wi.c revision 1.65 1 /* $NetBSD: wi.c,v 1.65 2002/04/04 17:30:32 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.65 2002/04/04 17:30:32 jdolecek Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static void wi_reset __P((struct wi_softc *));
108 static int wi_ioctl __P((struct ifnet *, u_long, caddr_t));
109 static void wi_start __P((struct ifnet *));
110 static void wi_watchdog __P((struct ifnet *));
111 static int wi_init __P((struct ifnet *));
112 static void wi_stop __P((struct ifnet *, int));
113 static void wi_rxeof __P((struct wi_softc *));
114 static void wi_txeof __P((struct wi_softc *, int));
115 static void wi_update_stats __P((struct wi_softc *));
116 static void wi_setmulti __P((struct wi_softc *));
117
118 static int wi_cmd __P((struct wi_softc *, int, int));
119 static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *));
120 static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *));
121 static int wi_read_data __P((struct wi_softc *, int,
122 int, caddr_t, int));
123 static int wi_write_data __P((struct wi_softc *, int,
124 int, caddr_t, int));
125 static int wi_seek __P((struct wi_softc *, int, int, int));
126 static int wi_alloc_nicmem __P((struct wi_softc *, int, int *));
127 static void wi_inquire __P((void *));
128 static void wi_wait_scan __P((void *));
129 static int wi_setdef __P((struct wi_softc *, struct wi_req *));
130 static int wi_getdef __P((struct wi_softc *, struct wi_req *));
131 static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int));
132
133 static int wi_media_change __P((struct ifnet *));
134 static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
135
136 static void wi_get_id __P((struct wi_softc *));
137
138 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
139 static void wi_request_fill_ssid __P((struct wi_req *,
140 struct ieee80211_nwid *));
141 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
142 struct ieee80211_nwid *));
143 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
144 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
145 static int wi_sync_media __P((struct wi_softc *, int, int));
146 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
147 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
148
149 struct wi_card_ident wi_card_ident[] = {
150 /* CARD_ID CARD_NAME FIRM_TYPE */
151 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
152 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
153 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
154 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
155 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
156 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
157 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
158 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
159 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
160 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
161 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
162 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
163 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
164 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
165 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
166 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
167 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
168 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
169 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
170 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
171 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
172 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
173 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
174 { 0, NULL, 0 },
175 };
176
177 int
178 wi_attach(sc)
179 struct wi_softc *sc;
180 {
181 struct ifnet *ifp = sc->sc_ifp;
182 struct wi_ltv_macaddr mac;
183 struct wi_ltv_gen gen;
184 static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
185 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
186 };
187 int s;
188
189 s = splnet();
190
191 callout_init(&sc->wi_inquire_ch);
192 callout_init(&sc->wi_scan_sh);
193
194 /* Make sure interrupts are disabled. */
195 CSR_WRITE_2(sc, WI_INT_EN, 0);
196 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
197
198 /* Reset the NIC. */
199 wi_reset(sc);
200
201 memset(&mac, 0, sizeof(mac));
202 /* Read the station address. */
203 mac.wi_type = WI_RID_MAC_NODE;
204 mac.wi_len = 4;
205 wi_read_record(sc, (struct wi_ltv_gen *)&mac);
206 memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
207
208 /*
209 * Check if we got anything meaningful.
210 *
211 * Is it really enough just checking against null ethernet address?
212 * Or, check against possible vendor? XXX.
213 */
214 if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
215 printf("could not get mac address, attach failed\n");
216 splx(s);
217 return 1;
218 }
219
220 printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
221
222 /* Read NIC identification */
223 wi_get_id(sc);
224
225 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
226 ifp->if_softc = sc;
227 ifp->if_start = wi_start;
228 ifp->if_ioctl = wi_ioctl;
229 ifp->if_watchdog = wi_watchdog;
230 ifp->if_init = wi_init;
231 ifp->if_stop = wi_stop;
232 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
233 #ifdef IFF_NOTRAILERS
234 ifp->if_flags |= IFF_NOTRAILERS;
235 #endif
236 IFQ_SET_READY(&ifp->if_snd);
237
238 (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
239 sizeof(WI_DEFAULT_NODENAME) - 1);
240 (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
241 sizeof(WI_DEFAULT_NETNAME) - 1);
242 (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
243 sizeof(WI_DEFAULT_IBSS) - 1);
244
245 sc->wi_portnum = WI_DEFAULT_PORT;
246 sc->wi_ptype = WI_PORTTYPE_BSS;
247 sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
248 sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
249 sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
250 sc->wi_max_data_len = WI_DEFAULT_DATALEN;
251 sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
252 sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
253 sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
254 sc->wi_roaming = WI_DEFAULT_ROAMING;
255 sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
256
257 /*
258 * Read the default channel from the NIC. This may vary
259 * depending on the country where the NIC was purchased, so
260 * we can't hard-code a default and expect it to work for
261 * everyone.
262 */
263 gen.wi_type = WI_RID_OWN_CHNL;
264 gen.wi_len = 2;
265 wi_read_record(sc, &gen);
266 sc->wi_channel = le16toh(gen.wi_val);
267
268 memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats));
269
270 /* AP info was filled with 0 */
271 memset((char *)&sc->wi_aps, 0, sizeof(sc->wi_aps));
272 sc->wi_scanning=0;
273 sc->wi_naps=0;
274
275 /*
276 * Find out if we support WEP on this card.
277 */
278 gen.wi_type = WI_RID_WEP_AVAIL;
279 gen.wi_len = 2;
280 wi_read_record(sc, &gen);
281 sc->wi_has_wep = le16toh(gen.wi_val);
282
283 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
284 #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL)
285 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
286 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0);
287 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
288 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
289 IFM_IEEE80211_ADHOC, 0), 0);
290 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
291 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
292 IFM_IEEE80211_ADHOC, 0), 0);
293 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
294 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
295 IFM_IEEE80211_ADHOC, 0), 0);
296 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
297 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
298 IFM_IEEE80211_ADHOC, 0), 0);
299 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
300 #undef ADD
301 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
302
303 /*
304 * Call MI attach routines.
305 */
306 if_attach(ifp);
307 ether_ifattach(ifp, mac.wi_mac_addr);
308
309 ifp->if_baudrate = IF_Mbps(2);
310
311 /* Attach is successful. */
312 sc->sc_attached = 1;
313
314 splx(s);
315 return 0;
316 }
317
318 static void wi_rxeof(sc)
319 struct wi_softc *sc;
320 {
321 struct ifnet *ifp;
322 struct ether_header *eh;
323 struct wi_frame rx_frame;
324 struct mbuf *m;
325 int id;
326
327 ifp = sc->sc_ifp;
328
329 id = CSR_READ_2(sc, WI_RX_FID);
