wi.c revision 1.26 1 /* $NetBSD: wi.c,v 1.26 2001/10/13 15:00:23 ichiro Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
73 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
74
75 #include "bpfilter.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/callout.h>
80 #include <sys/device.h>
81 #include <sys/socket.h>
82 #include <sys/mbuf.h>
83 #include <sys/ioctl.h>
84 #include <sys/kernel.h> /* for hz */
85 #include <sys/proc.h>
86
87 #include <net/if.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 #include <net/if_ether.h>
91 #include <net/if_ieee80211.h>
92
93 #if NBPFILTER > 0
94 #include <net/bpf.h>
95 #include <net/bpfdesc.h>
96 #endif
97
98 #include <machine/bus.h>
99
100 #include <dev/ic/wi_ieee.h>
101 #include <dev/ic/wireg.h>
102 #include <dev/ic/wivar.h>
103
104 #define STATS_FREQUENCY (60 * hz) /* collect stats every 60 seconds */
105
106 static void wi_reset __P((struct wi_softc *));
107 static int wi_ioctl __P((struct ifnet *, u_long, caddr_t));
108 static void wi_start __P((struct ifnet *));
109 static void wi_watchdog __P((struct ifnet *));
110 static int wi_init __P((struct ifnet *));
111 static void wi_stop __P((struct ifnet *, int));
112 static void wi_rxeof __P((struct wi_softc *));
113 static void wi_txeof __P((struct wi_softc *, int));
114 static void wi_update_stats __P((struct wi_softc *));
115 static void wi_setmulti __P((struct wi_softc *));
116
117 static int wi_cmd __P((struct wi_softc *, int, int));
118 static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *));
119 static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *));
120 static int wi_read_data __P((struct wi_softc *, int,
121 int, caddr_t, int));
122 static int wi_write_data __P((struct wi_softc *, int,
123 int, caddr_t, int));
124 static int wi_seek __P((struct wi_softc *, int, int, int));
125 static int wi_alloc_nicmem __P((struct wi_softc *, int, int *));
126 static void wi_inquire_stats __P((void *));
127 static void wi_inquire_scan __P((void *));
128 static int wi_setdef __P((struct wi_softc *, struct wi_req *));
129 static int wi_getdef __P((struct wi_softc *, struct wi_req *));
130 static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int));
131
132 static int wi_media_change __P((struct ifnet *));
133 static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
134
135 static void wi_get_id __P((struct wi_softc *));
136
137 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
138 static void wi_request_fill_ssid __P((struct wi_req *,
139 struct ieee80211_nwid *));
140 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
141 struct ieee80211_nwid *));
142 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
143 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
144 static int wi_sync_media __P((struct wi_softc *, int, int));
145 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
146 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
147
148 int
149 wi_attach(sc)
150 struct wi_softc *sc;
151 {
152 struct ifnet *ifp = sc->sc_ifp;
153 struct wi_ltv_macaddr mac;
154 struct wi_ltv_gen gen;
155 static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
156 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
157 };
158 int s;
159
160 s = splnet();
161
162 callout_init(&sc->wi_stats_ch);
163 callout_init(&sc->wi_scan_ch);
164
165 /* Make sure interrupts are disabled. */
166 CSR_WRITE_2(sc, WI_INT_EN, 0);
167 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
168
169 /* Reset the NIC. */
170 wi_reset(sc);
171
172 memset(&mac, 0, sizeof(mac));
173 /* Read the station address. */
174 mac.wi_type = WI_RID_MAC_NODE;
175 mac.wi_len = 4;
176 wi_read_record(sc, (struct wi_ltv_gen *)&mac);
177 memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
178
179 /*
180 * Check if we got anything meaningful.
181 *
182 * Is it really enough just checking against null ethernet address?
183 * Or, check against possible vendor? XXX.
184 */
185 if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
186 printf("%s: could not get mac address, attach failed\n",
187 sc->sc_dev.dv_xname);
188 return 1;
189 }
190
191 printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
192
193 /* Read NIC identification */
194 wi_get_id(sc);
195
196 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
197 ifp->if_softc = sc;
198 ifp->if_start = wi_start;
199 ifp->if_ioctl = wi_ioctl;
200 ifp->if_watchdog = wi_watchdog;
201 ifp->if_init = wi_init;
202 ifp->if_stop = wi_stop;
203 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
204 #ifdef IFF_NOTRAILERS
205 ifp->if_flags |= IFF_NOTRAILERS;
206 #endif
207 IFQ_SET_READY(&ifp->if_snd);
208
209 (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
210 sizeof(WI_DEFAULT_NODENAME) - 1);
211 (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
212 sizeof(WI_DEFAULT_NETNAME) - 1);
213 (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
214 sizeof(WI_DEFAULT_IBSS) - 1);
215
216 sc->wi_portnum = WI_DEFAULT_PORT;
217 sc->wi_ptype = WI_PORTTYPE_BSS;
218 sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
219 sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
220 sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
221 sc->wi_max_data_len = WI_DEFAULT_DATALEN;
222 sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
223 sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
224 sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
225 sc->wi_roaming = WI_DEFAULT_ROAMING;
226 sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
227
228 memset(&sc->wi_results, 0, sizeof (sc->wi_results));
229
230 /*
231 * Read the default channel from the NIC. This may vary
232 * depending on the country where the NIC was purchased, so
233 * we can't hard-code a default and expect it to work for
234 * everyone.
235 */
236 gen.wi_type = WI_RID_OWN_CHNL;
237 gen.wi_len = 2;
238 wi_read_record(sc, &gen);
239 sc->wi_channel = le16toh(gen.wi_val);
240
241 memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats));
242
243 /*
244 * Find out if we support WEP on this card.
245 */
246 gen.wi_type = WI_RID_WEP_AVAIL;
247 gen.wi_len = 2;
248 wi_read_record(sc, &gen);
249 sc->wi_has_wep = le16toh(gen.wi_val);
250
251 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
252 #define IFM_AUTOADHOC \
253 IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0)
254 #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL)
255 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
256 ADD(IFM_AUTOADHOC, 0);
257 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
258 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
259 IFM_IEEE80211_ADHOC, 0), 0);
260 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
261 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
262 IFM_IEEE80211_ADHOC, 0), 0);
263 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
264 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
265 IFM_IEEE80211_ADHOC, 0), 0);
266 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
267 #undef ADD
268 ifmedia_set(&sc->sc_media, IFM_AUTOADHOC);
269
270 /*
271 * Call MI attach routines.
272 */
273 if_attach(ifp);
274 ether_ifattach(ifp, mac.wi_mac_addr);
275
276 ifp->if_baudrate = IF_Mbps(2);
277
278 /* Attach is successful. */
279 sc->sc_attached = 1;
280
281 splx(s);
282 return 0;
283 }
284
285 static void wi_rxeof(sc)
286 struct wi_softc *sc;
287 {
288 struct ifnet *ifp;
289 struct ether_header *eh;
290 struct wi_frame rx_frame;
291 struct mbuf *m;
292 int id;
293 u_int16_t msg_type;
294 u_int16_t status;
295 u_int16_t frame_ctl;
296 u_int16_t port;
297
298 ifp = sc->sc_ifp;
299
300 id = CSR_READ_2(sc, WI_RX_FID);
301
302 /* First read in the frame header */
303 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
304 ifp->if_ierrors++;
305 return;
306 }
307
308 status = le16toh(rx_frame.wi_status);
309 frame_ctl = le16toh(rx_frame.wi_frame_ctl);
310 port = (status >> 8) & 0x07;
311 msg_type = status & WI_RXSTAT_MSG_TYPE;
312
313 /*
314 * Drop packets with CRC errors here. We may want the others,
315 * since we may be doing interesting things with undecryptable
316 * packets, like analyzing them in userland.
