wi.c revision 1.35 1 /* $NetBSD: wi.c,v 1.35 2002/01/21 11:28:18 ichiro Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.35 2002/01/21 11:28:18 ichiro Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static void wi_reset __P((struct wi_softc *));
108 static int wi_ioctl __P((struct ifnet *, u_long, caddr_t));
109 static void wi_start __P((struct ifnet *));
110 static void wi_watchdog __P((struct ifnet *));
111 static int wi_init __P((struct ifnet *));
112 static void wi_stop __P((struct ifnet *, int));
113 static void wi_rxeof __P((struct wi_softc *));
114 static void wi_txeof __P((struct wi_softc *, int));
115 static void wi_update_stats __P((struct wi_softc *));
116 static void wi_setmulti __P((struct wi_softc *));
117
118 static int wi_cmd __P((struct wi_softc *, int, int));
119 static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *));
120 static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *));
121 static int wi_read_data __P((struct wi_softc *, int,
122 int, caddr_t, int));
123 static int wi_write_data __P((struct wi_softc *, int,
124 int, caddr_t, int));
125 static int wi_seek __P((struct wi_softc *, int, int, int));
126 static int wi_alloc_nicmem __P((struct wi_softc *, int, int *));
127 static void wi_inquire __P((void *));
128 static void wi_wait_scan __P((void *));
129 static int wi_setdef __P((struct wi_softc *, struct wi_req *));
130 static int wi_getdef __P((struct wi_softc *, struct wi_req *));
131 static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int));
132
133 static int wi_media_change __P((struct ifnet *));
134 static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
135
136 static void wi_get_id __P((struct wi_softc *));
137
138 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
139 static void wi_request_fill_ssid __P((struct wi_req *,
140 struct ieee80211_nwid *));
141 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
142 struct ieee80211_nwid *));
143 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
144 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
145 static int wi_sync_media __P((struct wi_softc *, int, int));
146 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
147 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
148
149 int
150 wi_attach(sc)
151 struct wi_softc *sc;
152 {
153 struct ifnet *ifp = sc->sc_ifp;
154 struct wi_ltv_macaddr mac;
155 struct wi_ltv_gen gen;
156 static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
157 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
158 };
159 int s;
160
161 s = splnet();
162
163 callout_init(&sc->wi_inquire_ch);
164 callout_init(&sc->wi_scan_sh);
165
166 /* Make sure interrupts are disabled. */
167 CSR_WRITE_2(sc, WI_INT_EN, 0);
168 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
169
170 /* Reset the NIC. */
171 wi_reset(sc);
172
173 memset(&mac, 0, sizeof(mac));
174 /* Read the station address. */
175 mac.wi_type = WI_RID_MAC_NODE;
176 mac.wi_len = 4;
177 wi_read_record(sc, (struct wi_ltv_gen *)&mac);
178 memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
179
180 /*
181 * Check if we got anything meaningful.
182 *
183 * Is it really enough just checking against null ethernet address?
184 * Or, check against possible vendor? XXX.
185 */
186 if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
187 printf("%s: could not get mac address, attach failed\n",
188 sc->sc_dev.dv_xname);
189 return 1;
190 }
191
192 printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
193
194 /* Read NIC identification */
195 wi_get_id(sc);
196
197 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
198 ifp->if_softc = sc;
199 ifp->if_start = wi_start;
200 ifp->if_ioctl = wi_ioctl;
201 ifp->if_watchdog = wi_watchdog;
202 ifp->if_init = wi_init;
203 ifp->if_stop = wi_stop;
204 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
205 #ifdef IFF_NOTRAILERS
206 ifp->if_flags |= IFF_NOTRAILERS;
207 #endif
208 IFQ_SET_READY(&ifp->if_snd);
209
210 (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
211 sizeof(WI_DEFAULT_NODENAME) - 1);
212 (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
213 sizeof(WI_DEFAULT_NETNAME) - 1);
214 (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
215 sizeof(WI_DEFAULT_IBSS) - 1);
216
217 sc->wi_portnum = WI_DEFAULT_PORT;
218 sc->wi_ptype = WI_PORTTYPE_BSS;
219 sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
220 sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
221 sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
222 sc->wi_max_data_len = WI_DEFAULT_DATALEN;
223 sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
224 sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
225 sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
226 sc->wi_roaming = WI_DEFAULT_ROAMING;
227 sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
228
229 /*
230 * Read the default channel from the NIC. This may vary
231 * depending on the country where the NIC was purchased, so
232 * we can't hard-code a default and expect it to work for
233 * everyone.
234 */
235 gen.wi_type = WI_RID_OWN_CHNL;
236 gen.wi_len = 2;
237 wi_read_record(sc, &gen);
238 sc->wi_channel = le16toh(gen.wi_val);
239
240 memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats));
241
242 /* AP info was filled with 0 */
243 memset((char *)&sc->wi_aps, 0, sizeof(sc->wi_aps));
244 sc->wi_scanning=0;
245 sc->wi_naps=0;
246
247 /*
248 * Find out if we support WEP on this card.
249 */
250 gen.wi_type = WI_RID_WEP_AVAIL;
251 gen.wi_len = 2;
252 wi_read_record(sc, &gen);
253 sc->wi_has_wep = le16toh(gen.wi_val);
254
255 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
256 #define IFM_AUTOADHOC \
257 IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0)
258 #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL)
259 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
260 ADD(IFM_AUTOADHOC, 0);
261 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
262 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
263 IFM_IEEE80211_ADHOC, 0), 0);
264 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
265 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
266 IFM_IEEE80211_ADHOC, 0), 0);
267 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
268 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
269 IFM_IEEE80211_ADHOC, 0), 0);
270 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
271 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
272 IFM_IEEE80211_ADHOC, 0), 0);
273 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
274 #undef ADD
275 ifmedia_set(&sc->sc_media, IFM_AUTOADHOC);
276
277 /*
278 * Call MI attach routines.