330
331 /* First read in the frame header */
332 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
333 ifp->if_ierrors++;
334 return;
335 }
336
337 /*
338 * Drop undecryptable or packets with receive errors here
339 */
340 if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) {
341 ifp->if_ierrors++;
342 return;
343 }
344
345 MGETHDR(m, M_DONTWAIT, MT_DATA);
346 if (m == NULL) {
347 ifp->if_ierrors++;
348 return;
349 }
350 MCLGET(m, M_DONTWAIT);
351 if (!(m->m_flags & M_EXT)) {
352 m_freem(m);
353 ifp->if_ierrors++;
354 return;
355 }
356
357 /* Align the data after the ethernet header */
358 m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
359 - sizeof(struct ether_header);
360
361 eh = mtod(m, struct ether_header *);
362 m->m_pkthdr.rcvif = ifp;
363
364 if (le16toh(rx_frame.wi_status) == WI_STAT_1042 ||
365 le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL ||
366 le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) {
367 if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
368 printf("%s: oversized packet received "
369 "(wi_dat_len=%d, wi_status=0x%x)\n",
370 sc->sc_dev.dv_xname,
371 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
372 m_freem(m);
373 ifp->if_ierrors++;
374 return;
375 }
376 m->m_pkthdr.len = m->m_len =
377 le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
378
379 memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr,
380 ETHER_ADDR_LEN);
381 memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr,
382 ETHER_ADDR_LEN);
383 memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type,
384 sizeof(u_int16_t));
385
386 if (wi_read_data(sc, id, WI_802_11_OFFSET,
387 mtod(m, caddr_t) + sizeof(struct ether_header),
388 m->m_len + 2)) {
389 m_freem(m);
390 ifp->if_ierrors++;
391 return;
392 }
393 } else {
394 if ((le16toh(rx_frame.wi_dat_len) +
395 sizeof(struct ether_header)) > MCLBYTES) {
396 printf("%s: oversized packet received "
397 "(wi_dat_len=%d, wi_status=0x%x)\n",
398 sc->sc_dev.dv_xname,
399 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
400 m_freem(m);
401 ifp->if_ierrors++;
402 return;
403 }
404 m->m_pkthdr.len = m->m_len =
405 le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
406
407 if (wi_read_data(sc, id, WI_802_3_OFFSET,
408 mtod(m, caddr_t), m->m_len + 2)) {
409 m_freem(m);
410 ifp->if_ierrors++;
411 return;
412 }
413 }
414
415 ifp->if_ipackets++;
416
417 #if NBPFILTER > 0
418 /* Handle BPF listeners. */
419 if (ifp->if_bpf)
420 bpf_mtap(ifp->if_bpf, m);
421 #endif
422
423 /* Receive packet. */
424 (*ifp->if_input)(ifp, m);
425 }
426
427 static void wi_txeof(sc, status)
428 struct wi_softc *sc;
429 int status;
430 {
431 struct ifnet *ifp = sc->sc_ifp;
432
433 ifp->if_timer = 0;
434 ifp->if_flags &= ~IFF_OACTIVE;
435
436 if (status & WI_EV_TX_EXC)
437 ifp->if_oerrors++;
438 else
439 ifp->if_opackets++;
440
441 return;
442 }
443
444 void wi_inquire(xsc)
445 void *xsc;
446 {
447 struct wi_softc *sc;
448 struct ifnet *ifp;
449 int s;
450
451 sc = xsc;
452 ifp = &sc->sc_ethercom.ec_if;
453
454 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
455 return;
456
457 KASSERT(sc->sc_enabled);
458
459 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
460
461 /* Don't do this while we're transmitting */
462 if (ifp->if_flags & IFF_OACTIVE)
463 return;
464
465 s = splnet();
466 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
467 splx(s);
468 }
469
470 void wi_wait_scan(xsc)
471 void *xsc;
472 {
473 struct wi_softc *sc;
474 struct ifnet *ifp;
475 int s, result;
476
477 sc = xsc;
478 ifp = &sc->sc_ethercom.ec_if;
479
480 /* If not scanning, ignore */
481 if (!sc->wi_scanning)
482 return;
483
484 s = splnet();
485
486 /* Wait for sending complete to make INQUIRE */
487 if (ifp->if_flags & IFF_OACTIVE) {
488 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
489 splx(s);
490 return;
491 }
492
493 /* try INQUIRE */
494 result = wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS);
495 if (result == ETIMEDOUT)
496 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
497
498 splx(s);
499 }
500
501 void wi_update_stats(sc)
502 struct wi_softc *sc;
503 {
504 struct wi_ltv_gen gen;
505 struct wi_scan_header ap2_header; /* Prism2 header */
506 struct wi_scan_data_p2 ap2; /* Prism2 scantable*/
507 struct wi_scan_data ap; /* Lucent scantable */
508 struct wi_assoc assoc; /* Association Status */
509 u_int16_t id;
510 struct ifnet *ifp;
511 u_int32_t *ptr;
512 int len, naps, i, j;
513 u_int16_t t;
514
515 ifp = &sc->sc_ethercom.ec_if;
516
517 id = CSR_READ_2(sc, WI_INFO_FID);
518
519 if (wi_seek(sc, id, 0, WI_BAP1)) {
520 return;
521 }
522
523 gen.wi_len = CSR_READ_2(sc, WI_DATA1);
524 gen.wi_type = CSR_READ_2(sc, WI_DATA1);
525
526 switch (gen.wi_type) {
527 case WI_INFO_SCAN_RESULTS:
528 if (gen.wi_len <= 3) {
529 sc->wi_naps = 0;
530 sc->wi_scanning = 0;
531 break;
532 }
533 switch (sc->sc_firmware_type) {
534 case WI_INTERSIL:
535 naps = 2 * (gen.wi_len - 3) / sizeof(ap2);
536 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
537 sc->wi_naps = naps;
538 /* Read Header */
539 for(j=0; j < sizeof(ap2_header) / 2; j++)
540 ((u_int16_t *)&ap2_header)[j] =
541 CSR_READ_2(sc, WI_DATA1);
542 /* Read Data */
543 for (i=0; i < naps; i++) {
544 for(j=0; j < sizeof(ap2) / 2; j++)
545 ((u_int16_t *)&ap2)[j] =
546 CSR_READ_2(sc, WI_DATA1);
547 /* unswap 8 bit data fields: */
548 for(j=0;j<sizeof(ap.wi_bssid)/2;j++)
549 LE16TOH(((u_int16_t *)&ap.wi_bssid[0])[j]);
550 for(j=0;j<sizeof(ap.wi_name)/2;j++)
551 LE16TOH(((u_int16_t *)&ap.wi_name[0])[j]);
552 sc->wi_aps[i].scanreason = ap2_header.wi_reason;
553 memcpy(sc->wi_aps[i].bssid, ap2.wi_bssid, 6);
554 sc->wi_aps[i].channel = ap2.wi_chid;
555 sc->wi_aps[i].signal = ap2.wi_signal;
556 sc->wi_aps[i].noise = ap2.wi_noise;
557 sc->wi_aps[i].quality = ap2.wi_signal - ap2.wi_noise;
558 sc->wi_aps[i].capinfo = ap2.wi_capinfo;
559 sc->wi_aps[i].interval = ap2.wi_interval;
560 sc->wi_aps[i].rate = ap2.wi_rate;
561 if (ap2.wi_namelen > 32)
562 ap2.wi_namelen = 32;
563 sc->wi_aps[i].namelen = ap2.wi_namelen;
564 memcpy(sc->wi_aps[i].name, ap2.wi_name,
565 ap2.wi_namelen);
566 }
567 break;
568
569 case WI_LUCENT:
570 naps = 2 * gen.wi_len / sizeof(ap);
571 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
572 sc->wi_naps = naps;
573 /* Read Data*/
574 for (i=0; i < naps; i++) {
575 for(j=0; j < sizeof(ap) / 2; j++)
576 ((u_int16_t *)&ap)[j] =
577 CSR_READ_2(sc, WI_DATA1);
578 /* unswap 8 bit data fields: */
579 for(j=0;j<sizeof(ap.wi_bssid)/2;j++)
580 HTOLE16(((u_int16_t *)&ap.wi_bssid[0])[j]);
581 for(j=0;j<sizeof(ap.wi_name)/2;j++)
582 HTOLE16(((u_int16_t *)&ap.wi_name[0])[j]);
583 memcpy(sc->wi_aps[i].bssid, ap.wi_bssid, 6);
584 sc->wi_aps[i].channel = ap.wi_chid;
585 sc->wi_aps[i].signal = ap.wi_signal;
586 sc->wi_aps[i].noise = ap.wi_noise;
587 sc->wi_aps[i].quality = ap.wi_signal - ap.wi_noise;
588 sc->wi_aps[i].capinfo = ap.wi_capinfo;
589 sc->wi_aps[i].interval = ap.wi_interval;
590 if (ap.wi_namelen > 32)
591 ap.wi_namelen = 32;
592 sc->wi_aps[i].namelen = ap.wi_namelen;
593 memcpy(sc->wi_aps[i].name, ap.wi_name,
594 ap.wi_namelen);
595 }
596 break;
597 case WI_SYMBOL:
598 /* unknown */
599 break;
600 }
601 /* Done scanning */
602 sc->wi_scanning = 0;
603 break;
604
605 case WI_INFO_COUNTERS:
606 /* some card versions have a larger stats structure */
607 len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
608 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
609 ptr = (u_int32_t *)&sc->wi_stats;
610
611 for (i = 0; i < len; i++) {
612 t = CSR_READ_2(sc, WI_DATA1);
613 #ifdef WI_HERMES_STATS_WAR
614 if (t > 0xF000)
615 t = ~t & 0xFFFF;
616 #endif
617 ptr[i] += t;
618 }
619
620 ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
621 sc->wi_stats.wi_tx_multi_retries +
622 sc->wi_stats.wi_tx_retry_limit;
623 break;
624
625 case WI_INFO_LINK_STAT: {
626 static char *msg[] = {
627 "connected",
628 "disconnected",
629 "AP change",
630 "AP out of range",
631 "AP in range",
632 "Association Failed"
633 };
634
635 if (gen.wi_len != 2) {
636 #ifdef WI_DEBUG
637 printf("WI_INFO_LINK_STAT: len=%d\n", gen.wi_len);
638 #endif
639 break;
640 }
641 t = CSR_READ_2(sc, WI_DATA1);
642 if ((t < 1) || (t > 6)) {
643 #ifdef WI_DEBUG
644 printf("WI_INFO_LINK_STAT: status %d\n", t);
645 #endif
646 break;
647 }
648 /*
649 * Some cards issue streams of "connected" messages while
650 * trying to find a peer. Don't bother the user with this
651 * unless he is debugging.
