted. Consequently, you need to use the pccard support for
93 * both the ISA and PCMCIA adapters.
94 */
95
96 /*
97 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
98 * Oslo IETF plenary meeting.
99 */
100
101 #include <sys/cdefs.h>
102 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.255 2020/01/30 04:56:11 thorpej Exp $");
103
104 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
105 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
106 #undef WI_HISTOGRAM
107 #undef WI_RING_DEBUG
108 #define STATIC static
109
110
111 #include <sys/param.h>
112 #include <sys/sysctl.h>
113 #include <sys/systm.h>
114 #include <sys/callout.h>
115 #include <sys/device.h>
116 #include <sys/socket.h>
117 #include <sys/mbuf.h>
118 #include <sys/ioctl.h>
119 #include <sys/kernel.h> /* for hz */
120 #include <sys/proc.h>
121 #include <sys/kauth.h>
122
123 #include <net/if.h>
124 #include <net/if_dl.h>
125 #include <net/if_llc.h>
126 #include <net/if_media.h>
127 #include <net/if_ether.h>
128 #include <net/route.h>
129 #include <net/bpf.h>
130
131 #include <net80211/ieee80211_netbsd.h>
132 #include <net80211/ieee80211_var.h>
133 #include <net80211/ieee80211_ioctl.h>
134 #include <net80211/ieee80211_radiotap.h>
135 #include <net80211/ieee80211_rssadapt.h>
136
137 #include <sys/bus.h>
138 #include <sys/intr.h>
139
140 #include <dev/ic/wi_ieee.h>
141 #include <dev/ic/wireg.h>
142 #include <dev/ic/wivar.h>
143
144 STATIC int wi_init(struct ifnet *);
145 STATIC void wi_stop(struct ifnet *, int);
146 STATIC void wi_start(struct ifnet *);
147 STATIC int wi_reset(struct wi_softc *);
148 STATIC void wi_watchdog(struct ifnet *);
149 STATIC int wi_ioctl(struct ifnet *, u_long, void *);
150 STATIC int wi_media_change(struct ifnet *);
151 STATIC void wi_media_status(struct ifnet *, struct ifmediareq *);
152 STATIC void wi_softintr(void *);
153
154 static void wi_ioctl_init(struct wi_softc *);
155 static int wi_ioctl_enter(struct wi_softc *);
156 static void wi_ioctl_exit(struct wi_softc *);
157 static void wi_ioctl_drain(struct wi_softc *);
158
159 STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211_node_table *);
160 STATIC void wi_node_free(struct ieee80211_node *);
161
162 STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
163 STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
164 STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *,
165 struct ieee80211_frame *, u_int);
166 STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *);
167 STATIC void wi_rssadapt_updatestats(void *);
168 STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *);
169 STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[],
170 wi_rssdescq_t *, uint8_t (*)[]);
171 STATIC void wi_sync_bssid(struct wi_softc *, uint8_t new_bssid[]);
172
173 STATIC void wi_rx_intr(struct wi_softc *);
174 STATIC void wi_txalloc_intr(struct wi_softc *);
175 STATIC void wi_cmd_intr(struct wi_softc *);
176 STATIC void wi_tx_intr(struct wi_softc *);
177 STATIC void wi_tx_ex_intr(struct wi_softc *);
178 STATIC void wi_info_intr(struct wi_softc *);
179
180 STATIC int wi_key_delete(struct ieee80211com *, const struct ieee80211_key *);
181 STATIC int wi_key_set(struct ieee80211com *, const struct ieee80211_key *,
182 const uint8_t[IEEE80211_ADDR_LEN]);
183 STATIC void wi_key_update_begin(struct ieee80211com *);
184 STATIC void wi_key_update_end(struct ieee80211com *);
185
186 STATIC void wi_push_packet(struct wi_softc *);
187 STATIC int wi_get_cfg(struct ifnet *, u_long, void *);
188 STATIC int wi_set_cfg(struct ifnet *, u_long, void *);
189 STATIC int wi_cfg_txrate(struct wi_softc *);
190 STATIC int wi_write_txrate(struct wi_softc *, int);
191 STATIC int wi_write_wep(struct wi_softc *);
192 STATIC int wi_write_multi(struct wi_softc *);
193 STATIC int wi_alloc_fid(struct wi_softc *, int, int *);
194 STATIC void wi_read_nicid(struct wi_softc *);
195 STATIC int wi_write_ssid(struct wi_softc *, int, uint8_t *, int);
196
197 STATIC int wi_cmd(struct wi_softc *, int, int, int, int);
198 STATIC int wi_cmd_start(struct wi_softc *, int, int, int, int);
199 STATIC int wi_cmd_wait(struct wi_softc *, int, int);
200 STATIC int wi_seek_bap(struct wi_softc *, int, int);
201 STATIC int wi_read_bap(struct wi_softc *, int, int, void *, int);
202 STATIC int wi_write_bap(struct wi_softc *, int, int, void *, int);
203 STATIC int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
204 STATIC int wi_read_rid(struct wi_softc *, int, void *, int *);
205 STATIC int wi_write_rid(struct wi_softc *, int, void *, int);
206
207 STATIC int wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
208 STATIC void wi_set_tim(struct ieee80211_node *, int);
209
210 STATIC int wi_scan_ap(struct wi_softc *, uint16_t, uint16_t);
211 STATIC void wi_scan_result(struct wi_softc *, int, int);
212
213 STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
214 STATIC void wi_mend_flags(struct wi_softc *, enum ieee80211_state);
215
216 static inline int
217 wi_write_val(struct wi_softc *sc, int rid, uint16_t val)
218 {
219
220 val = htole16(val);
221 return wi_write_rid(sc, rid, &val, sizeof(val));
222 }
223
224 static struct timeval lasttxerror; /* time of last tx error msg */
225 static int curtxeps = 0; /* current tx error msgs/sec */
226 static int wi_txerate = 0; /* tx error rate: max msgs/sec */
227
228 #ifdef WI_DEBUG
229 #define WI_DEBUG_MAX 2
230 int wi_debug = 0;
231
232 #define DPRINTF(X) if (wi_debug) printf X
233 #define DPRINTF2(X) if (wi_debug > 1) printf X
234 #define IFF_DUMPPKTS(_ifp) \
235 (((_ifp)->if_flags & (IFF_DEBUG |IFF_LINK2)) == (IFF_DEBUG |IFF_LINK2))
236 static int wi_sysctl_verify_debug(SYSCTLFN_PROTO);
237 #else
238 #define DPRINTF(X)
239 #define DPRINTF2(X)
240 #define IFF_DUMPPKTS(_ifp) 0
241 #endif
242
243 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \
244 WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD)
245
246 static const struct wi_card_ident wi_card_ident[] = {
247 /* CARD_ID CARD_NAME FIRM_TYPE */
248 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
249 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
250 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
251 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
252 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
253 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
254 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
255 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
256 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
257 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
258 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
259 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
260 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
261 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
262 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
263 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
264 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
265 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
266 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
267 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
268 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
269 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
270 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
271 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
272 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
273 { 0, NULL, 0 },
274 };
275
276 #ifndef _MODULE
277 /*
278 * Setup sysctl(3) MIB, hw.wi.*
279 *
280 * TBD condition CTLFLAG_PERMANENT on being a module or not
281 */
282 SYSCTL_SETUP(sysctl_wi, "sysctl wi(4) subtree setup")
283 {
284 int rc;
285 const struct sysctlnode *rnode;
286 #ifdef WI_DEBUG
287 const struct sysctlnode *cnode;
288 #endif /* WI_DEBUG */
289
290 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
291 CTLFLAG_PERMANENT, CTLTYPE_NODE, "wi",
292 "Lucent/Prism/Symbol 802.11 controls",
293 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
294 goto err;
295
296 #ifdef WI_DEBUG
297 /* control debugging printfs */
298 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
299 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
300 "debug", SYSCTL_DESCR("Enable debugging output"),
301 wi_sysctl_verify_debug, 0, &wi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
302 goto err;
303 #endif /* WI_DEBUG */
304 return;
305 err:
306 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
307 }
308 #endif
309
310 #ifdef WI_DEBUG
311 static int
312 wi_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
313 {
314 int error, t;
315 struct sysctlnode node;
316
317 node = *rnode;
318 t = *(int*)rnode->sysctl_data;
319 node.sysctl_data = &t;
320 error = sysctl_lookup(SYSCTLFN_CALL(&node));
321 if (error || newp == NULL)
322 return (error);
323
324 if (t < lower || t > upper)
325 return (EINVAL);
326
327 *(int*)rnode->sysctl_data = t;
328
329 return (0);
330 }
331
332 static int
333 wi_sysctl_verify_debug(SYSCTLFN_ARGS)
334 {
335 return wi_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
336 0, WI_DEBUG_MAX);
337 }
338 #endif /* WI_DEBUG */
339
340 STATIC int
341 wi_read_xrid(struct wi_softc *sc, int rid, void *buf, int ebuflen)
342 {
343 int buflen, rc;
344
345 buflen = ebuflen;
346 if ((rc = wi_read_rid(sc, rid, buf, &buflen)) != 0)
347 return rc;
348
349 if (buflen < ebuflen) {
350 #ifdef WI_DEBUG
351 printf("%s: rid=%#04x read %d, expected %d\n", __func__,
352 rid, buflen, ebuflen);
353 #endif
354 return -1;
355 }
356 return 0;
357 }
358
359 int
360 wi_attach(struct wi_softc *sc, const uint8_t *macaddr)
361 {
362 struct ieee80211com *ic = &sc->sc_ic;
363 struct ifnet *ifp = &sc->sc_if;
364 int chan, nrate, buflen;
365 uint16_t val, chanavail;
366 struct {
367 uint16_t nrates;
368 char rates[IEEE80211_RATE_SIZE];
369 } ratebuf;
370 static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
371 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
372 };
373 int s, rv;
374
375 sc->sc_soft_ih = softint_establish(SOFTINT_NET, wi_softintr, sc);
376 if (sc->sc_soft_ih == NULL) {
377 printf(" could not establish softint\n");
378 goto err;
379 }
380
381 wi_ioctl_init(sc);
382
383 s = splnet();
384
385 /* Make sure interrupts are disabled. */
386 CSR_WRITE_2(sc, WI_INT_EN, 0);
387 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
388
389 sc->sc_invalid = 0;
390
391 /* Reset the NIC. */
392 if (wi_reset(sc) != 0) {
393 sc->sc_invalid = 1;
394 goto fail;
395 }
396
397 if (wi_read_xrid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
398 IEEE80211_ADDR_LEN) != 0 ||
399 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
400 if (macaddr != NULL)
401 memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN);
402 else {
403 printf(" could not get mac address, attach failed\n");
404 goto fail;
405 }
406 }
407
408 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
409
410 /* Read NIC identification */
411 wi_read_nicid(sc);
412
413 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
414 ifp->if_softc = sc;
415 ifp->if_start = wi_start;
416 ifp->if_ioctl = wi_ioctl;
417 ifp->if_watchdog = wi_watchdog;
418 ifp->if_init = wi_init;
419 ifp->if_stop = wi_stop;
420 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
421 IFQ_SET_READY(&ifp->if_snd);
422
423 ic->ic_ifp = ifp;
424 ic->ic_phytype = IEEE80211_T_DS;
425 ic->ic_opmode = IEEE80211_M_STA;
426 ic->ic_caps = IEEE80211_C_AHDEMO;
427 ic->ic_state = IEEE80211_S_INIT;
428 ic->ic_max_aid = WI_MAX_AID;
429
430 /* Find available channel */
431 if (wi_read_xrid(sc, WI_RID_CHANNEL_LIST, &chanavail,
432 sizeof(chanavail)) != 0) {
433 aprint_normal_dev(sc->sc_dev, "using default channel list\n");
434 chanavail = htole16(0x1fff); /* assume 1-13 */
435 }
436 for (chan = 16; chan > 0; chan--) {
437 if (!isset((uint8_t*)&chanavail, chan - 1))
438 continue;
439 ic->ic_ibss_chan = &ic->ic_channels[chan];
440 ic->ic_channels[chan].ic_freq =
441 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
442 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
443 }
444
445 /* Find default IBSS channel */
446 if (wi_read_xrid(sc, WI_RID_OWN_CHNL, &val, sizeof(val)) == 0) {
447 chan = le16toh(val);
448 if (isset((uint8_t*)&chanavail, chan - 1))
449 ic->ic_ibss_chan = &ic->ic_channels[chan];
450 }
451 if (ic->ic_ibss_chan == NULL) {
452 aprint_error_dev(sc->sc_dev, "no available channel\n");
453 goto fail;
454 }
455
456 if (sc->sc_firmware_type == WI_LUCENT) {
457 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
458 } else {
459 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
460 wi_read_xrid(sc, WI_RID_DBM_ADJUST, &val, sizeof(val)) == 0)
461 sc->sc_dbm_offset = le16toh(val);
462 else
463 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
464 }
465
466 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
467
468 /*
469 * Set flags based on firmware version.
