wi.c revision 1.39 1 /* $NetBSD: wi.c,v 1.39 2002/02/13 22:06:17 itojun Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.39 2002/02/13 22:06:17 itojun Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static void wi_reset __P((struct wi_softc *));
108 static int wi_ioctl __P((struct ifnet *, u_long, caddr_t));
109 static void wi_start __P((struct ifnet *));
110 static void wi_watchdog __P((struct ifnet *));
111 static int wi_init __P((struct ifnet *));
112 static void wi_stop __P((struct ifnet *, int));
113 static void wi_rxeof __P((struct wi_softc *));
114 static void wi_txeof __P((struct wi_softc *, int));
115 static void wi_update_stats __P((struct wi_softc *));
116 static void wi_setmulti __P((struct wi_softc *));
117
118 static int wi_cmd __P((struct wi_softc *, int, int));
119 static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *));
120 static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *));
121 static int wi_read_data __P((struct wi_softc *, int,
122 int, caddr_t, int));
123 static int wi_write_data __P((struct wi_softc *, int,
124 int, caddr_t, int));
125 static int wi_seek __P((struct wi_softc *, int, int, int));
126 static int wi_alloc_nicmem __P((struct wi_softc *, int, int *));
127 static void wi_inquire __P((void *));
128 static void wi_wait_scan __P((void *));
129 static int wi_setdef __P((struct wi_softc *, struct wi_req *));
130 static int wi_getdef __P((struct wi_softc *, struct wi_req *));
131 static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int));
132
133 static int wi_media_change __P((struct ifnet *));
134 static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
135
136 static void wi_get_id __P((struct wi_softc *));
137
138 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
139 static void wi_request_fill_ssid __P((struct wi_req *,
140 struct ieee80211_nwid *));
141 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
142 struct ieee80211_nwid *));
143 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
144 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
145 static int wi_sync_media __P((struct wi_softc *, int, int));
146 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
147 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
148
149 int
150 wi_attach(sc)
151 struct wi_softc *sc;
152 {
153 struct ifnet *ifp = sc->sc_ifp;
154 struct wi_ltv_macaddr mac;
155 struct wi_ltv_gen gen;
156 static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
157 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
158 };
159 int s;
160
161 s = splnet();
162
163 callout_init(&sc->wi_inquire_ch);
164 callout_init(&sc->wi_scan_sh);
165
166 /* Make sure interrupts are disabled. */
167 CSR_WRITE_2(sc, WI_INT_EN, 0);
168 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
169
170 /* Reset the NIC. */
171 wi_reset(sc);
172
173 memset(&mac, 0, sizeof(mac));
174 /* Read the station address. */
175 mac.wi_type = WI_RID_MAC_NODE;
176 mac.wi_len = 4;
177 wi_read_record(sc, (struct wi_ltv_gen *)&mac);
178 memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
179
180 /*
181 * Check if we got anything meaningful.
182 *
183 * Is it really enough just checking against null ethernet address?
184 * Or, check against possible vendor? XXX.
185 */
186 if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
187 printf("%s: could not get mac address, attach failed\n",
188 sc->sc_dev.dv_xname);
189 return 1;
190 }
191
192 printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
193
194 /* Read NIC identification */
195 wi_get_id(sc);
196
197 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
198 ifp->if_softc = sc;
199 ifp->if_start = wi_start;
200 ifp->if_ioctl = wi_ioctl;
201 ifp->if_watchdog = wi_watchdog;
202 ifp->if_init = wi_init;
203 ifp->if_stop = wi_stop;
204 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
205 #ifdef IFF_NOTRAILERS
206 ifp->if_flags |= IFF_NOTRAILERS;
207 #endif
208 IFQ_SET_READY(&ifp->if_snd);
209
210 (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
211 sizeof(WI_DEFAULT_NODENAME) - 1);
212 (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
213 sizeof(WI_DEFAULT_NETNAME) - 1);
214 (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
215 sizeof(WI_DEFAULT_IBSS) - 1);
216
217 sc->wi_portnum = WI_DEFAULT_PORT;
218 sc->wi_ptype = WI_PORTTYPE_BSS;
219 sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
220 sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
221 sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
222 sc->wi_max_data_len = WI_DEFAULT_DATALEN;
223 sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
224 sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
225 sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
226 sc->wi_roaming = WI_DEFAULT_ROAMING;
227 sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
228
229 /*
230 * Read the default channel from the NIC. This may vary
231 * depending on the country where the NIC was purchased, so
232 * we can't hard-code a default and expect it to work for
233 * everyone.
234 */
235 gen.wi_type = WI_RID_OWN_CHNL;
236 gen.wi_len = 2;
237 wi_read_record(sc, &gen);
238 sc->wi_channel = le16toh(gen.wi_val);
239
240 memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats));
241
242 /* AP info was filled with 0 */
243 memset((char *)&sc->wi_aps, 0, sizeof(sc->wi_aps));
244 sc->wi_scanning=0;
245 sc->wi_naps=0;
246
247 /*
248 * Find out if we support WEP on this card.
249 */
250 gen.wi_type = WI_RID_WEP_AVAIL;
251 gen.wi_len = 2;
252 wi_read_record(sc, &gen);
253 sc->wi_has_wep = le16toh(gen.wi_val);
254
255 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
256 #define IFM_AUTOADHOC \
257 IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0)
258 #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL)
259 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
260 ADD(IFM_AUTOADHOC, 0);
261 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
262 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
263 IFM_IEEE80211_ADHOC, 0), 0);
264 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
265 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
266 IFM_IEEE80211_ADHOC, 0), 0);
267 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
268 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
269 IFM_IEEE80211_ADHOC, 0), 0);
270 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
271 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
272 IFM_IEEE80211_ADHOC, 0), 0);
273 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
274 #undef ADD
275 ifmedia_set(&sc->sc_media, IFM_AUTOADHOC);
276
277 /*
278 * Call MI attach routines.
279 */
280 if_attach(ifp);
281 ether_ifattach(ifp, mac.wi_mac_addr);
282
283 ifp->if_baudrate = IF_Mbps(2);
284
285 /* Attach is successful. */
286 sc->sc_attached = 1;
287
288 splx(s);
289 return 0;
290 }
291
292 static void wi_rxeof(sc)
293 struct wi_softc *sc;
294 {
295 struct ifnet *ifp;
296 struct ether_header *eh;
297 struct wi_frame rx_frame;
298 struct mbuf *m;
299 int id;
300
301 ifp = sc->sc_ifp;
302
303 id = CSR_READ_2(sc, WI_RX_FID);
304
305 /* First read in the frame header */
306 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
307 ifp->if_ierrors++;
308 return;
309 }
310
311 /*
312 * Drop undecryptable or packets with receive errors here
313 */
314 if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) {
