wi.c revision 1.57 1 /* $NetBSD: wi.c,v 1.57 2002/03/30 15:58:45 ichiro Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.57 2002/03/30 15:58:45 ichiro Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static void wi_reset __P((struct wi_softc *));
108 static int wi_ioctl __P((struct ifnet *, u_long, caddr_t));
109 static void wi_start __P((struct ifnet *));
110 static void wi_watchdog __P((struct ifnet *));
111 static int wi_init __P((struct ifnet *));
112 static void wi_stop __P((struct ifnet *, int));
113 static void wi_rxeof __P((struct wi_softc *));
114 static void wi_txeof __P((struct wi_softc *, int));
115 static void wi_update_stats __P((struct wi_softc *));
116 static void wi_setmulti __P((struct wi_softc *));
117
118 static int wi_cmd __P((struct wi_softc *, int, int));
119 static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *));
120 static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *));
121 static int wi_read_data __P((struct wi_softc *, int,
122 int, caddr_t, int));
123 static int wi_write_data __P((struct wi_softc *, int,
124 int, caddr_t, int));
125 static int wi_seek __P((struct wi_softc *, int, int, int));
126 static int wi_alloc_nicmem __P((struct wi_softc *, int, int *));
127 static void wi_inquire __P((void *));
128 static void wi_wait_scan __P((void *));
129 static int wi_setdef __P((struct wi_softc *, struct wi_req *));
130 static int wi_getdef __P((struct wi_softc *, struct wi_req *));
131 static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int));
132
133 static int wi_media_change __P((struct ifnet *));
134 static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
135
136 static void wi_get_id __P((struct wi_softc *));
137
138 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
139 static void wi_request_fill_ssid __P((struct wi_req *,
140 struct ieee80211_nwid *));
141 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
142 struct ieee80211_nwid *));
143 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
144 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
145 static int wi_sync_media __P((struct wi_softc *, int, int));
146 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
147 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
148
149 int
150 wi_attach(sc)
151 struct wi_softc *sc;
152 {
153 struct ifnet *ifp = sc->sc_ifp;
154 struct wi_ltv_macaddr mac;
155 struct wi_ltv_gen gen;
156 static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
157 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
158 };
159 int s;
160
161 s = splnet();
162
163 callout_init(&sc->wi_inquire_ch);
164 callout_init(&sc->wi_scan_sh);
165
166 /* Make sure interrupts are disabled. */
167 CSR_WRITE_2(sc, WI_INT_EN, 0);
168 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
169
170 /* Reset the NIC. */
171 wi_reset(sc);
172
173 memset(&mac, 0, sizeof(mac));
174 /* Read the station address. */
175 mac.wi_type = WI_RID_MAC_NODE;
176 mac.wi_len = 4;
177 wi_read_record(sc, (struct wi_ltv_gen *)&mac);
178 memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
179
180 /*
181 * Check if we got anything meaningful.
182 *
183 * Is it really enough just checking against null ethernet address?
184 * Or, check against possible vendor? XXX.
185 */
186 if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
187 printf("%s: could not get mac address, attach failed\n",
188 sc->sc_dev.dv_xname);
189 splx(s);
190 return 1;
191 }
192
193 printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
194
195 /* Read NIC identification */
196 wi_get_id(sc);
197
198 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
199 ifp->if_softc = sc;
200 ifp->if_start = wi_start;
201 ifp->if_ioctl = wi_ioctl;
202 ifp->if_watchdog = wi_watchdog;
203 ifp->if_init = wi_init;
204 ifp->if_stop = wi_stop;
205 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
206 #ifdef IFF_NOTRAILERS
207 ifp->if_flags |= IFF_NOTRAILERS;
208 #endif
209 IFQ_SET_READY(&ifp->if_snd);
210
211 (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
212 sizeof(WI_DEFAULT_NODENAME) - 1);
213 (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
214 sizeof(WI_DEFAULT_NETNAME) - 1);
215 (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
216 sizeof(WI_DEFAULT_IBSS) - 1);
217
218 sc->wi_portnum = WI_DEFAULT_PORT;
219 sc->wi_ptype = WI_PORTTYPE_BSS;
220 sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
221 sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
222 sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
223 sc->wi_max_data_len = WI_DEFAULT_DATALEN;
224 sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
225 sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
226 sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
227 sc->wi_roaming = WI_DEFAULT_ROAMING;
228 sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
229
230 /*
231 * Read the default channel from the NIC. This may vary
232 * depending on the country where the NIC was purchased, so
233 * we can't hard-code a default and expect it to work for
234 * everyone.
235 */
236 gen.wi_type = WI_RID_OWN_CHNL;
237 gen.wi_len = 2;
238 wi_read_record(sc, &gen);
239 sc->wi_channel = le16toh(gen.wi_val);
240
241 memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats));
242
243 /* AP info was filled with 0 */
244 memset((char *)&sc->wi_aps, 0, sizeof(sc->wi_aps));
245 sc->wi_scanning=0;
246 sc->wi_naps=0;
247
248 /*
249 * Find out if we support WEP on this card.
250 */
251 gen.wi_type = WI_RID_WEP_AVAIL;
252 gen.wi_len = 2;
253 wi_read_record(sc, &gen);
254 sc->wi_has_wep = le16toh(gen.wi_val);
255
256 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
257 #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL)
258 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
259 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0);
260 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
261 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
262 IFM_IEEE80211_ADHOC, 0), 0);
263 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
264 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
265 IFM_IEEE80211_ADHOC, 0), 0);
266 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
267 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
268 IFM_IEEE80211_ADHOC, 0), 0);
269 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
270 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
271 IFM_IEEE80211_ADHOC, 0), 0);
272 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
273 #undef ADD
274 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
275
276 /*
277 * Call MI attach routines.
278 */
279 if_attach(ifp);
280 ether_ifattach(ifp, mac.wi_mac_addr);
281
282 ifp->if_baudrate = IF_Mbps(2);
283
284 /* Attach is successful. */
285 sc->sc_attached = 1;
286
287 splx(s);
288 return 0;
289 }
290
291 static void wi_rxeof(sc)
292 struct wi_softc *sc;
293 {
294 struct ifnet *ifp;
295 struct ether_header *eh;
296 struct wi_frame rx_frame;
297 struct mbuf *m;
298 int id;
299
300 ifp = sc->sc_ifp;
301
302 id = CSR_READ_2(sc, WI_RX_FID);
303
304 /* First read in the frame header */
305 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
306 ifp->if_ierrors++;
307 return;
308 }
309
310 /*
311 * Drop undecryptable or packets with receive errors here
312 */
313 if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) {
314 ifp->if_ierrors++;
315 return;
316 }
317
318 MGETHDR(m, M_DONTWAIT, MT_DATA);
319 if (m == NULL) {
320 ifp->if_ierrors++;
321 return;
322 }
323 MCLGET(m, M_DONTWAIT);
324 if (!(m->m_flags & M_EXT)) {
325 m_freem(m);
326 ifp->if_ierrors++;
327 return;
328 }
329
330 /* Align the data after the ethernet header */
331 m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
332 - sizeof(struct ether_header);
333