470 */
471 switch (sc->sc_firmware_type) {
472 case WI_LUCENT:
473 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
474 #ifdef WI_HERMES_AUTOINC_WAR
475 /* XXX: not confirmed, but never seen for recent firmware */
476 if (sc->sc_sta_firmware_ver < 40000) {
477 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
478 }
479 #endif
480 if (sc->sc_sta_firmware_ver >= 60000)
481 sc->sc_flags |= WI_FLAGS_HAS_MOR;
482 if (sc->sc_sta_firmware_ver >= 60006) {
483 ic->ic_caps |= IEEE80211_C_IBSS;
484 ic->ic_caps |= IEEE80211_C_MONITOR;
485 }
486 ic->ic_caps |= IEEE80211_C_PMGT;
487 sc->sc_ibss_port = 1;
488 break;
489
490 case WI_INTERSIL:
491 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
492 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
493 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
494 if (sc->sc_sta_firmware_ver > 10101)
495 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
496 if (sc->sc_sta_firmware_ver >= 800) {
497 if (sc->sc_sta_firmware_ver != 10402)
498 ic->ic_caps |= IEEE80211_C_HOSTAP;
499 ic->ic_caps |= IEEE80211_C_IBSS;
500 ic->ic_caps |= IEEE80211_C_MONITOR;
501 }
502 ic->ic_caps |= IEEE80211_C_PMGT;
503 sc->sc_ibss_port = 0;
504 sc->sc_alt_retry = 2;
505 break;
506
507 case WI_SYMBOL:
508 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
509 if (sc->sc_sta_firmware_ver >= 20000)
510 ic->ic_caps |= IEEE80211_C_IBSS;
511 sc->sc_ibss_port = 4;
512 break;
513 }
514
515 /*
516 * Find out if we support WEP on this card.
517 */
518 if (wi_read_xrid(sc, WI_RID_WEP_AVAIL, &val, sizeof(val)) == 0 &&
519 val != htole16(0))
520 ic->ic_caps |= IEEE80211_C_WEP;
521
522 /* Find supported rates. */
523 buflen = sizeof(ratebuf);
524 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 &&
525 buflen > 2) {
526 nrate = le16toh(ratebuf.nrates);
527 if (nrate > IEEE80211_RATE_SIZE)
528 nrate = IEEE80211_RATE_SIZE;
529 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates,
530 &ratebuf.rates[0], nrate);
531 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
532 } else {
533 aprint_error_dev(sc->sc_dev, "no supported rate list\n");
534 goto fail;
535 }
536
537 sc->sc_max_datalen = 2304;
538 sc->sc_rts_thresh = 2347;
539 sc->sc_frag_thresh = 2346;
540 sc->sc_system_scale = 1;
541 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
542 sc->sc_roaming_mode = 1;
543
544 callout_init(&sc->sc_rssadapt_ch, 0);
545
546 /*
547 * Call MI attach routines.
548 */
549 rv = if_initialize(ifp);
550 if (rv != 0) {
551 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n", rv);
552 goto fail_2;
553 }
554 ieee80211_ifattach(ic);
555 /* Use common softint-based if_input */
556 ifp->if_percpuq = if_percpuq_create(ifp);
557 if_register(ifp);
558
559 sc->sc_newstate = ic->ic_newstate;
560 sc->sc_set_tim = ic->ic_set_tim;
561 ic->ic_newstate = wi_newstate;
562 ic->ic_node_alloc = wi_node_alloc;
563 ic->ic_node_free = wi_node_free;
564 ic->ic_set_tim = wi_set_tim;
565
566 ic->ic_crypto.cs_key_delete = wi_key_delete;
567 ic->ic_crypto.cs_key_set = wi_key_set;
568 ic->ic_crypto.cs_key_update_begin = wi_key_update_begin;
569 ic->ic_crypto.cs_key_update_end = wi_key_update_end;
570
571 ieee80211_media_init(ic, wi_media_change, wi_media_status);
572
573 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
574 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
575
576 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
577 sc->sc_rxtap.wr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
578 sc->sc_rxtap.wr_ihdr.it_present = htole32(WI_RX_RADIOTAP_PRESENT);
579
580 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
581 sc->sc_txtap.wt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
582 sc->sc_txtap.wt_ihdr.it_present = htole32(WI_TX_RADIOTAP_PRESENT);
583
584 /* Attach is successful. */
585 sc->sc_attached = 1;
586
587 splx(s);
588 ieee80211_announce(ic);
589 return 0;
590
591 fail_2:
592 callout_destroy(&sc->sc_rssadapt_ch);
593
594 fail: splx(s);
595 softint_disestablish(sc->sc_soft_ih);
596 sc->sc_soft_ih = NULL;
597 err: return 1;
598 }
599
600 int
601 wi_detach(struct wi_softc *sc)
602 {
603 struct ifnet *ifp = &sc->sc_if;
604 int s;
605
606 if (!sc->sc_attached)
607 return 0;
608
609 sc->sc_invalid = 1;
610 s = splnet();
611
612 wi_stop(ifp, 1);
613
614 ieee80211_ifdetach(&sc->sc_ic);
615 if_detach(ifp);
616 splx(s);
617 wi_ioctl_drain(sc);
618 softint_disestablish(sc->sc_soft_ih);
619 sc->sc_soft_ih = NULL;
620 return 0;
621 }
622
623 int
624 wi_activate(device_t self, enum devact act)
625 {
626 struct wi_softc *sc = device_private(self);
627
628 switch (act) {
629 case DVACT_DEACTIVATE:
630 if_deactivate(&sc->sc_if);
631 return 0;
632 default:
633 return EOPNOTSUPP;
634 }
635 }
636
637 int
638 wi_intr(void *arg)
639 {
640 struct wi_softc *sc = arg;
641 struct ifnet *ifp = &sc->sc_if;
642 uint16_t status;
643
644 if (sc->sc_enabled == 0 ||
645 !device_is_active(sc->sc_dev) ||
646 (ifp->if_flags & IFF_RUNNING) == 0)
647 return 0;
648
649 if ((ifp->if_flags & IFF_UP) == 0) {
650 CSR_WRITE_2(sc, WI_INT_EN, 0);
651 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
652 return 1;
653 }
654
655 /* This is superfluous on Prism, but Lucent breaks if we
656 * do not disable interrupts.
657 */
658 CSR_WRITE_2(sc, WI_INT_EN, 0);
659
660 status = CSR_READ_2(sc, WI_EVENT_STAT);
661 #ifdef WI_DEBUG
662 if (wi_debug > 1) {
663 printf("%s: status %#04x\n", __func__, status);
664 }
665 #endif /* WI_DEBUG */
666 if ((status & WI_INTRS) == 0) {
667 /* re-enable interrupts */
668 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
669 return 0;
670 }
671
672 softint_schedule(sc->sc_soft_ih);
673 return 1;
674 }
675
676 STATIC void
677 wi_softintr(void *arg)
678 {
679 int i, s;
680 struct wi_softc *sc = arg;
681 struct ifnet *ifp = &sc->sc_if;
682 uint16_t status;
683
684 if (sc->sc_enabled == 0 ||
685 !device_is_active(sc->sc_dev) ||
686 (ifp->if_flags & IFF_RUNNING) == 0)
687 goto out;
688
689 if ((ifp->if_flags & IFF_UP) == 0) {
690 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
691 return;
692 }
693
694 /* maximum 10 loops per interrupt */
695 for (i = 0; i < 10; i++) {
696 status = CSR_READ_2(sc, WI_EVENT_STAT);
697 #ifdef WI_DEBUG
698 if (wi_debug > 1) {
699 printf("%s: iter %d status %#04x\n", __func__, i,
700 status);
701 }
702 #endif /* WI_DEBUG */
703 if ((status & WI_INTRS) == 0)
704 break;
705
706 sc->sc_status = status;
707
708 if (status & WI_EV_RX)
709 wi_rx_intr(sc);
710
711 if (status & WI_EV_ALLOC)
712 wi_txalloc_intr(sc);
713
714 if (status & WI_EV_TX)
715 wi_tx_intr(sc);
716
717 if (status & WI_EV_TX_EXC)
718 wi_tx_ex_intr(sc);
719
720 if (status & WI_EV_INFO)
721 wi_info_intr(sc);
722
723 CSR_WRITE_2(sc, WI_EVENT_ACK, sc->sc_status);
724
725 if (sc->sc_status & WI_EV_CMD)
726 wi_cmd_intr(sc);
727
728 if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
729 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
730 !IFQ_IS_EMPTY(&ifp->if_snd)) {
731 s = splnet();
732 wi_start(ifp);
733 splx(s);
734 }
735
736 sc->sc_status = 0;
737 }
738 if (i == 10)
739 softint_schedule(sc->sc_soft_ih);
740
741 out:
742 sc->sc_status = 0;
743
744 /* re-enable interrupts */
745 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
746 }
747
748 #define arraylen(a) (sizeof(a) / sizeof((a)[0]))
749
750 STATIC void
751 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree)
752 {
753 int i;
754 SLIST_INIT(rssdfree);
755 for (i = 0; i < arraylen(*rssd); i++) {
756 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next);
757 }
758 }
759
760 STATIC void
761 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS],
762 wi_rssdescq_t *rssdfree, uint8_t (*txpending)[IEEE80211_RATE_MAXSIZE])
763 {
764 struct ieee80211_node *ni;
765 int i;
766 for (i = 0; i < arraylen(*rssd); i++) {
767 ni = (*rssd)[i].rd_desc.id_node;
768 (*rssd)[i].rd_desc.id_node = NULL;
769 if (ni != NULL && (ic->ic_ifp->if_flags & IFF_DEBUG) != 0)
770 printf("%s: cleaning outstanding rssadapt "
771 "descriptor for %s\n",
772 ic->ic_ifp->if_xname, ether_sprintf(ni->ni_macaddr));
773 if (ni != NULL)
774 ieee80211_free_node(ni);
775 }
776 memset(*txpending, 0, sizeof(*txpending));
777 wi_rssdescs_init(rssd, rssdfree);
778 }
779
780 STATIC int
781 wi_init(struct ifnet *ifp)
782 {
783 struct wi_softc *sc = ifp->if_softc;
784 struct ieee80211com *ic = &sc->sc_ic;
785 struct wi_joinreq join;
786 int i;
787 int error = 0, wasenabled;
788
789 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
790 wasenabled = sc->sc_enabled;
791 if (!sc->sc_enabled) {
792 if ((error = (*sc->sc_enable)(sc->sc_dev, 1)) != 0)
793 goto out;
794 sc->sc_enabled = 1;
795 } else
796 wi_stop(ifp, 0);
797
798 /* Symbol firmware cannot be initialized more than once */
799 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled)
800 if ((error = wi_reset(sc)) != 0)
801 goto out;
802
803 /* common 802.11 configuration */
804 ic->ic_flags &= ~IEEE80211_F_IBSSON;
805 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
806 switch (ic->ic_opmode) {
807 case IEEE80211_M_STA:
808 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
809 break;
810 case IEEE80211_M_IBSS:
811 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
812 ic->ic_flags |= IEEE80211_F_IBSSON;
813 break;
814 case IEEE80211_M_AHDEMO:
815 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
816 break;
817 case IEEE80211_M_HOSTAP:
818 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
819 break;
820 case IEEE80211_M_MONITOR:
821 if (sc->sc_firmware_type == WI_LUCENT)
822 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
823 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
824 break;
825 }
826
827 /* Intersil interprets this RID as joining ESS even in IBSS mode */
828 if (sc->sc_firmware_type == WI_LUCENT &&
829 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
830 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
831 else
832 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
833 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
834 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
835 ic->ic_des_esslen);
836 wi_write_val(sc, WI_RID_OWN_CHNL,
837 ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
838 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
839 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
840 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
841 if (ic->ic_caps & IEEE80211_C_PMGT)
842 wi_write_val(sc, WI_RID_PM_ENABLED,
843 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
844
845 /* not yet common 802.11 configuration */
846 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
847 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
848 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
849 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
850
851 /* driver specific 802.11 configuration */
852 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
853 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
854 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
855 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
856 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
857 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
858 wi_cfg_txrate(sc);
859 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
860
861 #ifndef IEEE80211_NO_HOSTAP
862 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
863 sc->sc_firmware_type == WI_INTERSIL) {
864 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
865 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
866 }
867 #endif /* !IEEE80211_NO_HOSTAP */
868
869 if (sc->sc_firmware_type == WI_INTERSIL) {
870 struct ieee80211_rateset *rs =
871 &ic->ic_sup_rates[IEEE80211_MODE_11B];
872 uint16_t basic = 0, supported = 0, rate;
873
874 for (i = 0; i < rs->rs_nrates; i++) {
875 switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
876 case 2:
877 rate = 1;
878 break;
879 case 4:
880 rate = 2;
881 break;
882 case 11:
883 rate = 4;
884 break;
885 case 22:
886 rate = 8;
887 break;
888 default:
889 rate = 0;
890 break;
891 }
892 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC)
893 basic |= rate;
894 supported |= rate;
895 }
896 wi_write_val(sc, WI_RID_BASIC_RATE, basic);
897 wi_write_val(sc, WI_RID_SUPPORT_RATE, supported);
898 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry);
899 }
900
901 /*
902 * Initialize promisc mode.
903 * Being in Host-AP mode causes a great
904 * deal of pain if promiscuous mode is set.
905 * Therefore we avoid confusing the firmware
906 * and always reset promisc mode in Host-AP
907 * mode. Host-AP sees all the packets anyway.