652 */
653 if (ifp->if_flags & IFF_DEBUG)
654 printf("%s: %s\n", sc->sc_dev.dv_xname, msg[t - 1]);
655 break;
656 }
657
658 case WI_INFO_ASSOC_STAT: {
659 static char *msg[] = {
660 "STA Associated",
661 "STA Reassociated",
662 "STA Disassociated",
663 "Association Failure",
664 "Authentication Failed"
665 };
666 if (gen.wi_len != 10)
667 break;
668 for (i=0; i < gen.wi_len - 1; i++)
669 ((u_int16_t *)&assoc)[i] = CSR_READ_2(sc, WI_DATA1);
670 /* unswap 8 bit data fields: */
671 for(j=0;j<sizeof(assoc.wi_assoc_sta)/2;j++)
672 HTOLE16(((u_int16_t *)&assoc.wi_assoc_sta[0])[j]);
673 for(j=0;j<sizeof(assoc.wi_assoc_osta)/2;j++)
674 HTOLE16(((u_int16_t *)&assoc.wi_assoc_osta[0])[j]);
675 switch (assoc.wi_assoc_stat) {
676 case ASSOC:
677 case DISASSOC:
678 case ASSOCFAIL:
679 case AUTHFAIL:
680 printf("%s: %s, AP = %02x:%02x:%02x:%02x:%02x:%02x\n",
681 sc->sc_dev.dv_xname,
682 msg[assoc.wi_assoc_stat - 1],
683 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
684 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
685 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff);
686 break;
687 case REASSOC:
688 printf("%s: %s, AP = %02x:%02x:%02x:%02x:%02x:%02x, "
689 "OldAP = %02x:%02x:%02x:%02x:%02x:%02x\n",
690 sc->sc_dev.dv_xname, msg[assoc.wi_assoc_stat - 1],
691 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
692 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
693 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff,
694 assoc.wi_assoc_osta[0]&0xff, assoc.wi_assoc_osta[1]&0xff,
695 assoc.wi_assoc_osta[2]&0xff, assoc.wi_assoc_osta[3]&0xff,
696 assoc.wi_assoc_osta[4]&0xff, assoc.wi_assoc_osta[5]&0xff);
697 break;
698 }
699 }
700 default:
701 #ifdef WI_DEBUG
702 printf("%s: got info type: 0x%04x len=0x%04x\n",
703 sc->sc_dev.dv_xname, gen.wi_type,gen.wi_len);
704 #endif
705 #if 0
706 for (i = 0; i < gen.wi_len; i++) {
707 t = CSR_READ_2(sc, WI_DATA1);
708 printf("[0x%02x] = 0x%04x\n", i, t);
709 }
710 #endif
711 break;
712 }
713 }
714
715 int wi_intr(arg)
716 void *arg;
717 {
718 struct wi_softc *sc = arg;
719 struct ifnet *ifp;
720 u_int16_t status;
721
722 if (sc->sc_enabled == 0 ||
723 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
724 (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
725 return (0);
726
727 ifp = &sc->sc_ethercom.ec_if;
728
729 if (!(ifp->if_flags & IFF_UP)) {
730 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
731 CSR_WRITE_2(sc, WI_INT_EN, 0);
732 return 1;
733 }
734
735 /* Disable interrupts. */
736 CSR_WRITE_2(sc, WI_INT_EN, 0);
737
738 status = CSR_READ_2(sc, WI_EVENT_STAT);
739 CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
740
741 if (status & WI_EV_RX) {
742 wi_rxeof(sc);
743 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
744 }
745
746 if (status & WI_EV_TX) {
747 wi_txeof(sc, status);
748 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
749 }
750
751 if (status & WI_EV_ALLOC) {
752 int id;
753 id = CSR_READ_2(sc, WI_ALLOC_FID);
754 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
755 if (id == sc->wi_tx_data_id)
756 wi_txeof(sc, status);
757 }
758
759 if (status & WI_EV_INFO) {
760 wi_update_stats(sc);
761 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
762 }
763
764 if (status & WI_EV_TX_EXC) {
765 wi_txeof(sc, status);
766 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
767 }
768
769 if (status & WI_EV_INFO_DROP) {
770 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
771 }
772
773 /* Re-enable interrupts. */
774 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
775
776 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
777 wi_start(ifp);
778
779 return 1;
780 }
781
782 /* Must be called at proper protection level! */
783 static int
784 wi_cmd(sc, cmd, val)
785 struct wi_softc *sc;
786 int cmd;
787 int val;
788 {
789 int i, s = 0;
790
791 /* wait for the busy bit to clear */
792 for (i = 0; i < WI_TIMEOUT; i++) {
793 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
794 break;
795 }
796
797 if (i == WI_TIMEOUT) {
798 printf("%s: wi_cmd: BUSY did not clear, cmd=0x%x\n",
799 sc->sc_dev.dv_xname, cmd);
800 return EIO;
801 }
802
803 CSR_WRITE_2(sc, WI_PARAM0, val);
804 CSR_WRITE_2(sc, WI_PARAM1, 0);
805 CSR_WRITE_2(sc, WI_PARAM2, 0);
806 CSR_WRITE_2(sc, WI_COMMAND, cmd);
807
808 /* wait for the cmd completed bit */
809 for (i = 0; i < WI_TIMEOUT; i++) {
810 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
811 break;
812 DELAY(1);
813 }
814
815 /* Ack the command */
816 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
817
818 s = CSR_READ_2(sc, WI_STATUS);
819 if (s & WI_STAT_CMD_RESULT)
820 return(EIO);
821
822 if (i == WI_TIMEOUT) {
823 if (!sc->wi_scanning)
824 printf("%s: command timed out, cmd=0x%x\n",
825 sc->sc_dev.dv_xname, cmd);
826 return(ETIMEDOUT);
827 }
828
829 return(0);
830 }
831
832 static void
833 wi_reset(sc)
834 struct wi_softc *sc;
835 {
836
837 DELAY(100*1000); /* 100 m sec */
838 if (wi_cmd(sc, WI_CMD_INI, 0))
839 printf("%s: init failed\n", sc->sc_dev.dv_xname);
840 CSR_WRITE_2(sc, WI_INT_EN, 0);
841 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
842
843 /* Calibrate timer. */
844 WI_SETVAL(WI_RID_TICK_TIME, 8);
845
846 return;
847 }
848
849 void
850 wi_pci_reset(sc)
851 struct wi_softc *sc;
852 {
853 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
854 WI_PCI_COR, WI_PCI_SOFT_RESET);
855 DELAY(100*1000); /* 100 m sec */
856
857 bus_space_write_2(sc->sc_iot, sc->sc_ioh, WI_PCI_COR, 0x0);
858 DELAY(100*1000); /* 100 m sec */
859
860 return;
861 }
862
863 /*
864 * Read an LTV record from the NIC.
865 */
866 static int wi_read_record(sc, ltv)
867 struct wi_softc *sc;
868 struct wi_ltv_gen *ltv;
869 {
870 u_int16_t *ptr;
871 int len, code;
872 struct wi_ltv_gen *oltv, p2ltv;
873
874 if (sc->sc_firmware_type != WI_LUCENT) {
875 oltv = ltv;
876 switch (ltv->wi_type) {
877 case WI_RID_ENCRYPTION:
878 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
879 p2ltv.wi_len = 2;
880 ltv = &p2ltv;
881 break;
882 case WI_RID_TX_CRYPT_KEY:
883 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
884 p2ltv.wi_len = 2;
885 ltv = &p2ltv;
886 break;
887 }
888 }
889
890 /* Tell the NIC to enter record read mode. */
891 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
892 return(EIO);
893
894 /* Seek to the record. */
895 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
896 return(EIO);
897
898 /*
899 * Read the length and record type and make sure they
900 * match what we expect (this verifies that we have enough
901 * room to hold all of the returned data).
902 */
903 len = CSR_READ_2(sc, WI_DATA1);
904 if (len > ltv->wi_len)
905 return(ENOSPC);
906 code = CSR_READ_2(sc, WI_DATA1);
907 if (code != ltv->wi_type)
908 return(EIO);
909
910 ltv->wi_len = len;
911 ltv->wi_type = code;
912
913 /* Now read the data. */
914 ptr = <v->wi_val;
915 if (ltv->wi_len > 1)
916 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
917
918 if (sc->sc_firmware_type != WI_LUCENT) {
919 int v;
920
921 switch (oltv->wi_type) {
922 case WI_RID_TX_RATE:
923 case WI_RID_CUR_TX_RATE:
924 switch (le16toh(ltv->wi_val)) {
925 case 1: v = 1; break;
926 case 2: v = 2; break;
927 case 3: v = 6; break;
928 case 4: v = 5; break;
929 case 7: v = 7; break;
930 case 8: v = 11; break;
931 case 15: v = 3; break;
932 default: v = 0x100 + le16toh(ltv->wi_val); break;
933 }
934 oltv->wi_val = htole16(v);
935 break;
936 case WI_RID_ENCRYPTION:
937 oltv->wi_len = 2;
938 if (le16toh(ltv->wi_val) & 0x01)
939 oltv->wi_val = htole16(1);
940 else
941 oltv->wi_val = htole16(0);
942 break;
943 case WI_RID_TX_CRYPT_KEY:
944 oltv->wi_len = 2;
945 oltv->wi_val = ltv->wi_val;
946 break;
947 case WI_RID_AUTH_CNTL:
948 oltv->wi_len = 2;
949 if (le16toh(ltv->wi_val) & 0x01)
950 oltv->wi_val = htole16(1);
951 else if (le16toh(ltv->wi_val) & 0x02)
952 oltv->wi_val = htole16(2);
953 break;
954 }
955 }
956
957 return(0);
958 }
959
960 /*
961 * Same as read, except we inject data instead of reading it.