315 ifp->if_ierrors++;
316 return;
317 }
318
319 MGETHDR(m, M_DONTWAIT, MT_DATA);
320 if (m == NULL) {
321 ifp->if_ierrors++;
322 return;
323 }
324 MCLGET(m, M_DONTWAIT);
325 if (!(m->m_flags & M_EXT)) {
326 m_freem(m);
327 ifp->if_ierrors++;
328 return;
329 }
330
331 /* Align the data after the ethernet header */
332 m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
333 - sizeof(struct ether_header);
334
335 eh = mtod(m, struct ether_header *);
336 m->m_pkthdr.rcvif = ifp;
337
338 if (le16toh(rx_frame.wi_status) == WI_STAT_1042 ||
339 le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL ||
340 le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) {
341 if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
342 printf("%s: oversized packet received "
343 "(wi_dat_len=%d, wi_status=0x%x)\n",
344 sc->sc_dev.dv_xname,
345 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
346 m_freem(m);
347 ifp->if_ierrors++;
348 return;
349 }
350 m->m_pkthdr.len = m->m_len =
351 le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
352
353 memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr,
354 ETHER_ADDR_LEN);
355 memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr,
356 ETHER_ADDR_LEN);
357 memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type,
358 sizeof(u_int16_t));
359
360 if (wi_read_data(sc, id, WI_802_11_OFFSET,
361 mtod(m, caddr_t) + sizeof(struct ether_header),
362 m->m_len + 2)) {
363 m_freem(m);
364 ifp->if_ierrors++;
365 return;
366 }
367 } else {
368 if ((le16toh(rx_frame.wi_dat_len) +
369 sizeof(struct ether_header)) > MCLBYTES) {
370 printf("%s: oversized packet received "
371 "(wi_dat_len=%d, wi_status=0x%x)\n",
372 sc->sc_dev.dv_xname,
373 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
374 m_freem(m);
375 ifp->if_ierrors++;
376 return;
377 }
378 m->m_pkthdr.len = m->m_len =
379 le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
380
381 if (wi_read_data(sc, id, WI_802_3_OFFSET,
382 mtod(m, caddr_t), m->m_len + 2)) {
383 m_freem(m);
384 ifp->if_ierrors++;
385 return;
386 }
387 }
388
389 ifp->if_ipackets++;
390
391 #if NBPFILTER > 0
392 /* Handle BPF listeners. */
393 if (ifp->if_bpf)
394 bpf_mtap(ifp->if_bpf, m);
395 #endif
396
397 /* Receive packet. */
398 (*ifp->if_input)(ifp, m);
399 }
400
401 static void wi_txeof(sc, status)
402 struct wi_softc *sc;
403 int status;
404 {
405 struct ifnet *ifp = sc->sc_ifp;
406
407 ifp->if_timer = 0;
408 ifp->if_flags &= ~IFF_OACTIVE;
409
410 if (status & WI_EV_TX_EXC)
411 ifp->if_oerrors++;
412 else
413 ifp->if_opackets++;
414
415 return;
416 }
417
418 void wi_inquire(xsc)
419 void *xsc;
420 {
421 struct wi_softc *sc;
422 struct ifnet *ifp;
423
424 sc = xsc;
425 ifp = &sc->sc_ethercom.ec_if;
426
427 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
428 return;
429
430 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
431
432 /* Don't do this while we're transmitting */
433 if (ifp->if_flags & IFF_OACTIVE)
434 return;
435
436 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
437 }
438
439 void wi_wait_scan(xsc)
440 void *xsc;
441 {
442 struct wi_softc *sc;
443 struct ifnet *ifp;
444
445 sc = xsc;
446 ifp = &sc->sc_ethercom.ec_if;
447
448 /* If not scanning, ignore */
449 if (!sc->wi_scanning)
450 return;
451
452 /* Wait for to make INQUIRE */
453 if (ifp->if_flags & IFF_OACTIVE) {
454 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
455 return;
456 }
457
458 /* try INQUIRE */
459 if (wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS) == ETIMEDOUT) {
460 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
461 return;
462 }
463 }
464
465 void wi_update_stats(sc)
466 struct wi_softc *sc;
467 {
468 struct wi_ltv_gen gen;
469 struct wi_scan_header ap2_header; /* Prism2 header */
470 struct wi_scan_data_p2 ap2; /* Prism2 scantable*/
471 struct wi_scan_data ap; /* Lucent scantable */
472 struct wi_assoc assoc; /* Association Status */
473 u_int16_t id;
474 struct ifnet *ifp;
475 u_int32_t *ptr;
476 int len, naps, i, j;
477 u_int16_t t;
478
479 ifp = &sc->sc_ethercom.ec_if;
480
481 id = CSR_READ_2(sc, WI_INFO_FID);
482
483 wi_read_data(sc, id, 0, (char *)&gen, 4);
484
485 switch (gen.wi_type) {
486 case WI_INFO_SCAN_RESULTS:
487 if (gen.wi_len <= 3)
488 break;
489 if (sc->sc_prism2) { /* Prism2 chip */
490 naps = 2 * (gen.wi_len - 3) / sizeof(ap2);
491 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
492 sc->wi_naps = naps;
493 /* Read Header */
494 for(j=0; j < sizeof(ap2_header) / 2; j++)
495 ((u_int16_t *)&ap2_header)[j] =
496 CSR_READ_2(sc, WI_DATA1);
497 /* Read Data */
498 for (i=0; i < naps; i++) {
499 for(j=0; j < sizeof(ap2) / 2; j++)
500 ((u_int16_t *)&ap2)[j] =
501 CSR_READ_2(sc, WI_DATA1);
502 sc->wi_aps[i].scanreason = ap2_header.wi_reason;
503 memcpy(sc->wi_aps[i].bssid, ap2.wi_bssid, 6);
504 sc->wi_aps[i].channel = ap2.wi_chid;
505 sc->wi_aps[i].signal = ap2.wi_signal;
506 sc->wi_aps[i].noise = ap2.wi_noise;
507 sc->wi_aps[i].quality = ap2.wi_signal - ap2.wi_noise;
508 sc->wi_aps[i].capinfo = ap2.wi_capinfo;
509 sc->wi_aps[i].interval = ap2.wi_interval;
510 sc->wi_aps[i].rate = ap2.wi_rate;
511 if (ap2.wi_namelen > 32)
512 ap2.wi_namelen = 32;
513 sc->wi_aps[i].namelen = ap2.wi_namelen;
514 memcpy(sc->wi_aps[i].name, ap2.wi_name,
515 ap2.wi_namelen);
516 }
517 } else { /* Lucent chip */
518 naps = 2 * gen.wi_len / sizeof(ap);
519 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
520 sc->wi_naps = naps;
521 /* Read Data*/
522 for (i=0; i < naps; i++) {
523 for(j=0; j < sizeof(ap) / 2; j++)
524 ((u_int16_t *)&ap)[j] =
525 CSR_READ_2(sc, WI_DATA1);
526 memcpy(sc->wi_aps[i].bssid, ap.wi_bssid, 6);
527 sc->wi_aps[i].channel = ap.wi_chid;
528 sc->wi_aps[i].signal = ap.wi_signal;
529 sc->wi_aps[i].noise = ap.wi_noise;
530 sc->wi_aps[i].quality = ap.wi_signal - ap.wi_noise;
531 sc->wi_aps[i].capinfo = ap.wi_capinfo;
532 sc->wi_aps[i].interval = ap.wi_interval;
533 if (ap.wi_namelen > 32)
534 ap.wi_namelen = 32;
535 sc->wi_aps[i].namelen = ap.wi_namelen;
536 memcpy(sc->wi_aps[i].name, ap.wi_name,
537 ap.wi_namelen);
538 }
539 }
540 /* Done scanning */
541 sc->wi_scanning = 0;
542 break;
543
544 case WI_INFO_COUNTERS:
545 /* some card versions have a larger stats structure */
546 len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
547 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
548 ptr = (u_int32_t *)&sc->wi_stats;
549
550 for (i = 0; i < len; i++) {
551 t = CSR_READ_2(sc, WI_DATA1);
552 #ifdef WI_HERMES_STATS_WAR
553 if (t > 0xF000)
554 t = ~t & 0xFFFF;
555 #endif
556 ptr[i] += t;
557 }
558
559 ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
560 sc->wi_stats.wi_tx_multi_retries +
561 sc->wi_stats.wi_tx_retry_limit;
562 break;
563
564 case WI_INFO_LINK_STAT: {
565 static char *msg[] = {
566 "connected",
567 "disconnected",
568 "AP change",
569 "AP out of range",
570 "AP in range",
571 "Association Faild"
572 };
573
574 if (gen.wi_len != 2) {
575 #ifdef WI_DEBUG
576 printf("WI_INFO_LINK_STAT: len=%d\n", gen.wi_len);
577 #endif
578 break;
579 }
580 t = CSR_READ_2(sc, WI_DATA1);
581 if ((t < 1) || (t > 6)) {
582 #ifdef WI_DEBUG
583 printf("WI_INFO_LINK_STAT: status %d\n", t);
584 #endif
585 break;
586 }
587 /*
588 * Some cards issue streams of "connected" messages while
589 * trying to find a peer. Don't bother the user with this
590 * unless he is debugging.
