wi.c revision 1.36 1 /* $NetBSD: wi.c,v 1.36 2002/01/21 11:29:22 ichiro Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.36 2002/01/21 11:29:22 ichiro Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static void wi_reset __P((struct wi_softc *));
108 static int wi_ioctl __P((struct ifnet *, u_long, caddr_t));
109 static void wi_start __P((struct ifnet *));
110 static void wi_watchdog __P((struct ifnet *));
111 static int wi_init __P((struct ifnet *));
112 static void wi_stop __P((struct ifnet *, int));
113 static void wi_rxeof __P((struct wi_softc *));
114 static void wi_txeof __P((struct wi_softc *, int));
115 static void wi_update_stats __P((struct wi_softc *));
116 static void wi_setmulti __P((struct wi_softc *));
117
118 static int wi_cmd __P((struct wi_softc *, int, int));
119 static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *));
120 static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *));
121 static int wi_read_data __P((struct wi_softc *, int,
122 int, caddr_t, int));
123 static int wi_write_data __P((struct wi_softc *, int,
124 int, caddr_t, int));
125 static int wi_seek __P((struct wi_softc *, int, int, int));
126 static int wi_alloc_nicmem __P((struct wi_softc *, int, int *));
127 static void wi_inquire __P((void *));
128 static void wi_wait_scan __P((void *));
129 static int wi_setdef __P((struct wi_softc *, struct wi_req *));
130 static int wi_getdef __P((struct wi_softc *, struct wi_req *));
131 static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int));
132
133 static int wi_media_change __P((struct ifnet *));
134 static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
135
136 static void wi_get_id __P((struct wi_softc *));
137
138 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
139 static void wi_request_fill_ssid __P((struct wi_req *,
140 struct ieee80211_nwid *));
141 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
142 struct ieee80211_nwid *));
143 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
144 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
145 static int wi_sync_media __P((struct wi_softc *, int, int));
146 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
147 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
148
149 int
150 wi_attach(sc)
151 struct wi_softc *sc;
152 {
153 struct ifnet *ifp = sc->sc_ifp;
154 struct wi_ltv_macaddr mac;
155 struct wi_ltv_gen gen;
156 static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
157 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
158 };
159 int s;
160
161 s = splnet();
162
163 callout_init(&sc->wi_inquire_ch);
164 callout_init(&sc->wi_scan_sh);
165
166 /* Make sure interrupts are disabled. */
167 CSR_WRITE_2(sc, WI_INT_EN, 0);
168 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
169
170 /* Reset the NIC. */
171 wi_reset(sc);
172
173 memset(&mac, 0, sizeof(mac));
174 /* Read the station address. */
175 mac.wi_type = WI_RID_MAC_NODE;
176 mac.wi_len = 4;
177 wi_read_record(sc, (struct wi_ltv_gen *)&mac);
178 memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
179
180 /*
181 * Check if we got anything meaningful.
182 *
183 * Is it really enough just checking against null ethernet address?
184 * Or, check against possible vendor? XXX.
185 */
186 if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
187 printf("%s: could not get mac address, attach failed\n",
188 sc->sc_dev.dv_xname);
189 return 1;
190 }
191
192 printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
193
194 /* Read NIC identification */
195 wi_get_id(sc);
196
197 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
198 ifp->if_softc = sc;
199 ifp->if_start = wi_start;
200 ifp->if_ioctl = wi_ioctl;
201 ifp->if_watchdog = wi_watchdog;
202 ifp->if_init = wi_init;
203 ifp->if_stop = wi_stop;
204 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
205 #ifdef IFF_NOTRAILERS
206 ifp->if_flags |= IFF_NOTRAILERS;
207 #endif
208 IFQ_SET_READY(&ifp->if_snd);
209
210 (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
211 sizeof(WI_DEFAULT_NODENAME) - 1);
212 (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
213 sizeof(WI_DEFAULT_NETNAME) - 1);
214 (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
215 sizeof(WI_DEFAULT_IBSS) - 1);
216
217 sc->wi_portnum = WI_DEFAULT_PORT;
218 sc->wi_ptype = WI_PORTTYPE_BSS;
219 sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
220 sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
221 sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
222 sc->wi_max_data_len = WI_DEFAULT_DATALEN;
223 sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
224 sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
225 sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
226 sc->wi_roaming = WI_DEFAULT_ROAMING;
227 sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
228
229 /*
230 * Read the default channel from the NIC. This may vary
231 * depending on the country where the NIC was purchased, so
232 * we can't hard-code a default and expect it to work for
233 * everyone.
234 */
235 gen.wi_type = WI_RID_OWN_CHNL;
236 gen.wi_len = 2;
237 wi_read_record(sc, &gen);
238 sc->wi_channel = le16toh(gen.wi_val);
239
240 memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats));
241
242 /* AP info was filled with 0 */
243 memset((char *)&sc->wi_aps, 0, sizeof(sc->wi_aps));
244 sc->wi_scanning=0;
245 sc->wi_naps=0;
246
247 /*
248 * Find out if we support WEP on this card.
249 */
250 gen.wi_type = WI_RID_WEP_AVAIL;
251 gen.wi_len = 2;
252 wi_read_record(sc, &gen);
253 sc->wi_has_wep = le16toh(gen.wi_val);
254
255 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
256 #define IFM_AUTOADHOC \
257 IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0)
258 #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL)
259 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
260 ADD(IFM_AUTOADHOC, 0);
261 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
262 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
263 IFM_IEEE80211_ADHOC, 0), 0);
264 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
265 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
266 IFM_IEEE80211_ADHOC, 0), 0);
267 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
268 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
269 IFM_IEEE80211_ADHOC, 0), 0);
270 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
271 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
272 IFM_IEEE80211_ADHOC, 0), 0);
273 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
274 #undef ADD
275 ifmedia_set(&sc->sc_media, IFM_AUTOADHOC);
276
277 /*
278 * Call MI attach routines.
279 */
280 if_attach(ifp);
281 ether_ifattach(ifp, mac.wi_mac_addr);
282
283 ifp->if_baudrate = IF_Mbps(2);
284
285 /* Attach is successful. */
286 sc->sc_attached = 1;
287
288 splx(s);
289 return 0;
290 }
291
292 static void wi_rxeof(sc)
293 struct wi_softc *sc;
294 {
295 struct ifnet *ifp;
296 struct ether_header *eh;
297 struct wi_frame rx_frame;
298 struct mbuf *m;
299 int id;
300
301 ifp = sc->sc_ifp;
302
303 id = CSR_READ_2(sc, WI_RX_FID);
304
305 /* First read in the frame header */
306 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
307 ifp->if_ierrors++;
308 return;
309 }
310
311 /*