962 */
963 static int wi_write_record(sc, ltv)
964 struct wi_softc *sc;
965 struct wi_ltv_gen *ltv;
966 {
967 u_int16_t *ptr;
968 int i;
969 struct wi_ltv_gen p2ltv;
970
971 if (sc->sc_firmware_type != WI_LUCENT) {
972 int v;
973
974 switch (ltv->wi_type) {
975 case WI_RID_TX_RATE:
976 p2ltv.wi_type = WI_RID_TX_RATE;
977 p2ltv.wi_len = 2;
978 switch (le16toh(ltv->wi_val)) {
979 case 1: v = 1; break;
980 case 2: v = 2; break;
981 case 3: v = 15; break;
982 case 5: v = 4; break;
983 case 6: v = 3; break;
984 case 7: v = 7; break;
985 case 11: v = 8; break;
986 default: return EINVAL;
987 }
988 p2ltv.wi_val = htole16(v);
989 ltv = &p2ltv;
990 break;
991 case WI_RID_ENCRYPTION:
992 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
993 p2ltv.wi_len = 2;
994 if (le16toh(ltv->wi_val))
995 p2ltv.wi_val = htole16(PRIVACY_INVOKED |
996 EXCLUDE_UNENCRYPTED);
997 else
998 p2ltv.wi_val =
999 htole16(HOST_ENCRYPT | HOST_DECRYPT);
1000 ltv = &p2ltv;
1001 break;
1002 case WI_RID_TX_CRYPT_KEY:
1003 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
1004 p2ltv.wi_len = 2;
1005 p2ltv.wi_val = ltv->wi_val;
1006 ltv = &p2ltv;
1007 break;
1008 case WI_RID_DEFLT_CRYPT_KEYS:
1009 {
1010 int error;
1011 int keylen;
1012 struct wi_ltv_str ws;
1013 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv;
1014
1015 keylen = wk->wi_keys[sc->wi_tx_key].wi_keylen;
1016
1017 for (i = 0; i < 4; i++) {
1018 memset(&ws, 0, sizeof(ws));
1019 ws.wi_len = (keylen > 5) ? 8 : 4;
1020 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
1021 memcpy(ws.wi_str,
1022 &wk->wi_keys[i].wi_keydat, keylen);
1023 error = wi_write_record(sc,
1024 (struct wi_ltv_gen *)&ws);
1025 if (error)
1026 return error;
1027 }
1028 return 0;
1029 }
1030 case WI_RID_AUTH_CNTL:
1031 p2ltv.wi_type = WI_RID_AUTH_CNTL;
1032 p2ltv.wi_len = 2;
1033 if (le16toh(ltv->wi_val) == 1)
1034 p2ltv.wi_val = htole16(0x01);
1035 else if (le16toh(ltv->wi_val) == 2)
1036 p2ltv.wi_val = htole16(0x02);
1037 ltv = &p2ltv;
1038 break;
1039 }
1040 }
1041
1042 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
1043 return(EIO);
1044
1045 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
1046 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
1047
1048 /* Write data */
1049 ptr = <v->wi_val;
1050 if (ltv->wi_len > 1)
1051 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
1052
1053 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
1054 return(EIO);
1055
1056 return(0);
1057 }
1058
1059 static int wi_seek(sc, id, off, chan)
1060 struct wi_softc *sc;
1061 int id, off, chan;
1062 {
1063 int i;
1064 int selreg, offreg;
1065 int status;
1066
1067 switch (chan) {
1068 case WI_BAP0:
1069 selreg = WI_SEL0;
1070 offreg = WI_OFF0;
1071 break;
1072 case WI_BAP1:
1073 selreg = WI_SEL1;
1074 offreg = WI_OFF1;
1075 break;
1076 default:
1077 printf("%s: invalid data path: %x\n",
1078 sc->sc_dev.dv_xname, chan);
1079 return(EIO);
1080 }
1081
1082 CSR_WRITE_2(sc, selreg, id);
1083 CSR_WRITE_2(sc, offreg, off);
1084
1085 for (i = 0; i < WI_TIMEOUT; i++) {
1086 status = CSR_READ_2(sc, offreg);
1087 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
1088 break;
1089 }
1090
1091 if (i == WI_TIMEOUT) {
1092 printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
1093 sc->sc_dev.dv_xname, id, off, status);
1094 return(ETIMEDOUT);
1095 }
1096 return(0);
1097 }
1098
1099 static int wi_read_data(sc, id, off, buf, len)
1100 struct wi_softc *sc;
1101 int id, off;
1102 caddr_t buf;
1103 int len;
1104 {
1105 u_int16_t *ptr;
1106
1107 if (wi_seek(sc, id, off, WI_BAP1))
1108 return(EIO);
1109
1110 ptr = (u_int16_t *)buf;
1111 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
1112
1113 return(0);
1114 }
1115
1116 /*
1117 * According to the comments in the HCF Light code, there is a bug in
1118 * the Hermes (or possibly in certain Hermes firmware revisions) where
1119 * the chip's internal autoincrement counter gets thrown off during
1120 * data writes: the autoincrement is missed, causing one data word to
1121 * be overwritten and subsequent words to be written to the wrong memory
1122 * locations. The end result is that we could end up transmitting bogus
1123 * frames without realizing it. The workaround for this is to write a
1124 * couple of extra guard words after the end of the transfer, then
1125 * attempt to read then back. If we fail to locate the guard words where
1126 * we expect them, we preform the transfer over again.
1127 */
1128 static int wi_write_data(sc, id, off, buf, len)
1129 struct wi_softc *sc;
1130 int id, off;
1131 caddr_t buf;
1132 int len;
1133 {
1134 u_int16_t *ptr;
1135
1136 #ifdef WI_HERMES_AUTOINC_WAR
1137 again:
1138 #endif
1139
1140 if (wi_seek(sc, id, off, WI_BAP0))
1141 return(EIO);
1142
1143 ptr = (u_int16_t *)buf;
1144 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
1145
1146 #ifdef WI_HERMES_AUTOINC_WAR
1147 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1148 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1149
1150 if (wi_seek(sc, id, off + len, WI_BAP0))
1151 return(EIO);
1152
1153 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1154 CSR_READ_2(sc, WI_DATA0) != 0x5678)
1155 goto again;
1156 #endif
1157
1158 return(0);
1159 }
1160
1161 /*
1162 * Allocate a region of memory inside the NIC and zero
1163 * it out.
1164 */
1165 static int wi_alloc_nicmem(sc, len, id)
1166 struct wi_softc *sc;
1167 int len;
1168 int *id;
1169 {
1170 int i;
1171
1172 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
1173 printf("%s: failed to allocate %d bytes on NIC\n",
1174 sc->sc_dev.dv_xname, len);
1175 return(ENOMEM);
1176 }
1177
1178 for (i = 0; i < WI_TIMEOUT; i++) {
1179 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1180 break;
1181 }
1182
1183 if (i == WI_TIMEOUT) {
1184 printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
1185 return(ETIMEDOUT);
1186 }
1187
1188 *id = CSR_READ_2(sc, WI_ALLOC_FID);
1189 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1190
1191 if (wi_seek(sc, *id, 0, WI_BAP0)) {
1192 printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
1193 return(EIO);
1194 }
1195
1196 for (i = 0; i < len / 2; i++)
1197 CSR_WRITE_2(sc, WI_DATA0, 0);
1198
1199 return(0);
1200 }
1201
1202 static void wi_setmulti(sc)
1203 struct wi_softc *sc;
1204 {
1205 struct ifnet *ifp;
1206 int i = 0;
1207 struct wi_ltv_mcast mcast;
1208 struct ether_multi *enm;
1209 struct ether_multistep estep;
1210 struct ethercom *ec = &sc->sc_ethercom;
1211
1212 ifp = &sc->sc_ethercom.ec_if;
1213
1214 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1215 allmulti:
1216 ifp->if_flags |= IFF_ALLMULTI;
1217 memset((char *)&mcast, 0, sizeof(mcast));
1218 mcast.wi_type = WI_RID_MCAST_LIST;
1219 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
1220
1221 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1222 return;
1223 }
1224
1225 i = 0;
1226 ETHER_FIRST_MULTI(estep, ec, enm);
1227 while (enm != NULL) {
1228 /* Punt on ranges or too many multicast addresses. */
1229 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1230 ETHER_ADDR_LEN) != 0 ||
1231 i >= 16)
1232 goto allmulti;
1233
1234 memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo,
1235 ETHER_ADDR_LEN);
1236 i++;
