wi.c revision 1.42 1 /* $NetBSD: wi.c,v 1.42 2002/02/18 14:45:56 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.42 2002/02/18 14:45:56 yamt Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static void wi_reset __P((struct wi_softc *));
108 static int wi_ioctl __P((struct ifnet *, u_long, caddr_t));
109 static void wi_start __P((struct ifnet *));
110 static void wi_watchdog __P((struct ifnet *));
111 static int wi_init __P((struct ifnet *));
112 static void wi_stop __P((struct ifnet *, int));
113 static void wi_rxeof __P((struct wi_softc *));
114 static void wi_txeof __P((struct wi_softc *, int));
115 static void wi_update_stats __P((struct wi_softc *));
116 static void wi_setmulti __P((struct wi_softc *));
117
118 static int wi_cmd __P((struct wi_softc *, int, int));
119 static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *));
120 static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *));
121 static int wi_read_data __P((struct wi_softc *, int,
122 int, caddr_t, int));
123 static int wi_write_data __P((struct wi_softc *, int,
124 int, caddr_t, int));
125 static int wi_seek __P((struct wi_softc *, int, int, int));
126 static int wi_alloc_nicmem __P((struct wi_softc *, int, int *));
127 static void wi_inquire __P((void *));
128 static void wi_wait_scan __P((void *));
129 static int wi_setdef __P((struct wi_softc *, struct wi_req *));
130 static int wi_getdef __P((struct wi_softc *, struct wi_req *));
131 static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int));
132
133 static int wi_media_change __P((struct ifnet *));
134 static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
135
136 static void wi_get_id __P((struct wi_softc *));
137
138 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
139 static void wi_request_fill_ssid __P((struct wi_req *,
140 struct ieee80211_nwid *));
141 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
142 struct ieee80211_nwid *));
143 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
144 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
145 static int wi_sync_media __P((struct wi_softc *, int, int));
146 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
147 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
148
149 int
150 wi_attach(sc)
151 struct wi_softc *sc;
152 {
153 struct ifnet *ifp = sc->sc_ifp;
154 struct wi_ltv_macaddr mac;
155 struct wi_ltv_gen gen;
156 static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
157 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
158 };
159 int s;
160
161 s = splnet();
162
163 callout_init(&sc->wi_inquire_ch);
164 callout_init(&sc->wi_scan_sh);
165
166 /* Make sure interrupts are disabled. */
167 CSR_WRITE_2(sc, WI_INT_EN, 0);
168 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
169
170 /* Reset the NIC. */
171 wi_reset(sc);
172
173 memset(&mac, 0, sizeof(mac));
174 /* Read the station address. */
175 mac.wi_type = WI_RID_MAC_NODE;
176 mac.wi_len = 4;
177 wi_read_record(sc, (struct wi_ltv_gen *)&mac);
178 memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
179
180 /*
181 * Check if we got anything meaningful.
182 *
183 * Is it really enough just checking against null ethernet address?
184 * Or, check against possible vendor? XXX.
185 */
186 if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
187 printf("%s: could not get mac address, attach failed\n",
188 sc->sc_dev.dv_xname);
189 splx(s);
190 return 1;
191 }
192
193 printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
194
195 /* Read NIC identification */
196 wi_get_id(sc);
197
198 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
199 ifp->if_softc = sc;
200 ifp->if_start = wi_start;
201 ifp->if_ioctl = wi_ioctl;
202 ifp->if_watchdog = wi_watchdog;
203 ifp->if_init = wi_init;
204 ifp->if_stop = wi_stop;
205 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
206 #ifdef IFF_NOTRAILERS
207 ifp->if_flags |= IFF_NOTRAILERS;
208 #endif
209 IFQ_SET_READY(&ifp->if_snd);
210
211 (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
212 sizeof(WI_DEFAULT_NODENAME) - 1);
213 (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
214 sizeof(WI_DEFAULT_NETNAME) - 1);
215 (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
216 sizeof(WI_DEFAULT_IBSS) - 1);
217
218 sc->wi_portnum = WI_DEFAULT_PORT;
219 sc->wi_ptype = WI_PORTTYPE_BSS;
220 sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
221 sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
222 sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
223 sc->wi_max_data_len = WI_DEFAULT_DATALEN;
224 sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
225 sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
226 sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
227 sc->wi_roaming = WI_DEFAULT_ROAMING;
228 sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
229
230 /*
231 * Read the default channel from the NIC. This may vary
232 * depending on the country where the NIC was purchased, so
233 * we can't hard-code a default and expect it to work for
234 * everyone.
235 */
236 gen.wi_type = WI_RID_OWN_CHNL;
237 gen.wi_len = 2;
238 wi_read_record(sc, &gen);
239 sc->wi_channel = le16toh(gen.wi_val);
240
241 memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats));
242
243 /* AP info was filled with 0 */
244 memset((char *)&sc->wi_aps, 0, sizeof(sc->wi_aps));
245 sc->wi_scanning=0;
246 sc->wi_naps=0;
247
248 /*
249 * Find out if we support WEP on this card.
250 */
251 gen.wi_type = WI_RID_WEP_AVAIL;
252 gen.wi_len = 2;
253 wi_read_record(sc, &gen);
254 sc->wi_has_wep = le16toh(gen.wi_val);
255
256 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
257 #define IFM_AUTOADHOC \
258 IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0)
259 #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL)
260 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
261 ADD(IFM_AUTOADHOC, 0);
262 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
263 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
264 IFM_IEEE80211_ADHOC, 0), 0);
265 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
266 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
267 IFM_IEEE80211_ADHOC, 0), 0);
268 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
269 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
270 IFM_IEEE80211_ADHOC, 0), 0);
271 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
272 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
273 IFM_IEEE80211_ADHOC, 0), 0);
274 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
275 #undef ADD
276 ifmedia_set(&sc->sc_media, IFM_AUTOADHOC);
277
278 /*
279 * Call MI attach routines.
280 */
281 if_attach(ifp);
282 ether_ifattach(ifp, mac.wi_mac_addr);
283
284 ifp->if_baudrate = IF_Mbps(2);
285
286 /* Attach is successful. */
287 sc->sc_attached = 1;
288
289 splx(s);
290 return 0;
291 }
292
293 static void wi_rxeof(sc)
294 struct wi_softc *sc;
295 {
296 struct ifnet *ifp;
297 struct ether_header *eh;
298 struct wi_frame rx_frame;
299 struct mbuf *m;
300 int id;
301
302 ifp = sc->sc_ifp;
303
304 id = CSR_READ_2(sc, WI_RX_FID);
305
306 /* First read in the frame header */
307 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
308 ifp->if_ierrors++;
309 return;
310 }
311
312 /*
313 * Drop undecryptable or packets with receive errors here
314 */
315 if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) {
316 ifp->if_ierrors++;
317 return;
318 }
319