312 * Drop undecryptable or packets with receive errors here
313 */
314 if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) {
315 ifp->if_ierrors++;
316 return;
317 }
318
319 MGETHDR(m, M_DONTWAIT, MT_DATA);
320 if (m == NULL) {
321 ifp->if_ierrors++;
322 return;
323 }
324 MCLGET(m, M_DONTWAIT);
325 if (!(m->m_flags & M_EXT)) {
326 m_freem(m);
327 ifp->if_ierrors++;
328 return;
329 }
330
331 /* Align the data after the ethernet header */
332 m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
333 - sizeof(struct ether_header);
334
335 eh = mtod(m, struct ether_header *);
336 m->m_pkthdr.rcvif = ifp;
337
338 if (le16toh(rx_frame.wi_status) == WI_STAT_1042 ||
339 le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL ||
340 le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) {
341 if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
342 printf("%s: oversized packet received "
343 "(wi_dat_len=%d, wi_status=0x%x)\n",
344 sc->sc_dev.dv_xname,
345 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
346 m_freem(m);
347 ifp->if_ierrors++;
348 return;
349 }
350 m->m_pkthdr.len = m->m_len =
351 le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
352
353 memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr,
354 ETHER_ADDR_LEN);
355 memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr,
356 ETHER_ADDR_LEN);
357 memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type,
358 sizeof(u_int16_t));
359
360 if (wi_read_data(sc, id, WI_802_11_OFFSET,
361 mtod(m, caddr_t) + sizeof(struct ether_header),
362 m->m_len + 2)) {
363 m_freem(m);
364 ifp->if_ierrors++;
365 return;
366 }
367 } else {
368 if ((le16toh(rx_frame.wi_dat_len) +
369 sizeof(struct ether_header)) > MCLBYTES) {
370 printf("%s: oversized packet received "
371 "(wi_dat_len=%d, wi_status=0x%x)\n",
372 sc->sc_dev.dv_xname,
373 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
374 m_freem(m);
375 ifp->if_ierrors++;
376 return;
377 }
378 m->m_pkthdr.len = m->m_len =
379 le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
380
381 if (wi_read_data(sc, id, WI_802_3_OFFSET,
382 mtod(m, caddr_t), m->m_len + 2)) {
383 m_freem(m);
384 ifp->if_ierrors++;
385 return;
386 }
387 }
388
389 ifp->if_ipackets++;
390
391 #if NBPFILTER > 0
392 /* Handle BPF listeners. */
393 if (ifp->if_bpf)
394 bpf_mtap(ifp->if_bpf, m);
395 #endif
396
397 /* Receive packet. */
398 (*ifp->if_input)(ifp, m);
399 }
400
401 static void wi_txeof(sc, status)
402 struct wi_softc *sc;
403 int status;
404 {
405 struct ifnet *ifp = sc->sc_ifp;
406
407 ifp->if_timer = 0;
408 ifp->if_flags &= ~IFF_OACTIVE;
409
410 if (status & WI_EV_TX_EXC)
411 ifp->if_oerrors++;
412 else
413 ifp->if_opackets++;
414
415 return;
416 }
417
418 void wi_inquire(xsc)
419 void *xsc;
420 {
421 struct wi_softc *sc;
422 struct ifnet *ifp;
423
424 sc = xsc;
425 ifp = &sc->sc_ethercom.ec_if;
426
427 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
428 return;
429
430 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
431
432 /* Don't do this while we're transmitting */
433 if (ifp->if_flags & IFF_OACTIVE)
434 return;
435
436 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
437 }
438
439 void wi_wait_scan(xsc)
440 void *xsc;
441 {
442 struct wi_softc *sc;
443 struct ifnet *ifp;
444
445 sc = xsc;
446 ifp = &sc->sc_ethercom.ec_if;
447
448 /* If not scanning, ignore */
449 if (!sc->wi_scanning)
450 return;
451
452 /* Wait for to make INQUIRE */
453 if (ifp->if_flags & IFF_OACTIVE) {
454 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
455 return;
456 }
457
458 /* try INQUIRE */
459 if (wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS) == ETIMEDOUT) {
460 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
461 return;
462 }
463 }
464
465 void wi_update_stats(sc)
466 struct wi_softc *sc;
467 {
468 struct wi_ltv_gen gen;
469 struct wi_scan_header ap2_header; /* Prism2 header */
470 struct wi_scan_data_p2 ap2; /* Prism2 scantable*/
471 struct wi_scan_data ap; /* Lucent scantable */
472 struct wi_assoc assoc; /* Association Status */
473 u_int16_t id;
474 struct ifnet *ifp;
475 u_int32_t *ptr;
476 int len, naps, i, j;
477 u_int16_t t;
478
479 ifp = &sc->sc_ethercom.ec_if;
480
481 id = CSR_READ_2(sc, WI_INFO_FID);
482
483 wi_read_data(sc, id, 0, (char *)&gen, 4);
484
485 switch (gen.wi_type) {
486 case WI_INFO_SCAN_RESULTS:
487 if (gen.wi_len < 3)
488 break;
489 if (sc->sc_prism2) { /* Prism2 chip */
490 naps = 2 * (gen.wi_len - 3) / sizeof(ap2);
491 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
492 sc->wi_naps = naps;
493 /* Read Header */
494 for(j=0; j < sizeof(ap2_header) / 2; j++)
495 ((u_int16_t *)&ap2_header)[j] =
496 CSR_READ_2(sc, WI_DATA1);
497 /* Read Data */
498 for (i=0; i < naps; i++) {
499 for(j=0; j < sizeof(ap2) / 2; j++)
500 ((u_int16_t *)&ap2)[j] =
501 CSR_READ_2(sc, WI_DATA1);
502 sc->wi_aps[i].scanreason = ap2_header.wi_reason;
503 memcpy(sc->wi_aps[i].bssid, ap2.wi_bssid, 6);
504 sc->wi_aps[i].channel = ap2.wi_chid;
505 sc->wi_aps[i].signal = ap2.wi_signal;
506 sc->wi_aps[i].noise = ap2.wi_noise;
507 sc->wi_aps[i].quality = ap2.wi_signal - ap2.wi_noise;
508 sc->wi_aps[i].capinfo = ap2.wi_capinfo;
509 sc->wi_aps[i].interval = ap2.wi_interval;
510 sc->wi_aps[i].rate = ap2.wi_rate;
511 if (ap2.wi_namelen > 32)
512 ap2.wi_namelen = 32;
513 sc->wi_aps[i].namelen = ap2.wi_namelen;
514 memcpy(sc->wi_aps[i].name, ap2.wi_name,
515 ap2.wi_namelen);
516 }
517 } else { /* Lucent chip */
518 naps = 2 * gen.wi_len / sizeof(ap);
519 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
520 sc->wi_naps = naps;
521 /* Read Data*/
522 for (i=0; i < naps; i++) {
523 for(j=0; j < sizeof(ap) / 2; j++)
524 ((u_int16_t *)&ap)[j] =
525 CSR_READ_2(sc, WI_DATA1);
526 memcpy(sc->wi_aps[i].bssid, ap.wi_bssid, 6);
527 sc->wi_aps[i].channel = ap.wi_chid;
528 sc->wi_aps[i].signal = ap.wi_signal;
529 sc->wi_aps[i].noise = ap.wi_noise;
530 sc->wi_aps[i].quality = ap.wi_signal - ap.wi_noise;
531 sc->wi_aps[i].capinfo = ap.wi_capinfo;
532 sc->wi_aps[i].interval = ap.wi_interval;
533 if (ap.wi_namelen > 32)
534 ap.wi_namelen = 32;
535 sc->wi_aps[i].namelen = ap.wi_namelen;
536 memcpy(sc->wi_aps[i].name, ap.wi_name,
537 ap.wi_namelen);
538 }
539 }
540 /* Done scanning */
541 sc->wi_scanning = 0;
542 break;
543
544 case WI_INFO_COUNTERS:
545 /* some card versions have a larger stats structure */
546 len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
547 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
548 ptr = (u_int32_t *)&sc->wi_stats;
549
550 for (i = 0; i < len; i++) {
551 t = CSR_READ_2(sc, WI_DATA1);
552 #ifdef WI_HERMES_STATS_WAR
553 if (t > 0xF000)
554 t = ~t & 0xFFFF;
555 #endif
556 ptr[i] += t;
557 }
558
559 ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
560 sc->wi_stats.wi_tx_multi_retries +
561 sc->wi_stats.wi_tx_retry_limit;
562 break;
563
564 case WI_INFO_LINK_STAT: {
565 static char *msg[] = {
566 "connected",
567 "disconnected",
568 "AP change",
569 "AP out of range",
570 "AP in range",
571 "Association Faild"
572 };
573
574 if (gen.wi_len != 2) {
575 #ifdef WI_DEBUG
576 printf("WI_INFO_LINK_STAT: len=%d\n", gen.wi_len);
577 #endif
578 break;
579 }
580 t = CSR_READ_2(sc, WI_DATA1);
581 if ((t < 1) || (t > 6)) {
582 #ifdef WI_DEBUG
583 printf("WI_INFO_LINK_STAT: status %d\n", t);