908 */
909 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
910 (ifp->if_flags & IFF_PROMISC) != 0) {
911 wi_write_val(sc, WI_RID_PROMISC, 1);
912 } else {
913 wi_write_val(sc, WI_RID_PROMISC, 0);
914 }
915
916 /* Configure WEP. */
917 if (ic->ic_caps & IEEE80211_C_WEP) {
918 sc->sc_cnfauthmode = ic->ic_bss->ni_authmode;
919 wi_write_wep(sc);
920 }
921
922 /* Set multicast filter. */
923 wi_write_multi(sc);
924
925 sc->sc_txalloc = 0;
926 sc->sc_txalloced = 0;
927 sc->sc_txqueue = 0;
928 sc->sc_txqueued = 0;
929 sc->sc_txstart = 0;
930 sc->sc_txstarted = 0;
931
932 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
933 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
934 if (sc->sc_firmware_type == WI_SYMBOL)
935 sc->sc_buflen = 1585; /* XXX */
936 for (i = 0; i < WI_NTXBUF; i++) {
937 error = wi_alloc_fid(sc, sc->sc_buflen,
938 &sc->sc_txd[i].d_fid);
939 if (error) {
940 aprint_error_dev(sc->sc_dev,
941 "tx buffer allocation failed\n");
942 goto out;
943 }
944 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
945 sc->sc_txd[i].d_fid));
946 ++sc->sc_txalloced;
947 }
948 }
949
950 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree);
951
952 /* Enable desired port */
953 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
954 ifp->if_flags |= IFF_RUNNING;
955 ifp->if_flags &= ~IFF_OACTIVE;
956 ic->ic_state = IEEE80211_S_INIT;
957
958 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
959 ic->ic_opmode == IEEE80211_M_IBSS ||
960 ic->ic_opmode == IEEE80211_M_MONITOR ||
961 ic->ic_opmode == IEEE80211_M_HOSTAP)
962 ieee80211_create_ibss(ic, ic->ic_ibss_chan);
963
964 /* Enable interrupts */
965 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
966
967 #ifndef IEEE80211_NO_HOSTAP
968 if (!wasenabled &&
969 ic->ic_opmode == IEEE80211_M_HOSTAP &&
970 sc->sc_firmware_type == WI_INTERSIL) {
971 /* XXX: some card need to be re-enabled for hostap */
972 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
973 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
974 }
975 #endif /* !IEEE80211_NO_HOSTAP */
976
977 if (ic->ic_opmode == IEEE80211_M_STA &&
978 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
979 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
980 memset(&join, 0, sizeof(join));
981 if (ic->ic_flags & IEEE80211_F_DESBSSID)
982 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
983 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
984 join.wi_chan =
985 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan));
986 /* Lucent firmware does not support the JOIN RID. */
987 if (sc->sc_firmware_type != WI_LUCENT)
988 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
989 }
990
991 out:
992 if (error) {
993 printf("%s: interface not running\n", device_xname(sc->sc_dev));
994 wi_stop(ifp, 0);
995 }
996 DPRINTF(("wi_init: return %d\n", error));
997 return error;
998 }
999
1000 STATIC void
1001 wi_txcmd_wait(struct wi_softc *sc)
1002 {
1003 KASSERT(sc->sc_txcmds == 1);
1004 if (sc->sc_status & WI_EV_CMD) {
1005 sc->sc_status &= ~WI_EV_CMD;
1006 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1007 } else
1008 (void)wi_cmd_wait(sc, WI_CMD_TX | WI_RECLAIM, 0);
1009 }
1010
1011 STATIC void
1012 wi_stop(struct ifnet *ifp, int disable)
1013 {
1014 struct wi_softc *sc = ifp->if_softc;
1015 struct ieee80211com *ic = &sc->sc_ic;
1016 int s;
1017
1018 if (!sc->sc_enabled)
1019 return;
1020
1021 s = splnet();
1022
1023 DPRINTF(("wi_stop: disable %d\n", disable));
1024
1025 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1026
1027 /* wait for tx command completion (deassoc, deauth) */
1028 while (sc->sc_txcmds > 0) {
1029 wi_txcmd_wait(sc);
1030 wi_cmd_intr(sc);
1031 }
1032
1033 /* TBD wait for deassoc, deauth tx completion? */
1034
1035 if (!sc->sc_invalid) {
1036 CSR_WRITE_2(sc, WI_INT_EN, 0);
1037 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
1038 }
1039
1040 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1041 &sc->sc_txpending);
1042
1043 sc->sc_tx_timer = 0;
1044 sc->sc_scan_timer = 0;
1045 sc->sc_false_syns = 0;
1046 sc->sc_naps = 0;
1047 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1048 ifp->if_timer = 0;
1049
1050 if (disable) {
1051 (*sc->sc_enable)(sc->sc_dev, 0);
1052 sc->sc_enabled = 0;
1053 }
1054 splx(s);
1055 }
1056
1057 /*
1058 * Choose a data rate for a packet len bytes long that suits the packet
1059 * type and the wireless conditions.
1060 *
1061 * TBD Adapt fragmentation threshold.
1062 */
1063 STATIC int
1064 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni,
1065 struct ieee80211_frame *wh, u_int len)
1066 {
1067 struct wi_softc *sc = ic->ic_ifp->if_softc;
1068 struct wi_node *wn = (void*)ni;
1069 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt;
1070 int do_not_adapt, i, rateidx, s;
1071
1072 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) &&
1073 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0;
1074
1075 s = splnet();
1076
1077 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len,
1078 ic->ic_fixed_rate,
1079 ((ic->ic_ifp->if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_ifp->if_xname,
1080 do_not_adapt);
1081
1082 ni->ni_txrate = rateidx;
1083
1084 if (ic->ic_opmode != IEEE80211_M_HOSTAP) {
1085 /* choose the slowest pending rate so that we don't
1086 * accidentally send a packet on the MAC's queue
1087 * too fast. TBD find out if the MAC labels Tx
1088 * packets w/ rate when enqueued or dequeued.
1089 */
1090 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++);
1091 rateidx = i;
1092 }
1093
1094 splx(s);
1095 return (rateidx);
1096 }
1097
1098 STATIC void
1099 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1100 {
1101 struct wi_node *wn;
1102 int s;
1103
1104 s = splnet();
1105 if (id->id_node == NULL)
1106 goto out;
1107
1108 wn = (void*)id->id_node;
1109 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id);
1110 out:
1111 splx(s);
1112 }
1113
1114 STATIC void
1115 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1116 {
1117 struct ieee80211_node *ni;
1118 struct wi_node *wn;
1119 int s;
1120
1121 s = splnet();
1122
1123 if ((ni = id->id_node) == NULL) {
1124 DPRINTF(("wi_lower_rate: missing node\n"));
1125 goto out;
1126 }
1127
1128 wn = (void *)ni;
1129
1130 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id);
1131 out:
1132 splx(s);
1133 }
1134
1135 STATIC void
1136 wi_start(struct ifnet *ifp)
1137 {
1138 struct wi_softc *sc = ifp->if_softc;
1139 struct ieee80211com *ic = &sc->sc_ic;
1140 struct ether_header *eh;
1141 struct ieee80211_node *ni;
1142 struct ieee80211_frame *wh;
1143 struct ieee80211_rateset *rs;
1144 struct wi_rssdesc *rd;
1145 struct ieee80211_rssdesc *id;
1146 struct mbuf *m0;
1147 struct wi_frame frmhdr;
1148 int cur, fid, off, rateidx;
1149
1150 if (!sc->sc_enabled || sc->sc_invalid)
1151 return;
1152 if (sc->sc_flags & WI_FLAGS_OUTRANGE)
1153 return;
1154
1155 memset(&frmhdr, 0, sizeof(frmhdr));
1156 cur = sc->sc_txqueue;
1157 for (;;) {
1158 ni = ic->ic_bss;
1159 if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) {
1160 ifp->if_flags |= IFF_OACTIVE;
1161 break;
1162 }
1163 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
1164 IF_DEQUEUE(&ic->ic_mgtq, m0);
1165 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
1166 (void *)&frmhdr.wi_ehdr);
1167 frmhdr.wi_ehdr.ether_type = 0;
1168 wh = mtod(m0, struct ieee80211_frame *);
1169 ni = M_GETCTX(m0, struct ieee80211_node *);
1170 M_CLEARCTX(m0);
1171 } else if (ic->ic_state == IEEE80211_S_RUN) {
1172 IFQ_POLL(&ifp->if_snd, m0);
1173 if (m0 == NULL)
1174 break;
1175 IFQ_DEQUEUE(&ifp->if_snd, m0);
1176 if_statinc(ifp, if_opackets);
1177 m_copydata(m0, 0, ETHER_HDR_LEN,
1178 (void *)&frmhdr.wi_ehdr);
1179 bpf_mtap(ifp, m0, BPF_D_OUT);
1180
1181 eh = mtod(m0, struct ether_header *);
1182 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1183 if (ni == NULL) {
1184 if_statinc(ifp, if_oerrors);
1185 continue;
1186 }
1187 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1188 (m0->m_flags & M_PWR_SAV) == 0) {
1189 ieee80211_pwrsave(ic, ni, m0);
1190 goto next;
1191 }
1192 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
1193 ieee80211_free_node(ni);
1194 if_statinc(ifp, if_oerrors);
1195 continue;
1196 }
1197 wh = mtod(m0, struct ieee80211_frame *);
1198 } else
1199 break;
1200 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1201 frmhdr.wi_tx_ctl =
1202 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK);
1203 #ifndef IEEE80211_NO_HOSTAP
1204 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1205 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
1206 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1207 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
1208 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1209 m_freem(m0);
1210 if_statinc(ifp, if_oerrors);
1211 goto next;
1212 }
1213 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
1214 }
1215 #endif /* !IEEE80211_NO_HOSTAP */
1216
1217 rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len);
1218 rs = &ni->ni_rates;
1219
1220 if (sc->sc_drvbpf) {
1221 struct wi_tx_radiotap_header *tap = &sc->sc_txtap;
1222
1223 tap->wt_rate = rs->rs_rates[rateidx];
1224 tap->wt_chan_freq =
1225 htole16(ic->ic_bss->ni_chan->ic_freq);
1226 tap->wt_chan_flags =
1227 htole16(ic->ic_bss->ni_chan->ic_flags);
1228 /* TBD tap->wt_flags */
1229
1230 bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0,
1231 BPF_D_OUT);
1232 }
1233
1234 rd = SLIST_FIRST(&sc->sc_rssdfree);
1235 id = &rd->rd_desc;
1236 id->id_len = m0->m_pkthdr.len;
1237 id->id_rateidx = ni->ni_txrate;
1238 id->id_rssi = ni->ni_rssi;
1239
1240 frmhdr.wi_tx_idx = rd - sc->sc_rssd;
1241
1242 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1243 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] &
1244 IEEE80211_RATE_VAL);
1245 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA)
1246 (void)wi_write_txrate(sc, rs->rs_rates[rateidx]);
1247
1248 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
1249 (void *)&frmhdr.wi_whdr);
1250 m_adj(m0, sizeof(struct ieee80211_frame));
1251 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
1252 if (IFF_DUMPPKTS(ifp))
1253 wi_dump_pkt(&frmhdr, ni, -1);
1254 fid = sc->sc_txd[cur].d_fid;
1255 off = sizeof(frmhdr);
1256 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
1257 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
1258 aprint_error_dev(sc->sc_dev, "%s write fid %x failed\n",
1259 __func__, fid);
1260 if_statinc(ifp, if_oerrors);
1261 m_freem(m0);
1262 goto next;
1263 }
1264 m_freem(m0);
1265 sc->sc_txpending[ni->ni_txrate]++;
1266 --sc->sc_txalloced;
1267 if (sc->sc_txqueued++ == 0) {
1268 #ifdef DIAGNOSTIC
1269 if (cur != sc->sc_txstart)
1270 printf("%s: ring is desynchronized\n",
1271 device_xname(sc->sc_dev));
1272 #endif
1273 wi_push_packet(sc);
1274 } else {
1275 #ifdef WI_RING_DEBUG
1276 printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1277 device_xname(sc->sc_dev), fid,
1278 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1279 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1280 #endif
1281 }
1282 sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF;
1283 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next);
1284 id->id_node = ni;
1285 continue;
1286 next:
1287 if (ni != NULL)
1288 ieee80211_free_node(ni);
1289 }
1290 }
1291
1292
1293 STATIC int
1294 wi_reset(struct wi_softc *sc)
1295 {
1296 int i, error;
1297
1298 DPRINTF(("wi_reset\n"));
1299
1300 if (sc->sc_reset)
1301 (*sc->sc_reset)(sc);
1302
1303 error = 0;
1304 for (i = 0; i < 5; i++) {
1305 if (sc->sc_invalid)
1306 return ENXIO;
1307 DELAY(20*1000); /* XXX: way too long! */
1308 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
1309 break;
1310 }
1311 if (error) {
1312 aprint_error_dev(sc->sc_dev, "init failed\n");
1313 return error;
1314 }
1315 CSR_WRITE_2(sc, WI_INT_EN, 0);
1316 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
1317
1318 /* Calibrate timer. */
1319 wi_write_val(sc, WI_RID_TICK_TIME, 0);
1320 return 0;
1321 }
1322
1323 STATIC void
1324 wi_watchdog(struct ifnet *ifp)
1325 {
1326 struct wi_softc *sc = ifp->if_softc;
1327
1328 ifp->if_timer = 0;
1329 if (!sc->sc_enabled)
1330 return;
1331
1332 if (sc->sc_tx_timer) {
1333 if (--sc->sc_tx_timer == 0) {
1334 printf("%s: device timeout\n", ifp->if_xname);
1335 if_statinc(ifp, if_oerrors);
1336 wi_init(ifp);
1337 return;
1338 }
1339 ifp->if_timer = 1;
1340 }
1341
1342 if (sc->sc_scan_timer) {
1343 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
1344 sc->sc_firmware_type == WI_INTERSIL) {
1345 DPRINTF(("wi_watchdog: inquire scan\n"));
1346 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1347 }
1348 if (sc->sc_scan_timer)
1349 ifp->if_timer = 1;
1350 }
1351
1352 /* TODO: rate control */
1353 ieee80211_watchdog(&sc->sc_ic);
1354 }
1355
1356 static int
1357 wi_ioctl_enter(struct wi_softc *sc)
1358 {
1359 int rc = 0;
1360
1361 mutex_enter(&sc->sc_ioctl_mtx);
1362 sc->sc_ioctl_nwait++;
1363 while (sc->sc_ioctl_lwp != NULL && sc->sc_ioctl_lwp != curlwp) {
1364 rc = sc->sc_ioctl_gone
1365 ? ENXIO
1366 : cv_wait_sig(&sc->sc_ioctl_cv, &sc->sc_ioctl_mtx);
1367 if (rc != 0)
1368 break;
1369 }
1370 if (rc == 0) {
1371 sc->sc_ioctl_lwp = curlwp;
1372 sc->sc_ioctl_depth++;
1373 }
1374 if (--sc->sc_ioctl_nwait == 0)
1375 cv_signal(&sc->sc_ioctl_cv);
1376 mutex_exit(&sc->sc_ioctl_mtx);
1377 return rc;
1378 }
1379
1380 static void
1381 wi_ioctl_exit(struct wi_softc *sc)
1382 {
1383 KASSERT(sc->sc_ioctl_lwp == curlwp);
1384 mutex_enter(&sc->sc_ioctl_mtx);
1385 if (--sc->sc_ioctl_depth == 0) {
1386 sc->sc_ioctl_lwp = NULL;
1387 cv_signal(&sc->sc_ioctl_cv);
1388 }
1389 mutex_exit(&sc->sc_ioctl_mtx);
1390 }
1391
1392 static void
1393 wi_ioctl_init(struct wi_softc *sc)
1394 {
1395 mutex_init(&sc->sc_ioctl_mtx, MUTEX_DEFAULT, IPL_NONE);
1396 cv_init(&sc->sc_ioctl_cv, device_xname(sc->sc_dev));
1397 }
1398
1399 static void
1400 wi_ioctl_drain(struct wi_softc *sc)
1401 {
1402 wi_ioctl_enter(sc);
1403
1404 mutex_enter(&sc->sc_ioctl_mtx);
1405 sc->sc_ioctl_gone = true;
1406 cv_broadcast(&sc->sc_ioctl_cv);
1407 while (sc->sc_ioctl_nwait != 0)
1408 cv_wait(&sc->sc_ioctl_cv, &sc->sc_ioctl_mtx);
1409 mutex_exit(&sc->sc_ioctl_mtx);
1410
1411 wi_ioctl_exit(sc);
1412
1413 mutex_destroy(&sc->sc_ioctl_mtx);
1414 cv_destroy(&sc->sc_ioctl_cv);
1415 }
1416
1417 STATIC int
1418 wi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1419 {
1420 struct wi_softc *sc = ifp->if_softc;
1421 struct ieee80211com *ic = &sc->sc_ic;
1422 int s, error = 0;
1423
1424 if (!device_is_active(sc->sc_dev))
1425 return ENXIO;
1426
1427 s = splnet();
1428
1429 if ((error = wi_ioctl_enter(sc)) != 0) {
1430 splx(s);
1431 return error;
1432 }
1433
1434 switch (cmd) {
1435 case SIOCSIFFLAGS:
1436 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1437 break;
1438 /*
1439 * Can't do promisc and hostap at the same time. If all that's
1440 * changing is the promisc flag, try to short-circuit a call to
1441 * wi_init() by just setting PROMISC in the hardware.