334 eh = mtod(m, struct ether_header *);
335 m->m_pkthdr.rcvif = ifp;
336
337 if (le16toh(rx_frame.wi_status) == WI_STAT_1042 ||
338 le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL ||
339 le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) {
340 if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
341 printf("%s: oversized packet received "
342 "(wi_dat_len=%d, wi_status=0x%x)\n",
343 sc->sc_dev.dv_xname,
344 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
345 m_freem(m);
346 ifp->if_ierrors++;
347 return;
348 }
349 m->m_pkthdr.len = m->m_len =
350 le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
351
352 memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr,
353 ETHER_ADDR_LEN);
354 memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr,
355 ETHER_ADDR_LEN);
356 memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type,
357 sizeof(u_int16_t));
358
359 if (wi_read_data(sc, id, WI_802_11_OFFSET,
360 mtod(m, caddr_t) + sizeof(struct ether_header),
361 m->m_len + 2)) {
362 m_freem(m);
363 ifp->if_ierrors++;
364 return;
365 }
366 } else {
367 if ((le16toh(rx_frame.wi_dat_len) +
368 sizeof(struct ether_header)) > MCLBYTES) {
369 printf("%s: oversized packet received "
370 "(wi_dat_len=%d, wi_status=0x%x)\n",
371 sc->sc_dev.dv_xname,
372 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
373 m_freem(m);
374 ifp->if_ierrors++;
375 return;
376 }
377 m->m_pkthdr.len = m->m_len =
378 le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
379
380 if (wi_read_data(sc, id, WI_802_3_OFFSET,
381 mtod(m, caddr_t), m->m_len + 2)) {
382 m_freem(m);
383 ifp->if_ierrors++;
384 return;
385 }
386 }
387
388 ifp->if_ipackets++;
389
390 #if NBPFILTER > 0
391 /* Handle BPF listeners. */
392 if (ifp->if_bpf)
393 bpf_mtap(ifp->if_bpf, m);
394 #endif
395
396 /* Receive packet. */
397 (*ifp->if_input)(ifp, m);
398 }
399
400 static void wi_txeof(sc, status)
401 struct wi_softc *sc;
402 int status;
403 {
404 struct ifnet *ifp = sc->sc_ifp;
405
406 ifp->if_timer = 0;
407 ifp->if_flags &= ~IFF_OACTIVE;
408
409 if (status & WI_EV_TX_EXC)
410 ifp->if_oerrors++;
411 else
412 ifp->if_opackets++;
413
414 return;
415 }
416
417 void wi_inquire(xsc)
418 void *xsc;
419 {
420 struct wi_softc *sc;
421 struct ifnet *ifp;
422 int s;
423
424 sc = xsc;
425 ifp = &sc->sc_ethercom.ec_if;
426
427 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
428 return;
429
430 KASSERT(sc->sc_enabled);
431
432 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
433
434 /* Don't do this while we're transmitting */
435 if (ifp->if_flags & IFF_OACTIVE)
436 return;
437
438 s = splnet();
439 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
440 splx(s);
441 }
442
443 void wi_wait_scan(xsc)
444 void *xsc;
445 {
446 struct wi_softc *sc;
447 struct ifnet *ifp;
448 int s, result;
449
450 sc = xsc;
451 ifp = &sc->sc_ethercom.ec_if;
452
453 /* If not scanning, ignore */
454 if (!sc->wi_scanning)
455 return;
456
457 s = splnet();
458
459 /* Wait for sending complete to make INQUIRE */
460 if (ifp->if_flags & IFF_OACTIVE) {
461 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
462 splx(s);
463 return;
464 }
465
466 /* try INQUIRE */
467 result = wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS);
468 if (result == ETIMEDOUT)
469 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
470
471 splx(s);
472 }
473
474 void wi_update_stats(sc)
475 struct wi_softc *sc;
476 {
477 struct wi_ltv_gen gen;
478 struct wi_scan_header ap2_header; /* Prism2 header */
479 struct wi_scan_data_p2 ap2; /* Prism2 scantable*/
480 struct wi_scan_data ap; /* Lucent scantable */
481 struct wi_assoc assoc; /* Association Status */
482 u_int16_t id;
483 struct ifnet *ifp;
484 u_int32_t *ptr;
485 int len, naps, i, j;
486 u_int16_t t;
487
488 ifp = &sc->sc_ethercom.ec_if;
489
490 id = CSR_READ_2(sc, WI_INFO_FID);
491
492 if (wi_seek(sc, id, 0, WI_BAP1)) {
493 return;
494 }
495
496 gen.wi_len = CSR_READ_2(sc, WI_DATA1);
497 gen.wi_type = CSR_READ_2(sc, WI_DATA1);
498
499 switch (gen.wi_type) {
500 case WI_INFO_SCAN_RESULTS:
501 if (gen.wi_len <= 3) {
502 sc->wi_naps = 0;
503 sc->wi_scanning = 0;
504 break;
505 }
506 switch (sc->sc_firmware_type) {
507 case WI_INTERSIL:
508 naps = 2 * (gen.wi_len - 3) / sizeof(ap2);
509 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
510 sc->wi_naps = naps;
511 /* Read Header */
512 for(j=0; j < sizeof(ap2_header) / 2; j++)
513 ((u_int16_t *)&ap2_header)[j] =
514 CSR_READ_2(sc, WI_DATA1);
515 /* Read Data */
516 for (i=0; i < naps; i++) {
517 for(j=0; j < sizeof(ap2) / 2; j++)
518 ((u_int16_t *)&ap2)[j] =
519 CSR_READ_2(sc, WI_DATA1);
520 /* unswap 8 bit data fields: */
521 for(j=0;j<sizeof(ap.wi_bssid)/2;j++)
522 LE16TOH(((u_int16_t *)&ap.wi_bssid[0])[j]);
523 for(j=0;j<sizeof(ap.wi_name)/2;j++)
524 LE16TOH(((u_int16_t *)&ap.wi_name[0])[j]);
525 sc->wi_aps[i].scanreason = ap2_header.wi_reason;
526 memcpy(sc->wi_aps[i].bssid, ap2.wi_bssid, 6);
527 sc->wi_aps[i].channel = ap2.wi_chid;
528 sc->wi_aps[i].signal = ap2.wi_signal;
529 sc->wi_aps[i].noise = ap2.wi_noise;
530 sc->wi_aps[i].quality = ap2.wi_signal - ap2.wi_noise;
531 sc->wi_aps[i].capinfo = ap2.wi_capinfo;
532 sc->wi_aps[i].interval = ap2.wi_interval;
533 sc->wi_aps[i].rate = ap2.wi_rate;
534 if (ap2.wi_namelen > 32)
535 ap2.wi_namelen = 32;
536 sc->wi_aps[i].namelen = ap2.wi_namelen;
537 memcpy(sc->wi_aps[i].name, ap2.wi_name,
538 ap2.wi_namelen);
539 }
540 break;
541
542 case WI_LUCENT:
543 naps = 2 * gen.wi_len / sizeof(ap);
544 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
545 sc->wi_naps = naps;
546 /* Read Data*/
547 for (i=0; i < naps; i++) {
548 for(j=0; j < sizeof(ap) / 2; j++)
549 ((u_int16_t *)&ap)[j] =
550 CSR_READ_2(sc, WI_DATA1);
551 /* unswap 8 bit data fields: */
552 for(j=0;j<sizeof(ap.wi_bssid)/2;j++)
553 HTOLE16(((u_int16_t *)&ap.wi_bssid[0])[j]);
554 for(j=0;j<sizeof(ap.wi_name)/2;j++)
555 HTOLE16(((u_int16_t *)&ap.wi_name[0])[j]);
556 memcpy(sc->wi_aps[i].bssid, ap.wi_bssid, 6);
557 sc->wi_aps[i].channel = ap.wi_chid;
558 sc->wi_aps[i].signal = ap.wi_signal;
559 sc->wi_aps[i].noise = ap.wi_noise;
560 sc->wi_aps[i].quality = ap.wi_signal - ap.wi_noise;
561 sc->wi_aps[i].capinfo = ap.wi_capinfo;
562 sc->wi_aps[i].interval = ap.wi_interval;
563 if (ap.wi_namelen > 32)
564 ap.wi_namelen = 32;
565 sc->wi_aps[i].namelen = ap.wi_namelen;
566 memcpy(sc->wi_aps[i].name, ap.wi_name,
567 ap.wi_namelen);
568 }
569 break;
570 case WI_SYMBOL:
571 /* unknown */
572 break;
573 }
574 /* Done scanning */
575 sc->wi_scanning = 0;
576 break;
577
578 case WI_INFO_COUNTERS:
579 /* some card versions have a larger stats structure */
580 len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
581 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
582 ptr = (u_int32_t *)&sc->wi_stats;
583
584 for (i = 0; i < len; i++) {
585 t = CSR_READ_2(sc, WI_DATA1);
586 #ifdef WI_HERMES_STATS_WAR
587 if (t > 0xF000)
588 t = ~t & 0xFFFF;
589 #endif
590 ptr[i] += t;
591 }
592
593 ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
594 sc->wi_stats.wi_tx_multi_retries +
595 sc->wi_stats.wi_tx_retry_limit;
596 break;
597
598 case WI_INFO_LINK_STAT: {
599 static char *msg[] = {
600 "connected",
601 "disconnected",
602 "AP change",
603 "AP out of range",
604 "AP in range",
605 "Association Failed"
606 };
607
608 if (gen.wi_len != 2) {
609 #ifdef WI_DEBUG
610 printf("WI_INFO_LINK_STAT: len=%d\n", gen.wi_len);
611 #endif
612 break;
613 }
614 t = CSR_READ_2(sc, WI_DATA1);
615 if ((t < 1) || (t > 6)) {
616 #ifdef WI_DEBUG
617 printf("WI_INFO_LINK_STAT: status %d\n", t);
618 #endif
619 break;
620 }
621 /*
622 * Some cards issue streams of "connected" messages while
623 * trying to find a peer. Don't bother the user with this
624 * unless he is debugging.