584 #endif
585 break;
586 }
587 printf("%s: %s\n", sc->sc_dev.dv_xname, msg[t - 1]);
588 break;
589 }
590
591 case WI_INFO_ASSOC_STAT: {
592 static char *msg[] = {
593 "STA Associated",
594 "STA Reassociated",
595 "STA Disassociated",
596 "Association Failure",
597 "Authentication Faild"
598 };
599 if (gen.wi_len != 10)
600 break;
601 for (i=0; i < gen.wi_len - 1; i++)
602 ((u_int16_t *)&assoc)[i] = CSR_READ_2(sc, WI_DATA1);
603 switch (assoc.wi_assoc_stat) {
604 case ASSOC:
605 case DISASSOC:
606 case ASSOCFAIL:
607 case AUTHFAIL:
608 printf("%s: %s, AP = %x:%x:%x:%x:%x:%x\n",
609 sc->sc_dev.dv_xname,
610 msg[assoc.wi_assoc_stat - 1],
611 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
612 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
613 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff);
614 break;
615 case REASSOC:
616 printf("%s: %s, AP = %x:%x:%x:%x:%x:%x, OldAP = %x:%x:%x:%x:%x:%x\n",
617 sc->sc_dev.dv_xname, msg[assoc.wi_assoc_stat - 1],
618 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
619 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
620 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff,
621 assoc.wi_assoc_osta[0]&0xff, assoc.wi_assoc_osta[1]&0xff,
622 assoc.wi_assoc_osta[2]&0xff, assoc.wi_assoc_osta[3]&0xff,
623 assoc.wi_assoc_osta[4]&0xff, assoc.wi_assoc_osta[5]&0xff);
624 break;
625 }
626 }
627 default:
628 #if 0
629 printf("Got info type: %04x\n", gen.wi_type);
630 #endif
631 for (i = 0; i < gen.wi_len; i++) {
632 t = CSR_READ_2(sc, WI_DATA1);
633 #if 0
634 printf("[0x%02x] = 0x%04x\n", i, t);
635 #endif
636 }
637 break;
638 }
639 }
640
641 int wi_intr(arg)
642 void *arg;
643 {
644 struct wi_softc *sc = arg;
645 struct ifnet *ifp;
646 u_int16_t status;
647
648 if (sc->sc_enabled == 0 ||
649 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
650 (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
651 return (0);
652
653 ifp = &sc->sc_ethercom.ec_if;
654
655 if (!(ifp->if_flags & IFF_UP)) {
656 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
657 CSR_WRITE_2(sc, WI_INT_EN, 0);
658 return 1;
659 }
660
661 /* Disable interrupts. */
662 CSR_WRITE_2(sc, WI_INT_EN, 0);
663
664 status = CSR_READ_2(sc, WI_EVENT_STAT);
665 CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
666
667 if (status & WI_EV_RX) {
668 wi_rxeof(sc);
669 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
670 }
671
672 if (status & WI_EV_TX) {
673 wi_txeof(sc, status);
674 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
675 }
676
677 if (status & WI_EV_ALLOC) {
678 int id;
679 id = CSR_READ_2(sc, WI_ALLOC_FID);
680 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
681 if (id == sc->wi_tx_data_id)
682 wi_txeof(sc, status);
683 }
684
685 if (status & WI_EV_INFO) {
686 wi_update_stats(sc);
687 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
688 }
689
690 if (status & WI_EV_TX_EXC) {
691 wi_txeof(sc, status);
692 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
693 }
694
695 if (status & WI_EV_INFO_DROP) {
696 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
697 }
698
699 /* Re-enable interrupts. */
700 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
701
702 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
703 wi_start(ifp);
704
705 return 1;
706 }
707
708 static int
709 wi_cmd(sc, cmd, val)
710 struct wi_softc *sc;
711 int cmd;
712 int val;
713 {
714 int i, s = 0;
715
716 /* wait for the busy bit to clear */
717 for (i = 0; i < WI_TIMEOUT; i++) {
718 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
719 break;
720 }
721
722 CSR_WRITE_2(sc, WI_PARAM0, val);
723 CSR_WRITE_2(sc, WI_PARAM1, 0);
724 CSR_WRITE_2(sc, WI_PARAM2, 0);
725 CSR_WRITE_2(sc, WI_COMMAND, cmd);
726
727 /* wait for the cmd completed bit */
728 for (i = 0; i < WI_TIMEOUT; i++) {
729 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
730 break;
731 DELAY(1);
732 }
733
734 /* Ack the command */
735 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
736
737 s = CSR_READ_2(sc, WI_STATUS);
738 if (s & WI_STAT_CMD_RESULT)
739 return(EIO);
740
741 if (i == WI_TIMEOUT)
742 return(ETIMEDOUT);
743
744 return(0);
745 }
746
747 static void
748 wi_reset(sc)
749 struct wi_softc *sc;
750 {
751 DELAY(100*1000); /* 100 m sec */
752 if (wi_cmd(sc, WI_CMD_INI, 0))
753 printf("%s: init failed\n", sc->sc_dev.dv_xname);
754 CSR_WRITE_2(sc, WI_INT_EN, 0);
755 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
756
757 /* Calibrate timer. */
758 WI_SETVAL(WI_RID_TICK_TIME, 8);
759
760 return;
761 }
762
763 void
764 wi_pci_reset(sc)
765 struct wi_softc *sc;
766 {
767 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
768 WI_PCI_COR, WI_PCI_SOFT_RESET);
769 DELAY(100*1000); /* 100 m sec */
770
771 bus_space_write_2(sc->sc_iot, sc->sc_ioh, WI_PCI_COR, 0x0);
772 DELAY(100*1000); /* 100 m sec */
773
774 return;
775 }
776
777 /*
778 * Read an LTV record from the NIC.
779 */
780 static int wi_read_record(sc, ltv)
781 struct wi_softc *sc;
782 struct wi_ltv_gen *ltv;
783 {
784 u_int16_t *ptr;
785 int len, code;
786 struct wi_ltv_gen *oltv, p2ltv;
787
788 if (sc->sc_prism2) {
789 oltv = ltv;
790 switch (ltv->wi_type) {
791 case WI_RID_ENCRYPTION:
792 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
793 p2ltv.wi_len = 2;
794 ltv = &p2ltv;
795 break;
796 case WI_RID_TX_CRYPT_KEY:
797 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
798 p2ltv.wi_len = 2;
799 ltv = &p2ltv;
800 break;
801 }
802 }
803
804 /* Tell the NIC to enter record read mode. */
805 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
806 return(EIO);
807
808 /* Seek to the record. */
809 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
810 return(EIO);
811
812 /*
813 * Read the length and record type and make sure they
814 * match what we expect (this verifies that we have enough
815 * room to hold all of the returned data).
816 */
817 len = CSR_READ_2(sc, WI_DATA1);
818 if (len > ltv->wi_len)
819 return(ENOSPC);
820 code = CSR_READ_2(sc, WI_DATA1);
821 if (code != ltv->wi_type)
822 return(EIO);
823
824 ltv->wi_len = len;
825 ltv->wi_type = code;
826
827 /* Now read the data. */
828 ptr = <v->wi_val;
829 if (ltv->wi_len > 1)
830 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
831
832 if (sc->sc_prism2) {
833 int v;
834
835 switch (oltv->wi_type) {
836 case WI_RID_TX_RATE:
837 case WI_RID_CUR_TX_RATE:
838 switch (le16toh(ltv->wi_val)) {
839 case 1: v = 1; break;
840 case 2: v = 2; break;
841 case 3: v = 6; break;
842 case 4: v = 5; break;
843 case 7: v = 7; break;
844 case 8: v = 11; break;
845 case 15: v = 3; break;
846 default: v = 0x100 + le16toh(ltv->wi_val); break;
847 }
848 oltv->wi_val = htole16(v);
849 break;
850 case WI_RID_ENCRYPTION:
851 oltv->wi_len = 2;
852 if (le16toh(ltv->wi_val) & 0x01)
853 oltv->wi_val = htole16(1);
854 else
855 oltv->wi_val = htole16(0);
856 break;
857 case WI_RID_TX_CRYPT_KEY:
858 oltv->wi_len = 2;
859 oltv->wi_val = ltv->wi_val;
860 break;
861 case WI_RID_AUTH_CNTL:
862 oltv->wi_len = 2;
863 if (le16toh(ltv->wi_val) & 0x01)
864 oltv->wi_val = htole16(1);
865 else if (le16toh(ltv->wi_val) & 0x02)
866 oltv->wi_val = htole16(2);
867 break;
868 }
869 }
870
871 return(0);
872 }
873
874 /*
875 * Same as read, except we inject data instead of reading it.