1442 */
1443 if (ifp->if_flags & IFF_UP) {
1444 if (sc->sc_enabled) {
1445 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1446 (ifp->if_flags & IFF_PROMISC) != 0)
1447 wi_write_val(sc, WI_RID_PROMISC, 1);
1448 else
1449 wi_write_val(sc, WI_RID_PROMISC, 0);
1450 } else
1451 error = wi_init(ifp);
1452 } else if (sc->sc_enabled)
1453 wi_stop(ifp, 1);
1454 break;
1455 case SIOCADDMULTI:
1456 case SIOCDELMULTI:
1457 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1458 if (ifp->if_flags & IFF_RUNNING) {
1459 /* do not rescan */
1460 error = wi_write_multi(sc);
1461 } else
1462 error = 0;
1463 }
1464 break;
1465 case SIOCGIFGENERIC:
1466 error = wi_get_cfg(ifp, cmd, data);
1467 break;
1468 case SIOCSIFGENERIC:
1469 error = kauth_authorize_network(curlwp->l_cred,
1470 KAUTH_NETWORK_INTERFACE,
1471 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
1472 NULL);
1473 if (error)
1474 break;
1475 error = wi_set_cfg(ifp, cmd, data);
1476 if (error == ENETRESET) {
1477 if (ifp->if_flags & IFF_RUNNING)
1478 error = wi_init(ifp);
1479 else
1480 error = 0;
1481 }
1482 break;
1483 case SIOCS80211BSSID:
1484 if (sc->sc_firmware_type == WI_LUCENT) {
1485 error = ENODEV;
1486 break;
1487 }
1488 /* fall through */
1489 default:
1490 ic->ic_flags |= sc->sc_ic_flags;
1491 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1492 sc->sc_ic_flags = ic->ic_flags & IEEE80211_F_DROPUNENC;
1493 if (error == ENETRESET) {
1494 if (sc->sc_enabled)
1495 error = wi_init(ifp);
1496 else
1497 error = 0;
1498 }
1499 break;
1500 }
1501 wi_mend_flags(sc, ic->ic_state);
1502 wi_ioctl_exit(sc);
1503 splx(s);
1504 return error;
1505 }
1506
1507 STATIC int
1508 wi_media_change(struct ifnet *ifp)
1509 {
1510 struct wi_softc *sc = ifp->if_softc;
1511 struct ieee80211com *ic = &sc->sc_ic;
1512 int error;
1513
1514 error = ieee80211_media_change(ifp);
1515 if (error == ENETRESET) {
1516 if (sc->sc_enabled)
1517 error = wi_init(ifp);
1518 else
1519 error = 0;
1520 }
1521 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1522
1523 return error;
1524 }
1525
1526 STATIC void
1527 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1528 {
1529 struct wi_softc *sc = ifp->if_softc;
1530 struct ieee80211com *ic = &sc->sc_ic;
1531 uint16_t val;
1532 int rate;
1533
1534 if (sc->sc_enabled == 0) {
1535 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1536 imr->ifm_status = 0;
1537 return;
1538 }
1539
1540 imr->ifm_status = IFM_AVALID;
1541 imr->ifm_active = IFM_IEEE80211;
1542 if (ic->ic_state == IEEE80211_S_RUN &&
1543 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1544 imr->ifm_status |= IFM_ACTIVE;
1545 if (wi_read_xrid(sc, WI_RID_CUR_TX_RATE, &val, sizeof(val)) == 0) {
1546 /* convert to 802.11 rate */
1547 val = le16toh(val);
1548 rate = val * 2;
1549 if (sc->sc_firmware_type == WI_LUCENT) {
1550 if (rate == 10)
1551 rate = 11; /* 5.5Mbps */
1552 } else {
1553 if (rate == 4*2)
1554 rate = 11; /* 5.5Mbps */
1555 else if (rate == 8*2)
1556 rate = 22; /* 11Mbps */
1557 }
1558 } else
1559 rate = 0;
1560 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1561 switch (ic->ic_opmode) {
1562 case IEEE80211_M_STA:
1563 break;
1564 case IEEE80211_M_IBSS:
1565 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1566 break;
1567 case IEEE80211_M_AHDEMO:
1568 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1569 break;
1570 case IEEE80211_M_HOSTAP:
1571 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1572 break;
1573 case IEEE80211_M_MONITOR:
1574 imr->ifm_active |= IFM_IEEE80211_MONITOR;
1575 break;
1576 }
1577 }
1578
1579 STATIC struct ieee80211_node *
1580 wi_node_alloc(struct ieee80211_node_table *nt)
1581 {
1582 struct wi_node *wn =
1583 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1584 return wn ? &wn->wn_node : NULL;
1585 }
1586
1587 STATIC void
1588 wi_node_free(struct ieee80211_node *ni)
1589 {
1590 struct wi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1591 int i;
1592
1593 for (i = 0; i < WI_NTXRSS; i++) {
1594 if (sc->sc_rssd[i].rd_desc.id_node == ni)
1595 sc->sc_rssd[i].rd_desc.id_node = NULL;
1596 }
1597 free(ni, M_DEVBUF);
1598 }
1599
1600 STATIC void
1601 wi_sync_bssid(struct wi_softc *sc, uint8_t new_bssid[IEEE80211_ADDR_LEN])
1602 {
1603 struct ieee80211com *ic = &sc->sc_ic;
1604 struct ieee80211_node *ni = ic->ic_bss;
1605 struct ifnet *ifp = &sc->sc_if;
1606 int s;
1607
1608 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1609 return;
1610
1611 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
1612 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1613
1614 /* In promiscuous mode, the BSSID field is not a reliable
1615 * indicator of the firmware's BSSID. Damp spurious
1616 * change-of-BSSID indications.
1617 */
1618 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1619 !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns,
1620 WI_MAX_FALSE_SYNS))
1621 return;
1622
1623 sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1);
1624 /*
1625 * XXX hack; we should create a new node with the new bssid
1626 * and replace the existing ic_bss with it but since we don't
1627 * process management frames to collect state we cheat by
1628 * reusing the existing node as we know wi_newstate will be
1629 * called and it will overwrite the node state.
1630 */
1631 s = splnet();
1632 ieee80211_sta_join(ic, ieee80211_ref_node(ni));
1633 splx(s);
1634 }
1635
1636 static inline void
1637 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni,
1638 struct ieee80211_frame *wh, int rssi)
1639 {
1640 struct wi_node *wn;
1641
1642 if (ni == NULL) {
1643 printf("%s: null node", __func__);
1644 return;
1645 }
1646
1647 wn = (void*)ni;
1648 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi);
1649 }
1650
1651 STATIC void
1652 wi_rx_intr(struct wi_softc *sc)
1653 {
1654 struct ieee80211com *ic = &sc->sc_ic;
1655 struct ifnet *ifp = &sc->sc_if;
1656 struct ieee80211_node *ni;
1657 struct wi_frame frmhdr;
1658 struct mbuf *m;
1659 struct ieee80211_frame *wh;
1660 int fid, len, off, rssi;
1661 uint8_t dir;
1662 uint16_t status;
1663 uint32_t rstamp;
1664 int s;
1665
1666 fid = CSR_READ_2(sc, WI_RX_FID);
1667
1668 /* First read in the frame header */
1669 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1670 aprint_error_dev(sc->sc_dev, "%s read fid %x failed\n",
1671 __func__, fid);
1672 if_statinc(ifp, if_ierrors);
1673 return;
1674 }
1675
1676 if (IFF_DUMPPKTS(ifp))
1677 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1678
1679 /*
1680 * Drop undecryptable or packets with receive errors here
1681 */
1682 status = le16toh(frmhdr.wi_status);
1683 if ((status & WI_STAT_ERRSTAT) != 0 &&
1684 ic->ic_opmode != IEEE80211_M_MONITOR) {
1685 if_statinc(ifp, if_ierrors);
1686 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1687 return;
1688 }
1689 rssi = frmhdr.wi_rx_signal;
1690 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1691 le16toh(frmhdr.wi_rx_tstamp1);
1692
1693 len = le16toh(frmhdr.wi_dat_len);
1694 off = ALIGN(sizeof(struct ieee80211_frame));
1695
1696 /* Sometimes the PRISM2.x returns bogusly large frames. Except
1697 * in monitor mode, just throw them away.
1698 */
1699 if (off + len > MCLBYTES) {
1700 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1701 if_statinc(ifp, if_ierrors);
1702 DPRINTF(("wi_rx_intr: oversized packet\n"));
1703 return;
1704 } else
1705 len = 0;
1706 }
1707
1708 MGETHDR(m, M_DONTWAIT, MT_DATA);
1709 if (m == NULL) {
1710 if_statinc(ifp, if_ierrors);
1711 DPRINTF(("wi_rx_intr: MGET failed\n"));
1712 return;
1713 }
1714 if (off + len > MHLEN) {
1715 MCLGET(m, M_DONTWAIT);
1716 if ((m->m_flags & M_EXT) == 0) {
1717 m_freem(m);
1718 if_statinc(ifp, if_ierrors);
1719 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1720 return;
1721 }
1722 }
1723
1724 m->m_data += off - sizeof(struct ieee80211_frame);
1725 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1726 wi_read_bap(sc, fid, sizeof(frmhdr),
1727 m->m_data + sizeof(struct ieee80211_frame), len);
1728 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1729 m_set_rcvif(m, ifp);
1730
1731 wh = mtod(m, struct ieee80211_frame *);
1732 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1733 /*
1734 * WEP is decrypted by hardware. Clear WEP bit
1735 * header for ieee80211_input().
1736 */
1737 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1738 }
1739
1740 s = splnet();
1741
1742 if (sc->sc_drvbpf) {
1743 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap;
1744
1745 tap->wr_rate = frmhdr.wi_rx_rate / 5;
1746 tap->wr_antsignal = frmhdr.wi_rx_signal;
1747 tap->wr_antnoise = frmhdr.wi_rx_silence;
1748 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1749 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1750 if (frmhdr.wi_status & WI_STAT_PCF)
1751 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1752
1753 /* XXX IEEE80211_RADIOTAP_F_WEP */
1754 bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m,
1755 BPF_D_IN);
1756 }
1757
1758 /* synchronize driver's BSSID with firmware's BSSID */
1759 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1760 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1761 wi_sync_bssid(sc, wh->i_addr3);
1762
1763 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1764
1765 ieee80211_input(ic, m, ni, rssi, rstamp);
1766
1767 wi_rssadapt_input(ic, ni, wh, rssi);
1768
1769 /*
1770 * The frame may have caused the node to be marked for
1771 * reclamation (e.g. in response to a DEAUTH message)
1772 * so use release_node here instead of unref_node.