279 */
280 if_attach(ifp);
281 ether_ifattach(ifp, mac.wi_mac_addr);
282
283 ifp->if_baudrate = IF_Mbps(2);
284
285 /* Attach is successful. */
286 sc->sc_attached = 1;
287
288 splx(s);
289 return 0;
290 }
291
292 static void wi_rxeof(sc)
293 struct wi_softc *sc;
294 {
295 struct ifnet *ifp;
296 struct ether_header *eh;
297 struct wi_frame rx_frame;
298 struct mbuf *m;
299 int id;
300
301 ifp = sc->sc_ifp;
302
303 id = CSR_READ_2(sc, WI_RX_FID);
304
305 /* First read in the frame header */
306 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
307 ifp->if_ierrors++;
308 return;
309 }
310
311 /*
312 * Drop undecryptable or packets with receive errors here
313 */
314 if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) {
315 ifp->if_ierrors++;
316 return;
317 }
318
319 MGETHDR(m, M_DONTWAIT, MT_DATA);
320 if (m == NULL) {
321 ifp->if_ierrors++;
322 return;
323 }
324 MCLGET(m, M_DONTWAIT);
325 if (!(m->m_flags & M_EXT)) {
326 m_freem(m);
327 ifp->if_ierrors++;
328 return;
329 }
330
331 /* Align the data after the ethernet header */
332 m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
333 - sizeof(struct ether_header);
334
335 eh = mtod(m, struct ether_header *);
336 m->m_pkthdr.rcvif = ifp;
337
338 if (le16toh(rx_frame.wi_status) == WI_STAT_1042 ||
339 le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL ||
340 le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) {
341 if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
342 printf("%s: oversized packet received "
343 "(wi_dat_len=%d, wi_status=0x%x)\n",
344 sc->sc_dev.dv_xname,
345 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
346 m_freem(m);
347 ifp->if_ierrors++;
348 return;
349 }
350 m->m_pkthdr.len = m->m_len =
351 le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
352
353 memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr,
354 ETHER_ADDR_LEN);
355 memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr,
356 ETHER_ADDR_LEN);
357 memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type,
358 sizeof(u_int16_t));
359
360 if (wi_read_data(sc, id, WI_802_11_OFFSET,
361 mtod(m, caddr_t) + sizeof(struct ether_header),
362 m->m_len + 2)) {
363 m_freem(m);
364 ifp->if_ierrors++;
365 return;
366 }
367 } else {
368 if ((le16toh(rx_frame.wi_dat_len) +
369 sizeof(struct ether_header)) > MCLBYTES) {
370 printf("%s: oversized packet received "
371 "(wi_dat_len=%d, wi_status=0x%x)\n",
372 sc->sc_dev.dv_xname,
373 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
374 m_freem(m);
375 ifp->if_ierrors++;
376 return;
377 }
378 m->m_pkthdr.len = m->m_len =
379 le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
380
381 if (wi_read_data(sc, id, WI_802_3_OFFSET,
382 mtod(m, caddr_t), m->m_len + 2)) {
383 m_freem(m);
384 ifp->if_ierrors++;
385 return;
386 }
387 }
388
389 ifp->if_ipackets++;
390
391 #if NBPFILTER > 0
392 /* Handle BPF listeners. */
393 if (ifp->if_bpf)
394 bpf_mtap(ifp->if_bpf, m);
395 #endif
396
397 /* Receive packet. */
398 (*ifp->if_input)(ifp, m);
399 }
400
401 static void wi_txeof(sc, status)
402 struct wi_softc *sc;
403 int status;
404 {
405 struct ifnet *ifp = sc->sc_ifp;
406
407 ifp->if_timer = 0;
408 ifp->if_flags &= ~IFF_OACTIVE;
409
410 if (status & WI_EV_TX_EXC)
411 ifp->if_oerrors++;
412 else
413 ifp->if_opackets++;
414
415 return;
416 }
417
418 void wi_inquire(xsc)
419 void *xsc;
420 {
421 struct wi_softc *sc;
422 struct ifnet *ifp;
423
424 sc = xsc;
425 ifp = &sc->sc_ethercom.ec_if;
426
427 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
428 return;
429
430 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
431
432 /* Don't do this while we're transmitting */
433 if (ifp->if_flags & IFF_OACTIVE)
434 return;
435
436 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
437 }
438
439 void wi_wait_scan(xsc)
440 void *xsc;
441 {
442 struct wi_softc *sc;
443 struct ifnet *ifp;
444
445 sc = xsc;
446 ifp = &sc->sc_ethercom.ec_if;
447
448 /* If not scanning, ignore */
449 if (!sc->wi_scanning)
450 return;
451
452 /* Wait for to make INQUIRE */
453 if (ifp->if_flags & IFF_OACTIVE) {
454 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
455 return;
456 }
457
458 /* try INQUIRE */
459 if (wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS) == ETIMEDOUT) {
460 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
461 return;
462 }
463 }
464
465 void wi_update_stats(sc)
466 struct wi_softc *sc;
467 {
468 struct wi_ltv_gen gen;
469 struct wi_scan_header ap2_header; /* Prism2 header */
470 struct wi_scan_data_p2 ap2; /* Prism2 scantable*/
471 struct wi_scan_data ap; /* Lucent scantable */
472 u_int16_t id;
473 struct ifnet *ifp;
474 u_int32_t *ptr;
475 int len, naps, i, j;
476 u_int16_t t;
477
478 ifp = &sc->sc_ethercom.ec_if;
479
480 id = CSR_READ_2(sc, WI_INFO_FID);
481
482 wi_read_data(sc, id, 0, (char *)&gen, 4);
483
484 switch (gen.wi_type) {
485 case WI_INFO_SCAN_RESULTS:
486 if (gen.wi_len < 3)
487 break;
488 if (sc->sc_prism2) { /* Prism2 chip */
489 naps = 2 * (gen.wi_len - 3) / sizeof(ap2);
490 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
491 sc->wi_naps = naps;
492 /* Read Header */
493 for(j=0; j < sizeof(ap2_header) / 2; j++)
494 ((u_int16_t *)&ap2_header)[j] =
495 CSR_READ_2(sc, WI_DATA1);
496 /* Read Data */
497 for (i=0; i < naps; i++) {
498 for(j=0; j < sizeof(ap2) / 2; j++)
499 ((u_int16_t *)&ap2)[j] =
500 CSR_READ_2(sc, WI_DATA1);
501 sc->wi_aps[i].scanreason = ap2_header.wi_reason;
502 memcpy(sc->wi_aps[i].bssid, ap2.wi_bssid, 6);
503 sc->wi_aps[i].channel = ap2.wi_chid;
504 sc->wi_aps[i].signal = ap2.wi_signal;
505 sc->wi_aps[i].noise = ap2.wi_noise;
506 sc->wi_aps[i].quality = ap2.wi_signal - ap2.wi_noise;
507 sc->wi_aps[i].capinfo = ap2.wi_capinfo;
508 sc->wi_aps[i].interval = ap2.wi_interval;
509 sc->wi_aps[i].rate = ap2.wi_rate;
510 if (ap2.wi_namelen > 32)
511 ap2.wi_namelen = 32;
512 sc->wi_aps[i].namelen = ap2.wi_namelen;
513 memcpy(sc->wi_aps[i].name, ap2.wi_name,
514 ap2.wi_namelen);
515 }
516 } else { /* Lucent chip */
517 naps = 2 * gen.wi_len / sizeof(ap);
518 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
519 sc->wi_naps = naps;
520 /* Read Data*/
521 for (i=0; i < naps; i++) {
522 for(j=0; j < sizeof(ap) / 2; j++)
523 ((u_int16_t *)&ap)[j] =
524 CSR_READ_2(sc, WI_DATA1);
525 memcpy(sc->wi_aps[i].bssid, ap.wi_bssid, 6);
526 sc->wi_aps[i].channel = ap.wi_chid;
527 sc->wi_aps[i].signal = ap.wi_signal;
528 sc->wi_aps[i].noise = ap.wi_noise;
529 sc->wi_aps[i].quality = ap.wi_signal - ap.wi_noise;
530 sc->wi_aps[i].capinfo = ap.wi_capinfo;
531 sc->wi_aps[i].interval = ap.wi_interval;
532 if (ap.wi_namelen > 32)
533 ap.wi_namelen = 32;
534 sc->wi_aps[i].namelen = ap.wi_namelen;
535 memcpy(sc->wi_aps[i].name, ap.wi_name,
536 ap.wi_namelen);
537 }
538 }
539 /* Done scanning */
540 sc->wi_scanning = 0;
541 break;
542
543 case WI_INFO_COUNTERS:
544 /* some card versions have a larger stats structure */