317 */
318 if (status & WI_STAT_BADCRC) {
319 ifp->if_ierrors++;
320 return;
321 }
322
323 if (port == 7) {
324 if ((le16toh(rx_frame.wi_dat_len) + 60) > MCLBYTES)
325 return;
326
327 MGETHDR(m, M_DONTWAIT, MT_DATA);
328 if (m == NULL) {
329 ifp->if_ierrors++;
330 return;
331 }
332 MCLGET(m, M_DONTWAIT);
333 if (!(m->m_flags & M_EXT)) {
334 m_freem(m);
335 ifp->if_ierrors++;
336 return;
337 }
338
339 memcpy(mtod(m, caddr_t), &rx_frame, 60);
340 m->m_pkthdr.rcvif = ifp;
341
342 m->m_pkthdr.len = m->m_len =
343 le16toh(rx_frame.wi_dat_len) + 60;
344
345 if (wi_read_data(sc, id, 60, mtod(m, caddr_t) + 60,
346 m->m_len - 60)) {
347 m_freem(m);
348 ifp->if_ierrors++;
349 return;
350 }
351
352 #if NBPFILTER > 0
353 if (ifp->if_bpf)
354 bpf_mtap(ifp->if_bpf, m);
355 #endif
356 m_freem(m);
357 return;
358 }
359
360 /*
361 * Drop undecryptable or packets with receive errors here
362 */
363 if (status & WI_STAT_ERRSTAT) {
364 ifp->if_ierrors++;
365 return;
366 }
367
368 MGETHDR(m, M_DONTWAIT, MT_DATA);
369 if (m == NULL) {
370 ifp->if_ierrors++;
371 return;
372 }
373 MCLGET(m, M_DONTWAIT);
374 if (!(m->m_flags & M_EXT)) {
375 m_freem(m);
376 ifp->if_ierrors++;
377 return;
378 }
379
380 /* Align the data after the ethernet header */
381 m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
382 - sizeof(struct ether_header);
383
384 eh = mtod(m, struct ether_header *);
385 m->m_pkthdr.rcvif = ifp;
386
387 if (le16toh(rx_frame.wi_status) == WI_STAT_1042 ||
388 le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL ||
389 le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) {
390 if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
391 printf("%s: oversized packet received "
392 "(wi_dat_len=%d, wi_status=0x%x)\n",
393 sc->sc_dev.dv_xname,
394 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
395 m_freem(m);
396 ifp->if_ierrors++;
397 return;
398 }
399 m->m_pkthdr.len = m->m_len =
400 le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
401
402 memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr,
403 ETHER_ADDR_LEN);
404 memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr,
405 ETHER_ADDR_LEN);
406 memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type,
407 sizeof(u_int16_t));
408
409 if (wi_read_data(sc, id, WI_802_11_OFFSET,
410 mtod(m, caddr_t) + sizeof(struct ether_header),
411 m->m_len + 2)) {
412 m_freem(m);
413 ifp->if_ierrors++;
414 return;
415 }
416 } else {
417 if ((le16toh(rx_frame.wi_dat_len) +
418 sizeof(struct ether_header)) > MCLBYTES) {
419 printf("%s: oversized packet received "
420 "(wi_dat_len=%d, wi_status=0x%x)\n",
421 sc->sc_dev.dv_xname,
422 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
423 m_freem(m);
424 ifp->if_ierrors++;
425 return;
426 }
427 m->m_pkthdr.len = m->m_len =
428 le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
429
430 if (wi_read_data(sc, id, WI_802_3_OFFSET,
431 mtod(m, caddr_t), m->m_len + 2)) {
432 m_freem(m);
433 ifp->if_ierrors++;
434 return;
435 }
436 }
437
438 ifp->if_ipackets++;
439
440 #if NBPFILTER > 0
441 /* Handle BPF listeners. */
442 if (ifp->if_bpf)
443 bpf_mtap(ifp->if_bpf, m);
444 #endif
445
446 /*
447 * Discard packets which are not data packets
448 */
449 if (WLAN_FC_GET_TYPE(frame_ctl) != WLAN_FC_TYPE_DATA) {
450 m_freem(m);
451 return;
452 }
453
454 /* Receive packet. */
455 (*ifp->if_input)(ifp, m);
456 }
457
458 static void wi_txeof(sc, status)
459 struct wi_softc *sc;
460 int status;
461 {
462 struct ifnet *ifp = sc->sc_ifp;
463
464 ifp->if_timer = 0;
465 ifp->if_flags &= ~IFF_OACTIVE;
466
467 if (status & WI_EV_TX_EXC)
468 ifp->if_oerrors++;
469 else
470 ifp->if_opackets++;
471
472 return;
473 }
474
475 void wi_inquire_stats(xsc)
476 void *xsc;
477 {
478 struct wi_softc *sc;
479 struct ifnet *ifp;
480
481 sc = xsc;
482 ifp = &sc->sc_ethercom.ec_if;
483
484 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
485 return;
486
487 callout_reset(&sc->wi_stats_ch, STATS_FREQUENCY, wi_inquire_stats, sc);
488
489 /* Don't do this while we're transmitting */
490 if (ifp->if_flags & IFF_OACTIVE)
491 return;
492
493 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
494 }
495
496 void wi_inquire_scan(xsc)
497 void *xsc;
498 {
499 struct wi_softc *sc;
500 struct ifnet *ifp;
501
502 sc = xsc;
503 ifp = &sc->sc_ethercom.ec_if;
504
505 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
506 return;
507
508 if (sc->wi_results.scanning > 0)
509 callout_reset(&sc->wi_scan_ch, sc->wi_results.scanning,
510 wi_inquire_scan, sc);
511 else
512 callout_stop(&sc->wi_scan_ch);
513
514 /* Don't do this while we're transmitting */
515 if (ifp->if_flags & IFF_OACTIVE)
516 return;
517
518 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS);
519 }
520
521 void wi_update_stats(sc)
522 struct wi_softc *sc;
523 {
524 struct wi_ltv_gen gen;
525 u_int16_t id;
526 struct ifnet *ifp;
527 u_int32_t *ptr;
528 int len, i;
529 u_int16_t t;
530
531 ifp = &sc->sc_ethercom.ec_if;
532
533 id = CSR_READ_2(sc, WI_INFO_FID);
534
535 wi_read_data(sc, id, 0, (char *)&gen, 4);
536
537 switch (gen.wi_type) {
538 case WI_INFO_COUNTERS:
539 /* some card versions have a larger stats structure */
540 len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
541 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
542 ptr = (u_int32_t *)&sc->wi_stats;
543
544 for (i = 0; i < len; i++) {
545 t = CSR_READ_2(sc, WI_DATA1);
546 #ifdef WI_HERMES_STATS_WAR
547 if (t > 0xF000)
548 t = ~t & 0xFFFF;
549 #endif
550 ptr[i] += t;
551 }
552
553 ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
554 sc->wi_stats.wi_tx_multi_retries +
555 sc->wi_stats.wi_tx_retry_limit;
556 break;
557
558 case WI_INFO_SCAN_RESULTS:
559 microtime(&sc->wi_results.lastscan);
560 for (i = 0 ; i < gen.wi_len - 1 ; i++) {
561 t = CSR_READ_2(sc, WI_DATA1);
562 if (i < WI_SCAN_RESULTS_MAXLEN)
563 sc->wi_results.scan_results[i] = t;
564 }
565 if (gen.wi_len - 1 <= WI_SCAN_RESULTS_MAXLEN) {
566 sc->wi_results.len = gen.wi_len - 1;
567 sc->wi_results.truncated = 0;
568 } else {
569 sc->wi_results.len = WI_SCAN_RESULTS_MAXLEN;
570 sc->wi_results.truncated = 1;
571 }
572 break;
573
574 default:
575 #if 0
576 printf("Got info type: %04x\n", gen.wi_type);
577 #endif
578 for (i = 0; i < gen.wi_len; i++) {
579 t = CSR_READ_2(sc, WI_DATA1);
580 #if 0
581 printf("[0x%02x] = 0x%04x\n", i, t);
582 #endif
583 }
584 break;
585 }
586 }
587
588 int wi_intr(arg)
589 void *arg;
590 {
591 struct wi_softc *sc = arg;
592 struct ifnet *ifp;
593 u_int16_t status;
594
595 if (sc->sc_enabled == 0 ||
596 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
597 (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
598 return (0);
599
600 ifp = &sc->sc_ethercom.ec_if;
601
602 if (!(ifp->if_flags & IFF_UP)) {
603 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
604 CSR_WRITE_2(sc, WI_INT_EN, 0);
605 return 1;
606 }
607
608 /* Disable interrupts. */
609 CSR_WRITE_2(sc, WI_INT_EN, 0);
610
611 status = CSR_READ_2(sc, WI_EVENT_STAT);
612 CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
613
614 if (status & WI_EV_RX) {
615 wi_rxeof(sc);
616 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
617 }
618
619 if (status & WI_EV_TX) {
620 wi_txeof(sc, status);
621 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
622 }
623
624 if (status & WI_EV_ALLOC) {
625 int id;
626 id = CSR_READ_2(sc, WI_ALLOC_FID);
627 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
628 if (id == sc->wi_tx_data_id)
629 wi_txeof(sc, status);
630 }
631
632 if (status & WI_EV_INFO) {
633 wi_update_stats(sc);
634 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
635 }
636
637 if (status & WI_EV_TX_EXC) {
638 wi_txeof(sc, status);
639 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
640 }
641
642 if (status & WI_EV_INFO_DROP) {
643 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
644 }
645
646 /* Re-enable interrupts. */
647 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
648
649 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
650 wi_start(ifp);
651
652 return 1;
653 }
654