625 */
626 if (ifp->if_flags & IFF_DEBUG)
627 printf("%s: %s\n", sc->sc_dev.dv_xname, msg[t - 1]);
628 break;
629 }
630
631 case WI_INFO_ASSOC_STAT: {
632 static char *msg[] = {
633 "STA Associated",
634 "STA Reassociated",
635 "STA Disassociated",
636 "Association Failure",
637 "Authentication Failed"
638 };
639 if (gen.wi_len != 10)
640 break;
641 for (i=0; i < gen.wi_len - 1; i++)
642 ((u_int16_t *)&assoc)[i] = CSR_READ_2(sc, WI_DATA1);
643 /* unswap 8 bit data fields: */
644 for(j=0;j<sizeof(assoc.wi_assoc_sta)/2;j++)
645 HTOLE16(((u_int16_t *)&assoc.wi_assoc_sta[0])[j]);
646 for(j=0;j<sizeof(assoc.wi_assoc_osta)/2;j++)
647 HTOLE16(((u_int16_t *)&assoc.wi_assoc_osta[0])[j]);
648 switch (assoc.wi_assoc_stat) {
649 case ASSOC:
650 case DISASSOC:
651 case ASSOCFAIL:
652 case AUTHFAIL:
653 printf("%s: %s, AP = %02x:%02x:%02x:%02x:%02x:%02x\n",
654 sc->sc_dev.dv_xname,
655 msg[assoc.wi_assoc_stat - 1],
656 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
657 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
658 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff);
659 break;
660 case REASSOC:
661 printf("%s: %s, AP = %02x:%02x:%02x:%02x:%02x:%02x, "
662 "OldAP = %02x:%02x:%02x:%02x:%02x:%02x\n",
663 sc->sc_dev.dv_xname, msg[assoc.wi_assoc_stat - 1],
664 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
665 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
666 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff,
667 assoc.wi_assoc_osta[0]&0xff, assoc.wi_assoc_osta[1]&0xff,
668 assoc.wi_assoc_osta[2]&0xff, assoc.wi_assoc_osta[3]&0xff,
669 assoc.wi_assoc_osta[4]&0xff, assoc.wi_assoc_osta[5]&0xff);
670 break;
671 }
672 }
673 default:
674 #ifdef WI_DEBUG
675 printf("%s: got info type: 0x%04x len=0x%04x\n",
676 sc->sc_dev.dv_xname, gen.wi_type,gen.wi_len);
677 #endif
678 #if 0
679 for (i = 0; i < gen.wi_len; i++) {
680 t = CSR_READ_2(sc, WI_DATA1);
681 printf("[0x%02x] = 0x%04x\n", i, t);
682 }
683 #endif
684 break;
685 }
686 }
687
688 int wi_intr(arg)
689 void *arg;
690 {
691 struct wi_softc *sc = arg;
692 struct ifnet *ifp;
693 u_int16_t status;
694
695 if (sc->sc_enabled == 0 ||
696 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
697 (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
698 return (0);
699
700 ifp = &sc->sc_ethercom.ec_if;
701
702 if (!(ifp->if_flags & IFF_UP)) {
703 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
704 CSR_WRITE_2(sc, WI_INT_EN, 0);
705 return 1;
706 }
707
708 /* Disable interrupts. */
709 CSR_WRITE_2(sc, WI_INT_EN, 0);
710
711 status = CSR_READ_2(sc, WI_EVENT_STAT);
712 CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
713
714 if (status & WI_EV_RX) {
715 wi_rxeof(sc);
716 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
717 }
718
719 if (status & WI_EV_TX) {
720 wi_txeof(sc, status);
721 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
722 }
723
724 if (status & WI_EV_ALLOC) {
725 int id;
726 id = CSR_READ_2(sc, WI_ALLOC_FID);
727 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
728 if (id == sc->wi_tx_data_id)
729 wi_txeof(sc, status);
730 }
731
732 if (status & WI_EV_INFO) {
733 wi_update_stats(sc);
734 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
735 }
736
737 if (status & WI_EV_TX_EXC) {
738 wi_txeof(sc, status);
739 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
740 }
741
742 if (status & WI_EV_INFO_DROP) {
743 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
744 }
745
746 /* Re-enable interrupts. */
747 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
748
749 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
750 wi_start(ifp);
751
752 return 1;
753 }
754
755 /* Must be called at proper protection level! */
756 static int
757 wi_cmd(sc, cmd, val)
758 struct wi_softc *sc;
759 int cmd;
760 int val;
761 {
762 int i, s = 0;
763
764 /* wait for the busy bit to clear */
765 for (i = 0; i < WI_TIMEOUT; i++) {
766 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
767 break;
768 }
769
770 if (i == WI_TIMEOUT) {
771 printf("%s: wi_cmd: BUSY did not clear, cmd=0x%x\n",
772 sc->sc_dev.dv_xname, cmd);
773 return EIO;
774 }
775
776 CSR_WRITE_2(sc, WI_PARAM0, val);
777 CSR_WRITE_2(sc, WI_PARAM1, 0);
778 CSR_WRITE_2(sc, WI_PARAM2, 0);
779 CSR_WRITE_2(sc, WI_COMMAND, cmd);
780
781 /* wait for the cmd completed bit */
782 for (i = 0; i < WI_TIMEOUT; i++) {
783 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
784 break;
785 DELAY(1);
786 }
787
788 /* Ack the command */
789 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
790
791 s = CSR_READ_2(sc, WI_STATUS);
792 if (s & WI_STAT_CMD_RESULT)
793 return(EIO);
794
795 if (i == WI_TIMEOUT) {
796 if (!sc->wi_scanning)
797 printf("%s: command timed out, cmd=0x%x\n",
798 sc->sc_dev.dv_xname, cmd);
799 return(ETIMEDOUT);
800 }
801
802 return(0);
803 }
804
805 static void
806 wi_reset(sc)
807 struct wi_softc *sc;
808 {
809
810 DELAY(100*1000); /* 100 m sec */
811 if (wi_cmd(sc, WI_CMD_INI, 0))
812 printf("%s: init failed\n", sc->sc_dev.dv_xname);
813 CSR_WRITE_2(sc, WI_INT_EN, 0);
814 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
815
816 /* Calibrate timer. */
817 WI_SETVAL(WI_RID_TICK_TIME, 8);
818
819 return;
820 }
821
822 void
823 wi_pci_reset(sc)
824 struct wi_softc *sc;
825 {
826 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
827 WI_PCI_COR, WI_PCI_SOFT_RESET);
828 DELAY(100*1000); /* 100 m sec */
829
830 bus_space_write_2(sc->sc_iot, sc->sc_ioh, WI_PCI_COR, 0x0);
831 DELAY(100*1000); /* 100 m sec */
832
833 return;
834 }
835
836 /*
837 * Read an LTV record from the NIC.
838 */
839 static int wi_read_record(sc, ltv)
840 struct wi_softc *sc;
841 struct wi_ltv_gen *ltv;
842 {
843 u_int16_t *ptr;
844 int len, code;
845 struct wi_ltv_gen *oltv, p2ltv;
846
847 if (sc->sc_firmware_type != WI_LUCENT) {
848 oltv = ltv;
849 switch (ltv->wi_type) {
850 case WI_RID_ENCRYPTION:
851 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
852 p2ltv.wi_len = 2;
853 ltv = &p2ltv;
854 break;
855 case WI_RID_TX_CRYPT_KEY:
856 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
857 p2ltv.wi_len = 2;
858 ltv = &p2ltv;
859 break;
860 }
861 }
862
863 /* Tell the NIC to enter record read mode. */
864 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
865 return(EIO);
866
867 /* Seek to the record. */
868 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
869 return(EIO);
870
871 /*
872 * Read the length and record type and make sure they
873 * match what we expect (this verifies that we have enough
874 * room to hold all of the returned data).
875 */
876 len = CSR_READ_2(sc, WI_DATA1);
877 if (len > ltv->wi_len)
878 return(ENOSPC);
879 code = CSR_READ_2(sc, WI_DATA1);
880 if (code != ltv->wi_type)
881 return(EIO);
882
883 ltv->wi_len = len;
884 ltv->wi_type = code;
885
886 /* Now read the data. */
887 ptr = <v->wi_val;
888 if (ltv->wi_len > 1)
889 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
890
891 if (sc->sc_firmware_type != WI_LUCENT) {
892 int v;
893
894 switch (oltv->wi_type) {
895 case WI_RID_TX_RATE:
896 case WI_RID_CUR_TX_RATE:
897 switch (le16toh(ltv->wi_val)) {
898 case 1: v = 1; break;
899 case 2: v = 2; break;
900 case 3: v = 6; break;
901 case 4: v = 5; break;
902 case 7: v = 7; break;
903 case 8: v = 11; break;
904 case 15: v = 3; break;
905 default: v = 0x100 + le16toh(ltv->wi_val); break;
906 }
907 oltv->wi_val = htole16(v);
908 break;
909 case WI_RID_ENCRYPTION:
910 oltv->wi_len = 2;
911 if (le16toh(ltv->wi_val) & 0x01)
912 oltv->wi_val = htole16(1);
913 else
914 oltv->wi_val = htole16(0);
915 break;
916 case WI_RID_TX_CRYPT_KEY:
917 oltv->wi_len = 2;
918 oltv->wi_val = ltv->wi_val;
919 break;
920 case WI_RID_AUTH_CNTL:
921 oltv->wi_len = 2;
922 if (le16toh(ltv->wi_val) & 0x01)
923 oltv->wi_val = htole16(1);
924 else if (le16toh(ltv->wi_val) & 0x02)
925 oltv->wi_val = htole16(2);
926 break;
927 }
928 }
929
930 return(0);
931 }
932
933 /*
934 * Same as read, except we inject data instead of reading it.