545 len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
546 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
547 ptr = (u_int32_t *)&sc->wi_stats;
548
549 for (i = 0; i < len; i++) {
550 t = CSR_READ_2(sc, WI_DATA1);
551 #ifdef WI_HERMES_STATS_WAR
552 if (t > 0xF000)
553 t = ~t & 0xFFFF;
554 #endif
555 ptr[i] += t;
556 }
557
558 ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
559 sc->wi_stats.wi_tx_multi_retries +
560 sc->wi_stats.wi_tx_retry_limit;
561 break;
562
563 case WI_INFO_LINK_STAT: {
564 static char *msg[] = {
565 "connected",
566 "disconnected",
567 "AP change",
568 "AP out of range",
569 "AP in range",
570 "Association Faild"
571 };
572
573 if (gen.wi_len != 2) {
574 #ifdef WI_DEBUG
575 printf("WI_INFO_LINK_STAT: len=%d\n", gen.wi_len);
576 #endif
577 break;
578 }
579 t = CSR_READ_2(sc, WI_DATA1);
580 if ((t < 1) || (t > 6)) {
581 #ifdef WI_DEBUG
582 printf("WI_INFO_LINK_STAT: status %d\n", t);
583 #endif
584 break;
585 }
586 printf("%s: %s\n", sc->sc_dev.dv_xname, msg[t - 1]);
587 break;
588 }
589
590 default:
591 #if 0
592 printf("Got info type: %04x\n", gen.wi_type);
593 #endif
594 for (i = 0; i < gen.wi_len; i++) {
595 t = CSR_READ_2(sc, WI_DATA1);
596 #if 0
597 printf("[0x%02x] = 0x%04x\n", i, t);
598 #endif
599 }
600 break;
601 }
602 }
603
604 int wi_intr(arg)
605 void *arg;
606 {
607 struct wi_softc *sc = arg;
608 struct ifnet *ifp;
609 u_int16_t status;
610
611 if (sc->sc_enabled == 0 ||
612 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
613 (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
614 return (0);
615
616 ifp = &sc->sc_ethercom.ec_if;
617
618 if (!(ifp->if_flags & IFF_UP)) {
619 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
620 CSR_WRITE_2(sc, WI_INT_EN, 0);
621 return 1;
622 }
623
624 /* Disable interrupts. */
625 CSR_WRITE_2(sc, WI_INT_EN, 0);
626
627 status = CSR_READ_2(sc, WI_EVENT_STAT);
628 CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
629
630 if (status & WI_EV_RX) {
631 wi_rxeof(sc);
632 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
633 }
634
635 if (status & WI_EV_TX) {
636 wi_txeof(sc, status);
637 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
638 }
639
640 if (status & WI_EV_ALLOC) {
641 int id;
642 id = CSR_READ_2(sc, WI_ALLOC_FID);
643 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
644 if (id == sc->wi_tx_data_id)
645 wi_txeof(sc, status);
646 }
647
648 if (status & WI_EV_INFO) {
649 wi_update_stats(sc);
650 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
651 }
652
653 if (status & WI_EV_TX_EXC) {
654 wi_txeof(sc, status);
655 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
656 }
657
658 if (status & WI_EV_INFO_DROP) {
659 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
660 }
661
662 /* Re-enable interrupts. */
663 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
664
665 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
666 wi_start(ifp);
667
668 return 1;
669 }
670
671 static int
672 wi_cmd(sc, cmd, val)
673 struct wi_softc *sc;
674 int cmd;
675 int val;
676 {
677 int i, s = 0;
678
679 /* wait for the busy bit to clear */
680 for (i = 0; i < WI_TIMEOUT; i++) {
681 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
682 break;
683 }
684
685 CSR_WRITE_2(sc, WI_PARAM0, val);
686 CSR_WRITE_2(sc, WI_PARAM1, 0);
687 CSR_WRITE_2(sc, WI_PARAM2, 0);
688 CSR_WRITE_2(sc, WI_COMMAND, cmd);
689
690 /* wait for the cmd completed bit */
691 for (i = 0; i < WI_TIMEOUT; i++) {
692 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
693 break;
694 DELAY(1);
695 }
696
697 /* Ack the command */
698 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
699
700 s = CSR_READ_2(sc, WI_STATUS);
701 if (s & WI_STAT_CMD_RESULT)
702 return(EIO);
703
704 if (i == WI_TIMEOUT)
705 return(ETIMEDOUT);
706
707 return(0);
708 }
709
710 static void
711 wi_reset(sc)
712 struct wi_softc *sc;
713 {
714 DELAY(100*1000); /* 100 m sec */
715 if (wi_cmd(sc, WI_CMD_INI, 0))
716 printf("%s: init failed\n", sc->sc_dev.dv_xname);
717 CSR_WRITE_2(sc, WI_INT_EN, 0);
718 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
719
720 /* Calibrate timer. */
721 WI_SETVAL(WI_RID_TICK_TIME, 8);
722
723 return;
724 }
725
726 void
727 wi_pci_reset(sc)
728 struct wi_softc *sc;
729 {
730 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
731 WI_PCI_COR, WI_PCI_SOFT_RESET);
732 DELAY(100*1000); /* 100 m sec */
733
734 bus_space_write_2(sc->sc_iot, sc->sc_ioh, WI_PCI_COR, 0x0);
735 DELAY(100*1000); /* 100 m sec */
736
737 return;
738 }
739
740 /*
741 * Read an LTV record from the NIC.
742 */
743 static int wi_read_record(sc, ltv)
744 struct wi_softc *sc;
745 struct wi_ltv_gen *ltv;
746 {
747 u_int16_t *ptr;
748 int len, code;
749 struct wi_ltv_gen *oltv, p2ltv;
750
751 if (sc->sc_prism2) {
752 oltv = ltv;
753 switch (ltv->wi_type) {
754 case WI_RID_ENCRYPTION:
755 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
756 p2ltv.wi_len = 2;
757 ltv = &p2ltv;
758 break;
759 case WI_RID_TX_CRYPT_KEY:
760 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
761 p2ltv.wi_len = 2;
762 ltv = &p2ltv;
763 break;
764 }
765 }
766
767 /* Tell the NIC to enter record read mode. */
768 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
769 return(EIO);
770
771 /* Seek to the record. */
772 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
773 return(EIO);
774
775 /*
776 * Read the length and record type and make sure they
777 * match what we expect (this verifies that we have enough
778 * room to hold all of the returned data).
779 */
780 len = CSR_READ_2(sc, WI_DATA1);
781 if (len > ltv->wi_len)
782 return(ENOSPC);
783 code = CSR_READ_2(sc, WI_DATA1);
784 if (code != ltv->wi_type)
785 return(EIO);
786
787 ltv->wi_len = len;
788 ltv->wi_type = code;
789
790 /* Now read the data. */
791 ptr = <v->wi_val;
792 if (ltv->wi_len > 1)
793 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
794
795 if (sc->sc_prism2) {
796 int v;
797
798 switch (oltv->wi_type) {
799 case WI_RID_TX_RATE:
800 case WI_RID_CUR_TX_RATE:
801 switch (le16toh(ltv->wi_val)) {
802 case 1: v = 1; break;
803 case 2: v = 2; break;
804 case 3: v = 6; break;
805 case 4: v = 5; break;
806 case 7: v = 7; break;
807 case 8: v = 11; break;
808 case 15: v = 3; break;
809 default: v = 0x100 + le16toh(ltv->wi_val); break;
810 }
811 oltv->wi_val = htole16(v);
812 break;
813 case WI_RID_ENCRYPTION:
814 oltv->wi_len = 2;
815 if (le16toh(ltv->wi_val) & 0x01)
816 oltv->wi_val = htole16(1);
817 else
818 oltv->wi_val = htole16(0);
819 break;
820 case WI_RID_TX_CRYPT_KEY:
821 oltv->wi_len = 2;
822 oltv->wi_val = ltv->wi_val;
823 break;
824 case WI_RID_AUTH_CNTL:
825 oltv->wi_len = 2;
826 if (le16toh(ltv->wi_val) & 0x01)
827 oltv->wi_val = htole16(1);
828 else if (le16toh(ltv->wi_val) & 0x02)
829 oltv->wi_val = htole16(2);
830 break;
831 }
832 }
833
834 return(0);
835 }
836
837 /*
838 * Same as read, except we inject data instead of reading it.