1773 */
1774 ieee80211_free_node(ni);
1775
1776 splx(s);
1777 }
1778
1779 STATIC void
1780 wi_tx_ex_intr(struct wi_softc *sc)
1781 {
1782 struct ieee80211com *ic = &sc->sc_ic;
1783 struct ifnet *ifp = &sc->sc_if;
1784 struct ieee80211_node *ni;
1785 struct ieee80211_rssdesc *id;
1786 struct wi_rssdesc *rssd;
1787 struct wi_frame frmhdr;
1788 int fid, s;
1789 uint16_t status;
1790
1791 s = splnet();
1792
1793 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1794 /* Read in the frame header */
1795 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1796 aprint_error_dev(sc->sc_dev, "%s read fid %x failed\n",
1797 __func__, fid);
1798 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1799 &sc->sc_txpending);
1800 goto out;
1801 }
1802
1803 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1804 aprint_error_dev(sc->sc_dev, "%s bad idx %02x\n",
1805 __func__, frmhdr.wi_tx_idx);
1806 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1807 &sc->sc_txpending);
1808 goto out;
1809 }
1810
1811 status = le16toh(frmhdr.wi_status);
1812
1813 /*
1814 * Spontaneous station disconnects appear as xmit
1815 * errors. Don't announce them and/or count them
1816 * as an output error.
1817 */
1818 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1819 aprint_error_dev(sc->sc_dev, "tx failed");
1820 if (status & WI_TXSTAT_RET_ERR)
1821 printf(", retry limit exceeded");
1822 if (status & WI_TXSTAT_AGED_ERR)
1823 printf(", max transmit lifetime exceeded");
1824 if (status & WI_TXSTAT_DISCONNECT)
1825 printf(", port disconnected");
1826 if (status & WI_TXSTAT_FORM_ERR)
1827 printf(", invalid format (data len %u src %s)",
1828 le16toh(frmhdr.wi_dat_len),
1829 ether_sprintf(frmhdr.wi_ehdr.ether_shost));
1830 if (status & ~0xf)
1831 printf(", status=0x%x", status);
1832 printf("\n");
1833 }
1834 if_statinc(ifp, if_oerrors);
1835 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1836 id = &rssd->rd_desc;
1837 if ((status & WI_TXSTAT_RET_ERR) != 0)
1838 wi_lower_rate(ic, id);
1839
1840 ni = id->id_node;
1841 id->id_node = NULL;
1842
1843 if (ni == NULL) {
1844 aprint_error_dev(sc->sc_dev, "%s null node, rssdesc %02x\n",
1845 __func__, frmhdr.wi_tx_idx);
1846 goto out;
1847 }
1848
1849 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1850 aprint_error_dev(sc->sc_dev, "%s txpending[%i] wraparound",
1851 __func__, id->id_rateidx);
1852 sc->sc_txpending[id->id_rateidx] = 0;
1853 }
1854 if (ni != NULL)
1855 ieee80211_free_node(ni);
1856 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1857 out:
1858 ifp->if_flags &= ~IFF_OACTIVE;
1859 splx(s);
1860 }
1861
1862 STATIC void
1863 wi_txalloc_intr(struct wi_softc *sc)
1864 {
1865 int fid, cur, s;
1866
1867 s = splnet();
1868
1869 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1870
1871 cur = sc->sc_txalloc;
1872 #ifdef DIAGNOSTIC
1873 if (sc->sc_txstarted == 0) {
1874 printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1875 device_xname(sc->sc_dev), fid, sc->sc_txd[cur].d_fid, cur,
1876 sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1877 splx(s);
1878 return;
1879 }
1880 #endif
1881 --sc->sc_txstarted;
1882 ++sc->sc_txalloced;
1883 sc->sc_txd[cur].d_fid = fid;
1884 sc->sc_txalloc = (cur + 1) % WI_NTXBUF;
1885 #ifdef WI_RING_DEBUG
1886 printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1887 device_xname(sc->sc_dev), fid,
1888 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1889 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1890 #endif
1891 splx(s);
1892 }
1893
1894 STATIC void
1895 wi_cmd_intr(struct wi_softc *sc)
1896 {
1897 struct ifnet *ifp = &sc->sc_if;
1898 int s;
1899
1900 if (sc->sc_invalid)
1901 return;
1902
1903 s = splnet();
1904 #ifdef WI_DEBUG
1905 if (wi_debug > 1)
1906 printf("%s: %d txcmds outstanding\n", __func__, sc->sc_txcmds);
1907 #endif
1908 KASSERT(sc->sc_txcmds > 0);
1909
1910 --sc->sc_txcmds;
1911
1912 if (--sc->sc_txqueued == 0) {
1913 sc->sc_tx_timer = 0;
1914 ifp->if_flags &= ~IFF_OACTIVE;
1915 #ifdef WI_RING_DEBUG
1916 printf("%s: cmd , alloc %d queue %d start %d alloced %d queued %d started %d\n",
1917 device_xname(sc->sc_dev),
1918 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1919 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1920 #endif
1921 } else
1922 wi_push_packet(sc);
1923 splx(s);
1924 }
1925
1926 STATIC void
1927 wi_push_packet(struct wi_softc *sc)
1928 {
1929 struct ifnet *ifp = &sc->sc_if;
1930 int cur, fid;
1931
1932 cur = sc->sc_txstart;
1933 fid = sc->sc_txd[cur].d_fid;
1934
1935 KASSERT(sc->sc_txcmds == 0);
1936
1937 if (wi_cmd_start(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
1938 aprint_error_dev(sc->sc_dev, "xmit failed\n");
1939 /* XXX ring might have a hole */
1940 }
1941
1942 if (sc->sc_txcmds++ > 0)
1943 printf("%s: %d tx cmds pending!!!\n", __func__, sc->sc_txcmds);
1944
1945 ++sc->sc_txstarted;
1946 #ifdef DIAGNOSTIC
1947 if (sc->sc_txstarted > WI_NTXBUF)
1948 aprint_error_dev(sc->sc_dev, "too many buffers started\n");
1949 #endif
1950 sc->sc_txstart = (cur + 1) % WI_NTXBUF;
1951 sc->sc_tx_timer = 5;
1952 ifp->if_timer = 1;
1953 #ifdef WI_RING_DEBUG
1954 printf("%s: push %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1955 device_xname(sc->sc_dev), fid,
1956 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1957 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1958 #endif
1959 }
1960
1961 STATIC void
1962 wi_tx_intr(struct wi_softc *sc)
1963 {
1964 struct ieee80211com *ic = &sc->sc_ic;
1965 struct ifnet *ifp = &sc->sc_if;
1966 struct ieee80211_node *ni;
1967 struct ieee80211_rssdesc *id;
1968 struct wi_rssdesc *rssd;
1969 struct wi_frame frmhdr;
1970 int fid, s;
1971
1972 s = splnet();
1973
1974 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1975 /* Read in the frame header */
1976 if (wi_read_bap(sc, fid, offsetof(struct wi_frame, wi_tx_swsup2),
1977 &frmhdr.wi_tx_swsup2, 2) != 0) {
1978 aprint_error_dev(sc->sc_dev, "%s read fid %x failed\n",
1979 __func__, fid);
1980 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1981 &sc->sc_txpending);
1982 goto out;
1983 }
1984
1985 if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1986 aprint_error_dev(sc->sc_dev, "%s bad idx %02x\n",
1987 __func__, frmhdr.wi_tx_idx);
1988 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1989 &sc->sc_txpending);
1990 goto out;
1991 }
1992
1993 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1994 id = &rssd->rd_desc;
1995 wi_raise_rate(ic, id);
1996
1997 ni = id->id_node;
1998 id->id_node = NULL;
1999
2000 if (ni == NULL) {
2001 aprint_error_dev(sc->sc_dev, "%s null node, rssdesc %02x\n",
2002 __func__, frmhdr.wi_tx_idx);
2003 goto out;
2004 }
2005
2006 if (sc->sc_txpending[id->id_rateidx]-- == 0) {
2007 aprint_error_dev(sc->sc_dev, "%s txpending[%i] wraparound",
2008 __func__, id->id_rateidx);
2009 sc->sc_txpending[id->id_rateidx] = 0;
2010 }
2011 if (ni != NULL)
2012 ieee80211_free_node(ni);
2013 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
2014 out:
2015 ifp->if_flags &= ~IFF_OACTIVE;
2016 splx(s);
2017 }
2018
2019 STATIC void
2020 wi_info_intr(struct wi_softc *sc)
2021 {
2022 struct ieee80211com *ic = &sc->sc_ic;
2023 struct ifnet *ifp = &sc->sc_if;
2024 int i, s, fid, len, off;
2025 uint16_t ltbuf[2];
2026 uint16_t stat;
2027 uint32_t *ptr;
2028
2029 fid = CSR_READ_2(sc, WI_INFO_FID);
2030 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
2031
2032 switch (le16toh(ltbuf[1])) {
2033
2034 case WI_INFO_LINK_STAT:
2035 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
2036 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
2037 switch (le16toh(stat)) {
2038 case CONNECTED:
2039 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2040 if (ic->ic_state == IEEE80211_S_RUN &&
2041 ic->ic_opmode != IEEE80211_M_IBSS)
2042 break;
2043 /* FALLTHROUGH */
2044 case AP_CHANGE:
2045 s = splnet();
2046 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2047 splx(s);
2048 break;
2049 case AP_IN_RANGE:
2050 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2051 break;
2052 case AP_OUT_OF_RANGE:
2053 if (sc->sc_firmware_type == WI_SYMBOL &&
2054 sc->sc_scan_timer > 0) {
2055 if (wi_cmd(sc, WI_CMD_INQUIRE,
2056 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
2057 sc->sc_scan_timer = 0;
2058 break;
2059 }
2060 if (ic->ic_opmode == IEEE80211_M_STA)
2061 sc->sc_flags |= WI_FLAGS_OUTRANGE;
2062 break;
2063 case DISCONNECTED:
2064 case ASSOC_FAILED:
2065 s = splnet();
2066 if (ic->ic_opmode == IEEE80211_M_STA)
2067 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2068 splx(s);
2069 break;
2070 }
2071 break;
2072
2073 case WI_INFO_COUNTERS:
2074 /* some card versions have a larger stats structure */
2075 len = uimin(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
2076 ptr = (uint32_t *)&sc->sc_stats;
2077 off = sizeof(ltbuf);
2078 for (i = 0; i < len; i++, off += 2, ptr++) {
2079 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
2080 stat = le16toh(stat);
2081 #ifdef WI_HERMES_STATS_WAR
2082 if (stat & 0xf000)
2083 stat = ~stat;
2084 #endif
2085 *ptr += stat;
2086 }
2087 if_statadd(ifp, if_collisions,
2088 sc->sc_stats.wi_tx_single_retries +
2089 sc->sc_stats.wi_tx_multi_retries +
2090 sc->sc_stats.wi_tx_retry_limit);
2091 break;
2092
2093 case WI_INFO_SCAN_RESULTS:
2094 case WI_INFO_HOST_SCAN_RESULTS:
2095 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
2096 break;
2097
2098 default:
2099 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
2100 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
2101 break;
2102 }
2103 }
2104
2105 STATIC int
2106 wi_write_multi(struct wi_softc *sc)
2107 {
2108 struct ethercom *ec = &sc->sc_ec;
2109 struct ifnet *ifp = &sc->sc_if;
2110 int n;
2111 struct wi_mcast mlist;
2112 struct ether_multi *enm;
2113 struct ether_multistep estep;
2114
2115 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2116 allmulti:
2117 ifp->if_flags |= IFF_ALLMULTI;
2118 memset(&mlist, 0, sizeof(mlist));
2119 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
2120 sizeof(mlist));
2121 }
2122
2123 n = 0;
2124 ETHER_LOCK(ec);
2125 ETHER_FIRST_MULTI(estep, ec, enm);
2126 while (enm != NULL) {
2127 /* Punt on ranges or too many multicast addresses. */
2128 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
2129 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0])) {
2130 ETHER_UNLOCK(ec);
2131 goto allmulti;
2132 }
2133
2134 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
2135 n++;
2136 ETHER_NEXT_MULTI(estep, enm);
2137 }
2138 ETHER_UNLOCK(ec);
2139 ifp->if_flags &= ~IFF_ALLMULTI;
2140 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
2141 IEEE80211_ADDR_LEN * n);
2142 }
2143
2144
2145 STATIC void
2146 wi_read_nicid(struct wi_softc *sc)
2147 {
2148 const struct wi_card_ident *id;
2149 char *p;
2150 int len;
2151 uint16_t ver[4];
2152
2153 /* getting chip identity */
2154 memset(ver, 0, sizeof(ver));
2155 len = sizeof(ver);
2156 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
2157 printf("%s: using ", device_xname(sc->sc_dev));
2158 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
2159
2160 sc->sc_firmware_type = WI_NOTYPE;
2161 for (id = wi_card_ident; id->card_name != NULL; id++) {
2162 if (le16toh(ver[0]) == id->card_id) {