320 MGETHDR(m, M_DONTWAIT, MT_DATA);
321 if (m == NULL) {
322 ifp->if_ierrors++;
323 return;
324 }
325 MCLGET(m, M_DONTWAIT);
326 if (!(m->m_flags & M_EXT)) {
327 m_freem(m);
328 ifp->if_ierrors++;
329 return;
330 }
331
332 /* Align the data after the ethernet header */
333 m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
334 - sizeof(struct ether_header);
335
336 eh = mtod(m, struct ether_header *);
337 m->m_pkthdr.rcvif = ifp;
338
339 if (le16toh(rx_frame.wi_status) == WI_STAT_1042 ||
340 le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL ||
341 le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) {
342 if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
343 printf("%s: oversized packet received "
344 "(wi_dat_len=%d, wi_status=0x%x)\n",
345 sc->sc_dev.dv_xname,
346 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
347 m_freem(m);
348 ifp->if_ierrors++;
349 return;
350 }
351 m->m_pkthdr.len = m->m_len =
352 le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
353
354 memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr,
355 ETHER_ADDR_LEN);
356 memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr,
357 ETHER_ADDR_LEN);
358 memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type,
359 sizeof(u_int16_t));
360
361 if (wi_read_data(sc, id, WI_802_11_OFFSET,
362 mtod(m, caddr_t) + sizeof(struct ether_header),
363 m->m_len + 2)) {
364 m_freem(m);
365 ifp->if_ierrors++;
366 return;
367 }
368 } else {
369 if ((le16toh(rx_frame.wi_dat_len) +
370 sizeof(struct ether_header)) > MCLBYTES) {
371 printf("%s: oversized packet received "
372 "(wi_dat_len=%d, wi_status=0x%x)\n",
373 sc->sc_dev.dv_xname,
374 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
375 m_freem(m);
376 ifp->if_ierrors++;
377 return;
378 }
379 m->m_pkthdr.len = m->m_len =
380 le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
381
382 if (wi_read_data(sc, id, WI_802_3_OFFSET,
383 mtod(m, caddr_t), m->m_len + 2)) {
384 m_freem(m);
385 ifp->if_ierrors++;
386 return;
387 }
388 }
389
390 ifp->if_ipackets++;
391
392 #if NBPFILTER > 0
393 /* Handle BPF listeners. */
394 if (ifp->if_bpf)
395 bpf_mtap(ifp->if_bpf, m);
396 #endif
397
398 /* Receive packet. */
399 (*ifp->if_input)(ifp, m);
400 }
401
402 static void wi_txeof(sc, status)
403 struct wi_softc *sc;
404 int status;
405 {
406 struct ifnet *ifp = sc->sc_ifp;
407
408 ifp->if_timer = 0;
409 ifp->if_flags &= ~IFF_OACTIVE;
410
411 if (status & WI_EV_TX_EXC)
412 ifp->if_oerrors++;
413 else
414 ifp->if_opackets++;
415
416 return;
417 }
418
419 void wi_inquire(xsc)
420 void *xsc;
421 {
422 struct wi_softc *sc;
423 struct ifnet *ifp;
424 int s;
425
426 sc = xsc;
427 ifp = &sc->sc_ethercom.ec_if;
428
429 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
430 return;
431
432 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
433
434 /* Don't do this while we're transmitting */
435 if (ifp->if_flags & IFF_OACTIVE)
436 return;
437
438 s = splnet();
439 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
440 splx(s);
441 }
442
443 void wi_wait_scan(xsc)
444 void *xsc;
445 {
446 struct wi_softc *sc;
447 struct ifnet *ifp;
448 int s, result;
449
450 sc = xsc;
451 ifp = &sc->sc_ethercom.ec_if;
452
453 /* If not scanning, ignore */
454 if (!sc->wi_scanning)
455 return;
456
457 s = splnet();
458
459 /* Wait for sending complete to make INQUIRE */
460 if (ifp->if_flags & IFF_OACTIVE) {
461 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
462 splx(s);
463 return;
464 }
465
466 /* try INQUIRE */
467 result = wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS);
468 if (result == ETIMEDOUT)
469 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
470
471 splx(s);
472 }
473
474 void wi_update_stats(sc)
475 struct wi_softc *sc;
476 {
477 struct wi_ltv_gen gen;
478 struct wi_scan_header ap2_header; /* Prism2 header */
479 struct wi_scan_data_p2 ap2; /* Prism2 scantable*/
480 struct wi_scan_data ap; /* Lucent scantable */
481 struct wi_assoc assoc; /* Association Status */
482 u_int16_t id;
483 struct ifnet *ifp;
484 u_int32_t *ptr;
485 int len, naps, i, j;
486 u_int16_t t;
487
488 ifp = &sc->sc_ethercom.ec_if;
489
490 id = CSR_READ_2(sc, WI_INFO_FID);
491
492 wi_read_data(sc, id, 0, (char *)&gen, 4);
493
494 switch (gen.wi_type) {
495 case WI_INFO_SCAN_RESULTS:
496 if (gen.wi_len <= 3)
497 break;
498 if (sc->sc_prism2) { /* Prism2 chip */
499 naps = 2 * (gen.wi_len - 3) / sizeof(ap2);
500 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
501 sc->wi_naps = naps;
502 /* Read Header */
503 for(j=0; j < sizeof(ap2_header) / 2; j++)
504 ((u_int16_t *)&ap2_header)[j] =
505 CSR_READ_2(sc, WI_DATA1);
506 /* Read Data */
507 for (i=0; i < naps; i++) {
508 for(j=0; j < sizeof(ap2) / 2; j++)
509 ((u_int16_t *)&ap2)[j] =
510 CSR_READ_2(sc, WI_DATA1);
511 sc->wi_aps[i].scanreason = ap2_header.wi_reason;
512 memcpy(sc->wi_aps[i].bssid, ap2.wi_bssid, 6);
513 sc->wi_aps[i].channel = ap2.wi_chid;
514 sc->wi_aps[i].signal = ap2.wi_signal;
515 sc->wi_aps[i].noise = ap2.wi_noise;
516 sc->wi_aps[i].quality = ap2.wi_signal - ap2.wi_noise;
517 sc->wi_aps[i].capinfo = ap2.wi_capinfo;
518 sc->wi_aps[i].interval = ap2.wi_interval;
519 sc->wi_aps[i].rate = ap2.wi_rate;
520 if (ap2.wi_namelen > 32)
521 ap2.wi_namelen = 32;
522 sc->wi_aps[i].namelen = ap2.wi_namelen;
523 memcpy(sc->wi_aps[i].name, ap2.wi_name,
524 ap2.wi_namelen);
525 }
526 } else { /* Lucent chip */
527 naps = 2 * gen.wi_len / sizeof(ap);
528 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
529 sc->wi_naps = naps;
530 /* Read Data*/
531 for (i=0; i < naps; i++) {
532 for(j=0; j < sizeof(ap) / 2; j++)
533 ((u_int16_t *)&ap)[j] =
534 CSR_READ_2(sc, WI_DATA1);
535 memcpy(sc->wi_aps[i].bssid, ap.wi_bssid, 6);
536 sc->wi_aps[i].channel = ap.wi_chid;
537 sc->wi_aps[i].signal = ap.wi_signal;
538 sc->wi_aps[i].noise = ap.wi_noise;
539 sc->wi_aps[i].quality = ap.wi_signal - ap.wi_noise;
540 sc->wi_aps[i].capinfo = ap.wi_capinfo;
541 sc->wi_aps[i].interval = ap.wi_interval;
542 if (ap.wi_namelen > 32)
543 ap.wi_namelen = 32;
544 sc->wi_aps[i].namelen = ap.wi_namelen;
545 memcpy(sc->wi_aps[i].name, ap.wi_name,
546 ap.wi_namelen);
547 }
548 }
549 /* Done scanning */
550 sc->wi_scanning = 0;
551 break;
552
553 case WI_INFO_COUNTERS:
554 /* some card versions have a larger stats structure */
555 len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
556 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
557 ptr = (u_int32_t *)&sc->wi_stats;
558
559 for (i = 0; i < len; i++) {
560 t = CSR_READ_2(sc, WI_DATA1);
561 #ifdef WI_HERMES_STATS_WAR
562 if (t > 0xF000)
563 t = ~t & 0xFFFF;
564 #endif
565 ptr[i] += t;
566 }
567
568 ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
569 sc->wi_stats.wi_tx_multi_retries +
570 sc->wi_stats.wi_tx_retry_limit;
571 break;
572
573 case WI_INFO_LINK_STAT: {
574 static char *msg[] = {
575 "connected",
576 "disconnected",
577 "AP change",
578 "AP out of range",
579 "AP in range",
580 "Association Faild"
581 };
582
583 if (gen.wi_len != 2) {
584 #ifdef WI_DEBUG
585 printf("WI_INFO_LINK_STAT: len=%d\n", gen.wi_len);
586 #endif
587 break;
588 }
589 t = CSR_READ_2(sc, WI_DATA1);
590 if ((t < 1) || (t > 6)) {
591 #ifdef WI_DEBUG
592 printf("WI_INFO_LINK_STAT: status %d\n", t);
593 #endif
594 break;
595 }
596 /*
597 * Some cards issue streams of "connected" messages while
598 * trying to find a peer. Don't bother the user with this
599 * unless he is debugging.