655 static int
656 wi_cmd(sc, cmd, val)
657 struct wi_softc *sc;
658 int cmd;
659 int val;
660 {
661 int i, s = 0;
662
663 /* wait for the busy bit to clear */
664 for (i = 0; i < WI_TIMEOUT; i++) {
665 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
666 break;
667 }
668
669 CSR_WRITE_2(sc, WI_PARAM0, val);
670 CSR_WRITE_2(sc, WI_PARAM1, 0);
671 CSR_WRITE_2(sc, WI_PARAM2, 0);
672 CSR_WRITE_2(sc, WI_COMMAND, cmd);
673
674 /* wait for the cmd completed bit */
675 for (i = 0; i < WI_TIMEOUT; i++) {
676 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
677 break;
678 DELAY(1);
679 }
680
681 /* Ack the command */
682 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
683
684 s = CSR_READ_2(sc, WI_STATUS);
685 if (s & WI_STAT_CMD_RESULT)
686 return(EIO);
687
688 if (i == WI_TIMEOUT)
689 return(ETIMEDOUT);
690
691 return(0);
692 }
693
694 static void
695 wi_reset(sc)
696 struct wi_softc *sc;
697 {
698 DELAY(100*1000); /* 100 m sec */
699 if (wi_cmd(sc, WI_CMD_INI, 0))
700 printf("%s: init failed\n", sc->sc_dev.dv_xname);
701 CSR_WRITE_2(sc, WI_INT_EN, 0);
702 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
703
704 /* Calibrate timer. */
705 WI_SETVAL(WI_RID_TICK_TIME, 8);
706
707 return;
708 }
709
710 void
711 wi_pci_reset(sc)
712 struct wi_softc *sc;
713 {
714
715 bus_space_write_2(sc->sc_iot, sc->sc_ioh, WI_PCI_COR, 0x80);
716 DELAY(100*1000); /* 100 m sec */
717
718 bus_space_write_2(sc->sc_iot, sc->sc_ioh, WI_PCI_COR, 0x0);
719 DELAY(100*1000); /* 100 m sec */
720
721 return;
722 }
723
724 /*
725 * Read an LTV record from the NIC.
726 */
727 static int wi_read_record(sc, ltv)
728 struct wi_softc *sc;
729 struct wi_ltv_gen *ltv;
730 {
731 u_int16_t *ptr;
732 int len, code;
733 struct wi_ltv_gen *oltv, p2ltv;
734
735 if (sc->sc_prism2) {
736 oltv = ltv;
737 switch (ltv->wi_type) {
738 case WI_RID_ENCRYPTION:
739 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
740 p2ltv.wi_len = 2;
741 ltv = &p2ltv;
742 break;
743 case WI_RID_TX_CRYPT_KEY:
744 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
745 p2ltv.wi_len = 2;
746 ltv = &p2ltv;
747 break;
748 }
749 }
750
751 /* Tell the NIC to enter record read mode. */
752 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
753 return(EIO);
754
755 /* Seek to the record. */
756 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
757 return(EIO);
758
759 /*
760 * Read the length and record type and make sure they
761 * match what we expect (this verifies that we have enough
762 * room to hold all of the returned data).
763 */
764 len = CSR_READ_2(sc, WI_DATA1);
765 if (len > ltv->wi_len)
766 return(ENOSPC);
767 code = CSR_READ_2(sc, WI_DATA1);
768 if (code != ltv->wi_type)
769 return(EIO);
770
771 ltv->wi_len = len;
772 ltv->wi_type = code;
773
774 /* Now read the data. */
775 ptr = <v->wi_val;
776 if (ltv->wi_len > 1)
777 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
778
779 if (sc->sc_prism2) {
780 int v;
781
782 switch (oltv->wi_type) {
783 case WI_RID_TX_RATE:
784 case WI_RID_CUR_TX_RATE:
785 switch (le16toh(ltv->wi_val)) {
786 case 1: v = 1; break;
787 case 2: v = 2; break;
788 case 3: v = 6; break;
789 case 4: v = 5; break;
790 case 7: v = 7; break;
791 case 8: v = 11; break;
792 case 15: v = 3; break;
793 default: v = 0x100 + le16toh(ltv->wi_val); break;
794 }
795 oltv->wi_val = htole16(v);
796 break;
797 case WI_RID_ENCRYPTION:
798 oltv->wi_len = 2;
799 if (le16toh(ltv->wi_val) & 0x01)
800 oltv->wi_val = htole16(1);
801 else
802 oltv->wi_val = htole16(0);
803 break;
804 case WI_RID_TX_CRYPT_KEY:
805 oltv->wi_len = 2;
806 oltv->wi_val = ltv->wi_val;
807 break;
808 case WI_RID_AUTH_CNTL:
809 oltv->wi_len = 2;
810 if (le16toh(ltv->wi_val) & 0x01)
811 oltv->wi_val = htole16(1);
812 else if (le16toh(ltv->wi_val) & 0x02)
813 oltv->wi_val = htole16(2);
814 break;
815 }
816 }
817
818 return(0);
819 }
820
821 /*
822 * Same as read, except we inject data instead of reading it.
823 */
824 static int wi_write_record(sc, ltv)
825 struct wi_softc *sc;
826 struct wi_ltv_gen *ltv;
827 {
828 u_int16_t *ptr;
829 int i;
830 struct wi_ltv_gen p2ltv;
831
832 if (sc->sc_prism2) {
833 int v;
834
835 switch (ltv->wi_type) {
836 case WI_RID_TX_RATE:
837 p2ltv.wi_type = WI_RID_TX_RATE;
838 p2ltv.wi_len = 2;
839 switch (le16toh(ltv->wi_val)) {
840 case 1: v = 1; break;
841 case 2: v = 2; break;
842 case 3: v = 15; break;
843 case 5: v = 4; break;
844 case 6: v = 3; break;
845 case 7: v = 7; break;
846 case 11: v = 8; break;
847 default: return EINVAL;
848 }
849 p2ltv.wi_val = htole16(v);
850 ltv = &p2ltv;
851 break;
852 case WI_RID_ENCRYPTION:
853 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
854 p2ltv.wi_len = 2;
855 if (le16toh(ltv->wi_val))
856 p2ltv.wi_val = htole16(0x03);
857 else
858 p2ltv.wi_val = htole16(0x90);
859 ltv = &p2ltv;
860 break;
861 case WI_RID_TX_CRYPT_KEY:
862 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
863 p2ltv.wi_len = 2;
864 p2ltv.wi_val = ltv->wi_val;
865 ltv = &p2ltv;
866 break;
867 case WI_RID_DEFLT_CRYPT_KEYS:
868 {
869 int error;
870 struct wi_ltv_str ws;
871 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv;
872 for (i = 0; i < 4; i++) {
873 ws.wi_len = 4;
874 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
875 memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 5);
876 ws.wi_str[5] = '\0';
877 error = wi_write_record(sc,
878 (struct wi_ltv_gen *)&ws);
879 if (error)
880 return error;
881 }
882 return 0;
883 }
884 case WI_RID_AUTH_CNTL:
885 p2ltv.wi_type = WI_RID_AUTH_CNTL;
886 p2ltv.wi_len = 2;
887 if (le16toh(ltv->wi_val) == 1)
888 p2ltv.wi_val = htole16(0x01);
889 else if (le16toh(ltv->wi_val) == 2)
890 p2ltv.wi_val = htole16(0x02);
891 ltv = &p2ltv;
892 break;
893 }
894 }
895
896 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
897 return(EIO);
898
899 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
900 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
901
902 /* Write data */
903 ptr = <v->wi_val;
904 if (ltv->wi_len > 1)
905 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
906
907 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
908 return(EIO);
909
910 return(0);
911 }
912
913 static int wi_seek(sc, id, off, chan)
914 struct wi_softc *sc;
915 int id, off, chan;
916 {
917 int i;
918 int selreg, offreg;
919 int status;
920
921 switch (chan) {
922 case WI_BAP0:
923 selreg = WI_SEL0;
924 offreg = WI_OFF0;
925 break;
926 case WI_BAP1:
927 selreg = WI_SEL1;
928 offreg = WI_OFF1;
929 break;
930 default:
931 printf("%s: invalid data path: %x\n",
932 sc->sc_dev.dv_xname, chan);
933 return(EIO);
934 }
935
936 CSR_WRITE_2(sc, selreg, id);
937 CSR_WRITE_2(sc, offreg, off);
938
939 for (i = 0; i < WI_TIMEOUT; i++) {
940 status = CSR_READ_2(sc, offreg);
941 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
942 break;
943 }
944
945 if (i == WI_TIMEOUT) {
946 printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
947 sc->sc_dev.dv_xname, id, off, status);
948 return(ETIMEDOUT);
949 }
950 return(0);
951 }
952
953 static int wi_read_data(sc, id, off, buf, len)
954 struct wi_softc *sc;
955 int id, off;
956 caddr_t buf;
957 int len;
958 {
959 u_int16_t *ptr;
960
961 if (wi_seek(sc, id, off, WI_BAP1))
962 return(EIO);
963
964 ptr = (u_int16_t *)buf;
965 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
966
967 return(0);
968 }
969
970 /*
971 * According to the comments in the HCF Light code, there is a bug in
972 * the Hermes (or possibly in certain Hermes firmware revisions) where
973 * the chip's internal autoincrement counter gets thrown off during
974 * data writes: the autoincrement is missed, causing one data word to
975 * be overwritten and subsequent words to be written to the wrong memory
976 * locations. The end result is that we could end up transmitting bogus
977 * frames without realizing it. The workaround for this is to write a
978 * couple of extra guard words after the end of the transfer, then
979 * attempt to read then back. If we fail to locate the guard words where
980 * we expect them, we preform the transfer over again.