839 */
840 static int wi_write_record(sc, ltv)
841 struct wi_softc *sc;
842 struct wi_ltv_gen *ltv;
843 {
844 u_int16_t *ptr;
845 int i;
846 struct wi_ltv_gen p2ltv;
847
848 if (sc->sc_prism2) {
849 int v;
850
851 switch (ltv->wi_type) {
852 case WI_RID_TX_RATE:
853 p2ltv.wi_type = WI_RID_TX_RATE;
854 p2ltv.wi_len = 2;
855 switch (le16toh(ltv->wi_val)) {
856 case 1: v = 1; break;
857 case 2: v = 2; break;
858 case 3: v = 15; break;
859 case 5: v = 4; break;
860 case 6: v = 3; break;
861 case 7: v = 7; break;
862 case 11: v = 8; break;
863 default: return EINVAL;
864 }
865 p2ltv.wi_val = htole16(v);
866 ltv = &p2ltv;
867 break;
868 case WI_RID_ENCRYPTION:
869 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
870 p2ltv.wi_len = 2;
871 if (le16toh(ltv->wi_val))
872 p2ltv.wi_val = htole16(0x03);
873 else
874 p2ltv.wi_val = htole16(0x90);
875 ltv = &p2ltv;
876 break;
877 case WI_RID_TX_CRYPT_KEY:
878 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
879 p2ltv.wi_len = 2;
880 p2ltv.wi_val = ltv->wi_val;
881 ltv = &p2ltv;
882 break;
883 case WI_RID_DEFLT_CRYPT_KEYS:
884 {
885 int error;
886 struct wi_ltv_str ws;
887 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv;
888 for (i = 0; i < 4; i++) {
889 memset(&ws, 0, sizeof(ws));
890 if(wk->wi_keys[i].wi_keylen <= 5) {
891 /* 5 Octets WEP Keys */
892 ws.wi_len = 4;
893 memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 5);
894 ws.wi_str[5] = '\0';
895 } else {
896 /* 13 Octets WEP Keys */
897 ws.wi_len = 8;
898 memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 13);
899 ws.wi_str[13] = '\0';
900 }
901 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
902
903 if(wi_write_record(sc, (struct wi_ltv_gen *)&ws))
904 return error;
905 }
906 return 0;
907 }
908 case WI_RID_AUTH_CNTL:
909 p2ltv.wi_type = WI_RID_AUTH_CNTL;
910 p2ltv.wi_len = 2;
911 if (le16toh(ltv->wi_val) == 1)
912 p2ltv.wi_val = htole16(0x01);
913 else if (le16toh(ltv->wi_val) == 2)
914 p2ltv.wi_val = htole16(0x02);
915 ltv = &p2ltv;
916 break;
917 }
918 }
919
920 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
921 return(EIO);
922
923 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
924 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
925
926 /* Write data */
927 ptr = <v->wi_val;
928 if (ltv->wi_len > 1)
929 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
930
931 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
932 return(EIO);
933
934 return(0);
935 }
936
937 static int wi_seek(sc, id, off, chan)
938 struct wi_softc *sc;
939 int id, off, chan;
940 {
941 int i;
942 int selreg, offreg;
943 int status;
944
945 switch (chan) {
946 case WI_BAP0:
947 selreg = WI_SEL0;
948 offreg = WI_OFF0;
949 break;
950 case WI_BAP1:
951 selreg = WI_SEL1;
952 offreg = WI_OFF1;
953 break;
954 default:
955 printf("%s: invalid data path: %x\n",
956 sc->sc_dev.dv_xname, chan);
957 return(EIO);
958 }
959
960 CSR_WRITE_2(sc, selreg, id);
961 CSR_WRITE_2(sc, offreg, off);
962
963 for (i = 0; i < WI_TIMEOUT; i++) {
964 status = CSR_READ_2(sc, offreg);
965 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
966 break;
967 }
968
969 if (i == WI_TIMEOUT) {
970 printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
971 sc->sc_dev.dv_xname, id, off, status);
972 return(ETIMEDOUT);
973 }
974 return(0);
975 }
976
977 static int wi_read_data(sc, id, off, buf, len)
978 struct wi_softc *sc;
979 int id, off;
980 caddr_t buf;
981 int len;
982 {
983 u_int16_t *ptr;
984
985 if (wi_seek(sc, id, off, WI_BAP1))
986 return(EIO);
987
988 ptr = (u_int16_t *)buf;
989 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
990
991 return(0);
992 }
993
994 /*
995 * According to the comments in the HCF Light code, there is a bug in
996 * the Hermes (or possibly in certain Hermes firmware revisions) where
997 * the chip's internal autoincrement counter gets thrown off during
998 * data writes: the autoincrement is missed, causing one data word to
999 * be overwritten and subsequent words to be written to the wrong memory
1000 * locations. The end result is that we could end up transmitting bogus
1001 * frames without realizing it. The workaround for this is to write a
1002 * couple of extra guard words after the end of the transfer, then
1003 * attempt to read then back. If we fail to locate the guard words where
1004 * we expect them, we preform the transfer over again.
1005 */
1006 static int wi_write_data(sc, id, off, buf, len)
1007 struct wi_softc *sc;
1008 int id, off;
1009 caddr_t buf;
1010 int len;
1011 {
1012 u_int16_t *ptr;
1013
1014 #ifdef WI_HERMES_AUTOINC_WAR
1015 again:
1016 #endif
1017
1018 if (wi_seek(sc, id, off, WI_BAP0))
1019 return(EIO);
1020
1021 ptr = (u_int16_t *)buf;
1022 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
1023
1024 #ifdef WI_HERMES_AUTOINC_WAR
1025 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1026 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1027
1028 if (wi_seek(sc, id, off + len, WI_BAP0))
1029 return(EIO);
1030
1031 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1032 CSR_READ_2(sc, WI_DATA0) != 0x5678)
1033 goto again;
1034 #endif
1035
1036 return(0);
1037 }
1038
1039 /*
1040 * Allocate a region of memory inside the NIC and zero
1041 * it out.
1042 */
1043 static int wi_alloc_nicmem(sc, len, id)
1044 struct wi_softc *sc;
1045 int len;
1046 int *id;
1047 {
1048 int i;
1049
1050 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
1051 printf("%s: failed to allocate %d bytes on NIC\n",
1052 sc->sc_dev.dv_xname, len);
1053 return(ENOMEM);
1054 }
1055
1056 for (i = 0; i < WI_TIMEOUT; i++) {
1057 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1058 break;
1059 }
1060
1061 if (i == WI_TIMEOUT) {
1062 printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
1063 return(ETIMEDOUT);
1064 }
1065
1066 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1067 *id = CSR_READ_2(sc, WI_ALLOC_FID);
1068
1069 if (wi_seek(sc, *id, 0, WI_BAP0)) {
1070 printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
1071 return(EIO);
1072 }
1073
1074 for (i = 0; i < len / 2; i++)
1075 CSR_WRITE_2(sc, WI_DATA0, 0);
1076
1077 return(0);
1078 }
1079
1080 static void wi_setmulti(sc)
1081 struct wi_softc *sc;
1082 {
1083 struct ifnet *ifp;
1084 int i = 0;
1085 struct wi_ltv_mcast mcast;
1086 struct ether_multi *enm;
1087 struct ether_multistep estep;
1088 struct ethercom *ec = &sc->sc_ethercom;
1089
1090 ifp = &sc->sc_ethercom.ec_if;
1091
1092 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1093 allmulti:
1094 ifp->if_flags |= IFF_ALLMULTI;
1095 memset((char *)&mcast, 0, sizeof(mcast));
1096 mcast.wi_type = WI_RID_MCAST_LIST;
1097 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
1098
1099 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1100 return;
1101 }
1102
1103 i = 0;
1104 ETHER_FIRST_MULTI(estep, ec, enm);
1105 while (enm != NULL) {
1106 /* Punt on ranges or too many multicast addresses. */
1107 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1108 ETHER_ADDR_LEN) != 0 ||
1109 i >= 16)
1110 goto allmulti;
1111
1112 memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo,
1113 ETHER_ADDR_LEN);