876 */
877 static int wi_write_record(sc, ltv)
878 struct wi_softc *sc;
879 struct wi_ltv_gen *ltv;
880 {
881 u_int16_t *ptr;
882 int i;
883 struct wi_ltv_gen p2ltv;
884
885 if (sc->sc_prism2) {
886 int v;
887
888 switch (ltv->wi_type) {
889 case WI_RID_TX_RATE:
890 p2ltv.wi_type = WI_RID_TX_RATE;
891 p2ltv.wi_len = 2;
892 switch (le16toh(ltv->wi_val)) {
893 case 1: v = 1; break;
894 case 2: v = 2; break;
895 case 3: v = 15; break;
896 case 5: v = 4; break;
897 case 6: v = 3; break;
898 case 7: v = 7; break;
899 case 11: v = 8; break;
900 default: return EINVAL;
901 }
902 p2ltv.wi_val = htole16(v);
903 ltv = &p2ltv;
904 break;
905 case WI_RID_ENCRYPTION:
906 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
907 p2ltv.wi_len = 2;
908 if (le16toh(ltv->wi_val))
909 p2ltv.wi_val = htole16(0x03);
910 else
911 p2ltv.wi_val = htole16(0x90);
912 ltv = &p2ltv;
913 break;
914 case WI_RID_TX_CRYPT_KEY:
915 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
916 p2ltv.wi_len = 2;
917 p2ltv.wi_val = ltv->wi_val;
918 ltv = &p2ltv;
919 break;
920 case WI_RID_DEFLT_CRYPT_KEYS:
921 {
922 int error;
923 struct wi_ltv_str ws;
924 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv;
925 for (i = 0; i < 4; i++) {
926 memset(&ws, 0, sizeof(ws));
927 if(wk->wi_keys[i].wi_keylen <= 5) {
928 /* 5 Octets WEP Keys */
929 ws.wi_len = 4;
930 memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 5);
931 ws.wi_str[5] = '\0';
932 } else {
933 /* 13 Octets WEP Keys */
934 ws.wi_len = 8;
935 memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 13);
936 ws.wi_str[13] = '\0';
937 }
938 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
939
940 if(wi_write_record(sc, (struct wi_ltv_gen *)&ws))
941 return error;
942 }
943 return 0;
944 }
945 case WI_RID_AUTH_CNTL:
946 p2ltv.wi_type = WI_RID_AUTH_CNTL;
947 p2ltv.wi_len = 2;
948 if (le16toh(ltv->wi_val) == 1)
949 p2ltv.wi_val = htole16(0x01);
950 else if (le16toh(ltv->wi_val) == 2)
951 p2ltv.wi_val = htole16(0x02);
952 ltv = &p2ltv;
953 break;
954 }
955 }
956
957 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
958 return(EIO);
959
960 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
961 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
962
963 /* Write data */
964 ptr = <v->wi_val;
965 if (ltv->wi_len > 1)
966 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
967
968 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
969 return(EIO);
970
971 return(0);
972 }
973
974 static int wi_seek(sc, id, off, chan)
975 struct wi_softc *sc;
976 int id, off, chan;
977 {
978 int i;
979 int selreg, offreg;
980 int status;
981
982 switch (chan) {
983 case WI_BAP0:
984 selreg = WI_SEL0;
985 offreg = WI_OFF0;
986 break;
987 case WI_BAP1:
988 selreg = WI_SEL1;
989 offreg = WI_OFF1;
990 break;
991 default:
992 printf("%s: invalid data path: %x\n",
993 sc->sc_dev.dv_xname, chan);
994 return(EIO);
995 }
996
997 CSR_WRITE_2(sc, selreg, id);
998 CSR_WRITE_2(sc, offreg, off);
999
1000 for (i = 0; i < WI_TIMEOUT; i++) {
1001 status = CSR_READ_2(sc, offreg);
1002 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
1003 break;
1004 }
1005
1006 if (i == WI_TIMEOUT) {
1007 printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
1008 sc->sc_dev.dv_xname, id, off, status);
1009 return(ETIMEDOUT);
1010 }
1011 return(0);
1012 }
1013
1014 static int wi_read_data(sc, id, off, buf, len)
1015 struct wi_softc *sc;
1016 int id, off;
1017 caddr_t buf;
1018 int len;
1019 {
1020 u_int16_t *ptr;
1021
1022 if (wi_seek(sc, id, off, WI_BAP1))
1023 return(EIO);
1024
1025 ptr = (u_int16_t *)buf;
1026 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
1027
1028 return(0);
1029 }
1030
1031 /*
1032 * According to the comments in the HCF Light code, there is a bug in
1033 * the Hermes (or possibly in certain Hermes firmware revisions) where
1034 * the chip's internal autoincrement counter gets thrown off during
1035 * data writes: the autoincrement is missed, causing one data word to
1036 * be overwritten and subsequent words to be written to the wrong memory
1037 * locations. The end result is that we could end up transmitting bogus
1038 * frames without realizing it. The workaround for this is to write a
1039 * couple of extra guard words after the end of the transfer, then
1040 * attempt to read then back. If we fail to locate the guard words where
1041 * we expect them, we preform the transfer over again.
1042 */
1043 static int wi_write_data(sc, id, off, buf, len)
1044 struct wi_softc *sc;
1045 int id, off;
1046 caddr_t buf;
1047 int len;
1048 {
1049 u_int16_t *ptr;
1050
1051 #ifdef WI_HERMES_AUTOINC_WAR
1052 again:
1053 #endif
1054
1055 if (wi_seek(sc, id, off, WI_BAP0))
1056 return(EIO);
1057
1058 ptr = (u_int16_t *)buf;
1059 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
1060
1061 #ifdef WI_HERMES_AUTOINC_WAR
1062 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1063 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1064
1065 if (wi_seek(sc, id, off + len, WI_BAP0))
1066 return(EIO);
1067
1068 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1069 CSR_READ_2(sc, WI_DATA0) != 0x5678)
1070 goto again;
1071 #endif
1072
1073 return(0);
1074 }
1075
1076 /*
1077 * Allocate a region of memory inside the NIC and zero
1078 * it out.
1079 */
1080 static int wi_alloc_nicmem(sc, len, id)
1081 struct wi_softc *sc;
1082 int len;
1083 int *id;
1084 {
1085 int i;
1086
1087 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
1088 printf("%s: failed to allocate %d bytes on NIC\n",
1089 sc->sc_dev.dv_xname, len);
1090 return(ENOMEM);
1091 }
1092
1093 for (i = 0; i < WI_TIMEOUT; i++) {
1094 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1095 break;
1096 }
1097
1098 if (i == WI_TIMEOUT) {
1099 printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
1100 return(ETIMEDOUT);
1101 }
1102
1103 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1104 *id = CSR_READ_2(sc, WI_ALLOC_FID);
1105
1106 if (wi_seek(sc, *id, 0, WI_BAP0)) {
1107 printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
1108 return(EIO);
1109 }
1110
1111 for (i = 0; i < len / 2; i++)
1112 CSR_WRITE_2(sc, WI_DATA0, 0);
1113
1114 return(0);
1115 }
1116
1117 static void wi_setmulti(sc)
1118 struct wi_softc *sc;
1119 {
1120 struct ifnet *ifp;
1121 int i = 0;
1122 struct wi_ltv_mcast mcast;
1123 struct ether_multi *enm;
1124 struct ether_multistep estep;
1125 struct ethercom *ec = &sc->sc_ethercom;
1126
1127 ifp = &sc->sc_ethercom.ec_if;
1128
1129 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1130 allmulti:
1131 ifp->if_flags |= IFF_ALLMULTI;
1132 memset((char *)&mcast, 0, sizeof(mcast));
1133 mcast.wi_type = WI_RID_MCAST_LIST;
1134 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
1135
1136 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1137 return;
1138 }
1139
1140 i = 0;
1141 ETHER_FIRST_MULTI(estep, ec, enm);
1142 while (enm != NULL) {
1143 /* Punt on ranges or too many multicast addresses. */
1144 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1145 ETHER_ADDR_LEN) != 0 ||
1146 i >= 16)
1147 goto allmulti;
1148
1149 memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo,