935 */
936 static int wi_write_record(sc, ltv)
937 struct wi_softc *sc;
938 struct wi_ltv_gen *ltv;
939 {
940 u_int16_t *ptr;
941 int i;
942 struct wi_ltv_gen p2ltv;
943
944 if (sc->sc_firmware_type != WI_LUCENT) {
945 int v;
946
947 switch (ltv->wi_type) {
948 case WI_RID_TX_RATE:
949 p2ltv.wi_type = WI_RID_TX_RATE;
950 p2ltv.wi_len = 2;
951 switch (le16toh(ltv->wi_val)) {
952 case 1: v = 1; break;
953 case 2: v = 2; break;
954 case 3: v = 15; break;
955 case 5: v = 4; break;
956 case 6: v = 3; break;
957 case 7: v = 7; break;
958 case 11: v = 8; break;
959 default: return EINVAL;
960 }
961 p2ltv.wi_val = htole16(v);
962 ltv = &p2ltv;
963 break;
964 case WI_RID_ENCRYPTION:
965 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
966 p2ltv.wi_len = 2;
967 if (le16toh(ltv->wi_val))
968 p2ltv.wi_val = htole16(0x03);
969 else
970 p2ltv.wi_val = htole16(0x90);
971 ltv = &p2ltv;
972 break;
973 case WI_RID_TX_CRYPT_KEY:
974 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
975 p2ltv.wi_len = 2;
976 p2ltv.wi_val = ltv->wi_val;
977 ltv = &p2ltv;
978 break;
979 case WI_RID_DEFLT_CRYPT_KEYS:
980 {
981 int error;
982 int keylen;
983 struct wi_ltv_str ws;
984 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv;
985
986 keylen = wk->wi_keys[sc->wi_tx_key].wi_keylen;
987
988 for (i = 0; i < 4; i++) {
989 memset(&ws, 0, sizeof(ws));
990 ws.wi_len = (keylen > 5) ? 8 : 4;
991 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
992 memcpy(ws.wi_str,
993 &wk->wi_keys[i].wi_keydat, keylen);
994 error = wi_write_record(sc,
995 (struct wi_ltv_gen *)&ws);
996 if (error)
997 return error;
998 }
999 return 0;
1000 }
1001 case WI_RID_AUTH_CNTL:
1002 p2ltv.wi_type = WI_RID_AUTH_CNTL;
1003 p2ltv.wi_len = 2;
1004 if (le16toh(ltv->wi_val) == 1)
1005 p2ltv.wi_val = htole16(0x01);
1006 else if (le16toh(ltv->wi_val) == 2)
1007 p2ltv.wi_val = htole16(0x02);
1008 ltv = &p2ltv;
1009 break;
1010 }
1011 }
1012
1013 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
1014 return(EIO);
1015
1016 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
1017 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
1018
1019 /* Write data */
1020 ptr = <v->wi_val;
1021 if (ltv->wi_len > 1)
1022 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
1023
1024 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
1025 return(EIO);
1026
1027 return(0);
1028 }
1029
1030 static int wi_seek(sc, id, off, chan)
1031 struct wi_softc *sc;
1032 int id, off, chan;
1033 {
1034 int i;
1035 int selreg, offreg;
1036 int status;
1037
1038 switch (chan) {
1039 case WI_BAP0:
1040 selreg = WI_SEL0;
1041 offreg = WI_OFF0;
1042 break;
1043 case WI_BAP1:
1044 selreg = WI_SEL1;
1045 offreg = WI_OFF1;
1046 break;
1047 default:
1048 printf("%s: invalid data path: %x\n",
1049 sc->sc_dev.dv_xname, chan);
1050 return(EIO);
1051 }
1052
1053 CSR_WRITE_2(sc, selreg, id);
1054 CSR_WRITE_2(sc, offreg, off);
1055
1056 for (i = 0; i < WI_TIMEOUT; i++) {
1057 status = CSR_READ_2(sc, offreg);
1058 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
1059 break;
1060 }
1061
1062 if (i == WI_TIMEOUT) {
1063 printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
1064 sc->sc_dev.dv_xname, id, off, status);
1065 return(ETIMEDOUT);
1066 }
1067 return(0);
1068 }
1069
1070 static int wi_read_data(sc, id, off, buf, len)
1071 struct wi_softc *sc;
1072 int id, off;
1073 caddr_t buf;
1074 int len;
1075 {
1076 u_int16_t *ptr;
1077
1078 if (wi_seek(sc, id, off, WI_BAP1))
1079 return(EIO);
1080
1081 ptr = (u_int16_t *)buf;
1082 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
1083
1084 return(0);
1085 }
1086
1087 /*
1088 * According to the comments in the HCF Light code, there is a bug in
1089 * the Hermes (or possibly in certain Hermes firmware revisions) where
1090 * the chip's internal autoincrement counter gets thrown off during
1091 * data writes: the autoincrement is missed, causing one data word to
1092 * be overwritten and subsequent words to be written to the wrong memory
1093 * locations. The end result is that we could end up transmitting bogus
1094 * frames without realizing it. The workaround for this is to write a
1095 * couple of extra guard words after the end of the transfer, then
1096 * attempt to read then back. If we fail to locate the guard words where
1097 * we expect them, we preform the transfer over again.
1098 */
1099 static int wi_write_data(sc, id, off, buf, len)
1100 struct wi_softc *sc;
1101 int id, off;
1102 caddr_t buf;
1103 int len;
1104 {
1105 u_int16_t *ptr;
1106
1107 #ifdef WI_HERMES_AUTOINC_WAR
1108 again:
1109 #endif
1110
1111 if (wi_seek(sc, id, off, WI_BAP0))
1112 return(EIO);
1113
1114 ptr = (u_int16_t *)buf;
1115 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
1116
1117 #ifdef WI_HERMES_AUTOINC_WAR
1118 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1119 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1120
1121 if (wi_seek(sc, id, off + len, WI_BAP0))
1122 return(EIO);
1123
1124 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1125 CSR_READ_2(sc, WI_DATA0) != 0x5678)
1126 goto again;
1127 #endif
1128
1129 return(0);
1130 }
1131
1132 /*
1133 * Allocate a region of memory inside the NIC and zero
1134 * it out.
1135 */
1136 static int wi_alloc_nicmem(sc, len, id)
1137 struct wi_softc *sc;
1138 int len;
1139 int *id;
1140 {
1141 int i;
1142
1143 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
1144 printf("%s: failed to allocate %d bytes on NIC\n",
1145 sc->sc_dev.dv_xname, len);
1146 return(ENOMEM);
1147 }
1148
1149 for (i = 0; i < WI_TIMEOUT; i++) {
1150 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1151 break;
1152 }
1153
1154 if (i == WI_TIMEOUT) {
1155 printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
1156 return(ETIMEDOUT);
1157 }
1158
1159 *id = CSR_READ_2(sc, WI_ALLOC_FID);
1160 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1161
1162 if (wi_seek(sc, *id, 0, WI_BAP0)) {
1163 printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
1164 return(EIO);
1165 }
1166
1167 for (i = 0; i < len / 2; i++)
1168 CSR_WRITE_2(sc, WI_DATA0, 0);
1169
1170 return(0);
1171 }
1172
1173 static void wi_setmulti(sc)
1174 struct wi_softc *sc;
1175 {
1176 struct ifnet *ifp;
1177 int i = 0;
1178 struct wi_ltv_mcast mcast;
1179 struct ether_multi *enm;
1180 struct ether_multistep estep;
1181 struct ethercom *ec = &sc->sc_ethercom;
1182
1183 ifp = &sc->sc_ethercom.ec_if;
1184
1185 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1186 allmulti:
1187 ifp->if_flags |= IFF_ALLMULTI;
1188 memset((char *)&mcast, 0, sizeof(mcast));
1189 mcast.wi_type = WI_RID_MCAST_LIST;
1190 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
1191
1192 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1193 return;
1194 }
1195
1196 i = 0;
1197 ETHER_FIRST_MULTI(estep, ec, enm);
1198 while (enm != NULL) {
1199 /* Punt on ranges or too many multicast addresses. */
1200 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1201 ETHER_ADDR_LEN) != 0 ||
1202 i >= 16)
1203 goto allmulti;
1204
1205 memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo,
1206 ETHER_ADDR_LEN);
1207 i++;