2163 printf("%s", id->card_name);
2164 sc->sc_firmware_type = id->firm_type;
2165 break;
2166 }
2167 }
2168 if (sc->sc_firmware_type == WI_NOTYPE) {
2169 if (le16toh(ver[0]) & 0x8000) {
2170 printf("Unknown PRISM2 chip");
2171 sc->sc_firmware_type = WI_INTERSIL;
2172 } else {
2173 printf("Unknown Lucent chip");
2174 sc->sc_firmware_type = WI_LUCENT;
2175 }
2176 }
2177
2178 /* get primary firmware version (Only Prism chips) */
2179 if (sc->sc_firmware_type != WI_LUCENT) {
2180 memset(ver, 0, sizeof(ver));
2181 len = sizeof(ver);
2182 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
2183 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
2184 le16toh(ver[3]) * 100 + le16toh(ver[1]);
2185 }
2186
2187 /* get station firmware version */
2188 memset(ver, 0, sizeof(ver));
2189 len = sizeof(ver);
2190 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
2191 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
2192 le16toh(ver[3]) * 100 + le16toh(ver[1]);
2193 if (sc->sc_firmware_type == WI_INTERSIL &&
2194 (sc->sc_sta_firmware_ver == 10102 ||
2195 sc->sc_sta_firmware_ver == 20102)) {
2196 char ident[12];
2197 memset(ident, 0, sizeof(ident));
2198 len = sizeof(ident);
2199 /* value should be the format like "V2.00-11" */
2200 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
2201 *(p = (char *)ident) >= 'A' &&
2202 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
2203 sc->sc_firmware_type = WI_SYMBOL;
2204 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
2205 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
2206 (p[6] - '0') * 10 + (p[7] - '0');
2207 }
2208 }
2209
2210 printf("\n%s: %s Firmware: ", device_xname(sc->sc_dev),
2211 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
2212 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
2213 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
2214 printf("Primary (%u.%u.%u), ",
2215 sc->sc_pri_firmware_ver / 10000,
2216 (sc->sc_pri_firmware_ver % 10000) / 100,
2217 sc->sc_pri_firmware_ver % 100);
2218 printf("Station (%u.%u.%u)\n",
2219 sc->sc_sta_firmware_ver / 10000,
2220 (sc->sc_sta_firmware_ver % 10000) / 100,
2221 sc->sc_sta_firmware_ver % 100);
2222 }
2223
2224 STATIC int
2225 wi_write_ssid(struct wi_softc *sc, int rid, uint8_t *buf, int buflen)
2226 {
2227 struct wi_ssid ssid;
2228
2229 if (buflen > IEEE80211_NWID_LEN)
2230 return ENOBUFS;
2231 memset(&ssid, 0, sizeof(ssid));
2232 ssid.wi_len = htole16(buflen);
2233 memcpy(ssid.wi_ssid, buf, buflen);
2234 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
2235 }
2236
2237 STATIC int
2238 wi_get_cfg(struct ifnet *ifp, u_long cmd, void *data)
2239 {
2240 struct wi_softc *sc = ifp->if_softc;
2241 struct ieee80211com *ic = &sc->sc_ic;
2242 struct ifreq *ifr = (struct ifreq *)data;
2243 struct wi_req wreq;
2244 int len, n, error;
2245
2246 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2247 if (error)
2248 return error;
2249 len = (wreq.wi_len - 1) * 2;
2250 if (len < sizeof(uint16_t))
2251 return ENOSPC;
2252 if (len > sizeof(wreq.wi_val))
2253 len = sizeof(wreq.wi_val);
2254
2255 switch (wreq.wi_type) {
2256
2257 case WI_RID_IFACE_STATS:
2258 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
2259 if (len < sizeof(sc->sc_stats))
2260 error = ENOSPC;
2261 else
2262 len = sizeof(sc->sc_stats);
2263 break;
2264
2265 case WI_RID_ENCRYPTION:
2266 case WI_RID_TX_CRYPT_KEY:
2267 case WI_RID_DEFLT_CRYPT_KEYS:
2268 case WI_RID_TX_RATE:
2269 return ieee80211_cfgget(ic, cmd, data);
2270
2271 case WI_RID_MICROWAVE_OVEN:
2272 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
2273 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2274 &len);
2275 break;
2276 }
2277 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
2278 len = sizeof(uint16_t);
2279 break;
2280
2281 case WI_RID_DBM_ADJUST:
2282 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
2283 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2284 &len);
2285 break;
2286 }
2287 wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
2288 len = sizeof(uint16_t);
2289 break;
2290
2291 case WI_RID_ROAMING_MODE:
2292 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
2293 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2294 &len);
2295 break;
2296 }
2297 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
2298 len = sizeof(uint16_t);
2299 break;
2300
2301 case WI_RID_SYSTEM_SCALE:
2302 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
2303 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2304 &len);
2305 break;
2306 }
2307 wreq.wi_val[0] = htole16(sc->sc_system_scale);
2308 len = sizeof(uint16_t);
2309 break;
2310
2311 case WI_RID_FRAG_THRESH:
2312 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
2313 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2314 &len);
2315 break;
2316 }
2317 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2318 len = sizeof(uint16_t);
2319 break;
2320
2321 case WI_RID_READ_APS:
2322 #ifndef IEEE80211_NO_HOSTAP
2323 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2324 return ieee80211_cfgget(ic, cmd, data);
2325 #endif /* !IEEE80211_NO_HOSTAP */
2326 if (sc->sc_scan_timer > 0) {
2327 error = EINPROGRESS;
2328 break;
2329 }
2330 n = sc->sc_naps;
2331 if (len < sizeof(n)) {
2332 error = ENOSPC;
2333 break;
2334 }
2335 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
2336 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
2337 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
2338 memcpy(wreq.wi_val, &n, sizeof(n));
2339 memcpy((char *)wreq.wi_val + sizeof(n), sc->sc_aps,
2340 sizeof(struct wi_apinfo) * n);
2341 break;
2342
2343 default:
2344 if (sc->sc_enabled) {
2345 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2346 &len);
2347 break;
2348 }
2349 switch (wreq.wi_type) {
2350 case WI_RID_MAX_DATALEN:
2351 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
2352 len = sizeof(uint16_t);
2353 break;
2354 case WI_RID_FRAG_THRESH:
2355 wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2356 len = sizeof(uint16_t);
2357 break;
2358 case WI_RID_RTS_THRESH:
2359 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
2360 len = sizeof(uint16_t);
2361 break;
2362 case WI_RID_CNFAUTHMODE:
2363 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
2364 len = sizeof(uint16_t);
2365 break;
2366 case WI_RID_NODENAME:
2367 if (len < sc->sc_nodelen + sizeof(uint16_t)) {
2368 error = ENOSPC;
2369 break;
2370 }
2371 len = sc->sc_nodelen + sizeof(uint16_t);
2372 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
2373 memcpy(&wreq.wi_val[1], sc->sc_nodename,
2374 sc->sc_nodelen);
2375 break;
2376 default:
2377 return ieee80211_cfgget(ic, cmd, data);
2378 }
2379 break;
2380 }
2381 if (error)
2382 return error;
2383 wreq.wi_len = (len + 1) / 2 + 1;
2384 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
2385 }
2386
2387 STATIC int
2388 wi_set_cfg(struct ifnet *ifp, u_long cmd, void *data)
2389 {
2390 struct wi_softc *sc = ifp->if_softc;
2391 struct ieee80211com *ic = &sc->sc_ic;
2392 struct ifreq *ifr = (struct ifreq *)data;
2393 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2394 struct wi_req wreq;
2395 struct mbuf *m;
2396 int i, len, error;
2397
2398 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2399 if (error)
2400 return error;
2401 len = (wreq.wi_len - 1) * 2;
2402 switch (wreq.wi_type) {
2403 case WI_RID_MAC_NODE:
2404 /* XXX convert to SIOCALIFADDR, AF_LINK, IFLR_ACTIVE */
2405 (void)memcpy(ic->ic_myaddr, wreq.wi_val, ETHER_ADDR_LEN);
2406 if_set_sadl(ifp, ic->ic_myaddr, ETHER_ADDR_LEN, false);
2407 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
2408 IEEE80211_ADDR_LEN);
2409 break;
2410
2411 case WI_RID_DBM_ADJUST:
2412 return ENODEV;
2413
2414 case WI_RID_NODENAME:
2415 if (le16toh(wreq.wi_val[0]) * 2 > len ||
2416 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
2417 error = ENOSPC;
2418 break;
2419 }
2420 if (sc->sc_enabled) {
2421 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2422 len);
2423 if (error)
2424 break;
2425 }
2426 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
2427 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
2428 break;
2429
2430 case WI_RID_MICROWAVE_OVEN:
2431 case WI_RID_ROAMING_MODE:
2432 case WI_RID_SYSTEM_SCALE:
2433 case WI_RID_FRAG_THRESH:
2434 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
2435 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
2436 break;
2437 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
2438 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
2439 break;
2440 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
2441 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
2442 break;
2443 if (wreq.wi_type == WI_RID_FRAG_THRESH &&
2444 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
2445 break;
2446 /* FALLTHROUGH */
2447 case WI_RID_RTS_THRESH:
2448 case WI_RID_CNFAUTHMODE:
2449 case WI_RID_MAX_DATALEN:
2450 if (sc->sc_enabled) {
2451 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2452 sizeof(uint16_t));
2453 if (error)
2454 break;
2455 }
2456 switch (wreq.wi_type) {
2457 case WI_RID_FRAG_THRESH:
2458 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
2459 break;
2460 case WI_RID_RTS_THRESH:
2461 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
2462 break;
2463 case WI_RID_MICROWAVE_OVEN:
2464 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
2465 break;
2466 case WI_RID_ROAMING_MODE:
2467 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
2468 break;
2469 case WI_RID_SYSTEM_SCALE:
2470 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
2471 break;
2472 case WI_RID_CNFAUTHMODE:
2473 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
2474 break;
2475 case WI_RID_MAX_DATALEN:
2476 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
2477 break;
2478 }
2479 break;
2480
2481 case WI_RID_TX_RATE:
2482 switch (le16toh(wreq.wi_val[0])) {
2483 case 3:
2484 ic->ic_fixed_rate = -1;
2485 break;
2486 default:
2487 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2488 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
2489 / 2 == le16toh(wreq.wi_val[0]))
2490 break;
2491 }
2492 if (i == IEEE80211_RATE_SIZE)
2493 return EINVAL;
2494 ic->ic_fixed_rate = i;
2495 }
2496 if (sc->sc_enabled)
2497 error = wi_cfg_txrate(sc);
2498 break;
2499
2500 case WI_RID_SCAN_APS:
2501 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2502 error = wi_scan_ap(sc, 0x3fff, 0x000f);
2503 break;
2504
2505 case WI_RID_MGMT_XMIT:
2506 if (!sc->sc_enabled) {
2507 error = ENETDOWN;
2508 break;
2509 }
2510 if (ic->ic_mgtq.ifq_len > 5) {
2511 error = EAGAIN;
2512 break;
2513 }
2514 /* XXX wi_len looks in uint8_t, not in uint16_t */
2515 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp);
2516 if (m == NULL) {
2517 error = ENOMEM;
2518 break;
2519 }
2520 IF_ENQUEUE(&ic->ic_mgtq, m);
2521 break;
2522
2523 default:
2524 if (sc->sc_enabled) {
2525 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2526 len);
2527 if (error)
2528 break;
2529 }
2530 error = ieee80211_cfgset(ic, cmd, data);
2531 break;
2532 }
2533 return error;
2534 }
2535
2536 /* Rate is 0 for hardware auto-select, otherwise rate is
2537 * 2, 4, 11, or 22 (units of 500Kbps).