1114 i++;
1115 ETHER_NEXT_MULTI(estep, enm);
1116 }
1117
1118 ifp->if_flags &= ~IFF_ALLMULTI;
1119 mcast.wi_type = WI_RID_MCAST_LIST;
1120 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
1121 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1122 }
1123
1124 static int
1125 wi_setdef(sc, wreq)
1126 struct wi_softc *sc;
1127 struct wi_req *wreq;
1128 {
1129 struct sockaddr_dl *sdl;
1130 struct ifnet *ifp;
1131 int error = 0;
1132
1133 ifp = &sc->sc_ethercom.ec_if;
1134
1135 switch(wreq->wi_type) {
1136 case WI_RID_MAC_NODE:
1137 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1138 memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val,
1139 ETHER_ADDR_LEN);
1140 memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN);
1141 break;
1142 case WI_RID_PORTTYPE:
1143 error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
1144 break;
1145 case WI_RID_TX_RATE:
1146 error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
1147 break;
1148 case WI_RID_MAX_DATALEN:
1149 sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1150 break;
1151 case WI_RID_RTS_THRESH:
1152 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1153 break;
1154 case WI_RID_SYSTEM_SCALE:
1155 sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1156 break;
1157 case WI_RID_CREATE_IBSS:
1158 sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1159 break;
1160 case WI_RID_OWN_CHNL:
1161 sc->wi_channel = le16toh(wreq->wi_val[0]);
1162 break;
1163 case WI_RID_NODENAME:
1164 error = wi_set_ssid(&sc->wi_nodeid,
1165 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1166 break;
1167 case WI_RID_DESIRED_SSID:
1168 error = wi_set_ssid(&sc->wi_netid,
1169 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1170 break;
1171 case WI_RID_OWN_SSID:
1172 error = wi_set_ssid(&sc->wi_ibssid,
1173 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1174 break;
1175 case WI_RID_PM_ENABLED:
1176 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1177 break;
1178 case WI_RID_MICROWAVE_OVEN:
1179 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1180 break;
1181 case WI_RID_MAX_SLEEP:
1182 sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1183 break;
1184 case WI_RID_AUTH_CNTL:
1185 sc->wi_authtype = le16toh(wreq->wi_val[0]);
1186 break;
1187 case WI_RID_ROAMING_MODE:
1188 sc->wi_roaming = le16toh(wreq->wi_val[0]);
1189 break;
1190 case WI_RID_ENCRYPTION:
1191 sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1192 break;
1193 case WI_RID_TX_CRYPT_KEY:
1194 sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1195 break;
1196 case WI_RID_DEFLT_CRYPT_KEYS:
1197 memcpy((char *)&sc->wi_keys, (char *)wreq,
1198 sizeof(struct wi_ltv_keys));
1199 break;
1200 default:
1201 error = EINVAL;
1202 break;
1203 }
1204
1205 return (error);
1206 }
1207
1208 static int
1209 wi_getdef(sc, wreq)
1210 struct wi_softc *sc;
1211 struct wi_req *wreq;
1212 {
1213 struct sockaddr_dl *sdl;
1214 struct ifnet *ifp;
1215 int error = 0;
1216
1217 ifp = &sc->sc_ethercom.ec_if;
1218
1219 wreq->wi_len = 2; /* XXX */
1220 switch (wreq->wi_type) {
1221 case WI_RID_MAC_NODE:
1222 wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
1223 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1224 memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN);
1225 memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1226 break;
1227 case WI_RID_PORTTYPE:
1228 wreq->wi_val[0] = htole16(sc->wi_ptype);
1229 break;
1230 case WI_RID_TX_RATE:
1231 wreq->wi_val[0] = htole16(sc->wi_tx_rate);
1232 break;
1233 case WI_RID_MAX_DATALEN:
1234 wreq->wi_val[0] = htole16(sc->wi_max_data_len);
1235 break;
1236 case WI_RID_RTS_THRESH:
1237 wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
1238 break;
1239 case WI_RID_SYSTEM_SCALE:
1240 wreq->wi_val[0] = htole16(sc->wi_ap_density);
1241 break;
1242 case WI_RID_CREATE_IBSS:
1243 wreq->wi_val[0] = htole16(sc->wi_create_ibss);
1244 break;
1245 case WI_RID_OWN_CHNL:
1246 wreq->wi_val[0] = htole16(sc->wi_channel);
1247 break;
1248 case WI_RID_NODENAME:
1249 wi_request_fill_ssid(wreq, &sc->wi_nodeid);
1250 break;
1251 case WI_RID_DESIRED_SSID:
1252 wi_request_fill_ssid(wreq, &sc->wi_netid);
1253 break;
1254 case WI_RID_OWN_SSID:
1255 wi_request_fill_ssid(wreq, &sc->wi_ibssid);
1256 break;
1257 case WI_RID_PM_ENABLED:
1258 wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
1259 break;
1260 case WI_RID_MICROWAVE_OVEN:
1261 wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
1262 break;
1263 case WI_RID_MAX_SLEEP:
1264 wreq->wi_val[0] = htole16(sc->wi_max_sleep);
1265 break;
1266 case WI_RID_AUTH_CNTL:
1267 wreq->wi_val[0] = htole16(sc->wi_authtype);
1268 break;
1269 case WI_RID_ROAMING_MODE:
1270 wreq->wi_val[0] = htole16(sc->wi_roaming);
1271 break;
1272 case WI_RID_WEP_AVAIL:
1273 wreq->wi_val[0] = htole16(sc->wi_has_wep);
1274 break;
1275 case WI_RID_ENCRYPTION:
1276 wreq->wi_val[0] = htole16(sc->wi_use_wep);
1277 break;
1278 case WI_RID_TX_CRYPT_KEY:
1279 wreq->wi_val[0] = htole16(sc->wi_tx_key);
1280 break;
1281 case WI_RID_DEFLT_CRYPT_KEYS:
1282 wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
1283 memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
1284 break;
1285 default:
1286 #if 0
1287 error = EIO;
1288 #else
1289 #ifdef WI_DEBUG
1290 printf("%s: wi_getdef: unknown request %d\n",
1291 sc->sc_dev.dv_xname, wreq->wi_type);
1292 #endif
1293 #endif
1294 break;
1295 }
1296
1297 return (error);
1298 }
1299
1300 static int
1301 wi_ioctl(ifp, command, data)
1302 struct ifnet *ifp;
1303 u_long command;
1304 caddr_t data;
1305 {
1306 int s, error = 0;
1307 int len;
1308 struct wi_softc *sc = ifp->if_softc;
1309 struct wi_req wreq;
1310 struct ifreq *ifr;
1311 struct proc *p = curproc;
1312 struct ieee80211_nwid nwid;
1313
1314 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1315 return (ENXIO);
1316
1317 s = splnet();
1318
1319 ifr = (struct ifreq *)data;
1320 switch (command) {
1321 case SIOCSIFADDR:
1322 case SIOCGIFADDR:
1323 case SIOCSIFMTU:
1324 error = ether_ioctl(ifp, command, data);
1325 break;
1326 case SIOCSIFFLAGS:
1327 if (ifp->if_flags & IFF_UP) {
1328 if (ifp->if_flags & IFF_RUNNING &&
1329 ifp->if_flags & IFF_PROMISC &&
1330 !(sc->wi_if_flags & IFF_PROMISC)) {
1331 WI_SETVAL(WI_RID_PROMISC, 1);
1332 } else if (ifp->if_flags & IFF_RUNNING &&
1333 !(ifp->if_flags & IFF_PROMISC) &&
1334 sc->wi_if_flags & IFF_PROMISC) {
1335 WI_SETVAL(WI_RID_PROMISC, 0);
1336 }
1337 wi_init(ifp);
1338 } else {
1339 if (ifp->if_flags & IFF_RUNNING) {
1340 wi_stop(ifp, 0);
1341 }
1342 }
1343 sc->wi_if_flags = ifp->if_flags;
1344
1345 if (!(ifp->if_flags & IFF_UP)) {
1346 if (sc->sc_enabled) {
1347 if (sc->sc_disable)
1348 (*sc->sc_disable)(sc);
1349 sc->sc_enabled = 0;
1350 ifp->if_flags &= ~IFF_RUNNING;
1351 }
1352 }
1353 error = 0;
1354 break;
1355 case SIOCADDMULTI:
1356 case SIOCDELMULTI:
1357 error = (command == SIOCADDMULTI) ?
1358 ether_addmulti(ifr, &sc->sc_ethercom) :
1359 ether_delmulti(ifr, &sc->sc_ethercom);
1360 if (error == ENETRESET) {
1361 if (sc->sc_enabled != 0) {
1362 /*
1363 * Multicast list has changed. Set the
1364 * hardware filter accordingly.