1208 ETHER_NEXT_MULTI(estep, enm);
1209 }
1210
1211 ifp->if_flags &= ~IFF_ALLMULTI;
1212 mcast.wi_type = WI_RID_MCAST_LIST;
1213 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
1214 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1215 }
1216
1217 static int
1218 wi_setdef(sc, wreq)
1219 struct wi_softc *sc;
1220 struct wi_req *wreq;
1221 {
1222 struct sockaddr_dl *sdl;
1223 struct ifnet *ifp;
1224 int error = 0;
1225
1226 ifp = &sc->sc_ethercom.ec_if;
1227
1228 switch(wreq->wi_type) {
1229 case WI_RID_MAC_NODE:
1230 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1231 memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val,
1232 ETHER_ADDR_LEN);
1233 memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN);
1234 break;
1235 case WI_RID_PORTTYPE:
1236 error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
1237 break;
1238 case WI_RID_TX_RATE:
1239 error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
1240 break;
1241 case WI_RID_MAX_DATALEN:
1242 sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1243 break;
1244 case WI_RID_RTS_THRESH:
1245 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1246 break;
1247 case WI_RID_SYSTEM_SCALE:
1248 sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1249 break;
1250 case WI_RID_CREATE_IBSS:
1251 sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1252 break;
1253 case WI_RID_OWN_CHNL:
1254 sc->wi_channel = le16toh(wreq->wi_val[0]);
1255 break;
1256 case WI_RID_NODENAME:
1257 error = wi_set_ssid(&sc->wi_nodeid,
1258 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1259 break;
1260 case WI_RID_DESIRED_SSID:
1261 error = wi_set_ssid(&sc->wi_netid,
1262 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1263 break;
1264 case WI_RID_OWN_SSID:
1265 error = wi_set_ssid(&sc->wi_ibssid,
1266 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1267 break;
1268 case WI_RID_PM_ENABLED:
1269 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1270 break;
1271 case WI_RID_MICROWAVE_OVEN:
1272 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1273 break;
1274 case WI_RID_MAX_SLEEP:
1275 sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1276 break;
1277 case WI_RID_AUTH_CNTL:
1278 sc->wi_authtype = le16toh(wreq->wi_val[0]);
1279 break;
1280 case WI_RID_ROAMING_MODE:
1281 sc->wi_roaming = le16toh(wreq->wi_val[0]);
1282 break;
1283 case WI_RID_ENCRYPTION:
1284 sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1285 break;
1286 case WI_RID_TX_CRYPT_KEY:
1287 sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1288 break;
1289 case WI_RID_DEFLT_CRYPT_KEYS:
1290 memcpy((char *)&sc->wi_keys, (char *)wreq,
1291 sizeof(struct wi_ltv_keys));
1292 break;
1293 default:
1294 error = EINVAL;
1295 break;
1296 }
1297
1298 return (error);
1299 }
1300
1301 static int
1302 wi_getdef(sc, wreq)
1303 struct wi_softc *sc;
1304 struct wi_req *wreq;
1305 {
1306 struct sockaddr_dl *sdl;
1307 struct ifnet *ifp;
1308 int error = 0;
1309
1310 ifp = &sc->sc_ethercom.ec_if;
1311
1312 wreq->wi_len = 2; /* XXX */
1313 switch (wreq->wi_type) {
1314 case WI_RID_MAC_NODE:
1315 wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
1316 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1317 memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN);
1318 memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1319 break;
1320 case WI_RID_PORTTYPE:
1321 wreq->wi_val[0] = htole16(sc->wi_ptype);
1322 break;
1323 case WI_RID_TX_RATE:
1324 wreq->wi_val[0] = htole16(sc->wi_tx_rate);
1325 break;
1326 case WI_RID_MAX_DATALEN:
1327 wreq->wi_val[0] = htole16(sc->wi_max_data_len);
1328 break;
1329 case WI_RID_RTS_THRESH:
1330 wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
1331 break;
1332 case WI_RID_SYSTEM_SCALE:
1333 wreq->wi_val[0] = htole16(sc->wi_ap_density);
1334 break;
1335 case WI_RID_CREATE_IBSS:
1336 wreq->wi_val[0] = htole16(sc->wi_create_ibss);
1337 break;
1338 case WI_RID_OWN_CHNL:
1339 wreq->wi_val[0] = htole16(sc->wi_channel);
1340 break;
1341 case WI_RID_NODENAME:
1342 wi_request_fill_ssid(wreq, &sc->wi_nodeid);
1343 break;
1344 case WI_RID_DESIRED_SSID:
1345 wi_request_fill_ssid(wreq, &sc->wi_netid);
1346 break;
1347 case WI_RID_OWN_SSID:
1348 wi_request_fill_ssid(wreq, &sc->wi_ibssid);
1349 break;
1350 case WI_RID_PM_ENABLED:
1351 wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
1352 break;
1353 case WI_RID_MICROWAVE_OVEN:
1354 wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
1355 break;
1356 case WI_RID_MAX_SLEEP:
1357 wreq->wi_val[0] = htole16(sc->wi_max_sleep);
1358 break;
1359 case WI_RID_AUTH_CNTL:
1360 wreq->wi_val[0] = htole16(sc->wi_authtype);
1361 break;
1362 case WI_RID_ROAMING_MODE:
1363 wreq->wi_val[0] = htole16(sc->wi_roaming);
1364 break;
1365 case WI_RID_WEP_AVAIL:
1366 wreq->wi_val[0] = htole16(sc->wi_has_wep);
1367 break;
1368 case WI_RID_ENCRYPTION:
1369 wreq->wi_val[0] = htole16(sc->wi_use_wep);
1370 break;
1371 case WI_RID_TX_CRYPT_KEY:
1372 wreq->wi_val[0] = htole16(sc->wi_tx_key);
1373 break;
1374 case WI_RID_DEFLT_CRYPT_KEYS:
1375 wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
1376 memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
1377 break;
1378 default:
1379 #if 0
1380 error = EIO;
1381 #else
1382 #ifdef WI_DEBUG
1383 printf("%s: wi_getdef: unknown request %d\n",
1384 sc->sc_dev.dv_xname, wreq->wi_type);
1385 #endif
1386 #endif
1387 break;
1388 }
1389
1390 return (error);
1391 }
1392
1393 static int
1394 wi_ioctl(ifp, command, data)
1395 struct ifnet *ifp;
1396 u_long command;
1397 caddr_t data;
1398 {
1399 int s, error = 0;
1400 int len;
1401 struct wi_softc *sc = ifp->if_softc;
1402 struct wi_req wreq;
1403 struct ifreq *ifr;
1404 struct proc *p = curproc;
1405 struct ieee80211_nwid nwid;
1406
1407 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1408 return (ENXIO);
1409
1410 s = splnet();
1411
1412 ifr = (struct ifreq *)data;
1413 switch (command) {
1414 case SIOCSIFADDR:
1415 case SIOCGIFADDR:
1416 case SIOCSIFMTU:
1417 error = ether_ioctl(ifp, command, data);
1418 break;
1419 case SIOCSIFFLAGS:
1420 if (ifp->if_flags & IFF_UP) {
1421 if (ifp->if_flags & IFF_RUNNING &&
1422 ifp->if_flags & IFF_PROMISC &&
1423 !(sc->wi_if_flags & IFF_PROMISC)) {
1424 WI_SETVAL(WI_RID_PROMISC, 1);
1425 } else if (ifp->if_flags & IFF_RUNNING &&
1426 !(ifp->if_flags & IFF_PROMISC) &&
1427 sc->wi_if_flags & IFF_PROMISC) {
1428 WI_SETVAL(WI_RID_PROMISC, 0);
1429 }
1430 wi_init(ifp);
1431 } else {
1432 if (ifp->if_flags & IFF_RUNNING) {
1433 wi_stop(ifp, 0);
1434 }
1435 }
1436 sc->wi_if_flags = ifp->if_flags;
1437
1438 if (!(ifp->if_flags & IFF_UP)) {
1439 if (sc->sc_enabled) {
1440 if (sc->sc_disable)
1441 (*sc->sc_disable)(sc);
1442 sc->sc_enabled = 0;
1443 ifp->if_flags &= ~IFF_RUNNING;
1444 }
1445 }
1446 error = 0;
1447 break;
1448 case SIOCADDMULTI:
1449 case SIOCDELMULTI:
1450 error = (command == SIOCADDMULTI) ?
1451 ether_addmulti(ifr, &sc->sc_ethercom) :
1452 ether_delmulti(ifr, &sc->sc_ethercom);
1453 if (error == ENETRESET) {
1454 if (sc->sc_enabled != 0) {
1455 /*
1456 * Multicast list has changed. Set the
1457 * hardware filter accordingly.