600 */
601 if (ifp->if_flags & IFF_DEBUG)
602 printf("%s: %s\n", sc->sc_dev.dv_xname, msg[t - 1]);
603 break;
604 }
605
606 case WI_INFO_ASSOC_STAT: {
607 static char *msg[] = {
608 "STA Associated",
609 "STA Reassociated",
610 "STA Disassociated",
611 "Association Failure",
612 "Authentication Faild"
613 };
614 if (gen.wi_len != 10)
615 break;
616 for (i=0; i < gen.wi_len - 1; i++)
617 ((u_int16_t *)&assoc)[i] = CSR_READ_2(sc, WI_DATA1);
618 switch (assoc.wi_assoc_stat) {
619 case ASSOC:
620 case DISASSOC:
621 case ASSOCFAIL:
622 case AUTHFAIL:
623 printf("%s: %s, AP = %x:%x:%x:%x:%x:%x\n",
624 sc->sc_dev.dv_xname,
625 msg[assoc.wi_assoc_stat - 1],
626 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
627 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
628 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff);
629 break;
630 case REASSOC:
631 printf("%s: %s, AP = %x:%x:%x:%x:%x:%x, OldAP = %x:%x:%x:%x:%x:%x\n",
632 sc->sc_dev.dv_xname, msg[assoc.wi_assoc_stat - 1],
633 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
634 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
635 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff,
636 assoc.wi_assoc_osta[0]&0xff, assoc.wi_assoc_osta[1]&0xff,
637 assoc.wi_assoc_osta[2]&0xff, assoc.wi_assoc_osta[3]&0xff,
638 assoc.wi_assoc_osta[4]&0xff, assoc.wi_assoc_osta[5]&0xff);
639 break;
640 }
641 }
642 default:
643 #if 0
644 printf("Got info type: %04x\n", gen.wi_type);
645 #endif
646 for (i = 0; i < gen.wi_len; i++) {
647 t = CSR_READ_2(sc, WI_DATA1);
648 #if 0
649 printf("[0x%02x] = 0x%04x\n", i, t);
650 #endif
651 }
652 break;
653 }
654 }
655
656 int wi_intr(arg)
657 void *arg;
658 {
659 struct wi_softc *sc = arg;
660 struct ifnet *ifp;
661 u_int16_t status;
662
663 if (sc->sc_enabled == 0 ||
664 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
665 (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
666 return (0);
667
668 ifp = &sc->sc_ethercom.ec_if;
669
670 if (!(ifp->if_flags & IFF_UP)) {
671 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
672 CSR_WRITE_2(sc, WI_INT_EN, 0);
673 return 1;
674 }
675
676 /* Disable interrupts. */
677 CSR_WRITE_2(sc, WI_INT_EN, 0);
678
679 status = CSR_READ_2(sc, WI_EVENT_STAT);
680 CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
681
682 if (status & WI_EV_RX) {
683 wi_rxeof(sc);
684 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
685 }
686
687 if (status & WI_EV_TX) {
688 wi_txeof(sc, status);
689 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
690 }
691
692 if (status & WI_EV_ALLOC) {
693 int id;
694 id = CSR_READ_2(sc, WI_ALLOC_FID);
695 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
696 if (id == sc->wi_tx_data_id)
697 wi_txeof(sc, status);
698 }
699
700 if (status & WI_EV_INFO) {
701 wi_update_stats(sc);
702 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
703 }
704
705 if (status & WI_EV_TX_EXC) {
706 wi_txeof(sc, status);
707 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
708 }
709
710 if (status & WI_EV_INFO_DROP) {
711 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
712 }
713
714 /* Re-enable interrupts. */
715 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
716
717 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
718 wi_start(ifp);
719
720 return 1;
721 }
722
723 /* Must be called at proper protection level! */
724 static int
725 wi_cmd(sc, cmd, val)
726 struct wi_softc *sc;
727 int cmd;
728 int val;
729 {
730 int i, s = 0;
731
732 /* wait for the busy bit to clear */
733 for (i = 0; i < WI_TIMEOUT; i++) {
734 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
735 break;
736 }
737
738 if (i == WI_TIMEOUT) {
739 printf("%s: wi_cmd: BUSY did not clear, cmd=0x%x\n",
740 sc->sc_dev.dv_xname, cmd);
741 return EIO;
742 }
743
744 CSR_WRITE_2(sc, WI_PARAM0, val);
745 CSR_WRITE_2(sc, WI_PARAM1, 0);
746 CSR_WRITE_2(sc, WI_PARAM2, 0);
747 CSR_WRITE_2(sc, WI_COMMAND, cmd);
748
749 /* wait for the cmd completed bit */
750 for (i = 0; i < WI_TIMEOUT; i++) {
751 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
752 break;
753 DELAY(1);
754 }
755
756 /* Ack the command */
757 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
758
759 s = CSR_READ_2(sc, WI_STATUS);
760 if (s & WI_STAT_CMD_RESULT)
761 return(EIO);
762
763 if (i == WI_TIMEOUT) {
764 if (!sc->wi_scanning)
765 printf("%s: command timed out, cmd=0x%x\n",
766 sc->sc_dev.dv_xname, cmd);
767 return(ETIMEDOUT);
768 }
769
770 return(0);
771 }
772
773 static void
774 wi_reset(sc)
775 struct wi_softc *sc;
776 {
777 DELAY(100*1000); /* 100 m sec */
778 if (wi_cmd(sc, WI_CMD_INI, 0))
779 printf("%s: init failed\n", sc->sc_dev.dv_xname);
780 CSR_WRITE_2(sc, WI_INT_EN, 0);
781 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
782
783 /* Calibrate timer. */
784 WI_SETVAL(WI_RID_TICK_TIME, 8);
785
786 return;
787 }
788
789 void
790 wi_pci_reset(sc)
791 struct wi_softc *sc;
792 {
793 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
794 WI_PCI_COR, WI_PCI_SOFT_RESET);
795 DELAY(100*1000); /* 100 m sec */
796
797 bus_space_write_2(sc->sc_iot, sc->sc_ioh, WI_PCI_COR, 0x0);
798 DELAY(100*1000); /* 100 m sec */
799
800 return;
801 }
802
803 /*
804 * Read an LTV record from the NIC.
805 */
806 static int wi_read_record(sc, ltv)
807 struct wi_softc *sc;
808 struct wi_ltv_gen *ltv;
809 {
810 u_int16_t *ptr;
811 int len, code;
812 struct wi_ltv_gen *oltv, p2ltv;
813
814 if (sc->sc_prism2) {
815 oltv = ltv;
816 switch (ltv->wi_type) {
817 case WI_RID_ENCRYPTION:
818 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
819 p2ltv.wi_len = 2;
820 ltv = &p2ltv;
821 break;
822 case WI_RID_TX_CRYPT_KEY:
823 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
824 p2ltv.wi_len = 2;
825 ltv = &p2ltv;
826 break;
827 }
828 }
829
830 /* Tell the NIC to enter record read mode. */
831 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
832 return(EIO);
833
834 /* Seek to the record. */
835 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
836 return(EIO);
837
838 /*
839 * Read the length and record type and make sure they
840 * match what we expect (this verifies that we have enough
841 * room to hold all of the returned data).
842 */
843 len = CSR_READ_2(sc, WI_DATA1);
844 if (len > ltv->wi_len)
845 return(ENOSPC);
846 code = CSR_READ_2(sc, WI_DATA1);
847 if (code != ltv->wi_type)
848 return(EIO);
849
850 ltv->wi_len = len;
851 ltv->wi_type = code;
852
853 /* Now read the data. */
854 ptr = <v->wi_val;
855 if (ltv->wi_len > 1)
856 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
857
858 if (sc->sc_prism2) {
859 int v;
860
861 switch (oltv->wi_type) {
862 case WI_RID_TX_RATE:
863 case WI_RID_CUR_TX_RATE:
864 switch (le16toh(ltv->wi_val)) {
865 case 1: v = 1; break;
866 case 2: v = 2; break;
867 case 3: v = 6; break;
868 case 4: v = 5; break;
869 case 7: v = 7; break;
870 case 8: v = 11; break;
871 case 15: v = 3; break;
872 default: v = 0x100 + le16toh(ltv->wi_val); break;
873 }
874 oltv->wi_val = htole16(v);
875 break;
876 case WI_RID_ENCRYPTION:
877 oltv->wi_len = 2;
878 if (le16toh(ltv->wi_val) & 0x01)
879 oltv->wi_val = htole16(1);
880 else
881 oltv->wi_val = htole16(0);
882 break;
883 case WI_RID_TX_CRYPT_KEY:
884 oltv->wi_len = 2;
885 oltv->wi_val = ltv->wi_val;
886 break;
887 case WI_RID_AUTH_CNTL:
888 oltv->wi_len = 2;
889 if (le16toh(ltv->wi_val) & 0x01)
890 oltv->wi_val = htole16(1);
891 else if (le16toh(ltv->wi_val) & 0x02)
892 oltv->wi_val = htole16(2);
893 break;
894 }
895 }
896
897 return(0);
898 }
899
900 /*
901 * Same as read, except we inject data instead of reading it.