591 */
592 if (ifp->if_flags & IFF_DEBUG)
593 printf("%s: %s\n", sc->sc_dev.dv_xname, msg[t - 1]);
594 break;
595 }
596
597 case WI_INFO_ASSOC_STAT: {
598 static char *msg[] = {
599 "STA Associated",
600 "STA Reassociated",
601 "STA Disassociated",
602 "Association Failure",
603 "Authentication Faild"
604 };
605 if (gen.wi_len != 10)
606 break;
607 for (i=0; i < gen.wi_len - 1; i++)
608 ((u_int16_t *)&assoc)[i] = CSR_READ_2(sc, WI_DATA1);
609 switch (assoc.wi_assoc_stat) {
610 case ASSOC:
611 case DISASSOC:
612 case ASSOCFAIL:
613 case AUTHFAIL:
614 printf("%s: %s, AP = %x:%x:%x:%x:%x:%x\n",
615 sc->sc_dev.dv_xname,
616 msg[assoc.wi_assoc_stat - 1],
617 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
618 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
619 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff);
620 break;
621 case REASSOC:
622 printf("%s: %s, AP = %x:%x:%x:%x:%x:%x, OldAP = %x:%x:%x:%x:%x:%x\n",
623 sc->sc_dev.dv_xname, msg[assoc.wi_assoc_stat - 1],
624 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
625 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
626 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff,
627 assoc.wi_assoc_osta[0]&0xff, assoc.wi_assoc_osta[1]&0xff,
628 assoc.wi_assoc_osta[2]&0xff, assoc.wi_assoc_osta[3]&0xff,
629 assoc.wi_assoc_osta[4]&0xff, assoc.wi_assoc_osta[5]&0xff);
630 break;
631 }
632 }
633 default:
634 #if 0
635 printf("Got info type: %04x\n", gen.wi_type);
636 #endif
637 for (i = 0; i < gen.wi_len; i++) {
638 t = CSR_READ_2(sc, WI_DATA1);
639 #if 0
640 printf("[0x%02x] = 0x%04x\n", i, t);
641 #endif
642 }
643 break;
644 }
645 }
646
647 int wi_intr(arg)
648 void *arg;
649 {
650 struct wi_softc *sc = arg;
651 struct ifnet *ifp;
652 u_int16_t status;
653
654 if (sc->sc_enabled == 0 ||
655 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
656 (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
657 return (0);
658
659 ifp = &sc->sc_ethercom.ec_if;
660
661 if (!(ifp->if_flags & IFF_UP)) {
662 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
663 CSR_WRITE_2(sc, WI_INT_EN, 0);
664 return 1;
665 }
666
667 /* Disable interrupts. */
668 CSR_WRITE_2(sc, WI_INT_EN, 0);
669
670 status = CSR_READ_2(sc, WI_EVENT_STAT);
671 CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
672
673 if (status & WI_EV_RX) {
674 wi_rxeof(sc);
675 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
676 }
677
678 if (status & WI_EV_TX) {
679 wi_txeof(sc, status);
680 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
681 }
682
683 if (status & WI_EV_ALLOC) {
684 int id;
685 id = CSR_READ_2(sc, WI_ALLOC_FID);
686 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
687 if (id == sc->wi_tx_data_id)
688 wi_txeof(sc, status);
689 }
690
691 if (status & WI_EV_INFO) {
692 wi_update_stats(sc);
693 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
694 }
695
696 if (status & WI_EV_TX_EXC) {
697 wi_txeof(sc, status);
698 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
699 }
700
701 if (status & WI_EV_INFO_DROP) {
702 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
703 }
704
705 /* Re-enable interrupts. */
706 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
707
708 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
709 wi_start(ifp);
710
711 return 1;
712 }
713
714 static int
715 wi_cmd(sc, cmd, val)
716 struct wi_softc *sc;
717 int cmd;
718 int val;
719 {
720 int i, s = 0;
721
722 /* wait for the busy bit to clear */
723 for (i = 0; i < WI_TIMEOUT; i++) {
724 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
725 break;
726 }
727
728 CSR_WRITE_2(sc, WI_PARAM0, val);
729 CSR_WRITE_2(sc, WI_PARAM1, 0);
730 CSR_WRITE_2(sc, WI_PARAM2, 0);
731 CSR_WRITE_2(sc, WI_COMMAND, cmd);
732
733 /* wait for the cmd completed bit */
734 for (i = 0; i < WI_TIMEOUT; i++) {
735 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
736 break;
737 DELAY(1);
738 }
739
740 /* Ack the command */
741 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
742
743 s = CSR_READ_2(sc, WI_STATUS);
744 if (s & WI_STAT_CMD_RESULT)
745 return(EIO);
746
747 if (i == WI_TIMEOUT)
748 return(ETIMEDOUT);
749
750 return(0);
751 }
752
753 static void
754 wi_reset(sc)
755 struct wi_softc *sc;
756 {
757 DELAY(100*1000); /* 100 m sec */
758 if (wi_cmd(sc, WI_CMD_INI, 0))
759 printf("%s: init failed\n", sc->sc_dev.dv_xname);
760 CSR_WRITE_2(sc, WI_INT_EN, 0);
761 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
762
763 /* Calibrate timer. */
764 WI_SETVAL(WI_RID_TICK_TIME, 8);
765
766 return;
767 }
768
769 void
770 wi_pci_reset(sc)
771 struct wi_softc *sc;
772 {
773 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
774 WI_PCI_COR, WI_PCI_SOFT_RESET);
775 DELAY(100*1000); /* 100 m sec */
776
777 bus_space_write_2(sc->sc_iot, sc->sc_ioh, WI_PCI_COR, 0x0);
778 DELAY(100*1000); /* 100 m sec */
779
780 return;
781 }
782
783 /*
784 * Read an LTV record from the NIC.
785 */
786 static int wi_read_record(sc, ltv)
787 struct wi_softc *sc;
788 struct wi_ltv_gen *ltv;
789 {
790 u_int16_t *ptr;
791 int len, code;
792 struct wi_ltv_gen *oltv, p2ltv;
793
794 if (sc->sc_prism2) {
795 oltv = ltv;
796 switch (ltv->wi_type) {
797 case WI_RID_ENCRYPTION:
798 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
799 p2ltv.wi_len = 2;
800 ltv = &p2ltv;
801 break;
802 case WI_RID_TX_CRYPT_KEY:
803 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
804 p2ltv.wi_len = 2;
805 ltv = &p2ltv;
806 break;
807 }
808 }
809
810 /* Tell the NIC to enter record read mode. */
811 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
812 return(EIO);
813
814 /* Seek to the record. */
815 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
816 return(EIO);
817
818 /*
819 * Read the length and record type and make sure they
820 * match what we expect (this verifies that we have enough
821 * room to hold all of the returned data).
822 */
823 len = CSR_READ_2(sc, WI_DATA1);
824 if (len > ltv->wi_len)
825 return(ENOSPC);
826 code = CSR_READ_2(sc, WI_DATA1);
827 if (code != ltv->wi_type)
828 return(EIO);
829
830 ltv->wi_len = len;
831 ltv->wi_type = code;
832
833 /* Now read the data. */
834 ptr = <v->wi_val;
835 if (ltv->wi_len > 1)
836 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
837
838 if (sc->sc_prism2) {
839 int v;
840
841 switch (oltv->wi_type) {
842 case WI_RID_TX_RATE:
843 case WI_RID_CUR_TX_RATE:
844 switch (le16toh(ltv->wi_val)) {
845 case 1: v = 1; break;
846 case 2: v = 2; break;
847 case 3: v = 6; break;
848 case 4: v = 5; break;
849 case 7: v = 7; break;
850 case 8: v = 11; break;
851 case 15: v = 3; break;
852 default: v = 0x100 + le16toh(ltv->wi_val); break;
853 }
854 oltv->wi_val = htole16(v);
855 break;
856 case WI_RID_ENCRYPTION:
857 oltv->wi_len = 2;
858 if (le16toh(ltv->wi_val) & 0x01)
859 oltv->wi_val = htole16(1);
860 else
861 oltv->wi_val = htole16(0);
862 break;
863 case WI_RID_TX_CRYPT_KEY:
864 oltv->wi_len = 2;
865 oltv->wi_val = ltv->wi_val;
866 break;
867 case WI_RID_AUTH_CNTL:
868 oltv->wi_len = 2;
869 if (le16toh(ltv->wi_val) & 0x01)
870 oltv->wi_val = htole16(1);
871 else if (le16toh(ltv->wi_val) & 0x02)
872 oltv->wi_val = htole16(2);
873 break;
874 }
875 }
876
877 return(0);
878 }
879
880 /*
881 * Same as read, except we inject data instead of reading it.
