wi.c revision 1.66 1 /* $NetBSD: wi.c,v 1.66 2002/04/04 17:43:31 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.66 2002/04/04 17:43:31 jdolecek Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static void wi_reset __P((struct wi_softc *));
108 static int wi_ioctl __P((struct ifnet *, u_long, caddr_t));
109 static void wi_start __P((struct ifnet *));
110 static void wi_watchdog __P((struct ifnet *));
111 static int wi_init __P((struct ifnet *));
112 static void wi_stop __P((struct ifnet *, int));
113 static void wi_rxeof __P((struct wi_softc *));
114 static void wi_txeof __P((struct wi_softc *, int));
115 static void wi_update_stats __P((struct wi_softc *));
116 static void wi_setmulti __P((struct wi_softc *));
117
118 static int wi_cmd __P((struct wi_softc *, int, int));
119 static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *));
120 static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *));
121 static int wi_read_data __P((struct wi_softc *, int,
122 int, caddr_t, int));
123 static int wi_write_data __P((struct wi_softc *, int,
124 int, caddr_t, int));
125 static int wi_seek __P((struct wi_softc *, int, int, int));
126 static int wi_alloc_nicmem __P((struct wi_softc *, int, int *));
127 static void wi_inquire __P((void *));
128 static void wi_wait_scan __P((void *));
129 static int wi_setdef __P((struct wi_softc *, struct wi_req *));
130 static int wi_getdef __P((struct wi_softc *, struct wi_req *));
131 static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int));
132
133 static int wi_media_change __P((struct ifnet *));
134 static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
135
136 static void wi_get_id __P((struct wi_softc *));
137
138 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
139 static void wi_request_fill_ssid __P((struct wi_req *,
140 struct ieee80211_nwid *));
141 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
142 struct ieee80211_nwid *));
143 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
144 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
145 static int wi_sync_media __P((struct wi_softc *, int, int));
146 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
147 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
148
149 struct wi_card_ident wi_card_ident[] = {
150 /* CARD_ID CARD_NAME FIRM_TYPE */
151 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
152 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
153 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
154 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
155 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
156 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
157 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
158 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
159 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
160 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
161 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
162 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
163 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
164 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
165 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
166 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
167 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
168 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
169 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
170 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
171 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
172 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
173 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
174 { 0, NULL, 0 },
175 };
176
177 int
178 wi_attach(sc)
179 struct wi_softc *sc;
180 {
181 struct ifnet *ifp = sc->sc_ifp;
182 struct wi_ltv_macaddr mac;
183 struct wi_ltv_gen gen;
184 static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
185 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
186 };
187 int s;
188
189 s = splnet();
190
191 callout_init(&sc->wi_inquire_ch);
192 callout_init(&sc->wi_scan_sh);
193
194 /* Make sure interrupts are disabled. */
195 CSR_WRITE_2(sc, WI_INT_EN, 0);
196 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
197
198 /* Reset the NIC. */
199 wi_reset(sc);
200
201 memset(&mac, 0, sizeof(mac));
202 /* Read the station address. */
203 mac.wi_type = WI_RID_MAC_NODE;
204 mac.wi_len = 4;
205 wi_read_record(sc, (struct wi_ltv_gen *)&mac);
206 memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
207
208 /*
209 * Check if we got anything meaningful.
210 *
211 * Is it really enough just checking against null ethernet address?
212 * Or, check against possible vendor? XXX.
213 */
214 if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
215 printf("could not get mac address, attach failed\n");
216 splx(s);
217 return 1;
218 }
219
220 printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
221
222 /* Read NIC identification */
223 wi_get_id(sc);
224
225 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
226 ifp->if_softc = sc;
227 ifp->if_start = wi_start;
228 ifp->if_ioctl = wi_ioctl;
229 ifp->if_watchdog = wi_watchdog;
230 ifp->if_init = wi_init;
231 ifp->if_stop = wi_stop;
232 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
233 #ifdef IFF_NOTRAILERS
234 ifp->if_flags |= IFF_NOTRAILERS;
235 #endif
236 IFQ_SET_READY(&ifp->if_snd);
237
238 (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
239 sizeof(WI_DEFAULT_NODENAME) - 1);
240 (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
241 sizeof(WI_DEFAULT_NETNAME) - 1);
242 (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
243 sizeof(WI_DEFAULT_IBSS) - 1);
244
245 sc->wi_portnum = WI_DEFAULT_PORT;
246 sc->wi_ptype = WI_PORTTYPE_BSS;
247 sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
248 sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
249 sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
250 sc->wi_max_data_len = WI_DEFAULT_DATALEN;
251 sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
252 sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
253 sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
254 sc->wi_roaming = WI_DEFAULT_ROAMING;
255 sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
256
257 /*
258 * Read the default channel from the NIC. This may vary
259 * depending on the country where the NIC was purchased, so
260 * we can't hard-code a default and expect it to work for
261 * everyone.