2538 */
2539 STATIC int
2540 wi_write_txrate(struct wi_softc *sc, int rate)
2541 {
2542 uint16_t hwrate;
2543
2544 /* rate: 0, 2, 4, 11, 22 */
2545 switch (sc->sc_firmware_type) {
2546 case WI_LUCENT:
2547 switch (rate & IEEE80211_RATE_VAL) {
2548 case 2:
2549 hwrate = 1;
2550 break;
2551 case 4:
2552 hwrate = 2;
2553 break;
2554 default:
2555 hwrate = 3; /* auto */
2556 break;
2557 case 11:
2558 hwrate = 4;
2559 break;
2560 case 22:
2561 hwrate = 5;
2562 break;
2563 }
2564 break;
2565 default:
2566 switch (rate & IEEE80211_RATE_VAL) {
2567 case 2:
2568 hwrate = 1;
2569 break;
2570 case 4:
2571 hwrate = 2;
2572 break;
2573 case 11:
2574 hwrate = 4;
2575 break;
2576 case 22:
2577 hwrate = 8;
2578 break;
2579 default:
2580 hwrate = 15; /* auto */
2581 break;
2582 }
2583 break;
2584 }
2585
2586 if (sc->sc_tx_rate == hwrate)
2587 return 0;
2588
2589 if (sc->sc_if.if_flags & IFF_DEBUG)
2590 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate,
2591 hwrate, rate);
2592
2593 sc->sc_tx_rate = hwrate;
2594
2595 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate);
2596 }
2597
2598 STATIC int
2599 wi_cfg_txrate(struct wi_softc *sc)
2600 {
2601 struct ieee80211com *ic = &sc->sc_ic;
2602 struct ieee80211_rateset *rs;
2603 int rate;
2604
2605 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2606
2607 sc->sc_tx_rate = 0; /* force write to RID */
2608
2609 if (ic->ic_fixed_rate < 0)
2610 rate = 0; /* auto */
2611 else
2612 rate = rs->rs_rates[ic->ic_fixed_rate];
2613
2614 return wi_write_txrate(sc, rate);
2615 }
2616
2617 STATIC int
2618 wi_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2619 {
2620 struct wi_softc *sc = ic->ic_ifp->if_softc;
2621 u_int keyix = k->wk_keyix;
2622
2623 DPRINTF(("%s: delete key %u\n", __func__, keyix));
2624
2625 if (keyix >= IEEE80211_WEP_NKID)
2626 return 0;
2627 if (k->wk_keylen != 0)
2628 sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
2629
2630 return 1;
2631 }
2632
2633 static int
2634 wi_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2635 const uint8_t mac[IEEE80211_ADDR_LEN])
2636 {
2637 struct wi_softc *sc = ic->ic_ifp->if_softc;
2638
2639 DPRINTF(("%s: set key %u\n", __func__, k->wk_keyix));
2640
2641 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2642 return 0;
2643
2644 sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
2645
2646 return 1;
2647 }
2648
2649 STATIC void
2650 wi_key_update_begin(struct ieee80211com *ic)
2651 {
2652 DPRINTF(("%s:\n", __func__));
2653 }
2654
2655 STATIC void
2656 wi_key_update_end(struct ieee80211com *ic)
2657 {
2658 struct ifnet *ifp = ic->ic_ifp;
2659 struct wi_softc *sc = ifp->if_softc;
2660
2661 DPRINTF(("%s:\n", __func__));
2662
2663 if ((sc->sc_flags & WI_FLAGS_WEP_VALID) != 0)
2664 return;
2665 if ((ic->ic_caps & IEEE80211_C_WEP) != 0 && sc->sc_enabled &&
2666 !sc->sc_invalid)
2667 (void)wi_write_wep(sc);
2668 }
2669
2670 STATIC int
2671 wi_write_wep(struct wi_softc *sc)
2672 {
2673 struct ifnet *ifp = &sc->sc_if;
2674 struct ieee80211com *ic = &sc->sc_ic;
2675 int error = 0;
2676 int i, keylen;
2677 uint16_t val;
2678 struct wi_key wkey[IEEE80211_WEP_NKID];
2679
2680 if ((ifp->if_flags & IFF_RUNNING) != 0)
2681 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
2682
2683 switch (sc->sc_firmware_type) {
2684 case WI_LUCENT:
2685 val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0;
2686 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2687 if (error)
2688 break;
2689 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_def_txkey);
2690 if (error)
2691 break;
2692 memset(wkey, 0, sizeof(wkey));
2693 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2694 keylen = ic->ic_nw_keys[i].wk_keylen;
2695 wkey[i].wi_keylen = htole16(keylen);
2696 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2697 keylen);
2698 }
2699 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2700 wkey, sizeof(wkey));
2701 break;
2702
2703 case WI_INTERSIL:
2704 case WI_SYMBOL:
2705 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2706 /*
2707 * ONLY HWB3163 EVAL-CARD Firmware version
2708 * less than 0.8 variant2
2709 *
2710 * If promiscuous mode disable, Prism2 chip
2711 * does not work with WEP .
2712 * It is under investigation for details.
2713 * (ichiro (at) NetBSD.org)
2714 */
2715 if (sc->sc_firmware_type == WI_INTERSIL &&
2716 sc->sc_sta_firmware_ver < 802 ) {
2717 /* firm ver < 0.8 variant 2 */
2718 wi_write_val(sc, WI_RID_PROMISC, 1);
2719 }
2720 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2721 sc->sc_cnfauthmode);
2722 val = PRIVACY_INVOKED;
2723 if ((sc->sc_ic_flags & IEEE80211_F_DROPUNENC) != 0)
2724 val |= EXCLUDE_UNENCRYPTED;
2725 #ifndef IEEE80211_NO_HOSTAP
2726 /*
2727 * Encryption firmware has a bug for HostAP mode.
2728 */
2729 if (sc->sc_firmware_type == WI_INTERSIL &&
2730 ic->ic_opmode == IEEE80211_M_HOSTAP)
2731 val |= HOST_ENCRYPT;
2732 #endif /* !IEEE80211_NO_HOSTAP */
2733 } else {
2734 wi_write_val(sc, WI_RID_CNFAUTHMODE,
2735 IEEE80211_AUTH_OPEN);
2736 val = HOST_ENCRYPT | HOST_DECRYPT;
2737 }
2738 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2739 if (error)
2740 break;
2741 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2742 ic->ic_def_txkey);
2743 if (error)
2744 break;
2745 /*
2746 * It seems that the firmware accept 104bit key only if
2747 * all the keys have 104bit length. We get the length of
2748 * the transmit key and use it for all other keys.
2749 * Perhaps we should use software WEP for such situation.
2750 */
2751 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
2752 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
2753 keylen = 13; /* No keys => 104bit ok */
2754 else
2755 keylen = ic->ic_nw_keys[ic->ic_def_txkey].wk_keylen;
2756
2757 if (keylen > IEEE80211_WEP_KEYLEN)
2758 keylen = 13; /* 104bit keys */
2759 else
2760 keylen = IEEE80211_WEP_KEYLEN;
2761 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2762 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2763 ic->ic_nw_keys[i].wk_key, keylen);
2764 if (error)
2765 break;
2766 }
2767 break;
2768 }
2769 if ((ifp->if_flags & IFF_RUNNING) != 0)
2770 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
2771 if (error == 0)
2772 sc->sc_flags |= WI_FLAGS_WEP_VALID;
2773 return error;
2774 }
2775
2776 /* Must be called at proper protection level! */
2777 STATIC int
2778 wi_cmd_start(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2779 {
2780 #ifdef WI_HISTOGRAM
2781 static int hist1[11];
2782 static int hist1count;
2783 #endif
2784 int i;
2785
2786 /* wait for the busy bit to clear */
2787 for (i = 500; i > 0; i--) { /* 5s */
2788 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2789 break;
2790 if (sc->sc_invalid)
2791 return ENXIO;
2792 DELAY(1000); /* 1 m sec */
2793 }
2794 if (i == 0) {
2795 aprint_error_dev(sc->sc_dev, "wi_cmd: busy bit won't clear.\n");
2796 return (ETIMEDOUT);
2797 }
2798 #ifdef WI_HISTOGRAM
2799 if (i > 490)
2800 hist1[500 - i]++;
2801 else
2802 hist1[10]++;
2803 if (++hist1count == 1000) {
2804 hist1count = 0;
2805 printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n",
2806 device_xname(sc->sc_dev),
2807 hist1[0], hist1[1], hist1[2], hist1[3], hist1[4],
2808 hist1[5], hist1[6], hist1[7], hist1[8], hist1[9],
2809 hist1[10]);
2810 }
2811 #endif
2812 CSR_WRITE_2(sc, WI_PARAM0, val0);
2813 CSR_WRITE_2(sc, WI_PARAM1, val1);
2814 CSR_WRITE_2(sc, WI_PARAM2, val2);
2815 CSR_WRITE_2(sc, WI_COMMAND, cmd);
2816
2817 return 0;
2818 }
2819
2820 STATIC int
2821 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2822 {
2823 int rc;
2824
2825 #ifdef WI_DEBUG
2826 if (wi_debug) {
2827 printf("%s: [enter] %d txcmds outstanding\n", __func__,
2828 sc->sc_txcmds);
2829 }
2830 #endif
2831 if (sc->sc_txcmds > 0)
2832 wi_txcmd_wait(sc);
2833
2834 if ((rc = wi_cmd_start(sc, cmd, val0, val1, val2)) != 0)
2835 return rc;
2836
2837 if (cmd == WI_CMD_INI) {
2838 /* XXX: should sleep here. */
2839 if (sc->sc_invalid)
2840 return ENXIO;
2841 DELAY(100*1000);
2842 }
2843 rc = wi_cmd_wait(sc, cmd, val0);
2844
2845 #ifdef WI_DEBUG
2846 if (wi_debug) {
2847 printf("%s: [ ] %d txcmds outstanding\n", __func__,
2848 sc->sc_txcmds);
2849 }
2850 #endif
2851 if (sc->sc_txcmds > 0)
2852 wi_cmd_intr(sc);
2853
2854 #ifdef WI_DEBUG
2855 if (wi_debug) {
2856 printf("%s: [leave] %d txcmds outstanding\n", __func__,
2857 sc->sc_txcmds);
2858 }
2859 #endif
2860 return rc;
2861 }
2862
2863 STATIC int
2864 wi_cmd_wait(struct wi_softc *sc, int cmd, int val0)
2865 {
2866 #ifdef WI_HISTOGRAM
2867 static int hist2[11];
2868 static int hist2count;
2869 #endif
2870 int i, status;
2871 #ifdef WI_DEBUG
2872 if (wi_debug > 1)
2873 printf("%s: cmd=%#x, arg=%#x\n", __func__, cmd, val0);
2874 #endif /* WI_DEBUG */
2875
2876 /* wait for the cmd completed bit */
2877 for (i = 0; i < WI_TIMEOUT; i++) {
2878 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
2879 break;
2880 if (sc->sc_invalid)
2881 return ENXIO;
2882 DELAY(WI_DELAY);
2883 }
2884
2885 #ifdef WI_HISTOGRAM
2886 if (i < 100)
2887 hist2[i/10]++;
2888 else
2889 hist2[10]++;
2890 if (++hist2count == 1000) {
2891 hist2count = 0;
2892 printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n",
2893 device_xname(sc->sc_dev),
2894 hist2[0], hist2[1], hist2[2], hist2[3], hist2[4],
2895 hist2[5], hist2[6], hist2[7], hist2[8], hist2[9],
2896 hist2[10]);
2897 }
2898 #endif
2899
2900 status = CSR_READ_2(sc, WI_STATUS);
2901
2902 if (i == WI_TIMEOUT) {
2903 aprint_error_dev(sc->sc_dev,
2904 "command timed out, cmd=0x%x, arg=0x%x\n",
2905 cmd, val0);
2906 return ETIMEDOUT;
2907 }
2908
2909 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2910
2911 if (status & WI_STAT_CMD_RESULT) {
2912 aprint_error_dev(sc->sc_dev,
2913 "command failed, cmd=0x%x, arg=0x%x\n",
2914 cmd, val0);
2915 return EIO;
2916 }
2917 return 0;
2918 }
2919
2920 STATIC int
2921 wi_seek_bap(struct wi_softc *sc, int id, int off)
2922 {
2923 #ifdef WI_HISTOGRAM
2924 static int hist4[11];
2925 static int hist4count;
2926 #endif
2927 int i, status;
2928
2929 CSR_WRITE_2(sc, WI_SEL0, id);
2930 CSR_WRITE_2(sc, WI_OFF0, off);
2931
2932 for (i = 0; ; i++) {
2933 status = CSR_READ_2(sc, WI_OFF0);
2934 if ((status & WI_OFF_BUSY) == 0)
2935 break;
2936 if (i == WI_TIMEOUT) {
2937 aprint_error_dev(sc->sc_dev,
2938 "timeout in wi_seek to %x/%x\n",
2939 id, off);
2940 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2941 return ETIMEDOUT;
2942 }
2943 if (sc->sc_invalid)
2944 return ENXIO;
2945 DELAY(2);
2946 }
2947 #ifdef WI_HISTOGRAM
2948 if (i < 100)
2949 hist4[i/10]++;
2950 else
2951 hist4[10]++;
2952 if (++hist4count == 2500) {
2953 hist4count = 0;
2954 printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n",
2955 device_xname(sc->sc_dev),
2956 hist4[0], hist4[1], hist4[2], hist4[3], hist4[4],
2957 hist4[5], hist4[6], hist4[7], hist4[8], hist4[9],
2958 hist4[10]);
2959 }
2960 #endif
2961 if (status & WI_OFF_ERR) {
2962 printf("%s: failed in wi_seek to %x/%x\n",
2963 device_xname(sc->sc_dev), id, off);
2964 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
2965 return EIO;
2966 }
2967 sc->sc_bap_id = id;
2968 sc->sc_bap_off = off;
2969 return 0;
2970 }
2971
2972 STATIC int
2973 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2974 {
2975 int error, cnt;
2976
2977 if (buflen == 0)
2978 return 0;
2979 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2980 if ((error = wi_seek_bap(sc, id, off)) != 0)
2981 return error;
2982 }
2983 cnt = (buflen + 1) / 2;
2984 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (uint16_t *)buf, cnt);
2985 sc->sc_bap_off += cnt * 2;
2986 return 0;
2987 }
2988
2989 STATIC int
2990 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2991 {
2992 int error, cnt;
2993
2994 if (buflen == 0)
2995 return 0;
2996
2997 #ifdef WI_HERMES_AUTOINC_WAR
2998 again:
2999 #endif
3000 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
3001 if ((error = wi_seek_bap(sc, id, off)) != 0)
3002 return error;
3003 }
3004 cnt = (buflen + 1) / 2;
3005 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (uint16_t *)buf, cnt);
3006 sc->sc_bap_off += cnt * 2;
3007
3008 #ifdef WI_HERMES_AUTOINC_WAR
3009 /*
3010 * According to the comments in the HCF Light code, there is a bug
3011 * in the Hermes (or possibly in certain Hermes firmware revisions)
3012 * where the chip's internal autoincrement counter gets thrown off
3013 * during data writes: the autoincrement is missed, causing one
3014 * data word to be overwritten and subsequent words to be written to
3015 * the wrong memory locations. The end result is that we could end
3016 * up transmitting bogus frames without realizing it. The workaround
3017 * for this is to write a couple of extra guard words after the end
3018 * of the transfer, then attempt to read then back. If we fail to
3019 * locate the guard words where we expect them, we preform the
3020 * transfer over again.