882 */
883 static int wi_write_record(sc, ltv)
884 struct wi_softc *sc;
885 struct wi_ltv_gen *ltv;
886 {
887 u_int16_t *ptr;
888 int i;
889 struct wi_ltv_gen p2ltv;
890
891 if (sc->sc_prism2) {
892 int v;
893
894 switch (ltv->wi_type) {
895 case WI_RID_TX_RATE:
896 p2ltv.wi_type = WI_RID_TX_RATE;
897 p2ltv.wi_len = 2;
898 switch (le16toh(ltv->wi_val)) {
899 case 1: v = 1; break;
900 case 2: v = 2; break;
901 case 3: v = 15; break;
902 case 5: v = 4; break;
903 case 6: v = 3; break;
904 case 7: v = 7; break;
905 case 11: v = 8; break;
906 default: return EINVAL;
907 }
908 p2ltv.wi_val = htole16(v);
909 ltv = &p2ltv;
910 break;
911 case WI_RID_ENCRYPTION:
912 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
913 p2ltv.wi_len = 2;
914 if (le16toh(ltv->wi_val))
915 p2ltv.wi_val = htole16(0x03);
916 else
917 p2ltv.wi_val = htole16(0x90);
918 ltv = &p2ltv;
919 break;
920 case WI_RID_TX_CRYPT_KEY:
921 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
922 p2ltv.wi_len = 2;
923 p2ltv.wi_val = ltv->wi_val;
924 ltv = &p2ltv;
925 break;
926 case WI_RID_DEFLT_CRYPT_KEYS:
927 {
928 int error;
929 struct wi_ltv_str ws;
930 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv;
931 for (i = 0; i < 4; i++) {
932 memset(&ws, 0, sizeof(ws));
933 if(wk->wi_keys[i].wi_keylen <= 5) {
934 /* 5 Octets WEP Keys */
935 ws.wi_len = 4;
936 memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 5);
937 ws.wi_str[5] = '\0';
938 } else {
939 /* 13 Octets WEP Keys */
940 ws.wi_len = 8;
941 memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 13);
942 ws.wi_str[13] = '\0';
943 }
944 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
945
946 if(wi_write_record(sc, (struct wi_ltv_gen *)&ws))
947 return error;
948 }
949 return 0;
950 }
951 case WI_RID_AUTH_CNTL:
952 p2ltv.wi_type = WI_RID_AUTH_CNTL;
953 p2ltv.wi_len = 2;
954 if (le16toh(ltv->wi_val) == 1)
955 p2ltv.wi_val = htole16(0x01);
956 else if (le16toh(ltv->wi_val) == 2)
957 p2ltv.wi_val = htole16(0x02);
958 ltv = &p2ltv;
959 break;
960 }
961 }
962
963 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
964 return(EIO);
965
966 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
967 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
968
969 /* Write data */
970 ptr = <v->wi_val;
971 if (ltv->wi_len > 1)
972 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
973
974 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
975 return(EIO);
976
977 return(0);
978 }
979
980 static int wi_seek(sc, id, off, chan)
981 struct wi_softc *sc;
982 int id, off, chan;
983 {
984 int i;
985 int selreg, offreg;
986 int status;
987
988 switch (chan) {
989 case WI_BAP0:
990 selreg = WI_SEL0;
991 offreg = WI_OFF0;
992 break;
993 case WI_BAP1:
994 selreg = WI_SEL1;
995 offreg = WI_OFF1;
996 break;
997 default:
998 printf("%s: invalid data path: %x\n",
999 sc->sc_dev.dv_xname, chan);
1000 return(EIO);
1001 }
1002
1003 CSR_WRITE_2(sc, selreg, id);
1004 CSR_WRITE_2(sc, offreg, off);
1005
1006 for (i = 0; i < WI_TIMEOUT; i++) {
1007 status = CSR_READ_2(sc, offreg);
1008 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
1009 break;
1010 }
1011
1012 if (i == WI_TIMEOUT) {
1013 printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
1014 sc->sc_dev.dv_xname, id, off, status);
1015 return(ETIMEDOUT);
1016 }
1017 return(0);
1018 }
1019
1020 static int wi_read_data(sc, id, off, buf, len)
1021 struct wi_softc *sc;
1022 int id, off;
1023 caddr_t buf;
1024 int len;
1025 {
1026 u_int16_t *ptr;
1027
1028 if (wi_seek(sc, id, off, WI_BAP1))
1029 return(EIO);
1030
1031 ptr = (u_int16_t *)buf;
1032 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
1033
1034 return(0);
1035 }
1036
1037 /*
1038 * According to the comments in the HCF Light code, there is a bug in
1039 * the Hermes (or possibly in certain Hermes firmware revisions) where
1040 * the chip's internal autoincrement counter gets thrown off during
1041 * data writes: the autoincrement is missed, causing one data word to
1042 * be overwritten and subsequent words to be written to the wrong memory
1043 * locations. The end result is that we could end up transmitting bogus
1044 * frames without realizing it. The workaround for this is to write a
1045 * couple of extra guard words after the end of the transfer, then
1046 * attempt to read then back. If we fail to locate the guard words where
1047 * we expect them, we preform the transfer over again.
1048 */
1049 static int wi_write_data(sc, id, off, buf, len)
1050 struct wi_softc *sc;
1051 int id, off;
1052 caddr_t buf;
1053 int len;
1054 {
1055 u_int16_t *ptr;
1056
1057 #ifdef WI_HERMES_AUTOINC_WAR
1058 again:
1059 #endif
1060
1061 if (wi_seek(sc, id, off, WI_BAP0))
1062 return(EIO);
1063
1064 ptr = (u_int16_t *)buf;
1065 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
1066
1067 #ifdef WI_HERMES_AUTOINC_WAR
1068 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1069 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1070
1071 if (wi_seek(sc, id, off + len, WI_BAP0))
1072 return(EIO);
1073
1074 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1075 CSR_READ_2(sc, WI_DATA0) != 0x5678)
1076 goto again;
1077 #endif
1078
1079 return(0);
1080 }
1081
1082 /*
1083 * Allocate a region of memory inside the NIC and zero
1084 * it out.
1085 */
1086 static int wi_alloc_nicmem(sc, len, id)
1087 struct wi_softc *sc;
1088 int len;
1089 int *id;
1090 {
1091 int i;
1092
1093 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
1094 printf("%s: failed to allocate %d bytes on NIC\n",
1095 sc->sc_dev.dv_xname, len);
1096 return(ENOMEM);
1097 }
1098
1099 for (i = 0; i < WI_TIMEOUT; i++) {
1100 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1101 break;
1102 }
1103
1104 if (i == WI_TIMEOUT) {
1105 printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
1106 return(ETIMEDOUT);
1107 }
1108
1109 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1110 *id = CSR_READ_2(sc, WI_ALLOC_FID);
1111
1112 if (wi_seek(sc, *id, 0, WI_BAP0)) {
1113 printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
1114 return(EIO);
1115 }
1116
1117 for (i = 0; i < len / 2; i++)
1118 CSR_WRITE_2(sc, WI_DATA0, 0);
1119
1120 return(0);
1121 }
1122
1123 static void wi_setmulti(sc)
1124 struct wi_softc *sc;
1125 {
1126 struct ifnet *ifp;
1127 int i = 0;
1128 struct wi_ltv_mcast mcast;
1129 struct ether_multi *enm;
1130 struct ether_multistep estep;
1131 struct ethercom *ec = &sc->sc_ethercom;
1132
1133 ifp = &sc->sc_ethercom.ec_if;
1134
1135 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1136 allmulti:
1137 ifp->if_flags |= IFF_ALLMULTI;
1138 memset((char *)&mcast, 0, sizeof(mcast));
1139 mcast.wi_type = WI_RID_MCAST_LIST;
1140 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
1141
1142 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1143 return;
1144 }
1145
1146 i = 0;
1147 ETHER_FIRST_MULTI(estep, ec, enm);
1148 while (enm != NULL) {
1149 /* Punt on ranges or too many multicast addresses. */
1150 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1151 ETHER_ADDR_LEN) != 0 ||
1152 i >= 16)
1153 goto allmulti;
1154
1155 memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo,