1150 ETHER_ADDR_LEN);
1151 i++;
1152 ETHER_NEXT_MULTI(estep, enm);
1153 }
1154
1155 ifp->if_flags &= ~IFF_ALLMULTI;
1156 mcast.wi_type = WI_RID_MCAST_LIST;
1157 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
1158 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1159 }
1160
1161 static int
1162 wi_setdef(sc, wreq)
1163 struct wi_softc *sc;
1164 struct wi_req *wreq;
1165 {
1166 struct sockaddr_dl *sdl;
1167 struct ifnet *ifp;
1168 int error = 0;
1169
1170 ifp = &sc->sc_ethercom.ec_if;
1171
1172 switch(wreq->wi_type) {
1173 case WI_RID_MAC_NODE:
1174 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1175 memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val,
1176 ETHER_ADDR_LEN);
1177 memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN);
1178 break;
1179 case WI_RID_PORTTYPE:
1180 error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
1181 break;
1182 case WI_RID_TX_RATE:
1183 error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
1184 break;
1185 case WI_RID_MAX_DATALEN:
1186 sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1187 break;
1188 case WI_RID_RTS_THRESH:
1189 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1190 break;
1191 case WI_RID_SYSTEM_SCALE:
1192 sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1193 break;
1194 case WI_RID_CREATE_IBSS:
1195 sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1196 break;
1197 case WI_RID_OWN_CHNL:
1198 sc->wi_channel = le16toh(wreq->wi_val[0]);
1199 break;
1200 case WI_RID_NODENAME:
1201 error = wi_set_ssid(&sc->wi_nodeid,
1202 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1203 break;
1204 case WI_RID_DESIRED_SSID:
1205 error = wi_set_ssid(&sc->wi_netid,
1206 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1207 break;
1208 case WI_RID_OWN_SSID:
1209 error = wi_set_ssid(&sc->wi_ibssid,
1210 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1211 break;
1212 case WI_RID_PM_ENABLED:
1213 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1214 break;
1215 case WI_RID_MICROWAVE_OVEN:
1216 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1217 break;
1218 case WI_RID_MAX_SLEEP:
1219 sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1220 break;
1221 case WI_RID_AUTH_CNTL:
1222 sc->wi_authtype = le16toh(wreq->wi_val[0]);
1223 break;
1224 case WI_RID_ROAMING_MODE:
1225 sc->wi_roaming = le16toh(wreq->wi_val[0]);
1226 break;
1227 case WI_RID_ENCRYPTION:
1228 sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1229 break;
1230 case WI_RID_TX_CRYPT_KEY:
1231 sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1232 break;
1233 case WI_RID_DEFLT_CRYPT_KEYS:
1234 memcpy((char *)&sc->wi_keys, (char *)wreq,
1235 sizeof(struct wi_ltv_keys));
1236 break;
1237 default:
1238 error = EINVAL;
1239 break;
1240 }
1241
1242 return (error);
1243 }
1244
1245 static int
1246 wi_getdef(sc, wreq)
1247 struct wi_softc *sc;
1248 struct wi_req *wreq;
1249 {
1250 struct sockaddr_dl *sdl;
1251 struct ifnet *ifp;
1252 int error = 0;
1253
1254 ifp = &sc->sc_ethercom.ec_if;
1255
1256 wreq->wi_len = 2; /* XXX */
1257 switch (wreq->wi_type) {
1258 case WI_RID_MAC_NODE:
1259 wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
1260 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1261 memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN);
1262 memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1263 break;
1264 case WI_RID_PORTTYPE:
1265 wreq->wi_val[0] = htole16(sc->wi_ptype);
1266 break;
1267 case WI_RID_TX_RATE:
1268 wreq->wi_val[0] = htole16(sc->wi_tx_rate);
1269 break;
1270 case WI_RID_MAX_DATALEN:
1271 wreq->wi_val[0] = htole16(sc->wi_max_data_len);
1272 break;
1273 case WI_RID_RTS_THRESH:
1274 wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
1275 break;
1276 case WI_RID_SYSTEM_SCALE:
1277 wreq->wi_val[0] = htole16(sc->wi_ap_density);
1278 break;
1279 case WI_RID_CREATE_IBSS:
1280 wreq->wi_val[0] = htole16(sc->wi_create_ibss);
1281 break;
1282 case WI_RID_OWN_CHNL:
1283 wreq->wi_val[0] = htole16(sc->wi_channel);
1284 break;
1285 case WI_RID_NODENAME:
1286 wi_request_fill_ssid(wreq, &sc->wi_nodeid);
1287 break;
1288 case WI_RID_DESIRED_SSID:
1289 wi_request_fill_ssid(wreq, &sc->wi_netid);
1290 break;
1291 case WI_RID_OWN_SSID:
1292 wi_request_fill_ssid(wreq, &sc->wi_ibssid);
1293 break;
1294 case WI_RID_PM_ENABLED:
1295 wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
1296 break;
1297 case WI_RID_MICROWAVE_OVEN:
1298 wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
1299 break;
1300 case WI_RID_MAX_SLEEP:
1301 wreq->wi_val[0] = htole16(sc->wi_max_sleep);
1302 break;
1303 case WI_RID_AUTH_CNTL:
1304 wreq->wi_val[0] = htole16(sc->wi_authtype);
1305 break;
1306 case WI_RID_ROAMING_MODE:
1307 wreq->wi_val[0] = htole16(sc->wi_roaming);
1308 break;
1309 case WI_RID_WEP_AVAIL:
1310 wreq->wi_val[0] = htole16(sc->wi_has_wep);
1311 break;
1312 case WI_RID_ENCRYPTION:
1313 wreq->wi_val[0] = htole16(sc->wi_use_wep);
1314 break;
1315 case WI_RID_TX_CRYPT_KEY:
1316 wreq->wi_val[0] = htole16(sc->wi_tx_key);
1317 break;
1318 case WI_RID_DEFLT_CRYPT_KEYS:
1319 wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
1320 memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
1321 break;
1322 default:
1323 #if 0
1324 error = EIO;
1325 #else
1326 #ifdef WI_DEBUG
1327 printf("%s: wi_getdef: unknown request %d\n",
1328 sc->sc_dev.dv_xname, wreq->wi_type);
1329 #endif
1330 #endif
1331 break;
1332 }
1333
1334 return (error);
1335 }
1336
1337 static int
1338 wi_ioctl(ifp, command, data)
1339 struct ifnet *ifp;
1340 u_long command;
1341 caddr_t data;
1342 {
1343 int s, error = 0;
1344 int len;
1345 struct wi_softc *sc = ifp->if_softc;
1346 struct wi_req wreq;
1347 struct ifreq *ifr;
1348 struct proc *p = curproc;
1349 struct ieee80211_nwid nwid;
1350
1351 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1352 return (ENXIO);
1353
1354 s = splnet();
1355
1356 ifr = (struct ifreq *)data;
1357 switch (command) {
1358 case SIOCSIFADDR:
1359 case SIOCGIFADDR:
1360 case SIOCSIFMTU:
1361 error = ether_ioctl(ifp, command, data);
1362 break;
1363 case SIOCSIFFLAGS:
1364 if (ifp->if_flags & IFF_UP) {
1365 if (ifp->if_flags & IFF_RUNNING &&
1366 ifp->if_flags & IFF_PROMISC &&
1367 !(sc->wi_if_flags & IFF_PROMISC)) {
1368 WI_SETVAL(WI_RID_PROMISC, 1);
1369 } else if (ifp->if_flags & IFF_RUNNING &&
1370 !(ifp->if_flags & IFF_PROMISC) &&
1371 sc->wi_if_flags & IFF_PROMISC) {
1372 WI_SETVAL(WI_RID_PROMISC, 0);
1373 }
1374 wi_init(ifp);
1375 } else {
1376 if (ifp->if_flags & IFF_RUNNING) {
1377 wi_stop(ifp, 0);
1378 }
1379 }
1380 sc->wi_if_flags = ifp->if_flags;
1381
1382 if (!(ifp->if_flags & IFF_UP)) {
1383 if (sc->sc_enabled) {
1384 if (sc->sc_disable)
1385 (*sc->sc_disable)(sc);
1386 sc->sc_enabled = 0;
1387 ifp->if_flags &= ~IFF_RUNNING;
1388 }
1389 }
1390 error = 0;
1391 break;
1392 case SIOCADDMULTI:
1393 case SIOCDELMULTI:
1394 error = (command == SIOCADDMULTI) ?
1395 ether_addmulti(ifr, &sc->sc_ethercom) :
1396 ether_delmulti(ifr, &sc->sc_ethercom);
1397 if (error == ENETRESET) {
1398 if (sc->sc_enabled != 0) {
1399 /*
1400 * Multicast list has changed. Set the
1401 * hardware filter accordingly.