981 */
982 static int wi_write_data(sc, id, off, buf, len)
983 struct wi_softc *sc;
984 int id, off;
985 caddr_t buf;
986 int len;
987 {
988 u_int16_t *ptr;
989
990 #ifdef WI_HERMES_AUTOINC_WAR
991 again:
992 #endif
993
994 if (wi_seek(sc, id, off, WI_BAP0))
995 return(EIO);
996
997 ptr = (u_int16_t *)buf;
998 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
999
1000 #ifdef WI_HERMES_AUTOINC_WAR
1001 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1002 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1003
1004 if (wi_seek(sc, id, off + len, WI_BAP0))
1005 return(EIO);
1006
1007 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1008 CSR_READ_2(sc, WI_DATA0) != 0x5678)
1009 goto again;
1010 #endif
1011
1012 return(0);
1013 }
1014
1015 /*
1016 * Allocate a region of memory inside the NIC and zero
1017 * it out.
1018 */
1019 static int wi_alloc_nicmem(sc, len, id)
1020 struct wi_softc *sc;
1021 int len;
1022 int *id;
1023 {
1024 int i;
1025
1026 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
1027 printf("%s: failed to allocate %d bytes on NIC\n",
1028 sc->sc_dev.dv_xname, len);
1029 return(ENOMEM);
1030 }
1031
1032 for (i = 0; i < WI_TIMEOUT; i++) {
1033 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1034 break;
1035 }
1036
1037 if (i == WI_TIMEOUT) {
1038 printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
1039 return(ETIMEDOUT);
1040 }
1041
1042 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1043 *id = CSR_READ_2(sc, WI_ALLOC_FID);
1044
1045 if (wi_seek(sc, *id, 0, WI_BAP0)) {
1046 printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
1047 return(EIO);
1048 }
1049
1050 for (i = 0; i < len / 2; i++)
1051 CSR_WRITE_2(sc, WI_DATA0, 0);
1052
1053 return(0);
1054 }
1055
1056 static void wi_setmulti(sc)
1057 struct wi_softc *sc;
1058 {
1059 struct ifnet *ifp;
1060 int i = 0;
1061 struct wi_ltv_mcast mcast;
1062 struct ether_multi *enm;
1063 struct ether_multistep estep;
1064 struct ethercom *ec = &sc->sc_ethercom;
1065
1066 ifp = &sc->sc_ethercom.ec_if;
1067
1068 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1069 allmulti:
1070 ifp->if_flags |= IFF_ALLMULTI;
1071 memset((char *)&mcast, 0, sizeof(mcast));
1072 mcast.wi_type = WI_RID_MCAST;
1073 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
1074
1075 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1076 return;
1077 }
1078
1079 i = 0;
1080 ETHER_FIRST_MULTI(estep, ec, enm);
1081 while (enm != NULL) {
1082 /* Punt on ranges or too many multicast addresses. */
1083 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1084 ETHER_ADDR_LEN) != 0 ||
1085 i >= 16)
1086 goto allmulti;
1087
1088 memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo,
1089 ETHER_ADDR_LEN);
1090 i++;
1091 ETHER_NEXT_MULTI(estep, enm);
1092 }
1093
1094 ifp->if_flags &= ~IFF_ALLMULTI;
1095 mcast.wi_type = WI_RID_MCAST;
1096 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
1097 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1098 }
1099
1100 static int
1101 wi_setdef(sc, wreq)
1102 struct wi_softc *sc;
1103 struct wi_req *wreq;
1104 {
1105 struct sockaddr_dl *sdl;
1106 struct ifnet *ifp;
1107 int error = 0;
1108
1109 ifp = &sc->sc_ethercom.ec_if;
1110
1111 switch(wreq->wi_type) {
1112 case WI_RID_MAC_NODE:
1113 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1114 memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val,
1115 ETHER_ADDR_LEN);
1116 memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN);
1117 break;
1118 case WI_RID_PORTTYPE:
1119 error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
1120 break;
1121 case WI_RID_TX_RATE:
1122 error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
1123 break;
1124 case WI_RID_MAX_DATALEN:
1125 sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1126 break;
1127 case WI_RID_RTS_THRESH:
1128 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1129 break;
1130 case WI_RID_SYSTEM_SCALE:
1131 sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1132 break;
1133 case WI_RID_CREATE_IBSS:
1134 sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1135 break;
1136 case WI_RID_OWN_CHNL:
1137 sc->wi_channel = le16toh(wreq->wi_val[0]);
1138 break;
1139 case WI_RID_NODENAME:
1140 error = wi_set_ssid(&sc->wi_nodeid,
1141 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1142 break;
1143 case WI_RID_DESIRED_SSID:
1144 error = wi_set_ssid(&sc->wi_netid,
1145 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1146 break;
1147 case WI_RID_OWN_SSID:
1148 error = wi_set_ssid(&sc->wi_ibssid,
1149 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1150 break;
1151 case WI_RID_PM_ENABLED:
1152 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1153 break;
1154 case WI_RID_MICROWAVE_OVEN:
1155 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1156 break;
1157 case WI_RID_MAX_SLEEP:
1158 sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1159 break;
1160 case WI_RID_AUTH_CNTL:
1161 sc->wi_authtype = le16toh(wreq->wi_val[0]);
1162 break;
1163 case WI_RID_ROAMING_MODE:
1164 sc->wi_roaming = le16toh(wreq->wi_val[0]);
1165 break;
1166 case WI_RID_ENCRYPTION:
1167 sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1168 break;
1169 case WI_RID_TX_CRYPT_KEY:
1170 sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1171 break;
1172 case WI_RID_DEFLT_CRYPT_KEYS:
1173 memcpy((char *)&sc->wi_keys, (char *)wreq,
1174 sizeof(struct wi_ltv_keys));
1175 break;
1176 default:
1177 error = EINVAL;
1178 break;
1179 }
1180
1181 return (error);
1182 }
1183
1184 static int
1185 wi_getdef(sc, wreq)
1186 struct wi_softc *sc;
1187 struct wi_req *wreq;
1188 {
1189 struct sockaddr_dl *sdl;
1190 struct ifnet *ifp;
1191 int error = 0;
1192
1193 ifp = &sc->sc_ethercom.ec_if;
1194
1195 wreq->wi_len = 2; /* XXX */
1196 switch (wreq->wi_type) {
1197 case WI_RID_MAC_NODE:
1198 wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
1199 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1200 memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN);
1201 memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1202 break;
1203 case WI_RID_PORTTYPE:
1204 wreq->wi_val[0] = htole16(sc->wi_ptype);
1205 break;
1206 case WI_RID_TX_RATE:
1207 wreq->wi_val[0] = htole16(sc->wi_tx_rate);
1208 break;
1209 case WI_RID_MAX_DATALEN:
1210 wreq->wi_val[0] = htole16(sc->wi_max_data_len);
1211 break;
1212 case WI_RID_RTS_THRESH:
1213 wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
1214 break;
1215 case WI_RID_SYSTEM_SCALE:
1216 wreq->wi_val[0] = htole16(sc->wi_ap_density);
1217 break;
1218 case WI_RID_CREATE_IBSS:
1219 wreq->wi_val[0] = htole16(sc->wi_create_ibss);
1220 break;
1221 case WI_RID_OWN_CHNL:
1222 wreq->wi_val[0] = htole16(sc->wi_channel);
1223 break;
1224 case WI_RID_NODENAME:
1225 wi_request_fill_ssid(wreq, &sc->wi_nodeid);
1226 break;
1227 case WI_RID_DESIRED_SSID:
1228 wi_request_fill_ssid(wreq, &sc->wi_netid);
1229 break;
1230 case WI_RID_OWN_SSID:
1231 wi_request_fill_ssid(wreq, &sc->wi_ibssid);
1232 break;
1233 case WI_RID_PM_ENABLED:
1234 wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
1235 break;
1236 case WI_RID_MICROWAVE_OVEN:
1237 wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
1238 break;
1239 case WI_RID_MAX_SLEEP:
1240 wreq->wi_val[0] = htole16(sc->wi_max_sleep);
1241 break;
1242 case WI_RID_AUTH_CNTL:
1243 wreq->wi_val[0] = htole16(sc->wi_authtype);
1244 break;
1245 case WI_RID_ROAMING_MODE:
1246 wreq->wi_val[0] = htole16(sc->wi_roaming);
1247 break;
1248 case WI_RID_WEP_AVAIL:
1249 wreq->wi_val[0] = htole16(sc->wi_has_wep);
1250 break;
1251 case WI_RID_ENCRYPTION:
1252 wreq->wi_val[0] = htole16(sc->wi_use_wep);
1253 break;
1254 case WI_RID_TX_CRYPT_KEY:
1255 wreq->wi_val[0] = htole16(sc->wi_tx_key);
1256 break;
1257 case WI_RID_DEFLT_CRYPT_KEYS:
1258 wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
1259 memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
1260 break;
1261 default:
1262 #if 0
1263 error = EIO;
1264 #else
1265 #ifdef WI_DEBUG
1266 printf("%s: wi_getdef: unknown request %d\n",
1267 sc->sc_dev.dv_xname, wreq->wi_type);
1268 #endif
1269 #endif
1270 break;
1271 }
1272
1273 return (error);
1274 }
1275
1276 static int
1277 wi_ioctl(ifp, command, data)
1278 struct ifnet *ifp;
1279 u_long command;
1280 caddr_t data;
1281 {
1282 int i, s, error = 0;
1283 struct wi_softc *sc = ifp->if_softc;
1284 struct wi_req wreq;
1285 struct ifreq *ifr;
1286 struct ifdrv *ifd;
1287 struct proc *p = curproc;
1288 struct ieee80211_nwid nwid;
1289
1290 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1291 return (ENXIO);
1292
1293 s = splnet();
1294
1295 ifr = (struct ifreq *)data;
1296 switch (command) {
1297 case SIOCSIFADDR:
1298 case SIOCGIFADDR:
1299 case SIOCSIFMTU:
1300 error = ether_ioctl(ifp, command, data);
1301 break;
1302 case SIOCSIFFLAGS:
1303 if (ifp->if_flags & IFF_UP) {
1304 if (ifp->if_flags & IFF_RUNNING &&
1305 ifp->if_flags & IFF_PROMISC &&
1306 !(sc->wi_if_flags & IFF_PROMISC)) {
1307 WI_SETVAL(WI_RID_PROMISC, 1);
1308 } else if (ifp->if_flags & IFF_RUNNING &&
1309 !(ifp->if_flags & IFF_PROMISC) &&
1310 sc->wi_if_flags & IFF_PROMISC) {
1311 WI_SETVAL(WI_RID_PROMISC, 0);
1312 }
1313 wi_init(ifp);
1314 } else {
1315 if (ifp->if_flags & IFF_RUNNING) {
1316 wi_stop(ifp, 0);
1317 }
1318 }
1319 sc->wi_if_flags = ifp->if_flags;
1320
1321 if (!(ifp->if_flags & IFF_UP)) {
1322 if (sc->sc_enabled) {
1323 if (sc->sc_disable)
1324 (*sc->sc_disable)(sc);
1325 sc->sc_enabled = 0;
1326 ifp->if_flags &= ~IFF_RUNNING;
1327 }
1328 }
1329 error = 0;
1330 break;
1331 case SIOCADDMULTI:
1332 case SIOCDELMULTI:
1333 error = (command == SIOCADDMULTI) ?
1334 ether_addmulti(ifr, &sc->sc_ethercom) :
1335 ether_delmulti(ifr, &sc->sc_ethercom);
1336 if (error == ENETRESET) {
1337 if (sc->sc_enabled != 0) {
1338 /*
1339 * Multicast list has changed. Set the
1340 * hardware filter accordingly.
1341 */
1342 wi_setmulti(sc);
1343 }
1344 error = 0;
1345 }
1346 break;
1347 case SIOCSIFMEDIA:
1348 case SIOCGIFMEDIA:
1349 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1350 break;
1351 case SIOCGWAVELAN:
1352 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1353 if (error)
1354 break;
1355 switch (wreq.wi_type) {
1356 case WI_RID_IFACE_STATS:
1357 /* XXX native byte order */
1358 memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats,
1359 sizeof(sc->wi_stats));
1360 wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1361 break;
1362 case WI_RID_DEFLT_CRYPT_KEYS:
1363 /* For non-root user, return all-zeroes keys */
1364 if (suser(p->p_ucred, &p->p_acflag))
1365 memset((char *)&wreq, 0,
1366 sizeof(struct wi_ltv_keys));
1367 else
1368 memcpy((char *)&wreq, (char *)&sc->wi_keys,
1369 sizeof(struct wi_ltv_keys));
1370 break;
1371 default:
1372 if (sc->sc_enabled == 0)
1373 error = wi_getdef(sc, &wreq);
1374 else if (wi_read_record(sc,
1375 (struct wi_ltv_gen *)&wreq))
1376 error = EINVAL;
1377 break;
1378 }
1379 if (error == 0)
1380 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1381 break;
1382
1383 case SIOCSWAVELAN:
1384 error = suser(p->p_ucred, &p->p_acflag);
1385 if (error)
1386 break;
1387 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1388 if (error)
1389 break;
1390 switch (wreq.wi_type) {
1391 case WI_RID_IFACE_STATS:
1392 error = EINVAL;
1393 break;
1394 case WI_RID_MGMT_XMIT:
1395 error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1396 wreq.wi_len);
1397 break;
1398
1399 default:
1400 if (sc->sc_enabled != 0)
1401 error = wi_write_record(sc,
1402 (struct wi_ltv_gen *)&wreq);
1403 if (error == 0)
1404 error = wi_setdef(sc, &wreq);
1405 if (error == 0 && sc->sc_enabled != 0)
1406 /* Reinitialize WaveLAN. */
1407 wi_init(ifp);
1408 break;
1409 }
1410 break;
1411
1412 case SIOCSDRVSPEC:
1413 error = suser(p->p_ucred, &p->p_acflag);
1414 if (error)
1415 break;
1416 ifd = (struct ifdrv *)data;
1417 switch (ifd->ifd_cmd) {
1418 case WI_IOCTL_SET_SCAN:
1419 error = copyin(ifd->ifd_data, &i, sizeof (i));
1420 if (error)
1421 break;
1422
1423 sc->wi_results.scanning = i;
1424 if (sc->wi_results.scanning > 0)
1425 callout_reset(&sc->wi_scan_ch,
1426 sc->wi_results.scanning,
1427 wi_inquire_scan, sc);
1428 else
1429 callout_stop(&sc->wi_scan_ch);
1430 break;
1431
1432 /*
1433 * Experimental XXXMLG
1434 */
1435 case WI_IOCTL_SET_TESTMODE:
1436 error = copyin(ifd->ifd_data, &i, sizeof (i));
1437 if (error)
1438 break;
1439 if (i) {
1440 wi_cmd(sc, WI_CMD_TEST | WI_TEST_MONITOR << 8,
1441 0);
1442 printf("wi test mode enabled\n");
1443 } else {
1444 wi_cmd(sc, WI_CMD_TEST | WI_TEST_STOP << 8, 0);
1445 printf("wi test mode disabled\n");
1446 }
1447 break;
1448
1449 default:
1450 error = EINVAL;
1451 break;
1452 }
1453 break;
1454
1455 case SIOCGDRVSPEC:
1456 ifd = (struct ifdrv *)data;
1457 switch (ifd->ifd_cmd) {
1458 case WI_IOCTL_GET_SCAN_RESULTS:
1459 error = copyout(&sc->wi_results, ifd->ifd_data,
1460 sizeof(struct wi_scan_results));
1461 break;
1462
1463 default:
1464 error = EINVAL;
1465 break;
1466 }
1467 break;
1468
1469 case SIOCG80211NWID:
1470 if (sc->sc_enabled == 0) {
1471 /* Return the desired ID */
1472 error = copyout(&sc->wi_netid, ifr->ifr_data,
1473 sizeof(sc->wi_netid));
1474 } else {
1475 wreq.wi_type = WI_RID_CURRENT_SSID;
1476 wreq.wi_len = WI_MAX_DATALEN;
1477 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
1478 le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
1479 error = EINVAL;
1480 else {
1481 wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
1482 le16toh(wreq.wi_val[0]));
1483 error = copyout(&nwid, ifr->ifr_data,
1484 sizeof(nwid));
1485 }
1486 }
1487 break;
1488 case SIOCS80211NWID:
1489 error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
1490 if (error != 0)
1491 break;
1492 if (nwid.i_len > IEEE80211_NWID_LEN) {
1493 error = EINVAL;
1494 break;
1495 }
1496 if (sc->wi_netid.i_len == nwid.i_len &&
1497 memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