1156 ETHER_ADDR_LEN);
1157 i++;
1158 ETHER_NEXT_MULTI(estep, enm);
1159 }
1160
1161 ifp->if_flags &= ~IFF_ALLMULTI;
1162 mcast.wi_type = WI_RID_MCAST_LIST;
1163 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
1164 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1165 }
1166
1167 static int
1168 wi_setdef(sc, wreq)
1169 struct wi_softc *sc;
1170 struct wi_req *wreq;
1171 {
1172 struct sockaddr_dl *sdl;
1173 struct ifnet *ifp;
1174 int error = 0;
1175
1176 ifp = &sc->sc_ethercom.ec_if;
1177
1178 switch(wreq->wi_type) {
1179 case WI_RID_MAC_NODE:
1180 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1181 memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val,
1182 ETHER_ADDR_LEN);
1183 memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN);
1184 break;
1185 case WI_RID_PORTTYPE:
1186 error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
1187 break;
1188 case WI_RID_TX_RATE:
1189 error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
1190 break;
1191 case WI_RID_MAX_DATALEN:
1192 sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1193 break;
1194 case WI_RID_RTS_THRESH:
1195 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1196 break;
1197 case WI_RID_SYSTEM_SCALE:
1198 sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1199 break;
1200 case WI_RID_CREATE_IBSS:
1201 sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1202 break;
1203 case WI_RID_OWN_CHNL:
1204 sc->wi_channel = le16toh(wreq->wi_val[0]);
1205 break;
1206 case WI_RID_NODENAME:
1207 error = wi_set_ssid(&sc->wi_nodeid,
1208 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1209 break;
1210 case WI_RID_DESIRED_SSID:
1211 error = wi_set_ssid(&sc->wi_netid,
1212 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1213 break;
1214 case WI_RID_OWN_SSID:
1215 error = wi_set_ssid(&sc->wi_ibssid,
1216 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1217 break;
1218 case WI_RID_PM_ENABLED:
1219 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1220 break;
1221 case WI_RID_MICROWAVE_OVEN:
1222 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1223 break;
1224 case WI_RID_MAX_SLEEP:
1225 sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1226 break;
1227 case WI_RID_AUTH_CNTL:
1228 sc->wi_authtype = le16toh(wreq->wi_val[0]);
1229 break;
1230 case WI_RID_ROAMING_MODE:
1231 sc->wi_roaming = le16toh(wreq->wi_val[0]);
1232 break;
1233 case WI_RID_ENCRYPTION:
1234 sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1235 break;
1236 case WI_RID_TX_CRYPT_KEY:
1237 sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1238 break;
1239 case WI_RID_DEFLT_CRYPT_KEYS:
1240 memcpy((char *)&sc->wi_keys, (char *)wreq,
1241 sizeof(struct wi_ltv_keys));
1242 break;
1243 default:
1244 error = EINVAL;
1245 break;
1246 }
1247
1248 return (error);
1249 }
1250
1251 static int
1252 wi_getdef(sc, wreq)
1253 struct wi_softc *sc;
1254 struct wi_req *wreq;
1255 {
1256 struct sockaddr_dl *sdl;
1257 struct ifnet *ifp;
1258 int error = 0;
1259
1260 ifp = &sc->sc_ethercom.ec_if;
1261
1262 wreq->wi_len = 2; /* XXX */
1263 switch (wreq->wi_type) {
1264 case WI_RID_MAC_NODE:
1265 wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
1266 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1267 memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN);
1268 memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1269 break;
1270 case WI_RID_PORTTYPE:
1271 wreq->wi_val[0] = htole16(sc->wi_ptype);
1272 break;
1273 case WI_RID_TX_RATE:
1274 wreq->wi_val[0] = htole16(sc->wi_tx_rate);
1275 break;
1276 case WI_RID_MAX_DATALEN:
1277 wreq->wi_val[0] = htole16(sc->wi_max_data_len);
1278 break;
1279 case WI_RID_RTS_THRESH:
1280 wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
1281 break;
1282 case WI_RID_SYSTEM_SCALE:
1283 wreq->wi_val[0] = htole16(sc->wi_ap_density);
1284 break;
1285 case WI_RID_CREATE_IBSS:
1286 wreq->wi_val[0] = htole16(sc->wi_create_ibss);
1287 break;
1288 case WI_RID_OWN_CHNL:
1289 wreq->wi_val[0] = htole16(sc->wi_channel);
1290 break;
1291 case WI_RID_NODENAME:
1292 wi_request_fill_ssid(wreq, &sc->wi_nodeid);
1293 break;
1294 case WI_RID_DESIRED_SSID:
1295 wi_request_fill_ssid(wreq, &sc->wi_netid);
1296 break;
1297 case WI_RID_OWN_SSID:
1298 wi_request_fill_ssid(wreq, &sc->wi_ibssid);
1299 break;
1300 case WI_RID_PM_ENABLED:
1301 wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
1302 break;
1303 case WI_RID_MICROWAVE_OVEN:
1304 wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
1305 break;
1306 case WI_RID_MAX_SLEEP:
1307 wreq->wi_val[0] = htole16(sc->wi_max_sleep);
1308 break;
1309 case WI_RID_AUTH_CNTL:
1310 wreq->wi_val[0] = htole16(sc->wi_authtype);
1311 break;
1312 case WI_RID_ROAMING_MODE:
1313 wreq->wi_val[0] = htole16(sc->wi_roaming);
1314 break;
1315 case WI_RID_WEP_AVAIL:
1316 wreq->wi_val[0] = htole16(sc->wi_has_wep);
1317 break;
1318 case WI_RID_ENCRYPTION:
1319 wreq->wi_val[0] = htole16(sc->wi_use_wep);
1320 break;
1321 case WI_RID_TX_CRYPT_KEY:
1322 wreq->wi_val[0] = htole16(sc->wi_tx_key);
1323 break;
1324 case WI_RID_DEFLT_CRYPT_KEYS:
1325 wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
1326 memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
1327 break;
1328 default:
1329 #if 0
1330 error = EIO;
1331 #else
1332 #ifdef WI_DEBUG
1333 printf("%s: wi_getdef: unknown request %d\n",
1334 sc->sc_dev.dv_xname, wreq->wi_type);
1335 #endif
1336 #endif
1337 break;
1338 }
1339
1340 return (error);
1341 }
1342
1343 static int
1344 wi_ioctl(ifp, command, data)
1345 struct ifnet *ifp;
1346 u_long command;
1347 caddr_t data;
1348 {
1349 int s, error = 0;
1350 int len;
1351 struct wi_softc *sc = ifp->if_softc;
1352 struct wi_req wreq;
1353 struct ifreq *ifr;
1354 struct proc *p = curproc;
1355 struct ieee80211_nwid nwid;
1356
1357 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1358 return (ENXIO);
1359
1360 s = splnet();
1361
1362 ifr = (struct ifreq *)data;
1363 switch (command) {
1364 case SIOCSIFADDR:
1365 case SIOCGIFADDR:
1366 case SIOCSIFMTU:
1367 error = ether_ioctl(ifp, command, data);
1368 break;
1369 case SIOCSIFFLAGS:
1370 if (ifp->if_flags & IFF_UP) {
1371 if (ifp->if_flags & IFF_RUNNING &&
1372 ifp->if_flags & IFF_PROMISC &&
1373 !(sc->wi_if_flags & IFF_PROMISC)) {
1374 WI_SETVAL(WI_RID_PROMISC, 1);
1375 } else if (ifp->if_flags & IFF_RUNNING &&
1376 !(ifp->if_flags & IFF_PROMISC) &&
1377 sc->wi_if_flags & IFF_PROMISC) {
1378 WI_SETVAL(WI_RID_PROMISC, 0);
1379 }
1380 wi_init(ifp);
1381 } else {
1382 if (ifp->if_flags & IFF_RUNNING) {
1383 wi_stop(ifp, 0);
1384 }
1385 }
1386 sc->wi_if_flags = ifp->if_flags;
1387
1388 if (!(ifp->if_flags & IFF_UP)) {
1389 if (sc->sc_enabled) {
1390 if (sc->sc_disable)
1391 (*sc->sc_disable)(sc);
1392 sc->sc_enabled = 0;
1393 ifp->if_flags &= ~IFF_RUNNING;
1394 }
1395 }
1396 error = 0;
1397 break;
1398 case SIOCADDMULTI:
1399 case SIOCDELMULTI:
1400 error = (command == SIOCADDMULTI) ?
1401 ether_addmulti(ifr, &sc->sc_ethercom) :
1402 ether_delmulti(ifr, &sc->sc_ethercom);
1403 if (error == ENETRESET) {
1404 if (sc->sc_enabled != 0) {
1405 /*
1406 * Multicast list has changed. Set the
1407 * hardware filter accordingly.