1402 */
1403 wi_setmulti(sc);
1404 }
1405 error = 0;
1406 }
1407 break;
1408 case SIOCSIFMEDIA:
1409 case SIOCGIFMEDIA:
1410 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1411 break;
1412 case SIOCGWAVELAN:
1413 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1414 if (error)
1415 break;
1416 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1417 wi_update_stats(sc);
1418 /* XXX native byte order */
1419 memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats,
1420 sizeof(sc->wi_stats));
1421 wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1422 } else if (wreq.wi_type == WI_RID_READ_APS) {
1423 if (sc->wi_scanning) {
1424 error = EINVAL;
1425 break;
1426 } else {
1427 len = sc->wi_naps * sizeof(struct wi_apinfo);
1428 len = len > WI_MAX_DATALEN ? WI_MAX_DATALEN : len;
1429 len = len / sizeof(struct wi_apinfo);
1430 memcpy((char *)&wreq.wi_val, (char *)&len, sizeof(len));
1431 memcpy((char *)&wreq.wi_val + sizeof(len),
1432 (char *)&sc->wi_aps,
1433 len * sizeof(struct wi_apinfo));
1434 }
1435 } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1436 /* For non-root user, return all-zeroes keys */
1437 if (suser(p->p_ucred, &p->p_acflag))
1438 memset((char *)&wreq, 0,
1439 sizeof(struct wi_ltv_keys));
1440 else
1441 memcpy((char *)&wreq, (char *)&sc->wi_keys,
1442 sizeof(struct wi_ltv_keys));
1443 } else {
1444 if (sc->sc_enabled == 0)
1445 error = wi_getdef(sc, &wreq);
1446 else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1447 error = EINVAL;
1448 }
1449 if (error == 0)
1450 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1451 break;
1452 case SIOCSWAVELAN:
1453 error = suser(p->p_ucred, &p->p_acflag);
1454 if (error)
1455 break;
1456 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1457 if (error)
1458 break;
1459 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1460 error = EINVAL;
1461 break;
1462 } else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1463 error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1464 wreq.wi_len);
1465 } else if (wreq.wi_type == WI_RID_SCAN_APS) {
1466 if (wreq.wi_len != 4) {
1467 error = EINVAL;
1468 break;
1469 }
1470 if (!sc->wi_scanning) {
1471 if (sc->sc_prism2) {
1472 wreq.wi_type = WI_RID_SCAN_REQ;
1473 error = wi_write_record(sc,
1474 (struct wi_ltv_gen *)&wreq);
1475 }
1476 if (!error) {
1477 sc->wi_scanning = 1;
1478 callout_reset(&sc->wi_scan_sh, hz * 1,
1479 wi_wait_scan, sc);
1480 }
1481 }
1482 } else {
1483 if (sc->sc_enabled != 0)
1484 error = wi_write_record(sc,
1485 (struct wi_ltv_gen *)&wreq);
1486 if (error == 0)
1487 error = wi_setdef(sc, &wreq);
1488 if (error == 0 && sc->sc_enabled != 0)
1489 /* Reinitialize WaveLAN. */
1490 wi_init(ifp);
1491 }
1492 break;
1493 case SIOCG80211NWID:
1494 if (sc->sc_enabled == 0) {
1495 /* Return the desired ID */
1496 error = copyout(&sc->wi_netid, ifr->ifr_data,
1497 sizeof(sc->wi_netid));
1498 } else {
1499 wreq.wi_type = WI_RID_CURRENT_SSID;
1500 wreq.wi_len = WI_MAX_DATALEN;
1501 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
1502 le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
1503 error = EINVAL;
1504 else {
1505 wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
1506 le16toh(wreq.wi_val[0]));
1507 error = copyout(&nwid, ifr->ifr_data,
1508 sizeof(nwid));
1509 }
1510 }
1511 break;
1512 case SIOCS80211NWID:
1513 error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
1514 if (error != 0)
1515 break;
1516 if (nwid.i_len > IEEE80211_NWID_LEN) {
1517 error = EINVAL;
1518 break;
1519 }
1520 if (sc->wi_netid.i_len == nwid.i_len &&
1521 memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
1522 break;
1523 wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
1524 if (sc->sc_enabled != 0)
1525 /* Reinitialize WaveLAN. */
1526 wi_init(ifp);
1527 break;
1528 case SIOCS80211NWKEY:
1529 error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
1530 break;
1531 case SIOCG80211NWKEY:
1532 error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
1533 break;
1534 case SIOCS80211POWER:
1535 error = wi_set_pm(sc, (struct ieee80211_power *)data);
1536 break;
1537 case SIOCG80211POWER:
1538 error = wi_get_pm(sc, (struct ieee80211_power *)data);
1539 break;
1540
1541 default:
1542 error = EINVAL;
1543 break;
1544 }
1545
1546 splx(s);
1547 return (error);
1548 }
1549
1550 static int
1551 wi_init(ifp)
1552 struct ifnet *ifp;
1553 {
1554 struct wi_softc *sc = ifp->if_softc;
1555 struct wi_req wreq;
1556 struct wi_ltv_macaddr mac;
1557 int error, id = 0;
1558
1559 if (!sc->sc_enabled) {
1560 if ((error = (*sc->sc_enable)(sc)) != 0)
1561 goto out;
1562 sc->sc_enabled = 1;
1563 }
1564
1565 wi_stop(ifp, 0);
1566 wi_reset(sc);
1567
1568 /* Program max data length. */
1569 WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1570
1571 /* Enable/disable IBSS creation. */
1572 WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1573
1574 /* Set the port type. */
1575 WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1576
1577 /* Program the RTS/CTS threshold. */
1578 WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1579
1580 /* Program the TX rate */
1581 WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1582
1583 /* Access point density */
1584 WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1585
1586 /* Power Management Enabled */
1587 WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1588
1589 /* Power Managment Max Sleep */
1590 WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1591
1592 /* Roaming type */
1593 WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
1594
1595 /* Specify the IBSS name */
1596 wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
1597
1598 /* Specify the network name */
1599 wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
1600
1601 /* Specify the frequency to use */
1602 WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1603
1604 /* Program the nodename. */
1605 wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
1606
1607 /* Set our MAC address. */
1608 mac.wi_len = 4;
1609 mac.wi_type = WI_RID_MAC_NODE;
1610 memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
1611 wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1612
1613 /* Initialize promisc mode. */
1614 if (ifp->if_flags & IFF_PROMISC) {
1615 WI_SETVAL(WI_RID_PROMISC, 1);
1616 } else {
1617 WI_SETVAL(WI_RID_PROMISC, 0);
1618 }
1619
1620 /* Configure WEP. */
1621 if (sc->wi_has_wep) {
1622 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1623 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1624 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1625 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1626 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1627 if (sc->sc_prism2 && sc->wi_use_wep) {
1628 /*
1629 * ONLY HWB3163 EVAL-CARD Firmware version
1630 * less than 0.8 variant3
1631 *
1632 * If promiscuous mode disable, Prism2 chip
1633 * does not work with WEP .
1634 * It is under investigation for details.
1635 * (ichiro (at) netbsd.org)
1636 */
1637 if (sc->sc_prism2_ver < 83 ) {
1638 /* firm ver < 0.8 variant 3 */
1639 WI_SETVAL(WI_RID_PROMISC, 1);
1640 }
1641 WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
1642 }
1643 }
1644
1645 /* Set multicast filter. */
1646 wi_setmulti(sc);
1647
1648 /* Enable desired port */
1649 wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
1650
1651 /* scanning variable is modal, therefore reinit to OFF, in case it was on. */
1652 sc->wi_scanning=0;
1653 sc->wi_naps=0;
1654
1655 if ((error = wi_alloc_nicmem(sc,
1656 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1657 printf("%s: tx buffer allocation failed\n",
1658 sc->sc_dev.dv_xname);
1659 goto out;
1660 }
1661 sc->wi_tx_data_id = id;
1662
1663 if ((error = wi_alloc_nicmem(sc,
1664 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1665 printf("%s: mgmt. buffer allocation failed\n",
1666 sc->sc_dev.dv_xname);
1667 goto out;
1668 }
1669 sc->wi_tx_mgmt_id = id;
1670
1671 /* Enable interrupts */
1672 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1673
1674 ifp->if_flags |= IFF_RUNNING;
1675 ifp->if_flags &= ~IFF_OACTIVE;
1676
1677 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
1678
1679 out:
1680 if (error) {
1681 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1682 ifp->if_timer = 0;
1683 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1684 }
1685 return (error);
1686 }
1687
1688 static void
1689 wi_start(ifp)
1690 struct ifnet *ifp;
1691 {
1692 struct wi_softc *sc;
1693 struct mbuf *m0;
1694 struct wi_frame tx_frame;
1695 struct ether_header *eh;
1696 int id;
1697
1698 sc = ifp->if_softc;
1699
1700 if (ifp->if_flags & IFF_OACTIVE)
1701 return;
1702
1703 IFQ_DEQUEUE(&ifp->if_snd, m0);
1704 if (m0 == NULL)
1705 return;
1706
1707 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1708 id = sc->wi_tx_data_id;
1709 eh = mtod(m0, struct ether_header *);
1710
1711 /*
1712 * Use RFC1042 encoding for IP and ARP datagrams,
1713 * 802.3 for anything else.