1498 break;
1499 wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
1500 if (sc->sc_enabled != 0)
1501 /* Reinitialize WaveLAN. */
1502 wi_init(ifp);
1503 break;
1504 case SIOCS80211NWKEY:
1505 error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
1506 break;
1507 case SIOCG80211NWKEY:
1508 error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
1509 break;
1510 case SIOCS80211POWER:
1511 error = wi_set_pm(sc, (struct ieee80211_power *)data);
1512 break;
1513 case SIOCG80211POWER:
1514 error = wi_get_pm(sc, (struct ieee80211_power *)data);
1515 break;
1516
1517 default:
1518 error = EINVAL;
1519 break;
1520 }
1521
1522 splx(s);
1523 return (error);
1524 }
1525
1526 static int
1527 wi_init(ifp)
1528 struct ifnet *ifp;
1529 {
1530 struct wi_softc *sc = ifp->if_softc;
1531 struct wi_req wreq;
1532 struct wi_ltv_macaddr mac;
1533 int error, id = 0;
1534
1535 if (!sc->sc_enabled) {
1536 if ((error = (*sc->sc_enable)(sc)) != 0)
1537 goto out;
1538 sc->sc_enabled = 1;
1539 }
1540
1541 wi_stop(ifp, 0);
1542 wi_reset(sc);
1543
1544 /* Program max data length. */
1545 WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1546
1547 /* Enable/disable IBSS creation. */
1548 WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1549
1550 /* Set the port type. */
1551 WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1552
1553 /* Program the RTS/CTS threshold. */
1554 WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1555
1556 /* Program the TX rate */
1557 WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1558
1559 /* Access point density */
1560 WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1561
1562 /* Power Management Enabled */
1563 WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1564
1565 /* Power Managment Max Sleep */
1566 WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1567
1568 /* Roaming type */
1569 WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
1570
1571 /* Specify the IBSS name */
1572 wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
1573
1574 /* Specify the network name */
1575 wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
1576
1577 /* Specify the frequency to use */
1578 WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1579
1580 /* Program the nodename. */
1581 wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
1582
1583 /* Set our MAC address. */
1584 mac.wi_len = 4;
1585 mac.wi_type = WI_RID_MAC_NODE;
1586 memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
1587 wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1588
1589 /* Initialize promisc mode. */
1590 if (ifp->if_flags & IFF_PROMISC) {
1591 WI_SETVAL(WI_RID_PROMISC, 1);
1592 } else {
1593 WI_SETVAL(WI_RID_PROMISC, 0);
1594 }
1595
1596 /* Configure WEP. */
1597 if (sc->wi_has_wep) {
1598 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1599 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1600 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1601 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1602 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1603 if (sc->sc_prism2 && sc->wi_use_wep) {
1604 /*
1605 * ONLY HWB3163 EVAL-CARD Firmware version
1606 * less than 0.8 variant3
1607 *
1608 * If promiscuous mode disable, Prism2 chip
1609 * does not work with WEP .
1610 * It is under investigation for details.
1611 * (ichiro (at) netbsd.org)
1612 */
1613 if (sc->sc_prism2_ver < 83 ) {
1614 /* firm ver < 0.8 variant 3 */
1615 WI_SETVAL(WI_RID_PROMISC, 1);
1616 }
1617 WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
1618 }
1619 }
1620
1621 /* Set multicast filter. */
1622 wi_setmulti(sc);
1623
1624 /* Enable desired port */
1625 wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
1626
1627 if ((error = wi_alloc_nicmem(sc,
1628 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1629 printf("%s: tx buffer allocation failed\n",
1630 sc->sc_dev.dv_xname);
1631 goto out;
1632 }
1633 sc->wi_tx_data_id = id;
1634
1635 if ((error = wi_alloc_nicmem(sc,
1636 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1637 printf("%s: mgmt. buffer allocation failed\n",
1638 sc->sc_dev.dv_xname);
1639 goto out;
1640 }
1641 sc->wi_tx_mgmt_id = id;
1642
1643 /* Enable interrupts */
1644 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1645
1646 ifp->if_flags |= IFF_RUNNING;
1647 ifp->if_flags &= ~IFF_OACTIVE;
1648
1649 callout_reset(&sc->wi_stats_ch, STATS_FREQUENCY, wi_inquire_stats, sc);
1650
1651 out:
1652 if (error) {
1653 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1654 ifp->if_timer = 0;
1655 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1656 }
1657 return (error);
1658 }
1659
1660 static void
1661 wi_start(ifp)
1662 struct ifnet *ifp;
1663 {
1664 struct wi_softc *sc;
1665 struct mbuf *m0;
1666 struct wi_frame tx_frame;
1667 struct ether_header *eh;
1668 int id;
1669
1670 sc = ifp->if_softc;
1671
1672 if (ifp->if_flags & IFF_OACTIVE)
1673 return;
1674
1675 IFQ_DEQUEUE(&ifp->if_snd, m0);
1676 if (m0 == NULL)
1677 return;
1678
1679 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1680 id = sc->wi_tx_data_id;
1681 eh = mtod(m0, struct ether_header *);
1682
1683 /*
1684 * Use RFC1042 encoding for IP and ARP datagrams,
1685 * 802.3 for anything else.
1686 */
1687 if (ntohs(eh->ether_type) == ETHERTYPE_IP ||
1688 ntohs(eh->ether_type) == ETHERTYPE_ARP ||
1689 ntohs(eh->ether_type) == ETHERTYPE_REVARP ||
1690 ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
1691 memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost,
1692 ETHER_ADDR_LEN);
1693 memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost,
1694 ETHER_ADDR_LEN);
1695 memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost,
1696 ETHER_ADDR_LEN);
1697 memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost,
1698 ETHER_ADDR_LEN);
1699
1700 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1701 tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
1702 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1703 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1704 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1705 tx_frame.wi_type = eh->ether_type;
1706
1707 m_copydata(m0, sizeof(struct ether_header),
1708 m0->m_pkthdr.len - sizeof(struct ether_header),
1709 (caddr_t)&sc->wi_txbuf);
1710
1711 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1712 sizeof(struct wi_frame));
1713 wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1714 (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1715 } else {
1716 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
1717
1718 m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1719
1720 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1721 sizeof(struct wi_frame));
1722 wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1723 m0->m_pkthdr.len + 2);
1724 }
1725
1726 #if NBPFILTER > 0
1727 /*
1728 * If there's a BPF listener, bounce a copy of
1729 * this frame to him.