1408 */
1409 wi_setmulti(sc);
1410 }
1411 error = 0;
1412 }
1413 break;
1414 case SIOCSIFMEDIA:
1415 case SIOCGIFMEDIA:
1416 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1417 break;
1418 case SIOCGWAVELAN:
1419 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1420 if (error)
1421 break;
1422 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1423 wi_update_stats(sc);
1424 /* XXX native byte order */
1425 memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats,
1426 sizeof(sc->wi_stats));
1427 wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1428 } else if (wreq.wi_type == WI_RID_READ_APS) {
1429 if (sc->wi_scanning) {
1430 error = EINVAL;
1431 break;
1432 } else {
1433 len = sc->wi_naps * sizeof(struct wi_apinfo);
1434 len = len > WI_MAX_DATALEN ? WI_MAX_DATALEN : len;
1435 len = len / sizeof(struct wi_apinfo);
1436 memcpy((char *)&wreq.wi_val, (char *)&len, sizeof(len));
1437 memcpy((char *)&wreq.wi_val + sizeof(len),
1438 (char *)&sc->wi_aps,
1439 len * sizeof(struct wi_apinfo));
1440 }
1441 } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1442 /* For non-root user, return all-zeroes keys */
1443 if (suser(p->p_ucred, &p->p_acflag))
1444 memset((char *)&wreq, 0,
1445 sizeof(struct wi_ltv_keys));
1446 else
1447 memcpy((char *)&wreq, (char *)&sc->wi_keys,
1448 sizeof(struct wi_ltv_keys));
1449 } else {
1450 if (sc->sc_enabled == 0)
1451 error = wi_getdef(sc, &wreq);
1452 else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1453 error = EINVAL;
1454 }
1455 if (error == 0)
1456 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1457 break;
1458 case SIOCSWAVELAN:
1459 error = suser(p->p_ucred, &p->p_acflag);
1460 if (error)
1461 break;
1462 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1463 if (error)
1464 break;
1465 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1466 error = EINVAL;
1467 break;
1468 } else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1469 error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1470 wreq.wi_len);
1471 } else if (wreq.wi_type == WI_RID_SCAN_APS) {
1472 if (wreq.wi_len != 4) {
1473 error = EINVAL;
1474 break;
1475 }
1476 if (!sc->wi_scanning) {
1477 if (sc->sc_prism2) {
1478 wreq.wi_type = WI_RID_SCAN_REQ;
1479 error = wi_write_record(sc,
1480 (struct wi_ltv_gen *)&wreq);
1481 }
1482 if (!error) {
1483 sc->wi_scanning = 1;
1484 callout_reset(&sc->wi_scan_sh, hz * 1,
1485 wi_wait_scan, sc);
1486 }
1487 }
1488 } else {
1489 if (sc->sc_enabled != 0)
1490 error = wi_write_record(sc,
1491 (struct wi_ltv_gen *)&wreq);
1492 if (error == 0)
1493 error = wi_setdef(sc, &wreq);
1494 if (error == 0 && sc->sc_enabled != 0)
1495 /* Reinitialize WaveLAN. */
1496 wi_init(ifp);
1497 }
1498 break;
1499 case SIOCG80211NWID:
1500 if (sc->sc_enabled == 0) {
1501 /* Return the desired ID */
1502 error = copyout(&sc->wi_netid, ifr->ifr_data,
1503 sizeof(sc->wi_netid));
1504 } else {
1505 wreq.wi_type = WI_RID_CURRENT_SSID;
1506 wreq.wi_len = WI_MAX_DATALEN;
1507 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
1508 le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
1509 error = EINVAL;
1510 else {
1511 wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
1512 le16toh(wreq.wi_val[0]));
1513 error = copyout(&nwid, ifr->ifr_data,
1514 sizeof(nwid));
1515 }
1516 }
1517 break;
1518 case SIOCS80211NWID:
1519 error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
1520 if (error != 0)
1521 break;
1522 if (nwid.i_len > IEEE80211_NWID_LEN) {
1523 error = EINVAL;
1524 break;
1525 }
1526 if (sc->wi_netid.i_len == nwid.i_len &&
1527 memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
1528 break;
1529 wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
1530 if (sc->sc_enabled != 0)
1531 /* Reinitialize WaveLAN. */
1532 wi_init(ifp);
1533 break;
1534 case SIOCS80211NWKEY:
1535 error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
1536 break;
1537 case SIOCG80211NWKEY:
1538 error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
1539 break;
1540 case SIOCS80211POWER:
1541 error = wi_set_pm(sc, (struct ieee80211_power *)data);
1542 break;
1543 case SIOCG80211POWER:
1544 error = wi_get_pm(sc, (struct ieee80211_power *)data);
1545 break;
1546
1547 default:
1548 error = EINVAL;
1549 break;
1550 }
1551
1552 splx(s);
1553 return (error);
1554 }
1555
1556 static int
1557 wi_init(ifp)
1558 struct ifnet *ifp;
1559 {
1560 struct wi_softc *sc = ifp->if_softc;
1561 struct wi_req wreq;
1562 struct wi_ltv_macaddr mac;
1563 int error, id = 0;
1564
1565 if (!sc->sc_enabled) {
1566 if ((error = (*sc->sc_enable)(sc)) != 0)
1567 goto out;
1568 sc->sc_enabled = 1;
1569 }
1570
1571 wi_stop(ifp, 0);
1572 wi_reset(sc);
1573
1574 /* Program max data length. */
1575 WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1576
1577 /* Enable/disable IBSS creation. */
1578 WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1579
1580 /* Set the port type. */
1581 WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1582
1583 /* Program the RTS/CTS threshold. */
1584 WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1585
1586 /* Program the TX rate */
1587 WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1588
1589 /* Access point density */
1590 WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1591
1592 /* Power Management Enabled */
1593 WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1594
1595 /* Power Managment Max Sleep */
1596 WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1597
1598 /* Roaming type */
1599 WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
1600
1601 /* Specify the IBSS name */
1602 wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
1603
1604 /* Specify the network name */
1605 wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
1606
1607 /* Specify the frequency to use */
1608 WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1609
1610 /* Program the nodename. */
1611 wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
1612
1613 /* Set our MAC address. */
1614 mac.wi_len = 4;
1615 mac.wi_type = WI_RID_MAC_NODE;
1616 memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
1617 wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1618
1619 /* Initialize promisc mode. */
1620 if (ifp->if_flags & IFF_PROMISC) {
1621 WI_SETVAL(WI_RID_PROMISC, 1);
1622 } else {
1623 WI_SETVAL(WI_RID_PROMISC, 0);
1624 }
1625
1626 /* Configure WEP. */
1627 if (sc->wi_has_wep) {
1628 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1629 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1630 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1631 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1632 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1633 if (sc->sc_prism2 && sc->wi_use_wep) {
1634 /*
1635 * ONLY HWB3163 EVAL-CARD Firmware version
1636 * less than 0.8 variant3
1637 *
1638 * If promiscuous mode disable, Prism2 chip
1639 * does not work with WEP .
1640 * It is under investigation for details.
1641 * (ichiro (at) netbsd.org)
1642 */
1643 if (sc->sc_prism2_ver < 83 ) {
1644 /* firm ver < 0.8 variant 3 */
1645 WI_SETVAL(WI_RID_PROMISC, 1);
1646 }
1647 WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
1648 }
1649 }
1650
1651 /* Set multicast filter. */
1652 wi_setmulti(sc);
1653
1654 /* Enable desired port */
1655 wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
1656
1657 /* scanning variable is modal, therefore reinit to OFF, in case it was on. */
1658 sc->wi_scanning=0;
1659 sc->wi_naps=0;
1660
1661 if ((error = wi_alloc_nicmem(sc,
1662 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1663 printf("%s: tx buffer allocation failed\n",
1664 sc->sc_dev.dv_xname);
1665 goto out;
1666 }
1667 sc->wi_tx_data_id = id;
1668
1669 if ((error = wi_alloc_nicmem(sc,
1670 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1671 printf("%s: mgmt. buffer allocation failed\n",
1672 sc->sc_dev.dv_xname);
1673 goto out;
1674 }
1675 sc->wi_tx_mgmt_id = id;
1676
1677 /* Enable interrupts */
1678 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1679
1680 ifp->if_flags |= IFF_RUNNING;
1681 ifp->if_flags &= ~IFF_OACTIVE;
1682
1683 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
1684
1685 out:
1686 if (error) {
1687 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1688 ifp->if_timer = 0;
1689 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1690 }
1691 return (error);
1692 }
1693
1694 static void
1695 wi_start(ifp)
1696 struct ifnet *ifp;
1697 {
1698 struct wi_softc *sc;
1699 struct mbuf *m0;
1700 struct wi_frame tx_frame;
1701 struct ether_header *eh;
1702 int id;
1703
1704 sc = ifp->if_softc;
1705
1706 if (ifp->if_flags & IFF_OACTIVE)
1707 return;
1708
1709 IFQ_DEQUEUE(&ifp->if_snd, m0);
1710 if (m0 == NULL)
1711 return;
1712
1713 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1714 id = sc->wi_tx_data_id;
1715 eh = mtod(m0, struct ether_header *);
1716
1717 /*
1718 * Use RFC1042 encoding for IP and ARP datagrams,
1719 * 802.3 for anything else.