1237 ETHER_NEXT_MULTI(estep, enm);
1238 }
1239
1240 ifp->if_flags &= ~IFF_ALLMULTI;
1241 mcast.wi_type = WI_RID_MCAST_LIST;
1242 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
1243 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1244 }
1245
1246 static int
1247 wi_setdef(sc, wreq)
1248 struct wi_softc *sc;
1249 struct wi_req *wreq;
1250 {
1251 struct sockaddr_dl *sdl;
1252 struct ifnet *ifp;
1253 int error = 0;
1254
1255 ifp = &sc->sc_ethercom.ec_if;
1256
1257 switch(wreq->wi_type) {
1258 case WI_RID_MAC_NODE:
1259 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1260 memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val,
1261 ETHER_ADDR_LEN);
1262 memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN);
1263 break;
1264 case WI_RID_PORTTYPE:
1265 error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
1266 break;
1267 case WI_RID_TX_RATE:
1268 error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
1269 break;
1270 case WI_RID_MAX_DATALEN:
1271 sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1272 break;
1273 case WI_RID_RTS_THRESH:
1274 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1275 break;
1276 case WI_RID_SYSTEM_SCALE:
1277 sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1278 break;
1279 case WI_RID_CREATE_IBSS:
1280 if (sc->sc_firmware_type == WI_LUCENT)
1281 sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1282 break;
1283 case WI_RID_OWN_CHNL:
1284 sc->wi_channel = le16toh(wreq->wi_val[0]);
1285 break;
1286 case WI_RID_NODENAME:
1287 error = wi_set_ssid(&sc->wi_nodeid,
1288 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1289 break;
1290 case WI_RID_DESIRED_SSID:
1291 error = wi_set_ssid(&sc->wi_netid,
1292 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1293 break;
1294 case WI_RID_OWN_SSID:
1295 error = wi_set_ssid(&sc->wi_ibssid,
1296 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1297 break;
1298 case WI_RID_PM_ENABLED:
1299 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1300 break;
1301 case WI_RID_MICROWAVE_OVEN:
1302 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1303 break;
1304 case WI_RID_MAX_SLEEP:
1305 sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1306 break;
1307 case WI_RID_AUTH_CNTL:
1308 sc->wi_authtype = le16toh(wreq->wi_val[0]);
1309 break;
1310 case WI_RID_ROAMING_MODE:
1311 sc->wi_roaming = le16toh(wreq->wi_val[0]);
1312 break;
1313 case WI_RID_ENCRYPTION:
1314 sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1315 break;
1316 case WI_RID_TX_CRYPT_KEY:
1317 sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1318 break;
1319 case WI_RID_DEFLT_CRYPT_KEYS:
1320 memcpy((char *)&sc->wi_keys, (char *)wreq,
1321 sizeof(struct wi_ltv_keys));
1322 break;
1323 default:
1324 error = EINVAL;
1325 break;
1326 }
1327
1328 return (error);
1329 }
1330
1331 static int
1332 wi_getdef(sc, wreq)
1333 struct wi_softc *sc;
1334 struct wi_req *wreq;
1335 {
1336 struct sockaddr_dl *sdl;
1337 struct ifnet *ifp;
1338 int error = 0;
1339
1340 ifp = &sc->sc_ethercom.ec_if;
1341
1342 wreq->wi_len = 2; /* XXX */
1343 switch (wreq->wi_type) {
1344 case WI_RID_MAC_NODE:
1345 wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
1346 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1347 memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN);
1348 memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1349 break;
1350 case WI_RID_PORTTYPE:
1351 wreq->wi_val[0] = htole16(sc->wi_ptype);
1352 break;
1353 case WI_RID_TX_RATE:
1354 wreq->wi_val[0] = htole16(sc->wi_tx_rate);
1355 break;
1356 case WI_RID_MAX_DATALEN:
1357 wreq->wi_val[0] = htole16(sc->wi_max_data_len);
1358 break;
1359 case WI_RID_RTS_THRESH:
1360 wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
1361 break;
1362 case WI_RID_SYSTEM_SCALE:
1363 wreq->wi_val[0] = htole16(sc->wi_ap_density);
1364 break;
1365 case WI_RID_CREATE_IBSS:
1366 if (sc->sc_firmware_type == WI_LUCENT)
1367 wreq->wi_val[0] = htole16(sc->wi_create_ibss);
1368 break;
1369 case WI_RID_OWN_CHNL:
1370 wreq->wi_val[0] = htole16(sc->wi_channel);
1371 break;
1372 case WI_RID_NODENAME:
1373 wi_request_fill_ssid(wreq, &sc->wi_nodeid);
1374 break;
1375 case WI_RID_DESIRED_SSID:
1376 wi_request_fill_ssid(wreq, &sc->wi_netid);
1377 break;
1378 case WI_RID_OWN_SSID:
1379 wi_request_fill_ssid(wreq, &sc->wi_ibssid);
1380 break;
1381 case WI_RID_PM_ENABLED:
1382 wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
1383 break;
1384 case WI_RID_MICROWAVE_OVEN:
1385 wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
1386 break;
1387 case WI_RID_MAX_SLEEP:
1388 wreq->wi_val[0] = htole16(sc->wi_max_sleep);
1389 break;
1390 case WI_RID_AUTH_CNTL:
1391 wreq->wi_val[0] = htole16(sc->wi_authtype);
1392 break;
1393 case WI_RID_ROAMING_MODE:
1394 wreq->wi_val[0] = htole16(sc->wi_roaming);
1395 break;
1396 case WI_RID_WEP_AVAIL:
1397 wreq->wi_val[0] = htole16(sc->wi_has_wep);
1398 break;
1399 case WI_RID_ENCRYPTION:
1400 wreq->wi_val[0] = htole16(sc->wi_use_wep);
1401 break;
1402 case WI_RID_TX_CRYPT_KEY:
1403 wreq->wi_val[0] = htole16(sc->wi_tx_key);
1404 break;
1405 case WI_RID_DEFLT_CRYPT_KEYS:
1406 wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
1407 memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
1408 break;
1409 default:
1410 #if 0
1411 error = EIO;
1412 #else
1413 #ifdef WI_DEBUG
1414 printf("%s: wi_getdef: unknown request %d\n",
1415 sc->sc_dev.dv_xname, wreq->wi_type);
1416 #endif
1417 #endif
1418 break;
1419 }
1420
1421 return (error);
1422 }
1423
1424 static int
1425 wi_ioctl(ifp, command, data)
1426 struct ifnet *ifp;
1427 u_long command;
1428 caddr_t data;
1429 {
1430 int s, error = 0;
1431 int len;
1432 struct wi_softc *sc = ifp->if_softc;
1433 struct wi_req wreq;
1434 struct ifreq *ifr;
1435 struct proc *p = curproc;
1436 struct ieee80211_nwid nwid;
1437
1438 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1439 return (ENXIO);
1440
1441 s = splnet();
1442
1443 ifr = (struct ifreq *)data;
1444 switch (command) {
1445 case SIOCSIFADDR:
1446 case SIOCGIFADDR:
1447 case SIOCSIFMTU:
1448 error = ether_ioctl(ifp, command, data);
1449 break;
1450 case SIOCSIFFLAGS:
1451 if (ifp->if_flags & IFF_UP) {
1452 if (ifp->if_flags & IFF_RUNNING &&
1453 ifp->if_flags & IFF_PROMISC &&
1454 !(sc->wi_if_flags & IFF_PROMISC)) {
1455 WI_SETVAL(WI_RID_PROMISC, 1);
1456 } else if (ifp->if_flags & IFF_RUNNING &&
1457 !(ifp->if_flags & IFF_PROMISC) &&
1458 sc->wi_if_flags & IFF_PROMISC) {
1459 WI_SETVAL(WI_RID_PROMISC, 0);
1460 }
1461 wi_init(ifp);
1462 } else {
1463 if (ifp->if_flags & IFF_RUNNING) {
1464 wi_stop(ifp, 0);
1465 }
1466 }
1467 sc->wi_if_flags = ifp->if_flags;
1468
1469 if (!(ifp->if_flags & IFF_UP)) {
1470 if (sc->sc_enabled) {
1471 if (sc->sc_disable)
1472 (*sc->sc_disable)(sc);
1473 sc->sc_enabled = 0;
1474 ifp->if_flags &= ~IFF_RUNNING;
1475 }
1476 }
1477 error = 0;
1478 break;
1479 case SIOCADDMULTI:
1480 case SIOCDELMULTI:
1481 error = (command == SIOCADDMULTI) ?
1482 ether_addmulti(ifr, &sc->sc_ethercom) :
1483 ether_delmulti(ifr, &sc->sc_ethercom);
1484 if (error == ENETRESET) {
1485 if (sc->sc_enabled != 0) {
1486 /*
1487 * Multicast list has changed. Set the
1488 * hardware filter accordingly.