1365 */
1366 wi_setmulti(sc);
1367 }
1368 error = 0;
1369 }
1370 break;
1371 case SIOCSIFMEDIA:
1372 case SIOCGIFMEDIA:
1373 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1374 break;
1375 case SIOCGWAVELAN:
1376 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1377 if (error)
1378 break;
1379 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1380 wi_update_stats(sc);
1381 /* XXX native byte order */
1382 memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats,
1383 sizeof(sc->wi_stats));
1384 wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1385 } else if (wreq.wi_type == WI_RID_READ_APS) {
1386 if (sc->wi_scanning) {
1387 error = EINVAL;
1388 break;
1389 } else {
1390 len = sc->wi_naps * sizeof(struct wi_apinfo);
1391 len = len > WI_MAX_DATALEN ? WI_MAX_DATALEN : len;
1392 len = len / sizeof(struct wi_apinfo);
1393 memcpy((char *)&wreq.wi_val, (char *)&len, sizeof(len));
1394 memcpy((char *)&wreq.wi_val + sizeof(len),
1395 (char *)&sc->wi_aps,
1396 len * sizeof(struct wi_apinfo));
1397 }
1398 } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1399 /* For non-root user, return all-zeroes keys */
1400 if (suser(p->p_ucred, &p->p_acflag))
1401 memset((char *)&wreq, 0,
1402 sizeof(struct wi_ltv_keys));
1403 else
1404 memcpy((char *)&wreq, (char *)&sc->wi_keys,
1405 sizeof(struct wi_ltv_keys));
1406 } else {
1407 if (sc->sc_enabled == 0)
1408 error = wi_getdef(sc, &wreq);
1409 else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1410 error = EINVAL;
1411 }
1412 if (error == 0)
1413 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1414 break;
1415 case SIOCSWAVELAN:
1416 error = suser(p->p_ucred, &p->p_acflag);
1417 if (error)
1418 break;
1419 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1420 if (error)
1421 break;
1422 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1423 error = EINVAL;
1424 break;
1425 } else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1426 error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1427 wreq.wi_len);
1428 } else if (wreq.wi_type == WI_RID_SCAN_APS) {
1429 if (wreq.wi_len != 4) {
1430 error = EINVAL;
1431 break;
1432 }
1433 if (!sc->wi_scanning) {
1434 if (sc->sc_prism2) {
1435 wreq.wi_type = WI_RID_SCAN_REQ;
1436 error = wi_write_record(sc,
1437 (struct wi_ltv_gen *)&wreq);
1438 }
1439 if (!error) {
1440 sc->wi_scanning = 1;
1441 callout_reset(&sc->wi_scan_sh, hz * 1,
1442 wi_wait_scan, sc);
1443 }
1444 }
1445 } else {
1446 if (sc->sc_enabled != 0)
1447 error = wi_write_record(sc,
1448 (struct wi_ltv_gen *)&wreq);
1449 if (error == 0)
1450 error = wi_setdef(sc, &wreq);
1451 if (error == 0 && sc->sc_enabled != 0)
1452 /* Reinitialize WaveLAN. */
1453 wi_init(ifp);
1454 }
1455 break;
1456 case SIOCG80211NWID:
1457 if (sc->sc_enabled == 0) {
1458 /* Return the desired ID */
1459 error = copyout(&sc->wi_netid, ifr->ifr_data,
1460 sizeof(sc->wi_netid));
1461 } else {
1462 wreq.wi_type = WI_RID_CURRENT_SSID;
1463 wreq.wi_len = WI_MAX_DATALEN;
1464 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
1465 le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
1466 error = EINVAL;
1467 else {
1468 wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
1469 le16toh(wreq.wi_val[0]));
1470 error = copyout(&nwid, ifr->ifr_data,
1471 sizeof(nwid));
1472 }
1473 }
1474 break;
1475 case SIOCS80211NWID:
1476 error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
1477 if (error != 0)
1478 break;
1479 if (nwid.i_len > IEEE80211_NWID_LEN) {
1480 error = EINVAL;
1481 break;
1482 }
1483 if (sc->wi_netid.i_len == nwid.i_len &&
1484 memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
1485 break;
1486 wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
1487 if (sc->sc_enabled != 0)
1488 /* Reinitialize WaveLAN. */
1489 wi_init(ifp);
1490 break;
1491 case SIOCS80211NWKEY:
1492 error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
1493 break;
1494 case SIOCG80211NWKEY:
1495 error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
1496 break;
1497 case SIOCS80211POWER:
1498 error = wi_set_pm(sc, (struct ieee80211_power *)data);
1499 break;
1500 case SIOCG80211POWER:
1501 error = wi_get_pm(sc, (struct ieee80211_power *)data);
1502 break;
1503
1504 default:
1505 error = EINVAL;
1506 break;
1507 }
1508
1509 splx(s);
1510 return (error);
1511 }
1512
1513 static int
1514 wi_init(ifp)
1515 struct ifnet *ifp;
1516 {
1517 struct wi_softc *sc = ifp->if_softc;
1518 struct wi_req wreq;
1519 struct wi_ltv_macaddr mac;
1520 int error, id = 0;
1521
1522 if (!sc->sc_enabled) {
1523 if ((error = (*sc->sc_enable)(sc)) != 0)
1524 goto out;
1525 sc->sc_enabled = 1;
1526 }
1527
1528 wi_stop(ifp, 0);
1529 wi_reset(sc);
1530
1531 /* Program max data length. */
1532 WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1533
1534 /* Enable/disable IBSS creation. */
1535 WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1536
1537 /* Set the port type. */
1538 WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1539
1540 /* Program the RTS/CTS threshold. */
1541 WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1542
1543 /* Program the TX rate */
1544 WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1545
1546 /* Access point density */
1547 WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1548
1549 /* Power Management Enabled */
1550 WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1551
1552 /* Power Managment Max Sleep */
1553 WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1554
1555 /* Roaming type */
1556 WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
1557
1558 /* Specify the IBSS name */
1559 wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
1560
1561 /* Specify the network name */
1562 wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
1563
1564 /* Specify the frequency to use */
1565 WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1566
1567 /* Program the nodename. */
1568 wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
1569
1570 /* Set our MAC address. */
1571 mac.wi_len = 4;
1572 mac.wi_type = WI_RID_MAC_NODE;
1573 memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
1574 wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1575
1576 /* Initialize promisc mode. */
1577 if (ifp->if_flags & IFF_PROMISC) {
1578 WI_SETVAL(WI_RID_PROMISC, 1);
1579 } else {
1580 WI_SETVAL(WI_RID_PROMISC, 0);
1581 }
1582
1583 /* Configure WEP. */
1584 if (sc->wi_has_wep) {
1585 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1586 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1587 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1588 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1589 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1590 if (sc->sc_prism2 && sc->wi_use_wep) {
1591 /*
1592 * ONLY HWB3163 EVAL-CARD Firmware version
1593 * less than 0.8 variant3
1594 *
1595 * If promiscuous mode disable, Prism2 chip
1596 * does not work with WEP .
1597 * It is under investigation for details.
1598 * (ichiro (at) netbsd.org)
1599 */
1600 if (sc->sc_prism2_ver < 83 ) {
1601 /* firm ver < 0.8 variant 3 */
1602 WI_SETVAL(WI_RID_PROMISC, 1);
1603 }
1604 WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
1605 }
1606 }
1607
1608 /* Set multicast filter. */
1609 wi_setmulti(sc);
1610
1611 /* Enable desired port */
1612 wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
1613
1614 /* scanning variable is modal, therefore reinit to OFF, in case it was on. */
1615 sc->wi_scanning=0;
1616 sc->wi_naps=0;
1617
1618 if ((error = wi_alloc_nicmem(sc,
1619 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1620 printf("%s: tx buffer allocation failed\n",
1621 sc->sc_dev.dv_xname);
1622 goto out;
1623 }
1624 sc->wi_tx_data_id = id;
1625
1626 if ((error = wi_alloc_nicmem(sc,
1627 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1628 printf("%s: mgmt. buffer allocation failed\n",
1629 sc->sc_dev.dv_xname);
1630 goto out;
1631 }
1632 sc->wi_tx_mgmt_id = id;
1633
1634 /* Enable interrupts */
1635 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1636
1637 ifp->if_flags |= IFF_RUNNING;
1638 ifp->if_flags &= ~IFF_OACTIVE;
1639
1640 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
1641
1642 out:
1643 if (error) {
1644 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1645 ifp->if_timer = 0;
1646 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1647 }
1648 return (error);
1649 }
1650
1651 static void
1652 wi_start(ifp)
1653 struct ifnet *ifp;
1654 {
1655 struct wi_softc *sc;
1656 struct mbuf *m0;
1657 struct wi_frame tx_frame;
1658 struct ether_header *eh;
1659 int id;
1660
1661 sc = ifp->if_softc;
1662
1663 if (ifp->if_flags & IFF_OACTIVE)
1664 return;
1665
1666 IFQ_DEQUEUE(&ifp->if_snd, m0);
1667 if (m0 == NULL)
1668 return;
1669
1670 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1671 id = sc->wi_tx_data_id;
1672 eh = mtod(m0, struct ether_header *);
1673
1674 /*
1675 * Use RFC1042 encoding for IP and ARP datagrams,
1676 * 802.3 for anything else.
1677 */
1678 if (ntohs(eh->ether_type) == ETHERTYPE_IP ||
1679 ntohs(eh->ether_type) == ETHERTYPE_ARP ||
1680 ntohs(eh->ether_type) == ETHERTYPE_REVARP ||
1681 ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
1682 memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost,
1683 ETHER_ADDR_LEN);
1684 memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost,
1685 ETHER_ADDR_LEN);
1686 memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost,
1687 ETHER_ADDR_LEN);
1688 memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost,
1689 ETHER_ADDR_LEN);
1690
1691 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1692 tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
1693 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1694 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1695 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1696 tx_frame.wi_type = eh->ether_type;
1697
1698 m_copydata(m0, sizeof(struct ether_header),
1699 m0->m_pkthdr.len - sizeof(struct ether_header),
1700 (caddr_t)&sc->wi_txbuf);
1701
1702 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1703 sizeof(struct wi_frame));
1704 wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1705 (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1706 } else {
1707 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
1708
1709 m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1710
1711 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1712 sizeof(struct wi_frame));
1713 wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1714 m0->m_pkthdr.len + 2);
1715 }
1716
1717 #if NBPFILTER > 0
1718 /*
1719 * If there's a BPF listener, bounce a copy of
1720 * this frame to him.