1720 */
1721 if (ntohs(eh->ether_type) == ETHERTYPE_IP ||
1722 ntohs(eh->ether_type) == ETHERTYPE_ARP ||
1723 ntohs(eh->ether_type) == ETHERTYPE_REVARP ||
1724 ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
1725 memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost,
1726 ETHER_ADDR_LEN);
1727 memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost,
1728 ETHER_ADDR_LEN);
1729 memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost,
1730 ETHER_ADDR_LEN);
1731 memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost,
1732 ETHER_ADDR_LEN);
1733
1734 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1735 tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
1736 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1737 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1738 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1739 tx_frame.wi_type = eh->ether_type;
1740
1741 m_copydata(m0, sizeof(struct ether_header),
1742 m0->m_pkthdr.len - sizeof(struct ether_header),
1743 (caddr_t)&sc->wi_txbuf);
1744
1745 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1746 sizeof(struct wi_frame));
1747 wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1748 (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1749 } else {
1750 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
1751
1752 m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1753
1754 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1755 sizeof(struct wi_frame));
1756 wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1757 m0->m_pkthdr.len + 2);
1758 }
1759
1760 #if NBPFILTER > 0
1761 /*
1762 * If there's a BPF listener, bounce a copy of
1763 * this frame to him.
1764 */
1765 if (ifp->if_bpf)
1766 bpf_mtap(ifp->if_bpf, m0);
1767 #endif
1768
1769 m_freem(m0);
1770
1771 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1772 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1773
1774 ifp->if_flags |= IFF_OACTIVE;
1775
1776 /*
1777 * Set a timeout in case the chip goes out to lunch.
1778 */
1779 ifp->if_timer = 5;
1780
1781 return;
1782 }
1783
1784 static int
1785 wi_mgmt_xmit(sc, data, len)
1786 struct wi_softc *sc;
1787 caddr_t data;
1788 int len;
1789 {
1790 struct wi_frame tx_frame;
1791 int id;
1792 struct wi_80211_hdr *hdr;
1793 caddr_t dptr;
1794
1795 hdr = (struct wi_80211_hdr *)data;
1796 dptr = data + sizeof(struct wi_80211_hdr);
1797
1798 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1799 id = sc->wi_tx_mgmt_id;
1800
1801 memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr,
1802 sizeof(struct wi_80211_hdr));
1803
1804 tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
1805 tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1806
1807 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1808 wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1809 (len - sizeof(struct wi_80211_hdr)) + 2);
1810
1811 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1812 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1813 return(EIO);
1814 }
1815
1816 return(0);
1817 }
1818
1819 static void
1820 wi_stop(ifp, disable)
1821 struct ifnet *ifp;
1822 {
1823 struct wi_softc *sc = ifp->if_softc;
1824
1825 CSR_WRITE_2(sc, WI_INT_EN, 0);
1826 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1827
1828 callout_stop(&sc->wi_inquire_ch);
1829 callout_stop(&sc->wi_scan_sh);
1830
1831 if (disable) {
1832 if (sc->sc_enabled) {
1833 if (sc->sc_disable)
1834 (*sc->sc_disable)(sc);
1835 sc->sc_enabled = 0;
1836 }
1837 }
1838
1839 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1840 ifp->if_timer = 0;
1841 }
1842
1843 static void
1844 wi_watchdog(ifp)
1845 struct ifnet *ifp;
1846 {
1847 struct wi_softc *sc;
1848
1849 sc = ifp->if_softc;
1850
1851 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1852
1853 wi_init(ifp);
1854
1855 ifp->if_oerrors++;
1856
1857 return;
1858 }
1859
1860 void
1861 wi_shutdown(sc)
1862 struct wi_softc *sc;
1863 {
1864 int s;
1865
1866 s = splnet();
1867 if (sc->sc_enabled) {
1868 if (sc->sc_disable)
1869 (*sc->sc_disable)(sc);
1870 sc->sc_enabled = 0;
1871 }
1872 splx(s);
1873 }
1874
1875 int
1876 wi_activate(self, act)
1877 struct device *self;
1878 enum devact act;
1879 {
1880 struct wi_softc *sc = (struct wi_softc *)self;
1881 int rv = 0, s;
1882
1883 s = splnet();
1884 switch (act) {
1885 case DVACT_ACTIVATE:
1886 rv = EOPNOTSUPP;
1887 break;
1888
1889 case DVACT_DEACTIVATE:
1890 if_deactivate(&sc->sc_ethercom.ec_if);
1891 break;
1892 }
1893 splx(s);
1894 return (rv);
1895 }
1896
1897 static void
1898 wi_get_id(sc)
1899 struct wi_softc *sc;
1900 {
1901 struct wi_ltv_ver ver;
1902
1903 /* getting chip identity */
1904 memset(&ver, 0, sizeof(ver));
1905 ver.wi_type = WI_RID_CARD_ID;
1906 ver.wi_len = 5;
1907 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1908 printf("%s: using ", sc->sc_dev.dv_xname);
1909 switch (le16toh(ver.wi_ver[0])) {
1910 case WI_NIC_EVB2:
1911 printf("RF:PRISM2 MAC:HFA3841");
1912 sc->sc_prism2 = 1;
1913 break;
1914 case WI_NIC_HWB3763:
1915 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3763 rev.B");
1916 sc->sc_prism2 = 1;
1917 break;
1918 case WI_NIC_HWB3163:
1919 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.A");
1920 sc->sc_prism2 = 1;
1921 break;
1922 case WI_NIC_HWB3163B:
1923 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.B");
1924 sc->sc_prism2 = 1;
1925 break;
1926 case WI_NIC_EVB3:
1927 printf("RF:PRISM2 MAC:HFA3842");
1928 sc->sc_prism2 = 1;
1929 break;
1930 case WI_NIC_HWB1153:
1931 printf("RF:PRISM1 MAC:HFA3841 CARD:HWB1153");
1932 sc->sc_prism2 = 1;
1933 break;
1934 case WI_NIC_P2_SST:
1935 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163-SST-flash");
1936 sc->sc_prism2 = 1;
1937 break;
1938 case WI_NIC_PRISM2_5:
1939 printf("RF:PRISM2.5 MAC:ISL3873");
1940 sc->sc_prism2 = 1;
1941 break;
1942 case WI_NIC_3874A:
1943 printf("RF:PRISM2.5 MAC:ISL3874A(PCI)");
1944 sc->sc_prism2 = 1;
1945 break;
1946 default:
1947 printf("Lucent chip or unknown chip\n");
1948 sc->sc_prism2 = 0;
1949 break;
1950 }
1951
1952 if (sc->sc_prism2) {
1953 /* try to get prism2 firm version */
1954 memset(&ver, 0, sizeof(ver));
1955 ver.wi_type = WI_RID_STA_IDENTITY;
1956 ver.wi_len = 5;
1957 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1958 LE16TOH(ver.wi_ver[1]);
1959 LE16TOH(ver.wi_ver[2]);
1960 LE16TOH(ver.wi_ver[3]);
1961 printf(", Firmware: %i.%i variant %i\n", ver.wi_ver[2],
1962 ver.wi_ver[3], ver.wi_ver[1]);
1963 sc->sc_prism2_ver = ver.wi_ver[2] * 100 +
1964 ver.wi_ver[3] * 10 + ver.wi_ver[1];
1965 }
1966
1967 return;
1968 }
1969
1970 int
1971 wi_detach(sc)
1972 struct wi_softc *sc;
1973 {
1974 struct ifnet *ifp = sc->sc_ifp;
1975 int s;
1976
1977 if (!sc->sc_attached)
1978 return (0);
1979
1980 s = splnet();
1981 callout_stop(&sc->wi_inquire_ch);
1982
1983 /* Delete all remaining media. */
1984 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
1985
1986 ether_ifdetach(ifp);
1987 if_detach(ifp);
1988 if (sc->sc_enabled) {
1989 if (sc->sc_disable)
1990 (*sc->sc_disable)(sc);
1991 sc->sc_enabled = 0;
1992 }
1993 splx(s);
1994 return (0);
1995 }
1996
1997 void
1998 wi_power(sc, why)
1999 struct wi_softc *sc;
2000 int why;
2001 {
2002 int s;
2003
2004 if (!sc->sc_enabled)