902 */
903 static int wi_write_record(sc, ltv)
904 struct wi_softc *sc;
905 struct wi_ltv_gen *ltv;
906 {
907 u_int16_t *ptr;
908 int i;
909 struct wi_ltv_gen p2ltv;
910
911 if (sc->sc_prism2) {
912 int v;
913
914 switch (ltv->wi_type) {
915 case WI_RID_TX_RATE:
916 p2ltv.wi_type = WI_RID_TX_RATE;
917 p2ltv.wi_len = 2;
918 switch (le16toh(ltv->wi_val)) {
919 case 1: v = 1; break;
920 case 2: v = 2; break;
921 case 3: v = 15; break;
922 case 5: v = 4; break;
923 case 6: v = 3; break;
924 case 7: v = 7; break;
925 case 11: v = 8; break;
926 default: return EINVAL;
927 }
928 p2ltv.wi_val = htole16(v);
929 ltv = &p2ltv;
930 break;
931 case WI_RID_ENCRYPTION:
932 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
933 p2ltv.wi_len = 2;
934 if (le16toh(ltv->wi_val))
935 p2ltv.wi_val = htole16(0x03);
936 else
937 p2ltv.wi_val = htole16(0x90);
938 ltv = &p2ltv;
939 break;
940 case WI_RID_TX_CRYPT_KEY:
941 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
942 p2ltv.wi_len = 2;
943 p2ltv.wi_val = ltv->wi_val;
944 ltv = &p2ltv;
945 break;
946 case WI_RID_DEFLT_CRYPT_KEYS:
947 {
948 int error;
949 struct wi_ltv_str ws;
950 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv;
951 for (i = 0; i < 4; i++) {
952 memset(&ws, 0, sizeof(ws));
953 if(wk->wi_keys[i].wi_keylen <= 5) {
954 /* 5 Octets WEP Keys */
955 ws.wi_len = 4;
956 memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 5);
957 ws.wi_str[5] = '\0';
958 } else {
959 /* 13 Octets WEP Keys */
960 ws.wi_len = 8;
961 memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, 13);
962 ws.wi_str[13] = '\0';
963 }
964 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
965
966 if(wi_write_record(sc, (struct wi_ltv_gen *)&ws))
967 return error;
968 }
969 return 0;
970 }
971 case WI_RID_AUTH_CNTL:
972 p2ltv.wi_type = WI_RID_AUTH_CNTL;
973 p2ltv.wi_len = 2;
974 if (le16toh(ltv->wi_val) == 1)
975 p2ltv.wi_val = htole16(0x01);
976 else if (le16toh(ltv->wi_val) == 2)
977 p2ltv.wi_val = htole16(0x02);
978 ltv = &p2ltv;
979 break;
980 }
981 }
982
983 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
984 return(EIO);
985
986 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
987 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
988
989 /* Write data */
990 ptr = <v->wi_val;
991 if (ltv->wi_len > 1)
992 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
993
994 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
995 return(EIO);
996
997 return(0);
998 }
999
1000 static int wi_seek(sc, id, off, chan)
1001 struct wi_softc *sc;
1002 int id, off, chan;
1003 {
1004 int i;
1005 int selreg, offreg;
1006 int status;
1007
1008 switch (chan) {
1009 case WI_BAP0:
1010 selreg = WI_SEL0;
1011 offreg = WI_OFF0;
1012 break;
1013 case WI_BAP1:
1014 selreg = WI_SEL1;
1015 offreg = WI_OFF1;
1016 break;
1017 default:
1018 printf("%s: invalid data path: %x\n",
1019 sc->sc_dev.dv_xname, chan);
1020 return(EIO);
1021 }
1022
1023 CSR_WRITE_2(sc, selreg, id);
1024 CSR_WRITE_2(sc, offreg, off);
1025
1026 for (i = 0; i < WI_TIMEOUT; i++) {
1027 status = CSR_READ_2(sc, offreg);
1028 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
1029 break;
1030 }
1031
1032 if (i == WI_TIMEOUT) {
1033 printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
1034 sc->sc_dev.dv_xname, id, off, status);
1035 return(ETIMEDOUT);
1036 }
1037 return(0);
1038 }
1039
1040 static int wi_read_data(sc, id, off, buf, len)
1041 struct wi_softc *sc;
1042 int id, off;
1043 caddr_t buf;
1044 int len;
1045 {
1046 u_int16_t *ptr;
1047
1048 if (wi_seek(sc, id, off, WI_BAP1))
1049 return(EIO);
1050
1051 ptr = (u_int16_t *)buf;
1052 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
1053
1054 return(0);
1055 }
1056
1057 /*
1058 * According to the comments in the HCF Light code, there is a bug in
1059 * the Hermes (or possibly in certain Hermes firmware revisions) where
1060 * the chip's internal autoincrement counter gets thrown off during
1061 * data writes: the autoincrement is missed, causing one data word to
1062 * be overwritten and subsequent words to be written to the wrong memory
1063 * locations. The end result is that we could end up transmitting bogus
1064 * frames without realizing it. The workaround for this is to write a
1065 * couple of extra guard words after the end of the transfer, then
1066 * attempt to read then back. If we fail to locate the guard words where
1067 * we expect them, we preform the transfer over again.
1068 */
1069 static int wi_write_data(sc, id, off, buf, len)
1070 struct wi_softc *sc;
1071 int id, off;
1072 caddr_t buf;
1073 int len;
1074 {
1075 u_int16_t *ptr;
1076
1077 #ifdef WI_HERMES_AUTOINC_WAR
1078 again:
1079 #endif
1080
1081 if (wi_seek(sc, id, off, WI_BAP0))
1082 return(EIO);
1083
1084 ptr = (u_int16_t *)buf;
1085 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
1086
1087 #ifdef WI_HERMES_AUTOINC_WAR
1088 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1089 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1090
1091 if (wi_seek(sc, id, off + len, WI_BAP0))
1092 return(EIO);
1093
1094 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1095 CSR_READ_2(sc, WI_DATA0) != 0x5678)
1096 goto again;
1097 #endif
1098
1099 return(0);
1100 }
1101
1102 /*
1103 * Allocate a region of memory inside the NIC and zero
1104 * it out.
1105 */
1106 static int wi_alloc_nicmem(sc, len, id)
1107 struct wi_softc *sc;
1108 int len;
1109 int *id;
1110 {
1111 int i;
1112
1113 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
1114 printf("%s: failed to allocate %d bytes on NIC\n",
1115 sc->sc_dev.dv_xname, len);
1116 return(ENOMEM);
1117 }
1118
1119 for (i = 0; i < WI_TIMEOUT; i++) {
1120 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1121 break;
1122 }
1123
1124 if (i == WI_TIMEOUT) {
1125 printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
1126 return(ETIMEDOUT);
1127 }
1128
1129 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1130 *id = CSR_READ_2(sc, WI_ALLOC_FID);
1131
1132 if (wi_seek(sc, *id, 0, WI_BAP0)) {
1133 printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
1134 return(EIO);
1135 }
1136
1137 for (i = 0; i < len / 2; i++)
1138 CSR_WRITE_2(sc, WI_DATA0, 0);
1139
1140 return(0);
1141 }
1142
1143 static void wi_setmulti(sc)
1144 struct wi_softc *sc;
1145 {
1146 struct ifnet *ifp;
1147 int i = 0;
1148 struct wi_ltv_mcast mcast;
1149 struct ether_multi *enm;
1150 struct ether_multistep estep;
1151 struct ethercom *ec = &sc->sc_ethercom;
1152
1153 ifp = &sc->sc_ethercom.ec_if;
1154
1155 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1156 allmulti:
1157 ifp->if_flags |= IFF_ALLMULTI;
1158 memset((char *)&mcast, 0, sizeof(mcast));
1159 mcast.wi_type = WI_RID_MCAST_LIST;
1160 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
1161
1162 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1163 return;
1164 }
1165
1166 i = 0;
1167 ETHER_FIRST_MULTI(estep, ec, enm);
1168 while (enm != NULL) {
1169 /* Punt on ranges or too many multicast addresses. */
1170 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1171 ETHER_ADDR_LEN) != 0 ||
1172 i >= 16)
1173 goto allmulti;
1174
1175 memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo,