1721 */
1722 if (ifp->if_bpf)
1723 bpf_mtap(ifp->if_bpf, m0);
1724 #endif
1725
1726 m_freem(m0);
1727
1728 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1729 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1730
1731 ifp->if_flags |= IFF_OACTIVE;
1732
1733 /*
1734 * Set a timeout in case the chip goes out to lunch.
1735 */
1736 ifp->if_timer = 5;
1737
1738 return;
1739 }
1740
1741 static int
1742 wi_mgmt_xmit(sc, data, len)
1743 struct wi_softc *sc;
1744 caddr_t data;
1745 int len;
1746 {
1747 struct wi_frame tx_frame;
1748 int id;
1749 struct wi_80211_hdr *hdr;
1750 caddr_t dptr;
1751
1752 hdr = (struct wi_80211_hdr *)data;
1753 dptr = data + sizeof(struct wi_80211_hdr);
1754
1755 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1756 id = sc->wi_tx_mgmt_id;
1757
1758 memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr,
1759 sizeof(struct wi_80211_hdr));
1760
1761 tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
1762 tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1763
1764 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1765 wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1766 (len - sizeof(struct wi_80211_hdr)) + 2);
1767
1768 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1769 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1770 return(EIO);
1771 }
1772
1773 return(0);
1774 }
1775
1776 static void
1777 wi_stop(ifp, disable)
1778 struct ifnet *ifp;
1779 {
1780 struct wi_softc *sc = ifp->if_softc;
1781
1782 CSR_WRITE_2(sc, WI_INT_EN, 0);
1783 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1784
1785 callout_stop(&sc->wi_inquire_ch);
1786 callout_stop(&sc->wi_scan_sh);
1787
1788 if (disable) {
1789 if (sc->sc_enabled) {
1790 if (sc->sc_disable)
1791 (*sc->sc_disable)(sc);
1792 sc->sc_enabled = 0;
1793 }
1794 }
1795
1796 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1797 ifp->if_timer = 0;
1798 }
1799
1800 static void
1801 wi_watchdog(ifp)
1802 struct ifnet *ifp;
1803 {
1804 struct wi_softc *sc;
1805
1806 sc = ifp->if_softc;
1807
1808 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1809
1810 wi_init(ifp);
1811
1812 ifp->if_oerrors++;
1813
1814 return;
1815 }
1816
1817 void
1818 wi_shutdown(sc)
1819 struct wi_softc *sc;
1820 {
1821 int s;
1822
1823 s = splnet();
1824 if (sc->sc_enabled) {
1825 if (sc->sc_disable)
1826 (*sc->sc_disable)(sc);
1827 sc->sc_enabled = 0;
1828 }
1829 splx(s);
1830 }
1831
1832 int
1833 wi_activate(self, act)
1834 struct device *self;
1835 enum devact act;
1836 {
1837 struct wi_softc *sc = (struct wi_softc *)self;
1838 int rv = 0, s;
1839
1840 s = splnet();
1841 switch (act) {
1842 case DVACT_ACTIVATE:
1843 rv = EOPNOTSUPP;
1844 break;
1845
1846 case DVACT_DEACTIVATE:
1847 if_deactivate(&sc->sc_ethercom.ec_if);
1848 break;
1849 }
1850 splx(s);
1851 return (rv);
1852 }
1853
1854 static void
1855 wi_get_id(sc)
1856 struct wi_softc *sc;
1857 {
1858 struct wi_ltv_ver ver;
1859
1860 /* getting chip identity */
1861 memset(&ver, 0, sizeof(ver));
1862 ver.wi_type = WI_RID_CARD_ID;
1863 ver.wi_len = 5;
1864 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1865 printf("%s: using ", sc->sc_dev.dv_xname);
1866 switch (le16toh(ver.wi_ver[0])) {
1867 case WI_NIC_EVB2:
1868 printf("RF:PRISM2 MAC:HFA3841");
1869 sc->sc_prism2 = 1;
1870 break;
1871 case WI_NIC_HWB3763:
1872 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3763 rev.B");
1873 sc->sc_prism2 = 1;
1874 break;
1875 case WI_NIC_HWB3163:
1876 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.A");
1877 sc->sc_prism2 = 1;
1878 break;
1879 case WI_NIC_HWB3163B:
1880 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.B");
1881 sc->sc_prism2 = 1;
1882 break;
1883 case WI_NIC_EVB3:
1884 printf("RF:PRISM2 MAC:HFA3842");
1885 sc->sc_prism2 = 1;
1886 break;
1887 case WI_NIC_HWB1153:
1888 printf("RF:PRISM1 MAC:HFA3841 CARD:HWB1153");
1889 sc->sc_prism2 = 1;
1890 break;
1891 case WI_NIC_P2_SST:
1892 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163-SST-flash");
1893 sc->sc_prism2 = 1;
1894 break;
1895 case WI_NIC_PRISM2_5:
1896 printf("RF:PRISM2.5 MAC:ISL3873");
1897 sc->sc_prism2 = 1;
1898 break;
1899 case WI_NIC_3874A:
1900 printf("RF:PRISM2.5 MAC:ISL3874A(PCI)");
1901 sc->sc_prism2 = 1;
1902 break;
1903 default:
1904 printf("Lucent chip or unknown chip\n");
1905 sc->sc_prism2 = 0;
1906 break;
1907 }
1908
1909 if (sc->sc_prism2) {
1910 /* try to get prism2 firm version */
1911 memset(&ver, 0, sizeof(ver));
1912 ver.wi_type = WI_RID_STA_IDENTITY;
1913 ver.wi_len = 5;
1914 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1915 LE16TOH(ver.wi_ver[1]);
1916 LE16TOH(ver.wi_ver[2]);
1917 LE16TOH(ver.wi_ver[3]);
1918 printf(", Firmware: %i.%i variant %i\n", ver.wi_ver[2],
1919 ver.wi_ver[3], ver.wi_ver[1]);
1920 sc->sc_prism2_ver = ver.wi_ver[2] * 100 +
1921 ver.wi_ver[3] * 10 + ver.wi_ver[1];
1922 }
1923
1924 return;
1925 }
1926
1927 int
1928 wi_detach(sc)
1929 struct wi_softc *sc;
1930 {
1931 struct ifnet *ifp = sc->sc_ifp;
1932 int s;
1933
1934 if (!sc->sc_attached)
1935 return (0);
1936
1937 s = splnet();
1938 callout_stop(&sc->wi_inquire_ch);
1939
1940 /* Delete all remaining media. */
1941 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
1942
1943 ether_ifdetach(ifp);
1944 if_detach(ifp);
1945 if (sc->sc_enabled) {
1946 if (sc->sc_disable)
1947 (*sc->sc_disable)(sc);
1948 sc->sc_enabled = 0;
1949 }
1950 splx(s);
1951 return (0);
1952 }
1953
1954 void
1955 wi_power(sc, why)
1956 struct wi_softc *sc;
1957 int why;
1958 {
1959 int s;
1960
1961 if (!sc->sc_enabled)
1962 return;
1963
1964 s = splnet();
1965 switch (why) {
1966 case PWR_SUSPEND:
1967 case PWR_STANDBY:
1968 wi_stop(sc->sc_ifp, 0);
1969 if (sc->sc_enabled) {
1970 if (sc->sc_disable)
1971 (*sc->sc_disable)(sc);
1972 }
1973 break;
1974 case PWR_RESUME:
1975 sc->sc_enabled = 0;
1976 wi_init(sc->sc_ifp);
1977 (void)wi_intr(sc);
1978 break;
1979 case PWR_SOFTSUSPEND:
1980 case PWR_SOFTSTANDBY:
1981 case PWR_SOFTRESUME:
1982 break;
1983 }
1984 splx(s);
1985 }
1986
1987 static int
1988 wi_set_ssid(ws, id, len)
1989 struct ieee80211_nwid *ws;
1990 u_int8_t *id;
1991 int len;
1992 {
1993
1994 if (len > IEEE80211_NWID_LEN)
1995 return (EINVAL);
1996 ws->i_len = len;
1997 memcpy(ws->i_nwid, id, len);
1998 return (0);
1999 }
2000
2001 static void
2002 wi_request_fill_ssid(wreq, ws)
2003 struct wi_req *wreq;
2004 struct ieee80211_nwid *ws;
2005 {