3021 */
3022 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
3023 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
3024 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
3025 wi_seek_bap(sc, id, sc->sc_bap_off);
3026 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
3027 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
3028 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
3029 aprint_error_dev(sc->sc_dev,
3030 "detect auto increment bug, try again\n");
3031 goto again;
3032 }
3033 }
3034 #endif
3035 return 0;
3036 }
3037
3038 STATIC int
3039 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
3040 {
3041 int error, len;
3042 struct mbuf *m;
3043
3044 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
3045 if (m->m_len == 0)
3046 continue;
3047
3048 len = uimin(m->m_len, totlen);
3049
3050 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
3051 m_copydata(m, 0, totlen, (void *)&sc->sc_txbuf);
3052 return wi_write_bap(sc, id, off, (void *)&sc->sc_txbuf,
3053 totlen);
3054 }
3055
3056 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
3057 return error;
3058
3059 off += m->m_len;
3060 totlen -= len;
3061 }
3062 return 0;
3063 }
3064
3065 STATIC int
3066 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
3067 {
3068 int i;
3069
3070 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
3071 aprint_error_dev(sc->sc_dev, "failed to allocate %d bytes on NIC\n", len);
3072 return ENOMEM;
3073 }
3074
3075 for (i = 0; i < WI_TIMEOUT; i++) {
3076 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
3077 break;
3078 DELAY(1);
3079 }
3080 if (i == WI_TIMEOUT) {
3081 aprint_error_dev(sc->sc_dev, "timeout in alloc\n");
3082 return ETIMEDOUT;
3083 }
3084 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
3085 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
3086 return 0;
3087 }
3088
3089 STATIC int
3090 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
3091 {
3092 int error, len;
3093 uint16_t ltbuf[2];
3094
3095 /* Tell the NIC to enter record read mode. */
3096 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
3097 if (error)
3098 return error;
3099
3100 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
3101 if (error)
3102 return error;
3103
3104 if (le16toh(ltbuf[0]) == 0)
3105 return EOPNOTSUPP;
3106 if (le16toh(ltbuf[1]) != rid) {
3107 aprint_error_dev(sc->sc_dev,
3108 "record read mismatch, rid=%x, got=%x\n",
3109 rid, le16toh(ltbuf[1]));
3110 return EIO;
3111 }
3112 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
3113 if (*buflenp < len) {
3114 aprint_error_dev(sc->sc_dev, "record buffer is too small, "
3115 "rid=%x, size=%d, len=%d\n",
3116 rid, *buflenp, len);
3117 return ENOSPC;
3118 }
3119 *buflenp = len;
3120 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
3121 }
3122
3123 STATIC int
3124 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
3125 {
3126 int error;
3127 uint16_t ltbuf[2];
3128
3129 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
3130 ltbuf[1] = htole16(rid);
3131
3132 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
3133 if (error)
3134 return error;
3135 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
3136 if (error)
3137 return error;
3138
3139 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
3140 }
3141
3142 STATIC void
3143 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni)
3144 {
3145 struct wi_node *wn = (void*)ni;
3146 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt);
3147 }
3148
3149 STATIC void
3150 wi_rssadapt_updatestats(void *arg)
3151 {
3152 struct wi_softc *sc = arg;
3153 struct ieee80211com *ic = &sc->sc_ic;
3154 int s;
3155
3156 s = splnet();
3157 ieee80211_iterate_nodes(&ic->ic_sta, wi_rssadapt_updatestats_cb, arg);
3158 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
3159 ic->ic_state == IEEE80211_S_RUN)
3160 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
3161 wi_rssadapt_updatestats, arg);
3162 splx(s);
3163 }
3164
3165 /*
3166 * In HOSTAP mode, restore IEEE80211_F_DROPUNENC when operating
3167 * with WEP enabled so that the AP drops unencoded frames at the
3168 * 802.11 layer.
3169 *
3170 * In all other modes, clear IEEE80211_F_DROPUNENC when operating
3171 * with WEP enabled so we don't drop unencoded frames at the 802.11
3172 * layer. This is necessary because we must strip the WEP bit from
3173 * the 802.11 header before passing frames to ieee80211_input
3174 * because the card has already stripped the WEP crypto header from
3175 * the packet.
3176 */
3177 STATIC void
3178 wi_mend_flags(struct wi_softc *sc, enum ieee80211_state nstate)
3179 {
3180 struct ieee80211com *ic = &sc->sc_ic;
3181
3182 if (nstate == IEEE80211_S_RUN &&
3183 (ic->ic_flags & IEEE80211_F_PRIVACY) != 0 &&
3184 ic->ic_opmode != IEEE80211_M_HOSTAP)
3185 ic->ic_flags &= ~IEEE80211_F_DROPUNENC;
3186 else
3187 ic->ic_flags |= sc->sc_ic_flags;
3188
3189 DPRINTF(("%s: state %d, "
3190 "ic->ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 ", "
3191 "sc->sc_ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 "\n",
3192 __func__, nstate,
3193 ic->ic_flags & IEEE80211_F_DROPUNENC,
3194 sc->sc_ic_flags & IEEE80211_F_DROPUNENC));
3195 }
3196
3197 STATIC int
3198 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3199 {
3200 struct ifnet *ifp = ic->ic_ifp;
3201 struct wi_softc *sc = ifp->if_softc;
3202 struct ieee80211_node *ni = ic->ic_bss;
3203 uint16_t val;
3204 struct wi_ssid ssid;
3205 struct wi_macaddr bssid, old_bssid;
3206 enum ieee80211_state ostate __unused;
3207 #ifdef WI_DEBUG
3208 static const char *stname[] =
3209 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
3210 #endif /* WI_DEBUG */
3211
3212 ostate = ic->ic_state;
3213 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
3214
3215 switch (nstate) {
3216 case IEEE80211_S_INIT:
3217 if (ic->ic_opmode != IEEE80211_M_MONITOR)
3218 callout_stop(&sc->sc_rssadapt_ch);
3219 ic->ic_flags &= ~IEEE80211_F_SIBSS;
3220 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
3221 break;
3222
3223 case IEEE80211_S_SCAN:
3224 case IEEE80211_S_AUTH:
3225 case IEEE80211_S_ASSOC:
3226 ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */
3227 wi_mend_flags(sc, nstate);
3228 return 0;
3229
3230 case IEEE80211_S_RUN:
3231 sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
3232 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid);
3233 wi_read_xrid(sc, WI_RID_CURRENT_BSSID, &bssid,
3234 IEEE80211_ADDR_LEN);
3235 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid);
3236 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid);
3237 wi_read_xrid(sc, WI_RID_CURRENT_CHAN, &val, sizeof(val));
3238 if (!isset(ic->ic_chan_avail, le16toh(val)))
3239 panic("%s: invalid channel %d\n",
3240 device_xname(sc->sc_dev), le16toh(val));
3241 ni->ni_chan = &ic->ic_channels[le16toh(val)];
3242
3243 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3244 #ifndef IEEE80211_NO_HOSTAP
3245 ni->ni_esslen = ic->ic_des_esslen;
3246 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
3247 ni->ni_rates = ic->ic_sup_rates[
3248 ieee80211_chan2mode(ic, ni->ni_chan)];
3249 ni->ni_intval = ic->ic_lintval;
3250 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
3251 if (ic->ic_flags & IEEE80211_F_PRIVACY)
3252 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
3253 #endif /* !IEEE80211_NO_HOSTAP */
3254 } else {
3255 wi_read_xrid(sc, WI_RID_CURRENT_SSID, &ssid,
3256 sizeof(ssid));
3257 ni->ni_esslen = le16toh(ssid.wi_len);
3258 if (ni->ni_esslen > IEEE80211_NWID_LEN)
3259 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
3260 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
3261 ni->ni_rates = ic->ic_sup_rates[
3262 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/
3263 }
3264 if (ic->ic_opmode != IEEE80211_M_MONITOR)
3265 callout_reset(&sc->sc_rssadapt_ch, hz / 10,
3266 wi_rssadapt_updatestats, sc);
3267 /* Trigger routing socket messages. XXX Copied from
3268 * ieee80211_newstate.
3269 */
3270 if (ic->ic_opmode == IEEE80211_M_STA)
3271 ieee80211_notify_node_join(ic, ic->ic_bss,
3272 arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
3273 break;
3274 }
3275 wi_mend_flags(sc, nstate);
3276 return (*sc->sc_newstate)(ic, nstate, arg);
3277 }
3278
3279 STATIC void
3280 wi_set_tim(struct ieee80211_node *ni, int set)
3281 {
3282 struct ieee80211com *ic = ni->ni_ic;
3283 struct wi_softc *sc = ic->ic_ifp->if_softc;
3284
3285 (*sc->sc_set_tim)(ni, set);
3286
3287 if ((ic->ic_flags & IEEE80211_F_TIMUPDATE) == 0)
3288 return;
3289
3290 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
3291
3292 (void)wi_write_val(sc, WI_RID_SET_TIM,
3293 IEEE80211_AID(ni->ni_associd) | (set ? 0x8000 : 0));
3294 }
3295
3296 STATIC int
3297 wi_scan_ap(struct wi_softc *sc, uint16_t chanmask, uint16_t txrate)
3298 {
3299 int error = 0;
3300 uint16_t val[2];
3301
3302 if (!sc->sc_enabled)
3303 return ENXIO;
3304 switch (sc->sc_firmware_type) {
3305 case WI_LUCENT:
3306 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
3307 break;
3308 case WI_INTERSIL:
3309 val[0] = htole16(chanmask); /* channel */
3310 val[1] = htole16(txrate); /* tx rate */
3311 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
3312 break;
3313 case WI_SYMBOL:
3314 /*
3315 * XXX only supported on 3.x ?
3316 */
3317 val[0] = htole16(BSCAN_BCAST | BSCAN_ONETIME);
3318 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
3319 val, sizeof(val[0]));
3320 break;
3321 }
3322 if (error == 0) {
3323 sc->sc_scan_timer = WI_SCAN_WAIT;
3324 sc->sc_if.if_timer = 1;
3325 DPRINTF(("wi_scan_ap: start scanning, "
3326 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate));
3327 }
3328 return error;
3329 }
3330
3331 STATIC void
3332 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
3333 {
3334 #define N(a) (sizeof (a) / sizeof (a[0]))
3335 int i, naps, off, szbuf;
3336 struct wi_scan_header ws_hdr; /* Prism2 header */
3337 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
3338 struct wi_apinfo *ap;
3339
3340 off = sizeof(uint16_t) * 2;
3341 memset(&ws_hdr, 0, sizeof(ws_hdr));
3342 switch (sc->sc_firmware_type) {
3343 case WI_INTERSIL:
3344 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
3345 off += sizeof(ws_hdr);
3346 szbuf = sizeof(struct wi_scan_data_p2);
3347 break;
3348 case WI_SYMBOL:
3349 szbuf = sizeof(struct wi_scan_data_p2) + 6;
3350 break;
3351 case WI_LUCENT:
3352 szbuf = sizeof(struct wi_scan_data);
3353 break;
3354 default:
3355 aprint_error_dev(sc->sc_dev,
3356 "wi_scan_result: unknown firmware type %u\n",
3357 sc->sc_firmware_type);
3358 naps = 0;
3359 goto done;
3360 }
3361 naps = (cnt * 2 + 2 - off) / szbuf;
3362 if (naps > N(sc->sc_aps))
3363 naps = N(sc->sc_aps);
3364 sc->sc_naps = naps;
3365 /* Read Data */
3366 ap = sc->sc_aps;
3367 memset(&ws_dat, 0, sizeof(ws_dat));
3368 for (i = 0; i < naps; i++, ap++) {
3369 wi_read_bap(sc, fid, off, &ws_dat,
3370 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
3371 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
3372 ether_sprintf(ws_dat.wi_bssid)));
3373 off += szbuf;
3374 ap->scanreason = le16toh(ws_hdr.wi_reason);
3375 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
3376 ap->channel = le16toh(ws_dat.wi_chid);
3377 ap->signal = le16toh(ws_dat.wi_signal);
3378 ap->noise = le16toh(ws_dat.wi_noise);
3379 ap->quality = ap->signal - ap->noise;
3380 ap->capinfo = le16toh(ws_dat.wi_capinfo);
3381 ap->interval = le16toh(ws_dat.wi_interval);
3382 ap->rate = le16toh(ws_dat.wi_rate);
3383 ap->namelen = le16toh(ws_dat.wi_namelen);
3384 if (ap->namelen > sizeof(ap->name))
3385 ap->namelen = sizeof(ap->name);
3386 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
3387 }
3388 done:
3389 /* Done scanning */
3390 sc->sc_scan_timer = 0;
3391 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
3392 #undef N
3393 }
3394
3395 STATIC void
3396 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
3397 {
3398 ieee80211_dump_pkt((uint8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
3399 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL
3400 : -1,
3401 rssi);
3402 printf(" status 0x%x rx_tstamp1 %#x rx_tstamp0 %#x rx_silence %u\n",
3403 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
3404 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
3405 printf(" rx_signal %u rx_rate %u rx_flow %u\n",
3406 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
3407 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
3408 wh->wi_tx_rtry, wh->wi_tx_rate,
3409 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
3410 printf(" ehdr dst %s src %s type 0x%x\n",
3411 ether_sprintf(wh->wi_ehdr.ether_dhost),
3412 ether_sprintf(wh->wi_ehdr.ether_shost),
3413 wh->wi_ehdr.ether_type);
3414 }
3415