1176 ETHER_ADDR_LEN);
1177 i++;
1178 ETHER_NEXT_MULTI(estep, enm);
1179 }
1180
1181 ifp->if_flags &= ~IFF_ALLMULTI;
1182 mcast.wi_type = WI_RID_MCAST_LIST;
1183 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
1184 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1185 }
1186
1187 static int
1188 wi_setdef(sc, wreq)
1189 struct wi_softc *sc;
1190 struct wi_req *wreq;
1191 {
1192 struct sockaddr_dl *sdl;
1193 struct ifnet *ifp;
1194 int error = 0;
1195
1196 ifp = &sc->sc_ethercom.ec_if;
1197
1198 switch(wreq->wi_type) {
1199 case WI_RID_MAC_NODE:
1200 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1201 memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val,
1202 ETHER_ADDR_LEN);
1203 memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN);
1204 break;
1205 case WI_RID_PORTTYPE:
1206 error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
1207 break;
1208 case WI_RID_TX_RATE:
1209 error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
1210 break;
1211 case WI_RID_MAX_DATALEN:
1212 sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1213 break;
1214 case WI_RID_RTS_THRESH:
1215 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1216 break;
1217 case WI_RID_SYSTEM_SCALE:
1218 sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1219 break;
1220 case WI_RID_CREATE_IBSS:
1221 sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1222 break;
1223 case WI_RID_OWN_CHNL:
1224 sc->wi_channel = le16toh(wreq->wi_val[0]);
1225 break;
1226 case WI_RID_NODENAME:
1227 error = wi_set_ssid(&sc->wi_nodeid,
1228 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1229 break;
1230 case WI_RID_DESIRED_SSID:
1231 error = wi_set_ssid(&sc->wi_netid,
1232 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1233 break;
1234 case WI_RID_OWN_SSID:
1235 error = wi_set_ssid(&sc->wi_ibssid,
1236 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1237 break;
1238 case WI_RID_PM_ENABLED:
1239 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1240 break;
1241 case WI_RID_MICROWAVE_OVEN:
1242 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1243 break;
1244 case WI_RID_MAX_SLEEP:
1245 sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1246 break;
1247 case WI_RID_AUTH_CNTL:
1248 sc->wi_authtype = le16toh(wreq->wi_val[0]);
1249 break;
1250 case WI_RID_ROAMING_MODE:
1251 sc->wi_roaming = le16toh(wreq->wi_val[0]);
1252 break;
1253 case WI_RID_ENCRYPTION:
1254 sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1255 break;
1256 case WI_RID_TX_CRYPT_KEY:
1257 sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1258 break;
1259 case WI_RID_DEFLT_CRYPT_KEYS:
1260 memcpy((char *)&sc->wi_keys, (char *)wreq,
1261 sizeof(struct wi_ltv_keys));
1262 break;
1263 default:
1264 error = EINVAL;
1265 break;
1266 }
1267
1268 return (error);
1269 }
1270
1271 static int
1272 wi_getdef(sc, wreq)
1273 struct wi_softc *sc;
1274 struct wi_req *wreq;
1275 {
1276 struct sockaddr_dl *sdl;
1277 struct ifnet *ifp;
1278 int error = 0;
1279
1280 ifp = &sc->sc_ethercom.ec_if;
1281
1282 wreq->wi_len = 2; /* XXX */
1283 switch (wreq->wi_type) {
1284 case WI_RID_MAC_NODE:
1285 wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
1286 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1287 memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN);
1288 memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1289 break;
1290 case WI_RID_PORTTYPE:
1291 wreq->wi_val[0] = htole16(sc->wi_ptype);
1292 break;
1293 case WI_RID_TX_RATE:
1294 wreq->wi_val[0] = htole16(sc->wi_tx_rate);
1295 break;
1296 case WI_RID_MAX_DATALEN:
1297 wreq->wi_val[0] = htole16(sc->wi_max_data_len);
1298 break;
1299 case WI_RID_RTS_THRESH:
1300 wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
1301 break;
1302 case WI_RID_SYSTEM_SCALE:
1303 wreq->wi_val[0] = htole16(sc->wi_ap_density);
1304 break;
1305 case WI_RID_CREATE_IBSS:
1306 wreq->wi_val[0] = htole16(sc->wi_create_ibss);
1307 break;
1308 case WI_RID_OWN_CHNL:
1309 wreq->wi_val[0] = htole16(sc->wi_channel);
1310 break;
1311 case WI_RID_NODENAME:
1312 wi_request_fill_ssid(wreq, &sc->wi_nodeid);
1313 break;
1314 case WI_RID_DESIRED_SSID:
1315 wi_request_fill_ssid(wreq, &sc->wi_netid);
1316 break;
1317 case WI_RID_OWN_SSID:
1318 wi_request_fill_ssid(wreq, &sc->wi_ibssid);
1319 break;
1320 case WI_RID_PM_ENABLED:
1321 wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
1322 break;
1323 case WI_RID_MICROWAVE_OVEN:
1324 wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
1325 break;
1326 case WI_RID_MAX_SLEEP:
1327 wreq->wi_val[0] = htole16(sc->wi_max_sleep);
1328 break;
1329 case WI_RID_AUTH_CNTL:
1330 wreq->wi_val[0] = htole16(sc->wi_authtype);
1331 break;
1332 case WI_RID_ROAMING_MODE:
1333 wreq->wi_val[0] = htole16(sc->wi_roaming);
1334 break;
1335 case WI_RID_WEP_AVAIL:
1336 wreq->wi_val[0] = htole16(sc->wi_has_wep);
1337 break;
1338 case WI_RID_ENCRYPTION:
1339 wreq->wi_val[0] = htole16(sc->wi_use_wep);
1340 break;
1341 case WI_RID_TX_CRYPT_KEY:
1342 wreq->wi_val[0] = htole16(sc->wi_tx_key);
1343 break;
1344 case WI_RID_DEFLT_CRYPT_KEYS:
1345 wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
1346 memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
1347 break;
1348 default:
1349 #if 0
1350 error = EIO;
1351 #else
1352 #ifdef WI_DEBUG
1353 printf("%s: wi_getdef: unknown request %d\n",
1354 sc->sc_dev.dv_xname, wreq->wi_type);
1355 #endif
1356 #endif
1357 break;
1358 }
1359
1360 return (error);
1361 }
1362
1363 static int
1364 wi_ioctl(ifp, command, data)
1365 struct ifnet *ifp;
1366 u_long command;
1367 caddr_t data;
1368 {
1369 int s, error = 0;
1370 int len;
1371 struct wi_softc *sc = ifp->if_softc;
1372 struct wi_req wreq;
1373 struct ifreq *ifr;
1374 struct proc *p = curproc;
1375 struct ieee80211_nwid nwid;
1376
1377 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1378 return (ENXIO);
1379
1380 s = splnet();
1381
1382 ifr = (struct ifreq *)data;
1383 switch (command) {
1384 case SIOCSIFADDR:
1385 case SIOCGIFADDR:
1386 case SIOCSIFMTU:
1387 error = ether_ioctl(ifp, command, data);
1388 break;
1389 case SIOCSIFFLAGS:
1390 if (ifp->if_flags & IFF_UP) {
1391 if (ifp->if_flags & IFF_RUNNING &&
1392 ifp->if_flags & IFF_PROMISC &&
1393 !(sc->wi_if_flags & IFF_PROMISC)) {
1394 WI_SETVAL(WI_RID_PROMISC, 1);
1395 } else if (ifp->if_flags & IFF_RUNNING &&
1396 !(ifp->if_flags & IFF_PROMISC) &&
1397 sc->wi_if_flags & IFF_PROMISC) {
1398 WI_SETVAL(WI_RID_PROMISC, 0);
1399 }
1400 wi_init(ifp);
1401 } else {
1402 if (ifp->if_flags & IFF_RUNNING) {
1403 wi_stop(ifp, 0);
1404 }
1405 }
1406 sc->wi_if_flags = ifp->if_flags;
1407
1408 if (!(ifp->if_flags & IFF_UP)) {
1409 if (sc->sc_enabled) {
1410 if (sc->sc_disable)
1411 (*sc->sc_disable)(sc);
1412 sc->sc_enabled = 0;
1413 ifp->if_flags &= ~IFF_RUNNING;
1414 }
1415 }
1416 error = 0;
1417 break;
1418 case SIOCADDMULTI:
1419 case SIOCDELMULTI:
1420 error = (command == SIOCADDMULTI) ?
1421 ether_addmulti(ifr, &sc->sc_ethercom) :
1422 ether_delmulti(ifr, &sc->sc_ethercom);
1423 if (error == ENETRESET) {
1424 if (sc->sc_enabled != 0) {
1425 /*
1426 * Multicast list has changed. Set the
1427 * hardware filter accordingly.