1730 */
1731 if (ifp->if_bpf)
1732 bpf_mtap(ifp->if_bpf, m0);
1733 #endif
1734
1735 m_freem(m0);
1736
1737 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1738 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1739
1740 ifp->if_flags |= IFF_OACTIVE;
1741
1742 /*
1743 * Set a timeout in case the chip goes out to lunch.
1744 */
1745 ifp->if_timer = 5;
1746
1747 return;
1748 }
1749
1750 static int
1751 wi_mgmt_xmit(sc, data, len)
1752 struct wi_softc *sc;
1753 caddr_t data;
1754 int len;
1755 {
1756 struct wi_frame tx_frame;
1757 int id;
1758 struct wi_80211_hdr *hdr;
1759 caddr_t dptr;
1760
1761 hdr = (struct wi_80211_hdr *)data;
1762 dptr = data + sizeof(struct wi_80211_hdr);
1763
1764 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1765 id = sc->wi_tx_mgmt_id;
1766
1767 memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr,
1768 sizeof(struct wi_80211_hdr));
1769
1770 tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
1771 tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1772
1773 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1774 wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1775 (len - sizeof(struct wi_80211_hdr)) + 2);
1776
1777 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1778 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1779 return(EIO);
1780 }
1781
1782 return(0);
1783 }
1784
1785 static void
1786 wi_stop(ifp, disable)
1787 struct ifnet *ifp;
1788 {
1789 struct wi_softc *sc = ifp->if_softc;
1790
1791 CSR_WRITE_2(sc, WI_INT_EN, 0);
1792 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1793
1794 callout_stop(&sc->wi_stats_ch);
1795 callout_stop(&sc->wi_scan_ch);
1796
1797 if (disable) {
1798 if (sc->sc_enabled) {
1799 if (sc->sc_disable)
1800 (*sc->sc_disable)(sc);
1801 sc->sc_enabled = 0;
1802 }
1803 }
1804
1805 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1806 ifp->if_timer = 0;
1807 }
1808
1809 static void
1810 wi_watchdog(ifp)
1811 struct ifnet *ifp;
1812 {
1813 struct wi_softc *sc;
1814
1815 sc = ifp->if_softc;
1816
1817 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1818
1819 wi_init(ifp);
1820
1821 ifp->if_oerrors++;
1822
1823 return;
1824 }
1825
1826 void
1827 wi_shutdown(sc)
1828 struct wi_softc *sc;
1829 {
1830 int s;
1831
1832 s = splnet();
1833 if (sc->sc_enabled) {
1834 if (sc->sc_disable)
1835 (*sc->sc_disable)(sc);
1836 sc->sc_enabled = 0;
1837 }
1838 splx(s);
1839 }
1840
1841 int
1842 wi_activate(self, act)
1843 struct device *self;
1844 enum devact act;
1845 {
1846 struct wi_softc *sc = (struct wi_softc *)self;
1847 int rv = 0, s;
1848
1849 s = splnet();
1850 switch (act) {
1851 case DVACT_ACTIVATE:
1852 rv = EOPNOTSUPP;
1853 break;
1854
1855 case DVACT_DEACTIVATE:
1856 if_deactivate(&sc->sc_ethercom.ec_if);
1857 break;
1858 }
1859 splx(s);
1860 return (rv);
1861 }
1862
1863 static void
1864 wi_get_id(sc)
1865 struct wi_softc *sc;
1866 {
1867 struct wi_ltv_ver ver;
1868
1869 /* getting chip identity */
1870 memset(&ver, 0, sizeof(ver));
1871 ver.wi_type = WI_RID_CARDID;
1872 ver.wi_len = 5;
1873 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1874 printf("%s: using ", sc->sc_dev.dv_xname);
1875 switch (le16toh(ver.wi_ver[0])) {
1876 case WI_NIC_EVB2:
1877 printf("RF:PRISM2 MAC:HFA3841");
1878 sc->sc_prism2 = 1;
1879 break;
1880 case WI_NIC_HWB3763:
1881 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3763 rev.B");
1882 sc->sc_prism2 = 1;
1883 break;
1884 case WI_NIC_HWB3163:
1885 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.A");
1886 sc->sc_prism2 = 1;
1887 break;
1888 case WI_NIC_HWB3163B:
1889 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.B");
1890 sc->sc_prism2 = 1;
1891 break;
1892 case WI_NIC_EVB3:
1893 printf("RF:PRISM2 MAC:HFA3842");
1894 sc->sc_prism2 = 1;
1895 break;
1896 case WI_NIC_HWB1153:
1897 printf("RF:PRISM1 MAC:HFA3841 CARD:HWB1153");
1898 sc->sc_prism2 = 1;
1899 break;
1900 case WI_NIC_P2_SST:
1901 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163-SST-flash");
1902 sc->sc_prism2 = 1;
1903 break;
1904 case WI_NIC_PRISM2_5:
1905 printf("RF:PRISM2.5 MAC:ISL3873");
1906 sc->sc_prism2 = 1;
1907 break;
1908 case WI_NIC_3874A:
1909 printf("RF:PRISM2.5 MAC:ISL3874A(PCI)");
1910 sc->sc_prism2 = 1;
1911 break;
1912 default:
1913 printf("Lucent chip or unknown chip\n");
1914 sc->sc_prism2 = 0;
1915 break;
1916 }
1917
1918 if (sc->sc_prism2) {
1919 /* try to get prism2 firm version */
1920 memset(&ver, 0, sizeof(ver));
1921 ver.wi_type = WI_RID_IDENT;
1922 ver.wi_len = 5;
1923 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1924 LE16TOH(ver.wi_ver[1]);
1925 LE16TOH(ver.wi_ver[2]);
1926 LE16TOH(ver.wi_ver[3]);
1927 printf(", Firmware: %i.%i variant %i\n", ver.wi_ver[2],
1928 ver.wi_ver[3], ver.wi_ver[1]);
1929 sc->sc_prism2_ver = ver.wi_ver[2] * 100 +
1930 ver.wi_ver[3] * 10 + ver.wi_ver[1];
1931 }
1932
1933 return;
1934 }
1935
1936 int
1937 wi_detach(sc)
1938 struct wi_softc *sc;
1939 {
1940 struct ifnet *ifp = sc->sc_ifp;
1941 int s;
1942
1943 if (!sc->sc_attached)
1944 return (0);
1945
1946 s = splnet();
1947 callout_stop(&sc->wi_stats_ch);
1948 callout_stop(&sc->wi_scan_ch);
1949
1950 /* Delete all remaining media. */
1951 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
1952
1953 ether_ifdetach(ifp);
1954 if_detach(ifp);
1955 if (sc->sc_enabled) {
1956 if (sc->sc_disable)
1957 (*sc->sc_disable)(sc);
1958 sc->sc_enabled = 0;
1959 }
1960 splx(s);
1961 return (0);
1962 }
1963
1964 void
1965 wi_power(sc, why)
1966 struct wi_softc *sc;
1967 int why;
1968 {
1969 int s;
1970
1971 if (!sc->sc_enabled)
1972 return;
1973
1974 s = splnet();
1975 switch (why) {
1976 case PWR_SUSPEND:
1977 case PWR_STANDBY:
1978 wi_stop(sc->sc_ifp, 0);
1979 if (sc->sc_enabled) {
1980 if (sc->sc_disable)
1981 (*sc->sc_disable)(sc);
1982 }
1983 break;
1984 case PWR_RESUME:
1985 sc->sc_enabled = 0;
1986 wi_init(sc->sc_ifp);
1987 (void)wi_intr(sc);
1988 break;
1989 case PWR_SOFTSUSPEND:
1990 case PWR_SOFTSTANDBY:
1991 case PWR_SOFTRESUME:
1992 break;
1993 }
1994 splx(s);
1995 }
1996
1997 static int
1998 wi_set_ssid(ws, id, len)
1999 struct ieee80211_nwid *ws;
2000 u_int8_t *id;
2001 int len;
2002 {
2003
2004 if (len > IEEE80211_NWID_LEN)
2005 return (EINVAL);
2006 ws->i_len = len;
2007 memcpy(ws->i_nwid, id, len);
2008 return (0);
2009 }
2010
2011 static void
2012 wi_request_fill_ssid(wreq, ws)