1489 */
1490 wi_setmulti(sc);
1491 }
1492 error = 0;
1493 }
1494 break;
1495 case SIOCSIFMEDIA:
1496 case SIOCGIFMEDIA:
1497 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1498 break;
1499 case SIOCGWAVELAN:
1500 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1501 if (error)
1502 break;
1503 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1504 memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats,
1505 sizeof(sc->wi_stats));
1506 wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1507 } else if (wreq.wi_type == WI_RID_READ_APS) {
1508 if (sc->wi_scanning) {
1509 error = EINPROGRESS;
1510 break;
1511 } else {
1512 len = sc->wi_naps * sizeof(struct wi_apinfo);
1513 len = len > WI_MAX_DATALEN ? WI_MAX_DATALEN : len;
1514 len = len / sizeof(struct wi_apinfo);
1515 memcpy((char *)&wreq.wi_val, (char *)&len, sizeof(len));
1516 memcpy((char *)&wreq.wi_val + sizeof(len),
1517 (char *)&sc->wi_aps,
1518 len * sizeof(struct wi_apinfo));
1519 }
1520 } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1521 /* For non-root user, return all-zeroes keys */
1522 if (suser(p->p_ucred, &p->p_acflag))
1523 memset((char *)&wreq, 0,
1524 sizeof(struct wi_ltv_keys));
1525 else
1526 memcpy((char *)&wreq, (char *)&sc->wi_keys,
1527 sizeof(struct wi_ltv_keys));
1528 } else {
1529 if (sc->sc_enabled == 0)
1530 error = wi_getdef(sc, &wreq);
1531 else if (wreq.wi_len > WI_MAX_DATALEN)
1532 error = EINVAL;
1533 else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1534 error = EINVAL;
1535 }
1536 if (error == 0)
1537 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1538 break;
1539 case SIOCSWAVELAN:
1540 error = suser(p->p_ucred, &p->p_acflag);
1541 if (error)
1542 break;
1543 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1544 if (error)
1545 break;
1546 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1547 if (sc->sc_enabled)
1548 wi_inquire(sc);
1549 break;
1550 } else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1551 error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1552 wreq.wi_len);
1553 } else if (wreq.wi_type == WI_RID_SCAN_APS) {
1554 if (wreq.wi_len != 4) {
1555 error = EINVAL;
1556 break;
1557 }
1558 if (!sc->wi_scanning) {
1559 if (sc->sc_firmware_type != WI_LUCENT) {
1560 wreq.wi_type = WI_RID_SCAN_REQ;
1561 error = wi_write_record(sc,
1562 (struct wi_ltv_gen *)&wreq);
1563 }
1564 if (!error) {
1565 sc->wi_scanning = 1;
1566 callout_reset(&sc->wi_scan_sh, hz * 1,
1567 wi_wait_scan, sc);
1568 }
1569 }
1570 } else {
1571 if (wreq.wi_len > WI_MAX_DATALEN)
1572 error = EINVAL;
1573 else if (sc->sc_enabled != 0)
1574 error = wi_write_record(sc,
1575 (struct wi_ltv_gen *)&wreq);
1576 if (error == 0)
1577 error = wi_setdef(sc, &wreq);
1578 if (error == 0 && sc->sc_enabled != 0)
1579 /* Reinitialize WaveLAN. */
1580 wi_init(ifp);
1581 }
1582 break;
1583 case SIOCG80211NWID:
1584 if (sc->sc_enabled == 0) {
1585 /* Return the desired ID */
1586 error = copyout(&sc->wi_netid, ifr->ifr_data,
1587 sizeof(sc->wi_netid));
1588 } else {
1589 wreq.wi_type = WI_RID_CURRENT_SSID;
1590 wreq.wi_len = WI_MAX_DATALEN;
1591 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
1592 le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
1593 error = EINVAL;
1594 else {
1595 wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
1596 le16toh(wreq.wi_val[0]));
1597 error = copyout(&nwid, ifr->ifr_data,
1598 sizeof(nwid));
1599 }
1600 }
1601 break;
1602 case SIOCS80211NWID:
1603 error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
1604 if (error != 0)
1605 break;
1606 if (nwid.i_len > IEEE80211_NWID_LEN) {
1607 error = EINVAL;
1608 break;
1609 }
1610 if (sc->wi_netid.i_len == nwid.i_len &&
1611 memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
1612 break;
1613 wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
1614 if (sc->sc_enabled != 0)
1615 /* Reinitialize WaveLAN. */
1616 wi_init(ifp);
1617 break;
1618 case SIOCS80211NWKEY:
1619 error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
1620 break;
1621 case SIOCG80211NWKEY:
1622 error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
1623 break;
1624 case SIOCS80211POWER:
1625 error = wi_set_pm(sc, (struct ieee80211_power *)data);
1626 break;
1627 case SIOCG80211POWER:
1628 error = wi_get_pm(sc, (struct ieee80211_power *)data);
1629 break;
1630
1631 default:
1632 error = EINVAL;
1633 break;
1634 }
1635
1636 splx(s);
1637 return (error);
1638 }
1639
1640 static int
1641 wi_init(ifp)
1642 struct ifnet *ifp;
1643 {
1644 struct wi_softc *sc = ifp->if_softc;
1645 struct wi_req wreq;
1646 struct wi_ltv_macaddr mac;
1647 int error, id = 0, wasenabled;
1648
1649 wasenabled = sc->sc_enabled;
1650 if (!sc->sc_enabled) {
1651 if ((error = (*sc->sc_enable)(sc)) != 0)
1652 goto out;
1653 sc->sc_enabled = 1;
1654 }
1655
1656 wi_stop(ifp, 0);
1657 /* Symbol firmware cannot be initialized more than once */
1658 if (!(sc->sc_firmware_type == WI_SYMBOL && wasenabled))
1659 wi_reset(sc);
1660
1661 /* Program max data length. */
1662 WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1663
1664 /* Enable/disable IBSS creation. */
1665 if (sc->sc_firmware_type == WI_LUCENT)
1666 WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1667
1668 /* Set the port type. */
1669 WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1670
1671 /* Program the RTS/CTS threshold. */
1672 WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1673
1674 /* Program the TX rate */
1675 WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1676
1677 /* Access point density */
1678 WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1679
1680 /* Power Management Enabled */
1681 WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1682
1683 /* Power Managment Max Sleep */
1684 WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1685
1686 /* Roaming type */
1687 WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
1688
1689 /* Specify the IBSS name */
1690 wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
1691
1692 /* Specify the network name */
1693 wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
1694
1695 /* Specify the frequency to use */
1696 WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1697
1698 /* Program the nodename. */
1699 wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
1700
1701 /* Set our MAC address. */
1702 mac.wi_len = 4;
1703 mac.wi_type = WI_RID_MAC_NODE;
1704 memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
1705 wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1706
1707 /* Initialize promisc mode. */
1708 if (ifp->if_flags & IFF_PROMISC) {
1709 WI_SETVAL(WI_RID_PROMISC, 1);
1710 } else {
1711 WI_SETVAL(WI_RID_PROMISC, 0);
1712 }
1713
1714 /* Configure WEP. */
1715 if (sc->wi_has_wep) {
1716 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1717 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1718 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1719 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1720 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1721 if (sc->sc_firmware_type != WI_LUCENT && sc->wi_use_wep) {
1722 /*
1723 * ONLY HWB3163 EVAL-CARD Firmware version
1724 * less than 0.8 variant2
1725 *
1726 * If promiscuous mode disable, Prism2 chip
1727 * does not work with WEP .
1728 * It is under investigation for details.
1729 * (ichiro (at) netbsd.org)
1730 */
1731 if (sc->sc_firmware_type == WI_INTERSIL &&
1732 sc->sc_sta_firmware_ver < 802 ) {
1733 /* firm ver < 0.8 variant 2 */
1734 WI_SETVAL(WI_RID_PROMISC, 1);
1735 }
1736 WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
1737 }
1738 }
1739
1740 /* Set multicast filter. */
1741 wi_setmulti(sc);
1742
1743 /* Enable desired port */
1744 wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
1745
1746 /* scanning variable is modal, therefore reinit to OFF, in case it was on. */
1747 sc->wi_scanning=0;
1748 sc->wi_naps=0;
1749
1750 if ((error = wi_alloc_nicmem(sc,
1751 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1752 printf("%s: tx buffer allocation failed\n",
1753 sc->sc_dev.dv_xname);
1754 goto out;
1755 }
1756 sc->wi_tx_data_id = id;
1757
1758 if ((error = wi_alloc_nicmem(sc,
1759 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1760 printf("%s: mgmt. buffer allocation failed\n",
1761 sc->sc_dev.dv_xname);
1762 goto out;
1763 }
1764 sc->wi_tx_mgmt_id = id;
1765
1766 /* Enable interrupts */
1767 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1768
1769 ifp->if_flags |= IFF_RUNNING;
1770 ifp->if_flags &= ~IFF_OACTIVE;
1771
1772 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
1773
1774 out:
1775 if (error) {
1776 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1777 ifp->if_timer = 0;
1778 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1779 }
1780 return (error);
1781 }
1782
1783 static void
1784 wi_start(ifp)
1785 struct ifnet *ifp;
1786 {
1787 struct wi_softc *sc;
1788 struct mbuf *m0;
1789 struct wi_frame tx_frame;
1790 struct ether_header *eh;
1791 int id;
1792
1793 sc = ifp->if_softc;
1794
1795 if (ifp->if_flags & IFF_OACTIVE)
1796 return;
1797
1798 IFQ_DEQUEUE(&ifp->if_snd, m0);
1799 if (m0 == NULL)
1800 return;
1801
1802 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1803 id = sc->wi_tx_data_id;
1804 eh = mtod(m0, struct ether_header *);
1805
1806 /*
1807 * Use RFC1042 encoding for IP and ARP datagrams,
1808 * 802.3 for anything else.