1428 */
1429 wi_setmulti(sc);
1430 }
1431 error = 0;
1432 }
1433 break;
1434 case SIOCSIFMEDIA:
1435 case SIOCGIFMEDIA:
1436 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1437 break;
1438 case SIOCGWAVELAN:
1439 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1440 if (error)
1441 break;
1442 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1443 wi_update_stats(sc);
1444 /* XXX native byte order */
1445 memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats,
1446 sizeof(sc->wi_stats));
1447 wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1448 } else if (wreq.wi_type == WI_RID_READ_APS) {
1449 if (sc->wi_scanning) {
1450 error = EINVAL;
1451 break;
1452 } else {
1453 len = sc->wi_naps * sizeof(struct wi_apinfo);
1454 len = len > WI_MAX_DATALEN ? WI_MAX_DATALEN : len;
1455 len = len / sizeof(struct wi_apinfo);
1456 memcpy((char *)&wreq.wi_val, (char *)&len, sizeof(len));
1457 memcpy((char *)&wreq.wi_val + sizeof(len),
1458 (char *)&sc->wi_aps,
1459 len * sizeof(struct wi_apinfo));
1460 }
1461 } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1462 /* For non-root user, return all-zeroes keys */
1463 if (suser(p->p_ucred, &p->p_acflag))
1464 memset((char *)&wreq, 0,
1465 sizeof(struct wi_ltv_keys));
1466 else
1467 memcpy((char *)&wreq, (char *)&sc->wi_keys,
1468 sizeof(struct wi_ltv_keys));
1469 } else {
1470 if (sc->sc_enabled == 0)
1471 error = wi_getdef(sc, &wreq);
1472 else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1473 error = EINVAL;
1474 }
1475 if (error == 0)
1476 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1477 break;
1478 case SIOCSWAVELAN:
1479 error = suser(p->p_ucred, &p->p_acflag);
1480 if (error)
1481 break;
1482 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1483 if (error)
1484 break;
1485 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1486 error = EINVAL;
1487 break;
1488 } else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1489 error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1490 wreq.wi_len);
1491 } else if (wreq.wi_type == WI_RID_SCAN_APS) {
1492 if (wreq.wi_len != 4) {
1493 error = EINVAL;
1494 break;
1495 }
1496 if (!sc->wi_scanning) {
1497 if (sc->sc_prism2) {
1498 wreq.wi_type = WI_RID_SCAN_REQ;
1499 error = wi_write_record(sc,
1500 (struct wi_ltv_gen *)&wreq);
1501 }
1502 if (!error) {
1503 sc->wi_scanning = 1;
1504 callout_reset(&sc->wi_scan_sh, hz * 1,
1505 wi_wait_scan, sc);
1506 }
1507 }
1508 } else {
1509 if (sc->sc_enabled != 0)
1510 error = wi_write_record(sc,
1511 (struct wi_ltv_gen *)&wreq);
1512 if (error == 0)
1513 error = wi_setdef(sc, &wreq);
1514 if (error == 0 && sc->sc_enabled != 0)
1515 /* Reinitialize WaveLAN. */
1516 wi_init(ifp);
1517 }
1518 break;
1519 case SIOCG80211NWID:
1520 if (sc->sc_enabled == 0) {
1521 /* Return the desired ID */
1522 error = copyout(&sc->wi_netid, ifr->ifr_data,
1523 sizeof(sc->wi_netid));
1524 } else {
1525 wreq.wi_type = WI_RID_CURRENT_SSID;
1526 wreq.wi_len = WI_MAX_DATALEN;
1527 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
1528 le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
1529 error = EINVAL;
1530 else {
1531 wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
1532 le16toh(wreq.wi_val[0]));
1533 error = copyout(&nwid, ifr->ifr_data,
1534 sizeof(nwid));
1535 }
1536 }
1537 break;
1538 case SIOCS80211NWID:
1539 error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
1540 if (error != 0)
1541 break;
1542 if (nwid.i_len > IEEE80211_NWID_LEN) {
1543 error = EINVAL;
1544 break;
1545 }
1546 if (sc->wi_netid.i_len == nwid.i_len &&
1547 memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
1548 break;
1549 wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
1550 if (sc->sc_enabled != 0)
1551 /* Reinitialize WaveLAN. */
1552 wi_init(ifp);
1553 break;
1554 case SIOCS80211NWKEY:
1555 error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
1556 break;
1557 case SIOCG80211NWKEY:
1558 error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
1559 break;
1560 case SIOCS80211POWER:
1561 error = wi_set_pm(sc, (struct ieee80211_power *)data);
1562 break;
1563 case SIOCG80211POWER:
1564 error = wi_get_pm(sc, (struct ieee80211_power *)data);
1565 break;
1566
1567 default:
1568 error = EINVAL;
1569 break;
1570 }
1571
1572 splx(s);
1573 return (error);
1574 }
1575
1576 static int
1577 wi_init(ifp)
1578 struct ifnet *ifp;
1579 {
1580 struct wi_softc *sc = ifp->if_softc;
1581 struct wi_req wreq;
1582 struct wi_ltv_macaddr mac;
1583 int error, id = 0;
1584
1585 if (!sc->sc_enabled) {
1586 if ((error = (*sc->sc_enable)(sc)) != 0)
1587 goto out;
1588 sc->sc_enabled = 1;
1589 }
1590
1591 wi_stop(ifp, 0);
1592 wi_reset(sc);
1593
1594 /* Program max data length. */
1595 WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1596
1597 /* Enable/disable IBSS creation. */
1598 WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1599
1600 /* Set the port type. */
1601 WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1602
1603 /* Program the RTS/CTS threshold. */
1604 WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1605
1606 /* Program the TX rate */
1607 WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1608
1609 /* Access point density */
1610 WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1611
1612 /* Power Management Enabled */
1613 WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1614
1615 /* Power Managment Max Sleep */
1616 WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1617
1618 /* Roaming type */
1619 WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
1620
1621 /* Specify the IBSS name */
1622 wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
1623
1624 /* Specify the network name */
1625 wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
1626
1627 /* Specify the frequency to use */
1628 WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1629
1630 /* Program the nodename. */
1631 wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
1632
1633 /* Set our MAC address. */
1634 mac.wi_len = 4;
1635 mac.wi_type = WI_RID_MAC_NODE;
1636 memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
1637 wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1638
1639 /* Initialize promisc mode. */
1640 if (ifp->if_flags & IFF_PROMISC) {
1641 WI_SETVAL(WI_RID_PROMISC, 1);
1642 } else {
1643 WI_SETVAL(WI_RID_PROMISC, 0);
1644 }
1645
1646 /* Configure WEP. */
1647 if (sc->wi_has_wep) {
1648 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1649 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1650 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1651 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1652 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1653 if (sc->sc_prism2 && sc->wi_use_wep) {
1654 /*
1655 * ONLY HWB3163 EVAL-CARD Firmware version
1656 * less than 0.8 variant3
1657 *
1658 * If promiscuous mode disable, Prism2 chip
1659 * does not work with WEP .
1660 * It is under investigation for details.
1661 * (ichiro (at) netbsd.org)
1662 */
1663 if (sc->sc_prism2_ver < 83 ) {
1664 /* firm ver < 0.8 variant 3 */
1665 WI_SETVAL(WI_RID_PROMISC, 1);
1666 }
1667 WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
1668 }
1669 }
1670
1671 /* Set multicast filter. */
1672 wi_setmulti(sc);
1673
1674 /* Enable desired port */
1675 wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
1676
1677 /* scanning variable is modal, therefore reinit to OFF, in case it was on. */
1678 sc->wi_scanning=0;
1679 sc->wi_naps=0;
1680
1681 if ((error = wi_alloc_nicmem(sc,
1682 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1683 printf("%s: tx buffer allocation failed\n",
1684 sc->sc_dev.dv_xname);
1685 goto out;
1686 }
1687 sc->wi_tx_data_id = id;
1688
1689 if ((error = wi_alloc_nicmem(sc,
1690 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1691 printf("%s: mgmt. buffer allocation failed\n",
1692 sc->sc_dev.dv_xname);
1693 goto out;
1694 }
1695 sc->wi_tx_mgmt_id = id;
1696
1697 /* Enable interrupts */
1698 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1699
1700 ifp->if_flags |= IFF_RUNNING;
1701 ifp->if_flags &= ~IFF_OACTIVE;
1702
1703 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
1704
1705 out:
1706 if (error) {
1707 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1708 ifp->if_timer = 0;
1709 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1710 }
1711 return (error);
1712 }
1713
1714 static void
1715 wi_start(ifp)
1716 struct ifnet *ifp;
1717 {
1718 struct wi_softc *sc;
1719 struct mbuf *m0;
1720 struct wi_frame tx_frame;
1721 struct ether_header *eh;
1722 int id;
1723
1724 sc = ifp->if_softc;
1725
1726 if (ifp->if_flags & IFF_OACTIVE)
1727 return;
1728
1729 IFQ_DEQUEUE(&ifp->if_snd, m0);
1730 if (m0 == NULL)
1731 return;
1732
1733 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1734 id = sc->wi_tx_data_id;
1735 eh = mtod(m0, struct ether_header *);
1736
1737 /*
1738 * Use RFC1042 encoding for IP and ARP datagrams,
1739 * 802.3 for anything else.