1458 */
1459 wi_setmulti(sc);
1460 }
1461 error = 0;
1462 }
1463 break;
1464 case SIOCSIFMEDIA:
1465 case SIOCGIFMEDIA:
1466 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1467 break;
1468 case SIOCGWAVELAN:
1469 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1470 if (error)
1471 break;
1472 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1473 memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats,
1474 sizeof(sc->wi_stats));
1475 wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1476 } else if (wreq.wi_type == WI_RID_READ_APS) {
1477 if (sc->wi_scanning) {
1478 error = EINPROGRESS;
1479 break;
1480 } else {
1481 len = sc->wi_naps * sizeof(struct wi_apinfo);
1482 len = len > WI_MAX_DATALEN ? WI_MAX_DATALEN : len;
1483 len = len / sizeof(struct wi_apinfo);
1484 memcpy((char *)&wreq.wi_val, (char *)&len, sizeof(len));
1485 memcpy((char *)&wreq.wi_val + sizeof(len),
1486 (char *)&sc->wi_aps,
1487 len * sizeof(struct wi_apinfo));
1488 }
1489 } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1490 /* For non-root user, return all-zeroes keys */
1491 if (suser(p->p_ucred, &p->p_acflag))
1492 memset((char *)&wreq, 0,
1493 sizeof(struct wi_ltv_keys));
1494 else
1495 memcpy((char *)&wreq, (char *)&sc->wi_keys,
1496 sizeof(struct wi_ltv_keys));
1497 } else {
1498 if (sc->sc_enabled == 0)
1499 error = wi_getdef(sc, &wreq);
1500 else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1501 error = EINVAL;
1502 }
1503 if (error == 0)
1504 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1505 break;
1506 case SIOCSWAVELAN:
1507 error = suser(p->p_ucred, &p->p_acflag);
1508 if (error)
1509 break;
1510 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1511 if (error)
1512 break;
1513 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1514 if (sc->sc_enabled)
1515 wi_inquire(sc);
1516 break;
1517 } else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1518 error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1519 wreq.wi_len);
1520 } else if (wreq.wi_type == WI_RID_SCAN_APS) {
1521 if (wreq.wi_len != 4) {
1522 error = EINVAL;
1523 break;
1524 }
1525 if (!sc->wi_scanning) {
1526 if (sc->sc_firmware_type != WI_LUCENT) {
1527 wreq.wi_type = WI_RID_SCAN_REQ;
1528 error = wi_write_record(sc,
1529 (struct wi_ltv_gen *)&wreq);
1530 }
1531 if (!error) {
1532 sc->wi_scanning = 1;
1533 callout_reset(&sc->wi_scan_sh, hz * 1,
1534 wi_wait_scan, sc);
1535 }
1536 }
1537 } else {
1538 if (sc->sc_enabled != 0)
1539 error = wi_write_record(sc,
1540 (struct wi_ltv_gen *)&wreq);
1541 if (error == 0)
1542 error = wi_setdef(sc, &wreq);
1543 if (error == 0 && sc->sc_enabled != 0)
1544 /* Reinitialize WaveLAN. */
1545 wi_init(ifp);
1546 }
1547 break;
1548 case SIOCG80211NWID:
1549 if (sc->sc_enabled == 0) {
1550 /* Return the desired ID */
1551 error = copyout(&sc->wi_netid, ifr->ifr_data,
1552 sizeof(sc->wi_netid));
1553 } else {
1554 wreq.wi_type = WI_RID_CURRENT_SSID;
1555 wreq.wi_len = WI_MAX_DATALEN;
1556 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
1557 le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
1558 error = EINVAL;
1559 else {
1560 wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
1561 le16toh(wreq.wi_val[0]));
1562 error = copyout(&nwid, ifr->ifr_data,
1563 sizeof(nwid));
1564 }
1565 }
1566 break;
1567 case SIOCS80211NWID:
1568 error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
1569 if (error != 0)
1570 break;
1571 if (nwid.i_len > IEEE80211_NWID_LEN) {
1572 error = EINVAL;
1573 break;
1574 }
1575 if (sc->wi_netid.i_len == nwid.i_len &&
1576 memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
1577 break;
1578 wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
1579 if (sc->sc_enabled != 0)
1580 /* Reinitialize WaveLAN. */
1581 wi_init(ifp);
1582 break;
1583 case SIOCS80211NWKEY:
1584 error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
1585 break;
1586 case SIOCG80211NWKEY:
1587 error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
1588 break;
1589 case SIOCS80211POWER:
1590 error = wi_set_pm(sc, (struct ieee80211_power *)data);
1591 break;
1592 case SIOCG80211POWER:
1593 error = wi_get_pm(sc, (struct ieee80211_power *)data);
1594 break;
1595
1596 default:
1597 error = EINVAL;
1598 break;
1599 }
1600
1601 splx(s);
1602 return (error);
1603 }
1604
1605 static int
1606 wi_init(ifp)
1607 struct ifnet *ifp;
1608 {
1609 struct wi_softc *sc = ifp->if_softc;
1610 struct wi_req wreq;
1611 struct wi_ltv_macaddr mac;
1612 int error, id = 0, wasenabled;
1613
1614 wasenabled = sc->sc_enabled;
1615 if (!sc->sc_enabled) {
1616 if ((error = (*sc->sc_enable)(sc)) != 0)
1617 goto out;
1618 sc->sc_enabled = 1;
1619 }
1620
1621 wi_stop(ifp, 0);
1622 /* Symbol firmware cannot be initialized more than once */
1623 if (!(sc->sc_firmware_type == WI_SYMBOL && wasenabled))
1624 wi_reset(sc);
1625
1626 /* Program max data length. */
1627 WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1628
1629 /* Enable/disable IBSS creation. */
1630 WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1631
1632 /* Set the port type. */
1633 WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1634
1635 /* Program the RTS/CTS threshold. */
1636 WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1637
1638 /* Program the TX rate */
1639 WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1640
1641 /* Access point density */
1642 WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1643
1644 /* Power Management Enabled */
1645 WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1646
1647 /* Power Managment Max Sleep */
1648 WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1649
1650 /* Roaming type */
1651 WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
1652
1653 /* Specify the IBSS name */
1654 wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
1655
1656 /* Specify the network name */
1657 wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
1658
1659 /* Specify the frequency to use */
1660 WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1661
1662 /* Program the nodename. */
1663 wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
1664
1665 /* Set our MAC address. */
1666 mac.wi_len = 4;
1667 mac.wi_type = WI_RID_MAC_NODE;
1668 memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
1669 wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1670
1671 /* Initialize promisc mode. */
1672 if (ifp->if_flags & IFF_PROMISC) {
1673 WI_SETVAL(WI_RID_PROMISC, 1);
1674 } else {
1675 WI_SETVAL(WI_RID_PROMISC, 0);
1676 }
1677
1678 /* Configure WEP. */
1679 if (sc->wi_has_wep) {
1680 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1681 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1682 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1683 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1684 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1685 if (sc->sc_firmware_type != WI_LUCENT && sc->wi_use_wep) {
1686 /*
1687 * ONLY HWB3163 EVAL-CARD Firmware version
1688 * less than 0.8 variant2
1689 *
1690 * If promiscuous mode disable, Prism2 chip
1691 * does not work with WEP .
1692 * It is under investigation for details.
1693 * (ichiro (at) netbsd.org)
1694 */
1695 if (sc->sc_firmware_type == WI_INTERSIL &&
1696 sc->sc_firmware_ver < 802 ) {
1697 /* firm ver < 0.8 variant 2 */
1698 WI_SETVAL(WI_RID_PROMISC, 1);
1699 }
1700 WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
1701 }
1702 }
1703
1704 /* Set multicast filter. */
1705 wi_setmulti(sc);
1706
1707 /* Enable desired port */
1708 wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
1709
1710 /* scanning variable is modal, therefore reinit to OFF, in case it was on. */
1711 sc->wi_scanning=0;
1712 sc->wi_naps=0;
1713
1714 if ((error = wi_alloc_nicmem(sc,
1715 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1716 printf("%s: tx buffer allocation failed\n",
1717 sc->sc_dev.dv_xname);
1718 goto out;
1719 }
1720 sc->wi_tx_data_id = id;
1721
1722 if ((error = wi_alloc_nicmem(sc,
1723 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1724 printf("%s: mgmt. buffer allocation failed\n",
1725 sc->sc_dev.dv_xname);
1726 goto out;
1727 }
1728 sc->wi_tx_mgmt_id = id;
1729
1730 /* Enable interrupts */
1731 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1732
1733 ifp->if_flags |= IFF_RUNNING;
1734 ifp->if_flags &= ~IFF_OACTIVE;
1735
1736 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
1737
1738 out:
1739 if (error) {
1740 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1741 ifp->if_timer = 0;
1742 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1743 }
1744 return (error);
1745 }
1746
1747 static void
1748 wi_start(ifp)
1749 struct ifnet *ifp;
1750 {
1751 struct wi_softc *sc;
1752 struct mbuf *m0;
1753 struct wi_frame tx_frame;
1754 struct ether_header *eh;
1755 int id;
1756
1757 sc = ifp->if_softc;
1758
1759 if (ifp->if_flags & IFF_OACTIVE)
1760 return;
1761
1762 IFQ_DEQUEUE(&ifp->if_snd, m0);
1763 if (m0 == NULL)
1764 return;
1765
1766 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1767 id = sc->wi_tx_data_id;
1768 eh = mtod(m0, struct ether_header *);
1769
1770 /*
1771 * Use RFC1042 encoding for IP and ARP datagrams,
1772 * 802.3 for anything else.
1773 */
1774 if (ntohs(eh->ether_type) == ETHERTYPE_IP ||
1775 ntohs(eh->ether_type) == ETHERTYPE_ARP ||
1776 ntohs(eh->ether_type) == ETHERTYPE_REVARP ||
1777 ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
1778 memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost,
1779 ETHER_ADDR_LEN);
1780 memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost,
1781 ETHER_ADDR_LEN);
1782 memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost,
1783 ETHER_ADDR_LEN);
1784 memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost,
1785 ETHER_ADDR_LEN);
1786
1787 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1788 tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
1789 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1790 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1791 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1792 tx_frame.wi_type = eh->ether_type;
1793
1794 m_copydata(m0, sizeof(struct ether_header),
1795 m0->m_pkthdr.len - sizeof(struct ether_header),
1796 (caddr_t)&sc->wi_txbuf);
1797
1798 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1799 sizeof(struct wi_frame));
1800 wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1801 (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1802 } else {
1803 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
1804
1805 m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1806
1807 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1808 sizeof(struct wi_frame));
1809 wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1810 m0->m_pkthdr.len + 2);
1811 }
1812
1813 #if NBPFILTER > 0
1814 /*
1815 * If there's a BPF listener, bounce a copy of
1816 * this frame to him.