2005 return;
2006
2007 s = splnet();
2008 switch (why) {
2009 case PWR_SUSPEND:
2010 case PWR_STANDBY:
2011 wi_stop(sc->sc_ifp, 0);
2012 if (sc->sc_enabled) {
2013 if (sc->sc_disable)
2014 (*sc->sc_disable)(sc);
2015 }
2016 break;
2017 case PWR_RESUME:
2018 sc->sc_enabled = 0;
2019 wi_init(sc->sc_ifp);
2020 (void)wi_intr(sc);
2021 break;
2022 case PWR_SOFTSUSPEND:
2023 case PWR_SOFTSTANDBY:
2024 case PWR_SOFTRESUME:
2025 break;
2026 }
2027 splx(s);
2028 }
2029
2030 static int
2031 wi_set_ssid(ws, id, len)
2032 struct ieee80211_nwid *ws;
2033 u_int8_t *id;
2034 int len;
2035 {
2036
2037 if (len > IEEE80211_NWID_LEN)
2038 return (EINVAL);
2039 ws->i_len = len;
2040 memcpy(ws->i_nwid, id, len);
2041 return (0);
2042 }
2043
2044 static void
2045 wi_request_fill_ssid(wreq, ws)
2046 struct wi_req *wreq;
2047 struct ieee80211_nwid *ws;
2048 {
2049 int len = ws->i_len;
2050
2051 memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
2052 wreq->wi_val[0] = htole16(len);
2053 wreq->wi_len = roundup(len, 2) / 2 + 2;
2054 memcpy(&wreq->wi_val[1], ws->i_nwid, len);
2055 }
2056
2057 static int
2058 wi_write_ssid(sc, type, wreq, ws)
2059 struct wi_softc *sc;
2060 int type;
2061 struct wi_req *wreq;
2062 struct ieee80211_nwid *ws;
2063 {
2064
2065 wreq->wi_type = type;
2066 wi_request_fill_ssid(wreq, ws);
2067 return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
2068 }
2069
2070 static int
2071 wi_sync_media(sc, ptype, txrate)
2072 struct wi_softc *sc;
2073 int ptype;
2074 int txrate;
2075 {
2076 int media = sc->sc_media.ifm_cur->ifm_media;
2077 int options = IFM_OPTIONS(media);
2078 int subtype;
2079
2080 switch (txrate) {
2081 case 1:
2082 subtype = IFM_IEEE80211_DS1;
2083 break;
2084 case 2:
2085 subtype = IFM_IEEE80211_DS2;
2086 break;
2087 case 3:
2088 subtype = IFM_AUTO;
2089 break;
2090 case 5:
2091 subtype = IFM_IEEE80211_DS5;
2092 break;
2093 case 11:
2094 subtype = IFM_IEEE80211_DS11;
2095 break;
2096 default:
2097 subtype = IFM_MANUAL; /* Unable to represent */
2098 break;
2099 }
2100 switch (ptype) {
2101 case WI_PORTTYPE_ADHOC:
2102 options |= IFM_IEEE80211_ADHOC;
2103 break;
2104 case WI_PORTTYPE_BSS:
2105 options &= ~IFM_IEEE80211_ADHOC;
2106 break;
2107 default:
2108 subtype = IFM_MANUAL; /* Unable to represent */
2109 break;
2110 }
2111 media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
2112 IFM_INST(media));
2113 if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
2114 return (EINVAL);
2115 ifmedia_set(&sc->sc_media, media);
2116 sc->wi_ptype = ptype;
2117 sc->wi_tx_rate = txrate;
2118 return (0);
2119 }
2120
2121 static int
2122 wi_media_change(ifp)
2123 struct ifnet *ifp;
2124 {
2125 struct wi_softc *sc = ifp->if_softc;
2126 int otype = sc->wi_ptype;
2127 int orate = sc->wi_tx_rate;
2128
2129 if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2130 sc->wi_ptype = WI_PORTTYPE_ADHOC;
2131 else
2132 sc->wi_ptype = WI_PORTTYPE_BSS;
2133
2134 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
2135 case IFM_IEEE80211_DS1:
2136 sc->wi_tx_rate = 1;
2137 break;
2138 case IFM_IEEE80211_DS2:
2139 sc->wi_tx_rate = 2;
2140 break;
2141 case IFM_AUTO:
2142 sc->wi_tx_rate = 3;
2143 break;
2144 case IFM_IEEE80211_DS5:
2145 sc->wi_tx_rate = 5;
2146 break;
2147 case IFM_IEEE80211_DS11:
2148 sc->wi_tx_rate = 11;
2149 break;
2150 }
2151
2152 if (sc->sc_enabled != 0) {
2153 if (otype != sc->wi_ptype ||
2154 orate != sc->wi_tx_rate)
2155 wi_init(ifp);
2156 }
2157
2158 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
2159
2160 return (0);
2161 }
2162
2163 static void
2164 wi_media_status(ifp, imr)
2165 struct ifnet *ifp;
2166 struct ifmediareq *imr;
2167 {
2168 struct wi_softc *sc = ifp->if_softc;
2169
2170 if (sc->sc_enabled == 0) {
2171 imr->ifm_active = IFM_IEEE80211|IFM_NONE;
2172 imr->ifm_status = 0;
2173 return;
2174 }
2175
2176 imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
2177 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2178 }
2179
2180 static int
2181 wi_set_nwkey(sc, nwkey)
2182 struct wi_softc *sc;
2183 struct ieee80211_nwkey *nwkey;
2184 {
2185 int i, error;
2186 size_t len;
2187 struct wi_req wreq;
2188 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
2189
2190 if (!sc->wi_has_wep)
2191 return ENODEV;
2192 if (nwkey->i_defkid <= 0 ||
2193 nwkey->i_defkid > IEEE80211_WEP_NKID)
2194 return EINVAL;
2195 memcpy(wk, &sc->wi_keys, sizeof(*wk));
2196 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2197 if (nwkey->i_key[i].i_keydat == NULL)
2198 continue;
2199 len = nwkey->i_key[i].i_keylen;
2200 if (len > sizeof(wk->wi_keys[i].wi_keydat))
2201 return EINVAL;
2202 error = copyin(nwkey->i_key[i].i_keydat,
2203 wk->wi_keys[i].wi_keydat, len);
2204 if (error)
2205 return error;
2206 wk->wi_keys[i].wi_keylen = htole16(len);
2207 }
2208
2209 wk->wi_len = (sizeof(*wk) / 2) + 1;
2210 wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2211 if (sc->sc_enabled != 0) {
2212 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2213 if (error)
2214 return error;
2215 }
2216 error = wi_setdef(sc, &wreq);
2217 if (error)
2218 return error;
2219
2220 wreq.wi_len = 2;
2221 wreq.wi_type = WI_RID_TX_CRYPT_KEY;
2222 wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
2223 if (sc->sc_enabled != 0) {
2224 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2225 if (error)
2226 return error;
2227 }
2228 error = wi_setdef(sc, &wreq);
2229 if (error)
2230 return error;
2231
2232 wreq.wi_type = WI_RID_ENCRYPTION;
2233 wreq.wi_val[0] = htole16(nwkey->i_wepon);
2234 if (sc->sc_enabled != 0) {
2235 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2236 if (error)
2237 return error;
2238 }
2239 error = wi_setdef(sc, &wreq);
2240 if (error)
2241 return error;
2242
2243 if (sc->sc_enabled != 0)
2244 wi_init(&sc->sc_ethercom.ec_if);
2245 return 0;
2246 }
2247
2248 static int
2249 wi_get_nwkey(sc, nwkey)
2250 struct wi_softc *sc;
2251 struct ieee80211_nwkey *nwkey;
2252 {
2253 int i, len, error;
2254 struct wi_ltv_keys *wk = &sc->wi_keys;
2255
2256 if (!sc->wi_has_wep)
2257 return ENODEV;
2258 nwkey->i_wepon = sc->wi_use_wep;
2259 nwkey->i_defkid = sc->wi_tx_key + 1;
2260
2261 /* do not show any keys to non-root user */
2262 error = suser(curproc->p_ucred, &curproc->p_acflag);
2263 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2264 if (nwkey->i_key[i].i_keydat == NULL)
2265 continue;
2266 /* error holds results of suser() for the first time */
2267 if (error)
2268 return error;
2269 len = le16toh(wk->wi_keys[i].wi_keylen);
2270 if (nwkey->i_key[i].i_keylen < len)
2271 return ENOSPC;
2272 nwkey->i_key[i].i_keylen = len;
2273 error = copyout(wk->wi_keys[i].wi_keydat,
2274 nwkey->i_key[i].i_keydat, len);
2275 if (error)
2276 return error;
2277 }
2278 return 0;
2279 }
2280
2281 static int
2282 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
2283 {
2284
2285 sc->wi_pm_enabled = power->i_enabled;
2286 sc->wi_max_sleep = power->i_maxsleep;
2287
2288 if (sc->sc_enabled)
2289 return (wi_init(&sc->sc_ethercom.ec_if));
2290
2291 return (0);
2292 }
2293
2294 static int
2295 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
2296 {
2297
2298 power->i_enabled = sc->wi_pm_enabled;
2299 power->i_maxsleep = sc->wi_max_sleep;
2300
2301 return (0);
2302 }
2303