1740 */
1741 if (ntohs(eh->ether_type) == ETHERTYPE_IP ||
1742 ntohs(eh->ether_type) == ETHERTYPE_ARP ||
1743 ntohs(eh->ether_type) == ETHERTYPE_REVARP ||
1744 ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
1745 memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost,
1746 ETHER_ADDR_LEN);
1747 memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost,
1748 ETHER_ADDR_LEN);
1749 memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost,
1750 ETHER_ADDR_LEN);
1751 memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost,
1752 ETHER_ADDR_LEN);
1753
1754 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1755 tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
1756 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1757 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1758 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1759 tx_frame.wi_type = eh->ether_type;
1760
1761 m_copydata(m0, sizeof(struct ether_header),
1762 m0->m_pkthdr.len - sizeof(struct ether_header),
1763 (caddr_t)&sc->wi_txbuf);
1764
1765 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1766 sizeof(struct wi_frame));
1767 wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1768 (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1769 } else {
1770 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
1771
1772 m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1773
1774 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1775 sizeof(struct wi_frame));
1776 wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1777 m0->m_pkthdr.len + 2);
1778 }
1779
1780 #if NBPFILTER > 0
1781 /*
1782 * If there's a BPF listener, bounce a copy of
1783 * this frame to him.
1784 */
1785 if (ifp->if_bpf)
1786 bpf_mtap(ifp->if_bpf, m0);
1787 #endif
1788
1789 m_freem(m0);
1790
1791 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1792 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1793
1794 ifp->if_flags |= IFF_OACTIVE;
1795
1796 /*
1797 * Set a timeout in case the chip goes out to lunch.
1798 */
1799 ifp->if_timer = 5;
1800
1801 return;
1802 }
1803
1804 static int
1805 wi_mgmt_xmit(sc, data, len)
1806 struct wi_softc *sc;
1807 caddr_t data;
1808 int len;
1809 {
1810 struct wi_frame tx_frame;
1811 int id;
1812 struct wi_80211_hdr *hdr;
1813 caddr_t dptr;
1814
1815 hdr = (struct wi_80211_hdr *)data;
1816 dptr = data + sizeof(struct wi_80211_hdr);
1817
1818 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1819 id = sc->wi_tx_mgmt_id;
1820
1821 memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr,
1822 sizeof(struct wi_80211_hdr));
1823
1824 tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
1825 tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1826
1827 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1828 wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1829 (len - sizeof(struct wi_80211_hdr)) + 2);
1830
1831 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1832 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1833 return(EIO);
1834 }
1835
1836 return(0);
1837 }
1838
1839 static void
1840 wi_stop(ifp, disable)
1841 struct ifnet *ifp;
1842 {
1843 struct wi_softc *sc = ifp->if_softc;
1844
1845 CSR_WRITE_2(sc, WI_INT_EN, 0);
1846 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1847
1848 callout_stop(&sc->wi_inquire_ch);
1849 callout_stop(&sc->wi_scan_sh);
1850
1851 if (disable) {
1852 if (sc->sc_enabled) {
1853 if (sc->sc_disable)
1854 (*sc->sc_disable)(sc);
1855 sc->sc_enabled = 0;
1856 }
1857 }
1858
1859 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1860 ifp->if_timer = 0;
1861 }
1862
1863 static void
1864 wi_watchdog(ifp)
1865 struct ifnet *ifp;
1866 {
1867 struct wi_softc *sc;
1868
1869 sc = ifp->if_softc;
1870
1871 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1872
1873 wi_init(ifp);
1874
1875 ifp->if_oerrors++;
1876
1877 return;
1878 }
1879
1880 void
1881 wi_shutdown(sc)
1882 struct wi_softc *sc;
1883 {
1884 int s;
1885
1886 s = splnet();
1887 if (sc->sc_enabled) {
1888 if (sc->sc_disable)
1889 (*sc->sc_disable)(sc);
1890 sc->sc_enabled = 0;
1891 }
1892 splx(s);
1893 }
1894
1895 int
1896 wi_activate(self, act)
1897 struct device *self;
1898 enum devact act;
1899 {
1900 struct wi_softc *sc = (struct wi_softc *)self;
1901 int rv = 0, s;
1902
1903 s = splnet();
1904 switch (act) {
1905 case DVACT_ACTIVATE:
1906 rv = EOPNOTSUPP;
1907 break;
1908
1909 case DVACT_DEACTIVATE:
1910 if_deactivate(&sc->sc_ethercom.ec_if);
1911 break;
1912 }
1913 splx(s);
1914 return (rv);
1915 }
1916
1917 static void
1918 wi_get_id(sc)
1919 struct wi_softc *sc;
1920 {
1921 struct wi_ltv_ver ver;
1922
1923 /* getting chip identity */
1924 memset(&ver, 0, sizeof(ver));
1925 ver.wi_type = WI_RID_CARD_ID;
1926 ver.wi_len = 5;
1927 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1928 printf("%s: using ", sc->sc_dev.dv_xname);
1929 switch (le16toh(ver.wi_ver[0])) {
1930 case WI_NIC_EVB2:
1931 printf("RF:PRISM2 MAC:HFA3841");
1932 sc->sc_prism2 = 1;
1933 break;
1934 case WI_NIC_HWB3763:
1935 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3763 rev.B");
1936 sc->sc_prism2 = 1;
1937 break;
1938 case WI_NIC_HWB3163:
1939 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.A");
1940 sc->sc_prism2 = 1;
1941 break;
1942 case WI_NIC_HWB3163B:
1943 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.B");
1944 sc->sc_prism2 = 1;
1945 break;
1946 case WI_NIC_EVB3:
1947 printf("RF:PRISM2 MAC:HFA3842");
1948 sc->sc_prism2 = 1;
1949 break;
1950 case WI_NIC_HWB1153:
1951 printf("RF:PRISM1 MAC:HFA3841 CARD:HWB1153");
1952 sc->sc_prism2 = 1;
1953 break;
1954 case WI_NIC_P2_SST:
1955 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163-SST-flash");
1956 sc->sc_prism2 = 1;
1957 break;
1958 case WI_NIC_PRISM2_5:
1959 printf("RF:PRISM2.5 MAC:ISL3873");
1960 sc->sc_prism2 = 1;
1961 break;
1962 case WI_NIC_3874A:
1963 printf("RF:PRISM2.5 MAC:ISL3874A(PCI)");
1964 sc->sc_prism2 = 1;
1965 break;
1966 default:
1967 printf("Lucent chip or unknown chip\n");
1968 sc->sc_prism2 = 0;
1969 break;
1970 }
1971
1972 if (sc->sc_prism2) {
1973 /* try to get prism2 firm version */
1974 memset(&ver, 0, sizeof(ver));
1975 ver.wi_type = WI_RID_STA_IDENTITY;
1976 ver.wi_len = 5;
1977 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1978 LE16TOH(ver.wi_ver[1]);
1979 LE16TOH(ver.wi_ver[2]);
1980 LE16TOH(ver.wi_ver[3]);
1981 printf(", Firmware: %i.%i variant %i\n", ver.wi_ver[2],
1982 ver.wi_ver[3], ver.wi_ver[1]);
1983 sc->sc_prism2_ver = ver.wi_ver[2] * 100 +
1984 ver.wi_ver[3] * 10 + ver.wi_ver[1];
1985 }
1986
1987 return;
1988 }
1989
1990 int
1991 wi_detach(sc)
1992 struct wi_softc *sc;
1993 {
1994 struct ifnet *ifp = sc->sc_ifp;
1995 int s;
1996
1997 if (!sc->sc_attached)
1998 return (0);
1999
2000 s = splnet();
2001 callout_stop(&sc->wi_inquire_ch);
2002
2003 /* Delete all remaining media. */
2004 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
2005
2006 ether_ifdetach(ifp);
2007 if_detach(ifp);
2008 if (sc->sc_enabled) {
2009 if (sc->sc_disable)
2010 (*sc->sc_disable)(sc);
2011 sc->sc_enabled = 0;
2012 }
2013 splx(s);
2014 return (0);
2015 }
2016
2017 void
2018 wi_power(sc, why)
2019 struct wi_softc *sc;
2020 int why;
2021 {
2022 int s;
2023
2024 if (!sc->sc_enabled)