1817 */
1818 if (ifp->if_bpf)
1819 bpf_mtap(ifp->if_bpf, m0);
1820 #endif
1821
1822 m_freem(m0);
1823
1824 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1825 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1826
1827 ifp->if_flags |= IFF_OACTIVE;
1828
1829 /*
1830 * Set a timeout in case the chip goes out to lunch.
1831 */
1832 ifp->if_timer = 5;
1833
1834 return;
1835 }
1836
1837 static int
1838 wi_mgmt_xmit(sc, data, len)
1839 struct wi_softc *sc;
1840 caddr_t data;
1841 int len;
1842 {
1843 struct wi_frame tx_frame;
1844 int id;
1845 struct wi_80211_hdr *hdr;
1846 caddr_t dptr;
1847
1848 hdr = (struct wi_80211_hdr *)data;
1849 dptr = data + sizeof(struct wi_80211_hdr);
1850
1851 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1852 id = sc->wi_tx_mgmt_id;
1853
1854 memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr,
1855 sizeof(struct wi_80211_hdr));
1856
1857 tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
1858 tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1859
1860 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1861 wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1862 (len - sizeof(struct wi_80211_hdr)) + 2);
1863
1864 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1865 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1866 return(EIO);
1867 }
1868
1869 return(0);
1870 }
1871
1872 static void
1873 wi_stop(ifp, disable)
1874 struct ifnet *ifp;
1875 {
1876 struct wi_softc *sc = ifp->if_softc;
1877
1878 CSR_WRITE_2(sc, WI_INT_EN, 0);
1879 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1880
1881 callout_stop(&sc->wi_inquire_ch);
1882 callout_stop(&sc->wi_scan_sh);
1883
1884 if (disable) {
1885 if (sc->sc_enabled) {
1886 if (sc->sc_disable)
1887 (*sc->sc_disable)(sc);
1888 sc->sc_enabled = 0;
1889 }
1890 }
1891
1892 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1893 ifp->if_timer = 0;
1894 }
1895
1896 static void
1897 wi_watchdog(ifp)
1898 struct ifnet *ifp;
1899 {
1900 struct wi_softc *sc;
1901
1902 sc = ifp->if_softc;
1903
1904 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1905
1906 wi_init(ifp);
1907
1908 ifp->if_oerrors++;
1909
1910 return;
1911 }
1912
1913 void
1914 wi_shutdown(sc)
1915 struct wi_softc *sc;
1916 {
1917 int s;
1918
1919 s = splnet();
1920 if (sc->sc_enabled) {
1921 if (sc->sc_disable)
1922 (*sc->sc_disable)(sc);
1923 sc->sc_enabled = 0;
1924 }
1925 splx(s);
1926 }
1927
1928 int
1929 wi_activate(self, act)
1930 struct device *self;
1931 enum devact act;
1932 {
1933 struct wi_softc *sc = (struct wi_softc *)self;
1934 int rv = 0, s;
1935
1936 s = splnet();
1937 switch (act) {
1938 case DVACT_ACTIVATE:
1939 rv = EOPNOTSUPP;
1940 break;
1941
1942 case DVACT_DEACTIVATE:
1943 if_deactivate(&sc->sc_ethercom.ec_if);
1944 break;
1945 }
1946 splx(s);
1947 return (rv);
1948 }
1949
1950 static void
1951 wi_get_id(sc)
1952 struct wi_softc *sc;
1953 {
1954 struct wi_ltv_ver ver;
1955
1956 /* getting chip identity */
1957 memset(&ver, 0, sizeof(ver));
1958 ver.wi_type = WI_RID_CARD_ID;
1959 ver.wi_len = 5;
1960 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1961 printf("%s: using ", sc->sc_dev.dv_xname);
1962 switch (le16toh(ver.wi_ver[0])) {
1963 case WI_NIC_EVB2:
1964 printf("RF:PRISM2 MAC:HFA3841");
1965 sc->sc_firmware_type = WI_INTERSIL;
1966 break;
1967 case WI_NIC_HWB3763:
1968 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3763 rev.B");
1969 sc->sc_firmware_type = WI_INTERSIL;
1970 break;
1971 case WI_NIC_HWB3163:
1972 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.A");
1973 sc->sc_firmware_type = WI_INTERSIL;
1974 break;
1975 case WI_NIC_HWB3163B:
1976 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.B");
1977 sc->sc_firmware_type = WI_INTERSIL;
1978 break;
1979 case WI_NIC_EVB3:
1980 printf("RF:PRISM2 MAC:HFA3842");
1981 sc->sc_firmware_type = WI_INTERSIL;
1982 break;
1983 case WI_NIC_HWB1153:
1984 printf("RF:PRISM1 MAC:HFA3841 CARD:HWB1153");
1985 sc->sc_firmware_type = WI_INTERSIL;
1986 break;
1987 case WI_NIC_P2_SST:
1988 printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163-SST-flash");
1989 sc->sc_firmware_type = WI_INTERSIL;
1990 break;
1991 case WI_NIC_PRISM2_5:
1992 printf("RF:PRISM2.5 MAC:ISL3873");
1993 sc->sc_firmware_type = WI_INTERSIL;
1994 break;
1995 case WI_NIC_3874A:
1996 printf("RF:PRISM2.5 MAC:ISL3874A(PCI)");
1997 sc->sc_firmware_type = WI_INTERSIL;
1998 break;
1999 case WI_NIC_LUCENT:
2000 printf("Lucent Technologies, WaveLAN/IEEE");
2001 sc->sc_firmware_type = WI_LUCENT;
2002 break;
2003 default:
2004 if (le16toh(ver.wi_ver[0]) & 0x8000) {
2005 printf("Unknown PRISM2 chip");
2006 sc->sc_firmware_type = WI_INTERSIL;
2007 } else {
2008 printf("Unknown Lucent chip");
2009 sc->sc_firmware_type = WI_LUCENT;
2010 }
2011 break;
2012 }
2013
2014 /* get station firmware version */
2015 memset(&ver, 0, sizeof(ver));
2016 ver.wi_type = WI_RID_STA_IDENTITY;
2017 ver.wi_len = 5;
2018 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
2019 LE16TOH(ver.wi_ver[1]);
2020 LE16TOH(ver.wi_ver[2]);
2021 LE16TOH(ver.wi_ver[3]);
2022 sc->sc_firmware_ver = ver.wi_ver[2] * 10000 +
2023 ver.wi_ver[3] * 100 + ver.wi_ver[1];
2024 if (sc->sc_firmware_type == WI_INTERSIL &&
2025 (sc->sc_firmware_ver == 10102 || sc->sc_firmware_ver == 20102)) {
2026 struct wi_ltv_str sver;
2027 char *p;
2028
2029 memset(&sver, 0, sizeof(sver));
2030 sver.wi_type = WI_RID_SYMBOL_IDENTITY;
2031 sver.wi_len = 7;
2032 /* value should be "V2.00-11" */
2033 if (wi_read_record(sc, (struct wi_ltv_gen *)&sver) == 0 &&
2034 *(p = (char *)sver.wi_str) == 'V' &&
2035 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
2036 sc->sc_firmware_type = WI_SYMBOL;
2037 sc->sc_firmware_ver = (p[1] - '0') * 10000 +
2038 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
2039 (p[6] - '0') * 10 + (p[7] - '0');
2040 }
2041 }
2042 printf(", Station Firmware: %s %u.%u.%u\n",
2043 (sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
2044 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil")),
2045 sc->sc_firmware_ver / 10000, (sc->sc_firmware_ver % 10000) / 100,
2046 sc->sc_firmware_ver % 100);
2047
2048 return;
2049 }
2050
2051 int
2052 wi_detach(sc)
2053 struct wi_softc *sc;
2054 {
2055 struct ifnet *ifp = sc->sc_ifp;
2056 int s;
2057
2058 if (!sc->sc_attached)
2059 return (0);
2060
2061 s = splnet();
2062 callout_stop(&sc->wi_inquire_ch);
2063
2064 /* Delete all remaining media. */
2065 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
2066
2067 ether_ifdetach(ifp);
2068 if_detach(ifp);
2069 if (sc->sc_enabled) {
2070 if (sc->sc_disable)
2071 (*sc->sc_disable)(sc);
2072 sc->sc_enabled = 0;
2073 }
2074 splx(s);
2075 return (0);
2076 }
2077
2078 void
2079 wi_power(sc, why)
2080 struct wi_softc *sc;
2081 int why;
2082 {
2083 int s;
2084
2085 if (!sc->sc_enabled)
2086 return;
2087
2088 s = splnet();
2089 switch (why) {
2090 case PWR_SUSPEND:
2091 case PWR_STANDBY:
2092 wi_stop(sc->sc_ifp, 0);
2093 if (sc->sc_enabled) {
2094 if (sc->sc_disable)
2095 (*sc->sc_disable)(sc);
2096 }