1714 */
1715 if (ntohs(eh->ether_type) == ETHERTYPE_IP ||
1716 ntohs(eh->ether_type) == ETHERTYPE_ARP ||
1717 ntohs(eh->ether_type) == ETHERTYPE_REVARP ||
1718 ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
1719 memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost,
1720 ETHER_ADDR_LEN);
1721 memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost,
1722 ETHER_ADDR_LEN);
1723 memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost,
1724 ETHER_ADDR_LEN);
1725 memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost,
1726 ETHER_ADDR_LEN);
1727
1728 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1729 tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
1730 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1731 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1732 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1733 tx_frame.wi_type = eh->ether_type;
1734
1735 m_copydata(m0, sizeof(struct ether_header),
1736 m0->m_pkthdr.len - sizeof(struct ether_header),
1737 (caddr_t)&sc->wi_txbuf);
1738
1739 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1740 sizeof(struct wi_frame));
1741 wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1742 (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1743 } else {
1744 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
1745
1746 m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1747
1748 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1749 sizeof(struct wi_frame));
1750 wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1751 m0->m_pkthdr.len + 2);
1752 }
1753
1754 #if NBPFILTER > 0
1755 /*
1756 * If there's a BPF listener, bounce a copy of
1757 * this frame to him.
1758 */
1759 if (ifp->if_bpf)
1760 bpf_mtap(ifp->if_bpf, m0);
1761 #endif
1762
1763 m_freem(m0);
1764
1765 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1766 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1767
1768 ifp->if_flags |= IFF_OACTIVE;
1769
1770 /*
1771 * Set a timeout in case the chip goes out to lunch.
1772 */
1773 ifp->if_timer = 5;
1774
1775 return;
1776 }
1777
1778 static int
1779 wi_mgmt_xmit(sc, data, len)
1780 struct wi_softc *sc;
1781 caddr_t data;
1782 int len;
1783 {
1784 struct wi_frame tx_frame;
1785 int id;
1786 struct wi_80211_hdr *hdr;
1787 caddr_t dptr;
1788
1789 hdr = (struct wi_80211_hdr *)data;
1790 dptr = data + sizeof(struct wi_80211_hdr);
1791
1792 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1793 id = sc->wi_tx_mgmt_id;
1794
1795 memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr,
1796 sizeof(struct wi_80211_hdr));
1797
1798 tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
1799 tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1800
1801 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1802 wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1803 (len - sizeof(struct wi_80211_hdr)) + 2);
1804
1805 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1806 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1807 return(EIO);
1808 }
1809
1810 return(0);
1811 }
1812
1813 static void
1814 wi_stop(ifp, disable)
1815 struct ifnet *ifp;
1816 {
1817 struct wi_softc *sc = ifp->if_softc;
1818
1819 CSR_WRITE_2(sc, WI_INT_EN, 0);
1820 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1821
1822 callout_stop(&sc->wi_inquire_ch);
1823 callout_stop(&sc->wi_scan_sh);
1824
1825 if (disable) {
1826 if (sc->sc_enabled) {
1827 if (sc->sc_disable)
1828 (*sc->sc_disable)(sc);
1829 sc->sc_enabled = 0;
1830 }
1831 }
1832
1833 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1834 ifp->if_timer = 0;
1835 }
1836
1837 static void
1838 wi_watchdog(ifp)
1839 struct ifnet *ifp;
1840 {
1841 struct wi_softc *sc;
1842
1843 sc = ifp->if_softc;
1844
1845 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1846
1847 wi_init(ifp);
1848
1849 ifp->if_oerrors++;
1850
1851 return;
1852 }
1853
1854 void
1855 wi_shutdown(sc)
1856 struct wi_softc *sc;
1857 {
1858 int s;
1859
1860 s = splnet();
1861 if (sc->sc_enabled) {
1862 if (sc->sc_disable)
1863 (*sc->sc_disable)(sc);
1864 sc->sc_enabled = 0;
1865 }
1866 splx(s);
1867 }
1868
1869 int
1870 wi_activate(self, act)
1871 struct device *self;
1872 enum devact act;
1873 {
1874 struct wi_softc *sc = (struct wi_softc *)self;
1875 int rv = 0, s;
1876
1877 s = splnet();
1878 switch (act) {
1879 case DVACT_ACTIVATE:
1880 rv = EOPNOTSUPP;
1881 break;
1882
1883 case DVACT_DEACTIVATE:
1884 if_deactivate(&sc->sc_ethercom.ec_if);
1885 break;
1886 }
1887 splx(s);
1888 return (rv);
1889 }
1890
1891 static void
1892 wi_get_id(sc)
1893 struct wi_softc *sc;
1894 {
1895 struct wi_ltv_ver ver;
1896
1897 /* getting chip identity */
1898 memset(&ver, 0, sizeof(ver));
1899 ver.wi_type = WI_RID_CARD_ID;
1900 ver.wi_len = 5;
1901 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1902 printf("%s: using ", sc->sc_dev.dv_xname);
1903 switch (le16toh(ver.wi_ver[0])) {
1904 case WI_NIC_EVB2:
1905 printf("RF:PRISM2 MAC:HFA3841");
1906 sc->sc_prism2 = 1;
1907 break;
1908 case WI_NIC_HWB3763:
1909 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3763 rev.B");
1910 sc->sc_prism2 = 1;
1911 break;
1912 case WI_NIC_HWB3163:
1913 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.A");
1914 sc->sc_prism2 = 1;
1915 break;
1916 case WI_NIC_HWB3163B:
1917 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.B");
1918 sc->sc_prism2 = 1;
1919 break;
1920 case WI_NIC_EVB3:
1921 printf("RF:PRISM2 MAC:HFA3842");
1922 sc->sc_prism2 = 1;
1923 break;
1924 case WI_NIC_HWB1153:
1925 printf("RF:PRISM1 MAC:HFA3841 CARD:HWB1153");
1926 sc->sc_prism2 = 1;
1927 break;
1928 case WI_NIC_P2_SST:
1929 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163-SST-flash");
1930 sc->sc_prism2 = 1;
1931 break;
1932 case WI_NIC_PRISM2_5:
1933 printf("RF:PRISM2.5 MAC:ISL3873");
1934 sc->sc_prism2 = 1;
1935 break;
1936 case WI_NIC_3874A:
1937 printf("RF:PRISM2.5 MAC:ISL3874A(PCI)");
1938 sc->sc_prism2 = 1;
1939 break;
1940 default:
1941 printf("Lucent chip or unknown chip\n");
1942 sc->sc_prism2 = 0;
1943 break;
1944 }
1945
1946 if (sc->sc_prism2) {
1947 /* try to get prism2 firm version */
1948 memset(&ver, 0, sizeof(ver));
1949 ver.wi_type = WI_RID_STA_IDENTITY;
1950 ver.wi_len = 5;
1951 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1952 LE16TOH(ver.wi_ver[1]);
1953 LE16TOH(ver.wi_ver[2]);
1954 LE16TOH(ver.wi_ver[3]);
1955 printf(", Firmware: %i.%i variant %i\n", ver.wi_ver[2],
1956 ver.wi_ver[3], ver.wi_ver[1]);
1957 sc->sc_prism2_ver = ver.wi_ver[2] * 100 +
1958 ver.wi_ver[3] * 10 + ver.wi_ver[1];
1959 }
1960
1961 return;
1962 }
1963
1964 int
1965 wi_detach(sc)
1966 struct wi_softc *sc;
1967 {
1968 struct ifnet *ifp = sc->sc_ifp;
1969 int s;
1970
1971 if (!sc->sc_attached)
1972 return (0);
1973
1974 s = splnet();
1975 callout_stop(&sc->wi_inquire_ch);
1976
1977 /* Delete all remaining media. */
1978 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
1979
1980 ether_ifdetach(ifp);
1981 if_detach(ifp);
1982 if (sc->sc_enabled) {
1983 if (sc->sc_disable)
1984 (*sc->sc_disable)(sc);
1985 sc->sc_enabled = 0;
1986 }
1987 splx(s);
1988 return (0);
1989 }
1990
1991 void
1992 wi_power(sc, why)
1993 struct wi_softc *sc;
1994 int why;
1995 {
1996 int s;
1997
1998 if (!sc->sc_enabled)