1809 */
1810 if (ntohs(eh->ether_type) == ETHERTYPE_IP ||
1811 ntohs(eh->ether_type) == ETHERTYPE_ARP ||
1812 ntohs(eh->ether_type) == ETHERTYPE_REVARP ||
1813 ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
1814 memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost,
1815 ETHER_ADDR_LEN);
1816 memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost,
1817 ETHER_ADDR_LEN);
1818 memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost,
1819 ETHER_ADDR_LEN);
1820 memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost,
1821 ETHER_ADDR_LEN);
1822
1823 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1824 tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
1825 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1826 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1827 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1828 tx_frame.wi_type = eh->ether_type;
1829
1830 m_copydata(m0, sizeof(struct ether_header),
1831 m0->m_pkthdr.len - sizeof(struct ether_header),
1832 (caddr_t)&sc->wi_txbuf);
1833
1834 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1835 sizeof(struct wi_frame));
1836 wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1837 (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1838 } else {
1839 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
1840
1841 m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1842
1843 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1844 sizeof(struct wi_frame));
1845 wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1846 m0->m_pkthdr.len + 2);
1847 }
1848
1849 #if NBPFILTER > 0
1850 /*
1851 * If there's a BPF listener, bounce a copy of
1852 * this frame to him.
1853 */
1854 if (ifp->if_bpf)
1855 bpf_mtap(ifp->if_bpf, m0);
1856 #endif
1857
1858 m_freem(m0);
1859
1860 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1861 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1862
1863 ifp->if_flags |= IFF_OACTIVE;
1864
1865 /*
1866 * Set a timeout in case the chip goes out to lunch.
1867 */
1868 ifp->if_timer = 5;
1869
1870 return;
1871 }
1872
1873 static int
1874 wi_mgmt_xmit(sc, data, len)
1875 struct wi_softc *sc;
1876 caddr_t data;
1877 int len;
1878 {
1879 struct wi_frame tx_frame;
1880 int id;
1881 struct wi_80211_hdr *hdr;
1882 caddr_t dptr;
1883
1884 hdr = (struct wi_80211_hdr *)data;
1885 dptr = data + sizeof(struct wi_80211_hdr);
1886
1887 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1888 id = sc->wi_tx_mgmt_id;
1889
1890 memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr,
1891 sizeof(struct wi_80211_hdr));
1892
1893 tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
1894 tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1895
1896 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1897 wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1898 (len - sizeof(struct wi_80211_hdr)) + 2);
1899
1900 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1901 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1902 return(EIO);
1903 }
1904
1905 return(0);
1906 }
1907
1908 static void
1909 wi_stop(ifp, disable)
1910 struct ifnet *ifp;
1911 {
1912 struct wi_softc *sc = ifp->if_softc;
1913
1914 CSR_WRITE_2(sc, WI_INT_EN, 0);
1915 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1916
1917 callout_stop(&sc->wi_inquire_ch);
1918 callout_stop(&sc->wi_scan_sh);
1919
1920 if (disable) {
1921 if (sc->sc_enabled) {
1922 if (sc->sc_disable)
1923 (*sc->sc_disable)(sc);
1924 sc->sc_enabled = 0;
1925 }
1926 }
1927
1928 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1929 ifp->if_timer = 0;
1930 }
1931
1932 static void
1933 wi_watchdog(ifp)
1934 struct ifnet *ifp;
1935 {
1936 struct wi_softc *sc;
1937
1938 sc = ifp->if_softc;
1939
1940 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1941
1942 wi_init(ifp);
1943
1944 ifp->if_oerrors++;
1945
1946 return;
1947 }
1948
1949 void
1950 wi_shutdown(sc)
1951 struct wi_softc *sc;
1952 {
1953 int s;
1954
1955 s = splnet();
1956 if (sc->sc_enabled) {
1957 if (sc->sc_disable)
1958 (*sc->sc_disable)(sc);
1959 sc->sc_enabled = 0;
1960 }
1961 splx(s);
1962 }
1963
1964 int
1965 wi_activate(self, act)
1966 struct device *self;
1967 enum devact act;
1968 {
1969 struct wi_softc *sc = (struct wi_softc *)self;
1970 int rv = 0, s;
1971
1972 s = splnet();
1973 switch (act) {
1974 case DVACT_ACTIVATE:
1975 rv = EOPNOTSUPP;
1976 break;
1977
1978 case DVACT_DEACTIVATE:
1979 if_deactivate(&sc->sc_ethercom.ec_if);
1980 break;
1981 }
1982 splx(s);
1983 return (rv);
1984 }
1985
1986 static void
1987 wi_get_id(sc)
1988 struct wi_softc *sc;
1989 {
1990 struct wi_ltv_ver ver;
1991 struct wi_card_ident *id;
1992
1993 /* getting chip identity */
1994 memset(&ver, 0, sizeof(ver));
1995 ver.wi_type = WI_RID_CARD_ID;
1996 ver.wi_len = 5;
1997 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1998 printf("%s: using ", sc->sc_dev.dv_xname);
1999
2000 sc->sc_firmware_type = NULL;
2001 for (id = wi_card_ident; id->card_name != NULL; id++) {
2002 if (le16toh(ver.wi_ver[0]) == id->card_id) {
2003 printf("%s", id->card_name);
2004 sc->sc_firmware_type = id->firm_type;
2005 break;
2006 }
2007 }
2008 if (!sc->sc_firmware_type) {
2009 if (le16toh(ver.wi_ver[0]) & 0x8000) {
2010 printf("Unknown PRISM2 chip");
2011 sc->sc_firmware_type = WI_INTERSIL;
2012 } else {
2013 printf("Unknown Lucent chip");
2014 sc->sc_firmware_type = WI_LUCENT;
2015 }
2016 }
2017
2018 /* get primary firmware version */
2019 memset(&ver, 0, sizeof(ver));
2020 ver.wi_type = WI_RID_PRI_IDENTITY;
2021 ver.wi_len = 5;
2022 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
2023 LE16TOH(ver.wi_ver[1]);
2024 LE16TOH(ver.wi_ver[2]);
2025 LE16TOH(ver.wi_ver[3]);
2026 sc->sc_pri_firmware_ver = ver.wi_ver[2] * 10000 +
2027 ver.wi_ver[3] * 100 + ver.wi_ver[1];
2028
2029 /* get station firmware version */
2030 memset(&ver, 0, sizeof(ver));
2031 ver.wi_type = WI_RID_STA_IDENTITY;
2032 ver.wi_len = 5;
2033 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
2034 LE16TOH(ver.wi_ver[1]);
2035 LE16TOH(ver.wi_ver[2]);
2036 LE16TOH(ver.wi_ver[3]);
2037 sc->sc_sta_firmware_ver = ver.wi_ver[2] * 10000 +
2038 ver.wi_ver[3] * 100 + ver.wi_ver[1];
2039 if (sc->sc_firmware_type == WI_INTERSIL &&
2040 (sc->sc_sta_firmware_ver == 10102 || sc->sc_sta_firmware_ver == 20102)) {
2041 struct wi_ltv_str sver;
2042 char *p;
2043
2044 memset(&sver, 0, sizeof(sver));
2045 sver.wi_type = WI_RID_SYMBOL_IDENTITY;
2046 sver.wi_len = 7;
2047 /* value should be "V2.00-11" */
2048 if (wi_read_record(sc, (struct wi_ltv_gen *)&sver) == 0 &&
2049 *(p = (char *)sver.wi_str) == 'V' &&
2050 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
2051 sc->sc_firmware_type = WI_SYMBOL;
2052 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
2053 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
2054 (p[6] - '0') * 10 + (p[7] - '0');
2055 }
2056 }
2057
2058 printf("\n%s Firmware: ",
2059 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
2060 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
2061 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
2062 printf("Primary (%u.%u.%u), ", sc->sc_pri_firmware_ver / 10000,
2063 (sc->sc_pri_firmware_ver % 10000) / 100,
2064 sc->sc_pri_firmware_ver % 100);
2065 printf("Station (%u.%u.%u)\n",
2066 sc->sc_sta_firmware_ver / 10000, (sc->sc_sta_firmware_ver % 10000) / 100,
2067 sc->sc_sta_firmware_ver % 100);
2068
2069 return;
2070 }
2071
2072 int
2073 wi_detach(sc)
2074 struct wi_softc *sc;
2075 {
2076 struct ifnet *ifp = sc->sc_ifp;
2077 int s;
2078
2079 if (!sc->sc_attached)
2080 return (0);
2081
2082 s = splnet();
2083 callout_stop(&sc->wi_inquire_ch);
2084