2013 struct wi_req *wreq;
2014 struct ieee80211_nwid *ws;
2015 {
2016 int len = ws->i_len;
2017
2018 memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
2019 wreq->wi_val[0] = htole16(len);
2020 wreq->wi_len = roundup(len, 2) / 2 + 2;
2021 memcpy(&wreq->wi_val[1], ws->i_nwid, len);
2022 }
2023
2024 static int
2025 wi_write_ssid(sc, type, wreq, ws)
2026 struct wi_softc *sc;
2027 int type;
2028 struct wi_req *wreq;
2029 struct ieee80211_nwid *ws;
2030 {
2031
2032 wreq->wi_type = type;
2033 wi_request_fill_ssid(wreq, ws);
2034 return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
2035 }
2036
2037 static int
2038 wi_sync_media(sc, ptype, txrate)
2039 struct wi_softc *sc;
2040 int ptype;
2041 int txrate;
2042 {
2043 int media = sc->sc_media.ifm_cur->ifm_media;
2044 int options = IFM_OPTIONS(media);
2045 int subtype;
2046
2047 switch (txrate) {
2048 case 1:
2049 subtype = IFM_IEEE80211_DS1;
2050 break;
2051 case 2:
2052 subtype = IFM_IEEE80211_DS2;
2053 break;
2054 case 3:
2055 subtype = IFM_AUTO;
2056 break;
2057 case 11:
2058 subtype = IFM_IEEE80211_DS11;
2059 break;
2060 default:
2061 subtype = IFM_MANUAL; /* Unable to represent */
2062 break;
2063 }
2064 switch (ptype) {
2065 case WI_PORTTYPE_ADHOC:
2066 options |= IFM_IEEE80211_ADHOC;
2067 break;
2068 case WI_PORTTYPE_BSS:
2069 options &= ~IFM_IEEE80211_ADHOC;
2070 break;
2071 default:
2072 subtype = IFM_MANUAL; /* Unable to represent */
2073 break;
2074 }
2075 media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
2076 IFM_INST(media));
2077 if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
2078 return (EINVAL);
2079 ifmedia_set(&sc->sc_media, media);
2080 sc->wi_ptype = ptype;
2081 sc->wi_tx_rate = txrate;
2082 return (0);
2083 }
2084
2085 static int
2086 wi_media_change(ifp)
2087 struct ifnet *ifp;
2088 {
2089 struct wi_softc *sc = ifp->if_softc;
2090 int otype = sc->wi_ptype;
2091 int orate = sc->wi_tx_rate;
2092
2093 if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2094 sc->wi_ptype = WI_PORTTYPE_ADHOC;
2095 else
2096 sc->wi_ptype = WI_PORTTYPE_BSS;
2097
2098 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
2099 case IFM_IEEE80211_DS1:
2100 sc->wi_tx_rate = 1;
2101 break;
2102 case IFM_IEEE80211_DS2:
2103 sc->wi_tx_rate = 2;
2104 break;
2105 case IFM_AUTO:
2106 sc->wi_tx_rate = 3;
2107 break;
2108 case IFM_IEEE80211_DS11:
2109 sc->wi_tx_rate = 11;
2110 break;
2111 }
2112
2113 if (sc->sc_enabled != 0) {
2114 if (otype != sc->wi_ptype ||
2115 orate != sc->wi_tx_rate)
2116 wi_init(ifp);
2117 }
2118
2119 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
2120
2121 return (0);
2122 }
2123
2124 static void
2125 wi_media_status(ifp, imr)
2126 struct ifnet *ifp;
2127 struct ifmediareq *imr;
2128 {
2129 struct wi_softc *sc = ifp->if_softc;
2130
2131 if (sc->sc_enabled == 0) {
2132 imr->ifm_active = IFM_IEEE80211|IFM_NONE;
2133 imr->ifm_status = 0;
2134 return;
2135 }
2136
2137 imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
2138 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2139 }
2140
2141 static int
2142 wi_set_nwkey(sc, nwkey)
2143 struct wi_softc *sc;
2144 struct ieee80211_nwkey *nwkey;
2145 {
2146 int i, error;
2147 size_t len;
2148 struct wi_req wreq;
2149 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
2150
2151 if (!sc->wi_has_wep)
2152 return ENODEV;
2153 if (nwkey->i_defkid <= 0 ||
2154 nwkey->i_defkid > IEEE80211_WEP_NKID)
2155 return EINVAL;
2156 memcpy(wk, &sc->wi_keys, sizeof(*wk));
2157 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2158 if (nwkey->i_key[i].i_keydat == NULL)
2159 continue;
2160 len = nwkey->i_key[i].i_keylen;
2161 if (len > sizeof(wk->wi_keys[i].wi_keydat))
2162 return EINVAL;
2163 error = copyin(nwkey->i_key[i].i_keydat,
2164 wk->wi_keys[i].wi_keydat, len);
2165 if (error)
2166 return error;
2167 wk->wi_keys[i].wi_keylen = htole16(len);
2168 }
2169
2170 wk->wi_len = (sizeof(*wk) / 2) + 1;
2171 wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2172 if (sc->sc_enabled != 0) {
2173 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2174 if (error)
2175 return error;
2176 }
2177 error = wi_setdef(sc, &wreq);
2178 if (error)
2179 return error;
2180
2181 wreq.wi_len = 2;
2182 wreq.wi_type = WI_RID_TX_CRYPT_KEY;
2183 wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
2184 if (sc->sc_enabled != 0) {
2185 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2186 if (error)
2187 return error;
2188 }
2189 error = wi_setdef(sc, &wreq);
2190 if (error)
2191 return error;
2192
2193 wreq.wi_type = WI_RID_ENCRYPTION;
2194 wreq.wi_val[0] = htole16(nwkey->i_wepon);
2195 if (sc->sc_enabled != 0) {
2196 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2197 if (error)
2198 return error;
2199 }
2200 error = wi_setdef(sc, &wreq);
2201 if (error)
2202 return error;
2203
2204 if (sc->sc_enabled != 0)
2205 wi_init(&sc->sc_ethercom.ec_if);
2206 return 0;
2207 }
2208
2209 static int
2210 wi_get_nwkey(sc, nwkey)
2211 struct wi_softc *sc;
2212 struct ieee80211_nwkey *nwkey;
2213 {
2214 int i, len, error;
2215 struct wi_ltv_keys *wk = &sc->wi_keys;
2216
2217 if (!sc->wi_has_wep)
2218 return ENODEV;
2219 nwkey->i_wepon = sc->wi_use_wep;
2220 nwkey->i_defkid = sc->wi_tx_key + 1;
2221
2222 /* do not show any keys to non-root user */
2223 error = suser(curproc->p_ucred, &curproc->p_acflag);
2224 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2225 if (nwkey->i_key[i].i_keydat == NULL)
2226 continue;
2227 /* error holds results of suser() for the first time */
2228 if (error)
2229 return error;
2230 len = le16toh(wk->wi_keys[i].wi_keylen);
2231 if (nwkey->i_key[i].i_keylen < len)
2232 return ENOSPC;
2233 nwkey->i_key[i].i_keylen = len;
2234 error = copyout(wk->wi_keys[i].wi_keydat,
2235 nwkey->i_key[i].i_keydat, len);
2236 if (error)
2237 return error;
2238 }
2239 return 0;
2240 }
2241
2242 static int
2243 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
2244 {
2245
2246 sc->wi_pm_enabled = power->i_enabled;
2247 sc->wi_max_sleep = power->i_maxsleep;
2248
2249 if (sc->sc_enabled)
2250 return (wi_init(&sc->sc_ethercom.ec_if));
2251
2252 return (0);
2253 }
2254
2255 static int
2256 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
2257 {
2258
2259 power->i_enabled = sc->wi_pm_enabled;
2260 power->i_maxsleep = sc->wi_max_sleep;
2261
2262 return (0);
2263 }
2264