1999 return;
2000
2001 s = splnet();
2002 switch (why) {
2003 case PWR_SUSPEND:
2004 case PWR_STANDBY:
2005 wi_stop(sc->sc_ifp, 0);
2006 if (sc->sc_enabled) {
2007 if (sc->sc_disable)
2008 (*sc->sc_disable)(sc);
2009 }
2010 break;
2011 case PWR_RESUME:
2012 sc->sc_enabled = 0;
2013 wi_init(sc->sc_ifp);
2014 (void)wi_intr(sc);
2015 break;
2016 case PWR_SOFTSUSPEND:
2017 case PWR_SOFTSTANDBY:
2018 case PWR_SOFTRESUME:
2019 break;
2020 }
2021 splx(s);
2022 }
2023
2024 static int
2025 wi_set_ssid(ws, id, len)
2026 struct ieee80211_nwid *ws;
2027 u_int8_t *id;
2028 int len;
2029 {
2030
2031 if (len > IEEE80211_NWID_LEN)
2032 return (EINVAL);
2033 ws->i_len = len;
2034 memcpy(ws->i_nwid, id, len);
2035 return (0);
2036 }
2037
2038 static void
2039 wi_request_fill_ssid(wreq, ws)
2040 struct wi_req *wreq;
2041 struct ieee80211_nwid *ws;
2042 {
2043 int len = ws->i_len;
2044
2045 memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
2046 wreq->wi_val[0] = htole16(len);
2047 wreq->wi_len = roundup(len, 2) / 2 + 2;
2048 memcpy(&wreq->wi_val[1], ws->i_nwid, len);
2049 }
2050
2051 static int
2052 wi_write_ssid(sc, type, wreq, ws)
2053 struct wi_softc *sc;
2054 int type;
2055 struct wi_req *wreq;
2056 struct ieee80211_nwid *ws;
2057 {
2058
2059 wreq->wi_type = type;
2060 wi_request_fill_ssid(wreq, ws);
2061 return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
2062 }
2063
2064 static int
2065 wi_sync_media(sc, ptype, txrate)
2066 struct wi_softc *sc;
2067 int ptype;
2068 int txrate;
2069 {
2070 int media = sc->sc_media.ifm_cur->ifm_media;
2071 int options = IFM_OPTIONS(media);
2072 int subtype;
2073
2074 switch (txrate) {
2075 case 1:
2076 subtype = IFM_IEEE80211_DS1;
2077 break;
2078 case 2:
2079 subtype = IFM_IEEE80211_DS2;
2080 break;
2081 case 3:
2082 subtype = IFM_AUTO;
2083 break;
2084 case 5:
2085 subtype = IFM_IEEE80211_DS5;
2086 break;
2087 case 11:
2088 subtype = IFM_IEEE80211_DS11;
2089 break;
2090 default:
2091 subtype = IFM_MANUAL; /* Unable to represent */
2092 break;
2093 }
2094 switch (ptype) {
2095 case WI_PORTTYPE_ADHOC:
2096 options |= IFM_IEEE80211_ADHOC;
2097 break;
2098 case WI_PORTTYPE_BSS:
2099 options &= ~IFM_IEEE80211_ADHOC;
2100 break;
2101 default:
2102 subtype = IFM_MANUAL; /* Unable to represent */
2103 break;
2104 }
2105 media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
2106 IFM_INST(media));
2107 if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
2108 return (EINVAL);
2109 ifmedia_set(&sc->sc_media, media);
2110 sc->wi_ptype = ptype;
2111 sc->wi_tx_rate = txrate;
2112 return (0);
2113 }
2114
2115 static int
2116 wi_media_change(ifp)
2117 struct ifnet *ifp;
2118 {
2119 struct wi_softc *sc = ifp->if_softc;
2120 int otype = sc->wi_ptype;
2121 int orate = sc->wi_tx_rate;
2122
2123 if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2124 sc->wi_ptype = WI_PORTTYPE_ADHOC;
2125 else
2126 sc->wi_ptype = WI_PORTTYPE_BSS;
2127
2128 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
2129 case IFM_IEEE80211_DS1:
2130 sc->wi_tx_rate = 1;
2131 break;
2132 case IFM_IEEE80211_DS2:
2133 sc->wi_tx_rate = 2;
2134 break;
2135 case IFM_AUTO:
2136 sc->wi_tx_rate = 3;
2137 break;
2138 case IFM_IEEE80211_DS5:
2139 sc->wi_tx_rate = 5;
2140 break;
2141 case IFM_IEEE80211_DS11:
2142 sc->wi_tx_rate = 11;
2143 break;
2144 }
2145
2146 if (sc->sc_enabled != 0) {
2147 if (otype != sc->wi_ptype ||
2148 orate != sc->wi_tx_rate)
2149 wi_init(ifp);
2150 }
2151
2152 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
2153
2154 return (0);
2155 }
2156
2157 static void
2158 wi_media_status(ifp, imr)
2159 struct ifnet *ifp;
2160 struct ifmediareq *imr;
2161 {
2162 struct wi_softc *sc = ifp->if_softc;
2163
2164 if (sc->sc_enabled == 0) {
2165 imr->ifm_active = IFM_IEEE80211|IFM_NONE;
2166 imr->ifm_status = 0;
2167 return;
2168 }
2169
2170 imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
2171 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2172 }
2173
2174 static int
2175 wi_set_nwkey(sc, nwkey)
2176 struct wi_softc *sc;
2177 struct ieee80211_nwkey *nwkey;
2178 {
2179 int i, error;
2180 size_t len;
2181 struct wi_req wreq;
2182 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
2183
2184 if (!sc->wi_has_wep)
2185 return ENODEV;
2186 if (nwkey->i_defkid <= 0 ||
2187 nwkey->i_defkid > IEEE80211_WEP_NKID)
2188 return EINVAL;
2189 memcpy(wk, &sc->wi_keys, sizeof(*wk));
2190 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2191 if (nwkey->i_key[i].i_keydat == NULL)
2192 continue;
2193 len = nwkey->i_key[i].i_keylen;
2194 if (len > sizeof(wk->wi_keys[i].wi_keydat))
2195 return EINVAL;
2196 error = copyin(nwkey->i_key[i].i_keydat,
2197 wk->wi_keys[i].wi_keydat, len);
2198 if (error)
2199 return error;
2200 wk->wi_keys[i].wi_keylen = htole16(len);
2201 }
2202
2203 wk->wi_len = (sizeof(*wk) / 2) + 1;
2204 wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2205 if (sc->sc_enabled != 0) {
2206 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2207 if (error)
2208 return error;
2209 }
2210 error = wi_setdef(sc, &wreq);
2211 if (error)
2212 return error;
2213
2214 wreq.wi_len = 2;
2215 wreq.wi_type = WI_RID_TX_CRYPT_KEY;
2216 wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
2217 if (sc->sc_enabled != 0) {
2218 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2219 if (error)
2220 return error;
2221 }
2222 error = wi_setdef(sc, &wreq);
2223 if (error)
2224 return error;
2225
2226 wreq.wi_type = WI_RID_ENCRYPTION;
2227 wreq.wi_val[0] = htole16(nwkey->i_wepon);
2228 if (sc->sc_enabled != 0) {
2229 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2230 if (error)
2231 return error;
2232 }
2233 error = wi_setdef(sc, &wreq);
2234 if (error)
2235 return error;
2236
2237 if (sc->sc_enabled != 0)
2238 wi_init(&sc->sc_ethercom.ec_if);
2239 return 0;
2240 }
2241
2242 static int
2243 wi_get_nwkey(sc, nwkey)
2244 struct wi_softc *sc;
2245 struct ieee80211_nwkey *nwkey;
2246 {
2247 int i, len, error;
2248 struct wi_ltv_keys *wk = &sc->wi_keys;
2249
2250 if (!sc->wi_has_wep)
2251 return ENODEV;
2252 nwkey->i_wepon = sc->wi_use_wep;
2253 nwkey->i_defkid = sc->wi_tx_key + 1;
2254
2255 /* do not show any keys to non-root user */
2256 error = suser(curproc->p_ucred, &curproc->p_acflag);
2257 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2258 if (nwkey->i_key[i].i_keydat == NULL)
2259 continue;
2260 /* error holds results of suser() for the first time */
2261 if (error)
2262 return error;
2263 len = le16toh(wk->wi_keys[i].wi_keylen);
2264 if (nwkey->i_key[i].i_keylen < len)
2265 return ENOSPC;
2266 nwkey->i_key[i].i_keylen = len;
2267 error = copyout(wk->wi_keys[i].wi_keydat,
2268 nwkey->i_key[i].i_keydat, len);
2269 if (error)
2270 return error;
2271 }
2272 return 0;
2273 }
2274
2275 static int
2276 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
2277 {
2278
2279 sc->wi_pm_enabled = power->i_enabled;
2280 sc->wi_max_sleep = power->i_maxsleep;
2281
2282 if (sc->sc_enabled)
2283 return (wi_init(&sc->sc_ethercom.ec_if));
2284
2285 return (0);
2286 }
2287
2288 static int
2289 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
2290 {
2291
2292 power->i_enabled = sc->wi_pm_enabled;
2293 power->i_maxsleep = sc->wi_max_sleep;
2294
2295 return (0);
2296 }
2297