2085 /* Delete all remaining media. */
2086 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
2087
2088 ether_ifdetach(ifp);
2089 if_detach(ifp);
2090 if (sc->sc_enabled) {
2091 if (sc->sc_disable)
2092 (*sc->sc_disable)(sc);
2093 sc->sc_enabled = 0;
2094 }
2095 splx(s);
2096 return (0);
2097 }
2098
2099 void
2100 wi_power(sc, why)
2101 struct wi_softc *sc;
2102 int why;
2103 {
2104 int s;
2105
2106 if (!sc->sc_enabled)
2107 return;
2108
2109 s = splnet();
2110 switch (why) {
2111 case PWR_SUSPEND:
2112 case PWR_STANDBY:
2113 wi_stop(sc->sc_ifp, 0);
2114 if (sc->sc_enabled) {
2115 if (sc->sc_disable)
2116 (*sc->sc_disable)(sc);
2117 }
2118 break;
2119 case PWR_RESUME:
2120 sc->sc_enabled = 0;
2121 wi_init(sc->sc_ifp);
2122 (void)wi_intr(sc);
2123 break;
2124 case PWR_SOFTSUSPEND:
2125 case PWR_SOFTSTANDBY:
2126 case PWR_SOFTRESUME:
2127 break;
2128 }
2129 splx(s);
2130 }
2131
2132 static int
2133 wi_set_ssid(ws, id, len)
2134 struct ieee80211_nwid *ws;
2135 u_int8_t *id;
2136 int len;
2137 {
2138
2139 if (len > IEEE80211_NWID_LEN)
2140 return (EINVAL);
2141 ws->i_len = len;
2142 memcpy(ws->i_nwid, id, len);
2143 return (0);
2144 }
2145
2146 static void
2147 wi_request_fill_ssid(wreq, ws)
2148 struct wi_req *wreq;
2149 struct ieee80211_nwid *ws;
2150 {
2151 int len = ws->i_len;
2152
2153 memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
2154 wreq->wi_val[0] = htole16(len);
2155 wreq->wi_len = roundup(len, 2) / 2 + 2;
2156 memcpy(&wreq->wi_val[1], ws->i_nwid, len);
2157 }
2158
2159 static int
2160 wi_write_ssid(sc, type, wreq, ws)
2161 struct wi_softc *sc;
2162 int type;
2163 struct wi_req *wreq;
2164 struct ieee80211_nwid *ws;
2165 {
2166
2167 wreq->wi_type = type;
2168 wi_request_fill_ssid(wreq, ws);
2169 return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
2170 }
2171
2172 static int
2173 wi_sync_media(sc, ptype, txrate)
2174 struct wi_softc *sc;
2175 int ptype;
2176 int txrate;
2177 {
2178 int media = sc->sc_media.ifm_cur->ifm_media;
2179 int options = IFM_OPTIONS(media);
2180 int subtype;
2181
2182 switch (txrate) {
2183 case 1:
2184 subtype = IFM_IEEE80211_DS1;
2185 break;
2186 case 2:
2187 subtype = IFM_IEEE80211_DS2;
2188 break;
2189 case 3:
2190 subtype = IFM_AUTO;
2191 break;
2192 case 5:
2193 subtype = IFM_IEEE80211_DS5;
2194 break;
2195 case 11:
2196 subtype = IFM_IEEE80211_DS11;
2197 break;
2198 default:
2199 subtype = IFM_MANUAL; /* Unable to represent */
2200 break;
2201 }
2202 switch (ptype) {
2203 case WI_PORTTYPE_ADHOC:
2204 options |= IFM_IEEE80211_ADHOC;
2205 break;
2206 case WI_PORTTYPE_BSS:
2207 options &= ~IFM_IEEE80211_ADHOC;
2208 break;
2209 default:
2210 subtype = IFM_MANUAL; /* Unable to represent */
2211 break;
2212 }
2213 media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
2214 IFM_INST(media));
2215 if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
2216 return (EINVAL);
2217 ifmedia_set(&sc->sc_media, media);
2218 sc->wi_ptype = ptype;
2219 sc->wi_tx_rate = txrate;
2220 return (0);
2221 }
2222
2223 static int
2224 wi_media_change(ifp)
2225 struct ifnet *ifp;
2226 {
2227 struct wi_softc *sc = ifp->if_softc;
2228 int otype = sc->wi_ptype;
2229 int orate = sc->wi_tx_rate;
2230
2231 if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2232 sc->wi_ptype = WI_PORTTYPE_ADHOC;
2233 else
2234 sc->wi_ptype = WI_PORTTYPE_BSS;
2235
2236 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
2237 case IFM_IEEE80211_DS1:
2238 sc->wi_tx_rate = 1;
2239 break;
2240 case IFM_IEEE80211_DS2:
2241 sc->wi_tx_rate = 2;
2242 break;
2243 case IFM_AUTO:
2244 sc->wi_tx_rate = 3;
2245 break;
2246 case IFM_IEEE80211_DS5:
2247 sc->wi_tx_rate = 5;
2248 break;
2249 case IFM_IEEE80211_DS11:
2250 sc->wi_tx_rate = 11;
2251 break;
2252 }
2253
2254 if (sc->sc_enabled != 0) {
2255 if (otype != sc->wi_ptype ||
2256 orate != sc->wi_tx_rate)
2257 wi_init(ifp);
2258 }
2259
2260 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
2261
2262 return (0);
2263 }
2264
2265 static void
2266 wi_media_status(ifp, imr)
2267 struct ifnet *ifp;
2268 struct ifmediareq *imr;
2269 {
2270 struct wi_softc *sc = ifp->if_softc;
2271
2272 if (sc->sc_enabled == 0) {
2273 imr->ifm_active = IFM_IEEE80211|IFM_NONE;
2274 imr->ifm_status = 0;
2275 return;
2276 }
2277
2278 imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
2279 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2280 }
2281
2282 static int
2283 wi_set_nwkey(sc, nwkey)
2284 struct wi_softc *sc;
2285 struct ieee80211_nwkey *nwkey;
2286 {
2287 int i, error;
2288 size_t len;
2289 struct wi_req wreq;
2290 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
2291
2292 if (!sc->wi_has_wep)
2293 return ENODEV;
2294 if (nwkey->i_defkid <= 0 ||
2295 nwkey->i_defkid > IEEE80211_WEP_NKID)
2296 return EINVAL;
2297 memcpy(wk, &sc->wi_keys, sizeof(*wk));
2298 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2299 if (nwkey->i_key[i].i_keydat == NULL)
2300 continue;
2301 len = nwkey->i_key[i].i_keylen;
2302 if (len > sizeof(wk->wi_keys[i].wi_keydat))
2303 return EINVAL;
2304 error = copyin(nwkey->i_key[i].i_keydat,
2305 wk->wi_keys[i].wi_keydat, len);
2306 if (error)
2307 return error;
2308 wk->wi_keys[i].wi_keylen = htole16(len);
2309 }
2310
2311 wk->wi_len = (sizeof(*wk) / 2) + 1;
2312 wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2313 if (sc->sc_enabled != 0) {
2314 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2315 if (error)
2316 return error;
2317 }
2318 error = wi_setdef(sc, &wreq);
2319 if (error)
2320 return error;
2321
2322 wreq.wi_len = 2;
2323 wreq.wi_type = WI_RID_TX_CRYPT_KEY;
2324 wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
2325 if (sc->sc_enabled != 0) {
2326 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2327 if (error)
2328 return error;
2329 }
2330 error = wi_setdef(sc, &wreq);
2331 if (error)
2332 return error;
2333
2334 wreq.wi_type = WI_RID_ENCRYPTION;
2335 wreq.wi_val[0] = htole16(nwkey->i_wepon);
2336 if (sc->sc_enabled != 0) {
2337 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2338 if (error)
2339 return error;
2340 }
2341 error = wi_setdef(sc, &wreq);
2342 if (error)
2343 return error;
2344
2345 if (sc->sc_enabled != 0)
2346 wi_init(&sc->sc_ethercom.ec_if);
2347 return 0;
2348 }
2349
2350 static int
2351 wi_get_nwkey(sc, nwkey)
2352 struct wi_softc *sc;
2353 struct ieee80211_nwkey *nwkey;
2354 {
2355 int i, len, error;
2356 struct wi_ltv_keys *wk = &sc->wi_keys;
2357
2358 if (!sc->wi_has_wep)
2359 return ENODEV;
2360 nwkey->i_wepon = sc->wi_use_wep;
2361 nwkey->i_defkid = sc->wi_tx_key + 1;
2362
2363 /* do not show any keys to non-root user */
2364 error = suser(curproc->p_ucred, &curproc->p_acflag);
2365 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2366 if (nwkey->i_key[i].i_keydat == NULL)
2367 continue;
2368 /* error holds results of suser() for the first time */
2369 if (error)
2370 return error;
2371 len = le16toh(wk->wi_keys[i].wi_keylen);
2372 if (nwkey->i_key[i].i_keylen < len)
2373 return ENOSPC;
2374 nwkey->i_key[i].i_keylen = len;
2375 error = copyout(wk->wi_keys[i].wi_keydat,
2376 nwkey->i_key[i].i_keydat, len);
2377 if (error)
2378 return error;
2379 }
2380 return 0;
2381 }
2382
2383 static int
2384 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
2385 {
2386
2387 sc->wi_pm_enabled = power->i_enabled;
2388 sc->wi_max_sleep = power->i_maxsleep;
2389
2390 if (sc->sc_enabled)
2391 return (wi_init(&sc->sc_ethercom.ec_if));
2392
2393 return (0);
2394 }
2395
2396 static int
2397 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
2398 {
2399
2400 power->i_enabled = sc->wi_pm_enabled;
2401 power->i_maxsleep = sc->wi_max_sleep;
2402
2403 return (0);
2404 }
2405