2025 return;
2026
2027 s = splnet();
2028 switch (why) {
2029 case PWR_SUSPEND:
2030 case PWR_STANDBY:
2031 wi_stop(sc->sc_ifp, 0);
2032 if (sc->sc_enabled) {
2033 if (sc->sc_disable)
2034 (*sc->sc_disable)(sc);
2035 }
2036 break;
2037 case PWR_RESUME:
2038 sc->sc_enabled = 0;
2039 wi_init(sc->sc_ifp);
2040 (void)wi_intr(sc);
2041 break;
2042 case PWR_SOFTSUSPEND:
2043 case PWR_SOFTSTANDBY:
2044 case PWR_SOFTRESUME:
2045 break;
2046 }
2047 splx(s);
2048 }
2049
2050 static int
2051 wi_set_ssid(ws, id, len)
2052 struct ieee80211_nwid *ws;
2053 u_int8_t *id;
2054 int len;
2055 {
2056
2057 if (len > IEEE80211_NWID_LEN)
2058 return (EINVAL);
2059 ws->i_len = len;
2060 memcpy(ws->i_nwid, id, len);
2061 return (0);
2062 }
2063
2064 static void
2065 wi_request_fill_ssid(wreq, ws)
2066 struct wi_req *wreq;
2067 struct ieee80211_nwid *ws;
2068 {
2069 int len = ws->i_len;
2070
2071 memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
2072 wreq->wi_val[0] = htole16(len);
2073 wreq->wi_len = roundup(len, 2) / 2 + 2;
2074 memcpy(&wreq->wi_val[1], ws->i_nwid, len);
2075 }
2076
2077 static int
2078 wi_write_ssid(sc, type, wreq, ws)
2079 struct wi_softc *sc;
2080 int type;
2081 struct wi_req *wreq;
2082 struct ieee80211_nwid *ws;
2083 {
2084
2085 wreq->wi_type = type;
2086 wi_request_fill_ssid(wreq, ws);
2087 return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
2088 }
2089
2090 static int
2091 wi_sync_media(sc, ptype, txrate)
2092 struct wi_softc *sc;
2093 int ptype;
2094 int txrate;
2095 {
2096 int media = sc->sc_media.ifm_cur->ifm_media;
2097 int options = IFM_OPTIONS(media);
2098 int subtype;
2099
2100 switch (txrate) {
2101 case 1:
2102 subtype = IFM_IEEE80211_DS1;
2103 break;
2104 case 2:
2105 subtype = IFM_IEEE80211_DS2;
2106 break;
2107 case 3:
2108 subtype = IFM_AUTO;
2109 break;
2110 case 5:
2111 subtype = IFM_IEEE80211_DS5;
2112 break;
2113 case 11:
2114 subtype = IFM_IEEE80211_DS11;
2115 break;
2116 default:
2117 subtype = IFM_MANUAL; /* Unable to represent */
2118 break;
2119 }
2120 switch (ptype) {
2121 case WI_PORTTYPE_ADHOC:
2122 options |= IFM_IEEE80211_ADHOC;
2123 break;
2124 case WI_PORTTYPE_BSS:
2125 options &= ~IFM_IEEE80211_ADHOC;
2126 break;
2127 default:
2128 subtype = IFM_MANUAL; /* Unable to represent */
2129 break;
2130 }
2131 media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
2132 IFM_INST(media));
2133 if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
2134 return (EINVAL);
2135 ifmedia_set(&sc->sc_media, media);
2136 sc->wi_ptype = ptype;
2137 sc->wi_tx_rate = txrate;
2138 return (0);
2139 }
2140
2141 static int
2142 wi_media_change(ifp)
2143 struct ifnet *ifp;
2144 {
2145 struct wi_softc *sc = ifp->if_softc;
2146 int otype = sc->wi_ptype;
2147 int orate = sc->wi_tx_rate;
2148
2149 if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2150 sc->wi_ptype = WI_PORTTYPE_ADHOC;
2151 else
2152 sc->wi_ptype = WI_PORTTYPE_BSS;
2153
2154 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
2155 case IFM_IEEE80211_DS1:
2156 sc->wi_tx_rate = 1;
2157 break;
2158 case IFM_IEEE80211_DS2:
2159 sc->wi_tx_rate = 2;
2160 break;
2161 case IFM_AUTO:
2162 sc->wi_tx_rate = 3;
2163 break;
2164 case IFM_IEEE80211_DS5:
2165 sc->wi_tx_rate = 5;
2166 break;
2167 case IFM_IEEE80211_DS11:
2168 sc->wi_tx_rate = 11;
2169 break;
2170 }
2171
2172 if (sc->sc_enabled != 0) {
2173 if (otype != sc->wi_ptype ||
2174 orate != sc->wi_tx_rate)
2175 wi_init(ifp);
2176 }
2177
2178 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
2179
2180 return (0);
2181 }
2182
2183 static void
2184 wi_media_status(ifp, imr)
2185 struct ifnet *ifp;
2186 struct ifmediareq *imr;
2187 {
2188 struct wi_softc *sc = ifp->if_softc;
2189
2190 if (sc->sc_enabled == 0) {
2191 imr->ifm_active = IFM_IEEE80211|IFM_NONE;
2192 imr->ifm_status = 0;
2193 return;
2194 }
2195
2196 imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
2197 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2198 }
2199
2200 static int
2201 wi_set_nwkey(sc, nwkey)
2202 struct wi_softc *sc;
2203 struct ieee80211_nwkey *nwkey;
2204 {
2205 int i, error;
2206 size_t len;
2207 struct wi_req wreq;
2208 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
2209
2210 if (!sc->wi_has_wep)
2211 return ENODEV;
2212 if (nwkey->i_defkid <= 0 ||
2213 nwkey->i_defkid > IEEE80211_WEP_NKID)
2214 return EINVAL;
2215 memcpy(wk, &sc->wi_keys, sizeof(*wk));
2216 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2217 if (nwkey->i_key[i].i_keydat == NULL)
2218 continue;
2219 len = nwkey->i_key[i].i_keylen;
2220 if (len > sizeof(wk->wi_keys[i].wi_keydat))
2221 return EINVAL;
2222 error = copyin(nwkey->i_key[i].i_keydat,
2223 wk->wi_keys[i].wi_keydat, len);
2224 if (error)
2225 return error;
2226 wk->wi_keys[i].wi_keylen = htole16(len);
2227 }
2228
2229 wk->wi_len = (sizeof(*wk) / 2) + 1;
2230 wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2231 if (sc->sc_enabled != 0) {
2232 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2233 if (error)
2234 return error;
2235 }
2236 error = wi_setdef(sc, &wreq);
2237 if (error)
2238 return error;
2239
2240 wreq.wi_len = 2;
2241 wreq.wi_type = WI_RID_TX_CRYPT_KEY;
2242 wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
2243 if (sc->sc_enabled != 0) {
2244 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2245 if (error)
2246 return error;
2247 }
2248 error = wi_setdef(sc, &wreq);
2249 if (error)
2250 return error;
2251
2252 wreq.wi_type = WI_RID_ENCRYPTION;
2253 wreq.wi_val[0] = htole16(nwkey->i_wepon);
2254 if (sc->sc_enabled != 0) {
2255 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2256 if (error)
2257 return error;
2258 }
2259 error = wi_setdef(sc, &wreq);
2260 if (error)
2261 return error;
2262
2263 if (sc->sc_enabled != 0)
2264 wi_init(&sc->sc_ethercom.ec_if);
2265 return 0;
2266 }
2267
2268 static int
2269 wi_get_nwkey(sc, nwkey)
2270 struct wi_softc *sc;
2271 struct ieee80211_nwkey *nwkey;
2272 {
2273 int i, len, error;
2274 struct wi_ltv_keys *wk = &sc->wi_keys;
2275
2276 if (!sc->wi_has_wep)
2277 return ENODEV;
2278 nwkey->i_wepon = sc->wi_use_wep;
2279 nwkey->i_defkid = sc->wi_tx_key + 1;
2280
2281 /* do not show any keys to non-root user */
2282 error = suser(curproc->p_ucred, &curproc->p_acflag);
2283 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2284 if (nwkey->i_key[i].i_keydat == NULL)
2285 continue;
2286 /* error holds results of suser() for the first time */
2287 if (error)
2288 return error;
2289 len = le16toh(wk->wi_keys[i].wi_keylen);
2290 if (nwkey->i_key[i].i_keylen < len)
2291 return ENOSPC;
2292 nwkey->i_key[i].i_keylen = len;
2293 error = copyout(wk->wi_keys[i].wi_keydat,
2294 nwkey->i_key[i].i_keydat, len);
2295 if (error)
2296 return error;
2297 }
2298 return 0;
2299 }
2300
2301 static int
2302 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
2303 {
2304
2305 sc->wi_pm_enabled = power->i_enabled;
2306 sc->wi_max_sleep = power->i_maxsleep;
2307
2308 if (sc->sc_enabled)
2309 return (wi_init(&sc->sc_ethercom.ec_if));
2310
2311 return (0);
2312 }
2313
2314 static int
2315 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
2316 {
2317
2318 power->i_enabled = sc->wi_pm_enabled;
2319 power->i_maxsleep = sc->wi_max_sleep;
2320
2321 return (0);
2322 }
2323