2006 int len = ws->i_len;
2007
2008 memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
2009 wreq->wi_val[0] = htole16(len);
2010 wreq->wi_len = roundup(len, 2) / 2 + 2;
2011 memcpy(&wreq->wi_val[1], ws->i_nwid, len);
2012 }
2013
2014 static int
2015 wi_write_ssid(sc, type, wreq, ws)
2016 struct wi_softc *sc;
2017 int type;
2018 struct wi_req *wreq;
2019 struct ieee80211_nwid *ws;
2020 {
2021
2022 wreq->wi_type = type;
2023 wi_request_fill_ssid(wreq, ws);
2024 return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
2025 }
2026
2027 static int
2028 wi_sync_media(sc, ptype, txrate)
2029 struct wi_softc *sc;
2030 int ptype;
2031 int txrate;
2032 {
2033 int media = sc->sc_media.ifm_cur->ifm_media;
2034 int options = IFM_OPTIONS(media);
2035 int subtype;
2036
2037 switch (txrate) {
2038 case 1:
2039 subtype = IFM_IEEE80211_DS1;
2040 break;
2041 case 2:
2042 subtype = IFM_IEEE80211_DS2;
2043 break;
2044 case 3:
2045 subtype = IFM_AUTO;
2046 break;
2047 case 5:
2048 subtype = IFM_IEEE80211_DS5;
2049 break;
2050 case 11:
2051 subtype = IFM_IEEE80211_DS11;
2052 break;
2053 default:
2054 subtype = IFM_MANUAL; /* Unable to represent */
2055 break;
2056 }
2057 switch (ptype) {
2058 case WI_PORTTYPE_ADHOC:
2059 options |= IFM_IEEE80211_ADHOC;
2060 break;
2061 case WI_PORTTYPE_BSS:
2062 options &= ~IFM_IEEE80211_ADHOC;
2063 break;
2064 default:
2065 subtype = IFM_MANUAL; /* Unable to represent */
2066 break;
2067 }
2068 media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
2069 IFM_INST(media));
2070 if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
2071 return (EINVAL);
2072 ifmedia_set(&sc->sc_media, media);
2073 sc->wi_ptype = ptype;
2074 sc->wi_tx_rate = txrate;
2075 return (0);
2076 }
2077
2078 static int
2079 wi_media_change(ifp)
2080 struct ifnet *ifp;
2081 {
2082 struct wi_softc *sc = ifp->if_softc;
2083 int otype = sc->wi_ptype;
2084 int orate = sc->wi_tx_rate;
2085
2086 if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2087 sc->wi_ptype = WI_PORTTYPE_ADHOC;
2088 else
2089 sc->wi_ptype = WI_PORTTYPE_BSS;
2090
2091 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
2092 case IFM_IEEE80211_DS1:
2093 sc->wi_tx_rate = 1;
2094 break;
2095 case IFM_IEEE80211_DS2:
2096 sc->wi_tx_rate = 2;
2097 break;
2098 case IFM_AUTO:
2099 sc->wi_tx_rate = 3;
2100 break;
2101 case IFM_IEEE80211_DS5:
2102 sc->wi_tx_rate = 5;
2103 break;
2104 case IFM_IEEE80211_DS11:
2105 sc->wi_tx_rate = 11;
2106 break;
2107 }
2108
2109 if (sc->sc_enabled != 0) {
2110 if (otype != sc->wi_ptype ||
2111 orate != sc->wi_tx_rate)
2112 wi_init(ifp);
2113 }
2114
2115 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
2116
2117 return (0);
2118 }
2119
2120 static void
2121 wi_media_status(ifp, imr)
2122 struct ifnet *ifp;
2123 struct ifmediareq *imr;
2124 {
2125 struct wi_softc *sc = ifp->if_softc;
2126
2127 if (sc->sc_enabled == 0) {
2128 imr->ifm_active = IFM_IEEE80211|IFM_NONE;
2129 imr->ifm_status = 0;
2130 return;
2131 }
2132
2133 imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
2134 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2135 }
2136
2137 static int
2138 wi_set_nwkey(sc, nwkey)
2139 struct wi_softc *sc;
2140 struct ieee80211_nwkey *nwkey;
2141 {
2142 int i, error;
2143 size_t len;
2144 struct wi_req wreq;
2145 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
2146
2147 if (!sc->wi_has_wep)
2148 return ENODEV;
2149 if (nwkey->i_defkid <= 0 ||
2150 nwkey->i_defkid > IEEE80211_WEP_NKID)
2151 return EINVAL;
2152 memcpy(wk, &sc->wi_keys, sizeof(*wk));
2153 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2154 if (nwkey->i_key[i].i_keydat == NULL)
2155 continue;
2156 len = nwkey->i_key[i].i_keylen;
2157 if (len > sizeof(wk->wi_keys[i].wi_keydat))
2158 return EINVAL;
2159 error = copyin(nwkey->i_key[i].i_keydat,
2160 wk->wi_keys[i].wi_keydat, len);
2161 if (error)
2162 return error;
2163 wk->wi_keys[i].wi_keylen = htole16(len);
2164 }
2165
2166 wk->wi_len = (sizeof(*wk) / 2) + 1;
2167 wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2168 if (sc->sc_enabled != 0) {
2169 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2170 if (error)
2171 return error;
2172 }
2173 error = wi_setdef(sc, &wreq);
2174 if (error)
2175 return error;
2176
2177 wreq.wi_len = 2;
2178 wreq.wi_type = WI_RID_TX_CRYPT_KEY;
2179 wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
2180 if (sc->sc_enabled != 0) {
2181 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2182 if (error)
2183 return error;
2184 }
2185 error = wi_setdef(sc, &wreq);
2186 if (error)
2187 return error;
2188
2189 wreq.wi_type = WI_RID_ENCRYPTION;
2190 wreq.wi_val[0] = htole16(nwkey->i_wepon);
2191 if (sc->sc_enabled != 0) {
2192 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2193 if (error)
2194 return error;
2195 }
2196 error = wi_setdef(sc, &wreq);
2197 if (error)
2198 return error;
2199
2200 if (sc->sc_enabled != 0)
2201 wi_init(&sc->sc_ethercom.ec_if);
2202 return 0;
2203 }
2204
2205 static int
2206 wi_get_nwkey(sc, nwkey)
2207 struct wi_softc *sc;
2208 struct ieee80211_nwkey *nwkey;
2209 {
2210 int i, len, error;
2211 struct wi_ltv_keys *wk = &sc->wi_keys;
2212
2213 if (!sc->wi_has_wep)
2214 return ENODEV;
2215 nwkey->i_wepon = sc->wi_use_wep;
2216 nwkey->i_defkid = sc->wi_tx_key + 1;
2217
2218 /* do not show any keys to non-root user */
2219 error = suser(curproc->p_ucred, &curproc->p_acflag);
2220 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2221 if (nwkey->i_key[i].i_keydat == NULL)
2222 continue;
2223 /* error holds results of suser() for the first time */
2224 if (error)
2225 return error;
2226 len = le16toh(wk->wi_keys[i].wi_keylen);
2227 if (nwkey->i_key[i].i_keylen < len)
2228 return ENOSPC;
2229 nwkey->i_key[i].i_keylen = len;
2230 error = copyout(wk->wi_keys[i].wi_keydat,
2231 nwkey->i_key[i].i_keydat, len);
2232 if (error)
2233 return error;
2234 }
2235 return 0;
2236 }
2237
2238 static int
2239 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
2240 {
2241
2242 sc->wi_pm_enabled = power->i_enabled;
2243 sc->wi_max_sleep = power->i_maxsleep;
2244
2245 if (sc->sc_enabled)
2246 return (wi_init(&sc->sc_ethercom.ec_if));
2247
2248 return (0);
2249 }
2250
2251 static int
2252 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
2253 {
2254
2255 power->i_enabled = sc->wi_pm_enabled;
2256 power->i_maxsleep = sc->wi_max_sleep;
2257
2258 return (0);
2259 }
2260