2097 break;
2098 case PWR_RESUME:
2099 sc->sc_enabled = 0;
2100 wi_init(sc->sc_ifp);
2101 (void)wi_intr(sc);
2102 break;
2103 case PWR_SOFTSUSPEND:
2104 case PWR_SOFTSTANDBY:
2105 case PWR_SOFTRESUME:
2106 break;
2107 }
2108 splx(s);
2109 }
2110
2111 static int
2112 wi_set_ssid(ws, id, len)
2113 struct ieee80211_nwid *ws;
2114 u_int8_t *id;
2115 int len;
2116 {
2117
2118 if (len > IEEE80211_NWID_LEN)
2119 return (EINVAL);
2120 ws->i_len = len;
2121 memcpy(ws->i_nwid, id, len);
2122 return (0);
2123 }
2124
2125 static void
2126 wi_request_fill_ssid(wreq, ws)
2127 struct wi_req *wreq;
2128 struct ieee80211_nwid *ws;
2129 {
2130 int len = ws->i_len;
2131
2132 memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
2133 wreq->wi_val[0] = htole16(len);
2134 wreq->wi_len = roundup(len, 2) / 2 + 2;
2135 memcpy(&wreq->wi_val[1], ws->i_nwid, len);
2136 }
2137
2138 static int
2139 wi_write_ssid(sc, type, wreq, ws)
2140 struct wi_softc *sc;
2141 int type;
2142 struct wi_req *wreq;
2143 struct ieee80211_nwid *ws;
2144 {
2145
2146 wreq->wi_type = type;
2147 wi_request_fill_ssid(wreq, ws);
2148 return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
2149 }
2150
2151 static int
2152 wi_sync_media(sc, ptype, txrate)
2153 struct wi_softc *sc;
2154 int ptype;
2155 int txrate;
2156 {
2157 int media = sc->sc_media.ifm_cur->ifm_media;
2158 int options = IFM_OPTIONS(media);
2159 int subtype;
2160
2161 switch (txrate) {
2162 case 1:
2163 subtype = IFM_IEEE80211_DS1;
2164 break;
2165 case 2:
2166 subtype = IFM_IEEE80211_DS2;
2167 break;
2168 case 3:
2169 subtype = IFM_AUTO;
2170 break;
2171 case 5:
2172 subtype = IFM_IEEE80211_DS5;
2173 break;
2174 case 11:
2175 subtype = IFM_IEEE80211_DS11;
2176 break;
2177 default:
2178 subtype = IFM_MANUAL; /* Unable to represent */
2179 break;
2180 }
2181 switch (ptype) {
2182 case WI_PORTTYPE_ADHOC:
2183 options |= IFM_IEEE80211_ADHOC;
2184 break;
2185 case WI_PORTTYPE_BSS:
2186 options &= ~IFM_IEEE80211_ADHOC;
2187 break;
2188 default:
2189 subtype = IFM_MANUAL; /* Unable to represent */
2190 break;
2191 }
2192 media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
2193 IFM_INST(media));
2194 if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
2195 return (EINVAL);
2196 ifmedia_set(&sc->sc_media, media);
2197 sc->wi_ptype = ptype;
2198 sc->wi_tx_rate = txrate;
2199 return (0);
2200 }
2201
2202 static int
2203 wi_media_change(ifp)
2204 struct ifnet *ifp;
2205 {
2206 struct wi_softc *sc = ifp->if_softc;
2207 int otype = sc->wi_ptype;
2208 int orate = sc->wi_tx_rate;
2209
2210 if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2211 sc->wi_ptype = WI_PORTTYPE_ADHOC;
2212 else
2213 sc->wi_ptype = WI_PORTTYPE_BSS;
2214
2215 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
2216 case IFM_IEEE80211_DS1:
2217 sc->wi_tx_rate = 1;
2218 break;
2219 case IFM_IEEE80211_DS2:
2220 sc->wi_tx_rate = 2;
2221 break;
2222 case IFM_AUTO:
2223 sc->wi_tx_rate = 3;
2224 break;
2225 case IFM_IEEE80211_DS5:
2226 sc->wi_tx_rate = 5;
2227 break;
2228 case IFM_IEEE80211_DS11:
2229 sc->wi_tx_rate = 11;
2230 break;
2231 }
2232
2233 if (sc->sc_enabled != 0) {
2234 if (otype != sc->wi_ptype ||
2235 orate != sc->wi_tx_rate)
2236 wi_init(ifp);
2237 }
2238
2239 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
2240
2241 return (0);
2242 }
2243
2244 static void
2245 wi_media_status(ifp, imr)
2246 struct ifnet *ifp;
2247 struct ifmediareq *imr;
2248 {
2249 struct wi_softc *sc = ifp->if_softc;
2250
2251 if (sc->sc_enabled == 0) {
2252 imr->ifm_active = IFM_IEEE80211|IFM_NONE;
2253 imr->ifm_status = 0;
2254 return;
2255 }
2256
2257 imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
2258 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2259 }
2260
2261 static int
2262 wi_set_nwkey(sc, nwkey)
2263 struct wi_softc *sc;
2264 struct ieee80211_nwkey *nwkey;
2265 {
2266 int i, error;
2267 size_t len;
2268 struct wi_req wreq;
2269 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
2270
2271 if (!sc->wi_has_wep)
2272 return ENODEV;
2273 if (nwkey->i_defkid <= 0 ||
2274 nwkey->i_defkid > IEEE80211_WEP_NKID)
2275 return EINVAL;
2276 memcpy(wk, &sc->wi_keys, sizeof(*wk));
2277 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2278 if (nwkey->i_key[i].i_keydat == NULL)
2279 continue;
2280 len = nwkey->i_key[i].i_keylen;
2281 if (len > sizeof(wk->wi_keys[i].wi_keydat))
2282 return EINVAL;
2283 error = copyin(nwkey->i_key[i].i_keydat,
2284 wk->wi_keys[i].wi_keydat, len);
2285 if (error)
2286 return error;
2287 wk->wi_keys[i].wi_keylen = htole16(len);
2288 }
2289
2290 wk->wi_len = (sizeof(*wk) / 2) + 1;
2291 wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2292 if (sc->sc_enabled != 0) {
2293 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2294 if (error)
2295 return error;
2296 }
2297 error = wi_setdef(sc, &wreq);
2298 if (error)
2299 return error;
2300
2301 wreq.wi_len = 2;
2302 wreq.wi_type = WI_RID_TX_CRYPT_KEY;
2303 wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
2304 if (sc->sc_enabled != 0) {
2305 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2306 if (error)
2307 return error;
2308 }
2309 error = wi_setdef(sc, &wreq);
2310 if (error)
2311 return error;
2312
2313 wreq.wi_type = WI_RID_ENCRYPTION;
2314 wreq.wi_val[0] = htole16(nwkey->i_wepon);
2315 if (sc->sc_enabled != 0) {
2316 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2317 if (error)
2318 return error;
2319 }
2320 error = wi_setdef(sc, &wreq);
2321 if (error)
2322 return error;
2323
2324 if (sc->sc_enabled != 0)
2325 wi_init(&sc->sc_ethercom.ec_if);
2326 return 0;
2327 }
2328
2329 static int
2330 wi_get_nwkey(sc, nwkey)
2331 struct wi_softc *sc;
2332 struct ieee80211_nwkey *nwkey;
2333 {
2334 int i, len, error;
2335 struct wi_ltv_keys *wk = &sc->wi_keys;
2336
2337 if (!sc->wi_has_wep)
2338 return ENODEV;
2339 nwkey->i_wepon = sc->wi_use_wep;
2340 nwkey->i_defkid = sc->wi_tx_key + 1;
2341
2342 /* do not show any keys to non-root user */
2343 error = suser(curproc->p_ucred, &curproc->p_acflag);
2344 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2345 if (nwkey->i_key[i].i_keydat == NULL)
2346 continue;
2347 /* error holds results of suser() for the first time */
2348 if (error)
2349 return error;
2350 len = le16toh(wk->wi_keys[i].wi_keylen);
2351 if (nwkey->i_key[i].i_keylen < len)
2352 return ENOSPC;
2353 nwkey->i_key[i].i_keylen = len;
2354 error = copyout(wk->wi_keys[i].wi_keydat,
2355 nwkey->i_key[i].i_keydat, len);
2356 if (error)
2357 return error;
2358 }
2359 return 0;
2360 }
2361
2362 static int
2363 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
2364 {
2365
2366 sc->wi_pm_enabled = power->i_enabled;
2367 sc->wi_max_sleep = power->i_maxsleep;
2368
2369 if (sc->sc_enabled)
2370 return (wi_init(&sc->sc_ethercom.ec_if));
2371
2372 return (0);
2373 }
2374
2375 static int
2376 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
2377 {
2378
2379 power->i_enabled = sc->wi_pm_enabled;
2380 power->i_maxsleep = sc->wi_max_sleep;
2381
2382 return (0);
2383 }
2384