262 */
263 gen.wi_type = WI_RID_OWN_CHNL;
264 gen.wi_len = 2;
265 wi_read_record(sc, &gen);
266 sc->wi_channel = le16toh(gen.wi_val);
267
268 memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats));
269
270 /* AP info was filled with 0 */
271 memset((char *)&sc->wi_aps, 0, sizeof(sc->wi_aps));
272 sc->wi_scanning=0;
273 sc->wi_naps=0;
274
275 /*
276 * Find out if we support WEP on this card.
277 */
278 gen.wi_type = WI_RID_WEP_AVAIL;
279 gen.wi_len = 2;
280 wi_read_record(sc, &gen);
281 sc->wi_has_wep = le16toh(gen.wi_val);
282
283 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
284 #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL)
285 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
286 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0);
287 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
288 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
289 IFM_IEEE80211_ADHOC, 0), 0);
290 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
291 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
292 IFM_IEEE80211_ADHOC, 0), 0);
293 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
294 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
295 IFM_IEEE80211_ADHOC, 0), 0);
296 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
297 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
298 IFM_IEEE80211_ADHOC, 0), 0);
299 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
300 #undef ADD
301 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
302
303 /*
304 * Call MI attach routines.
305 */
306 if_attach(ifp);
307 ether_ifattach(ifp, mac.wi_mac_addr);
308
309 ifp->if_baudrate = IF_Mbps(2);
310
311 /* Attach is successful. */
312 sc->sc_attached = 1;
313
314 splx(s);
315 return 0;
316 }
317
318 static void wi_rxeof(sc)
319 struct wi_softc *sc;
320 {
321 struct ifnet *ifp;
322 struct ether_header *eh;
323 struct wi_frame rx_frame;
324 struct mbuf *m;
325 int id;
326
327 ifp = sc->sc_ifp;
328
329 id = CSR_READ_2(sc, WI_RX_FID);
330
331 /* First read in the frame header */
332 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
333 ifp->if_ierrors++;
334 return;
335 }
336
337 /*
338 * Drop undecryptable or packets with receive errors here
339 */
340 if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) {
341 ifp->if_ierrors++;
342 return;
343 }
344
345 MGETHDR(m, M_DONTWAIT, MT_DATA);
346 if (m == NULL) {
347 ifp->if_ierrors++;
348 return;
349 }
350 MCLGET(m, M_DONTWAIT);
351 if (!(m->m_flags & M_EXT)) {
352 m_freem(m);
353 ifp->if_ierrors++;
354 return;
355 }
356
357 /* Align the data after the ethernet header */
358 m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
359 - sizeof(struct ether_header);
360
361 eh = mtod(m, struct ether_header *);
362 m->m_pkthdr.rcvif = ifp;
363
364 if (le16toh(rx_frame.wi_status) == WI_STAT_1042 ||
365 le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL ||
366 le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) {
367 if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
368 printf("%s: oversized packet received "
369 "(wi_dat_len=%d, wi_status=0x%x)\n",
370 sc->sc_dev.dv_xname,
371 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
372 m_freem(m);
373 ifp->if_ierrors++;
374 return;
375 }
376 m->m_pkthdr.len = m->m_len =
377 le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
378
379 memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr,
380 ETHER_ADDR_LEN);
381 memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr,
382 ETHER_ADDR_LEN);
383 memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type,
384 sizeof(u_int16_t));
385
386 if (wi_read_data(sc, id, WI_802_11_OFFSET,
387 mtod(m, caddr_t) + sizeof(struct ether_header),
388 m->m_len + 2)) {
389 m_freem(m);
390 ifp->if_ierrors++;
391 return;
392 }
393 } else {
394 if ((le16toh(rx_frame.wi_dat_len) +
395 sizeof(struct ether_header)) > MCLBYTES) {
396 printf("%s: oversized packet received "
397 "(wi_dat_len=%d, wi_status=0x%x)\n",
398 sc->sc_dev.dv_xname,
399 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
400 m_freem(m);
401 ifp->if_ierrors++;
402 return;
403 }
404 m->m_pkthdr.len = m->m_len =
405 le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
406
407 if (wi_read_data(sc, id, WI_802_3_OFFSET,
408 mtod(m, caddr_t), m->m_len + 2)) {
409 m_freem(m);
410 ifp->if_ierrors++;
411 return;
412 }
413 }
414
415 ifp->if_ipackets++;
416
417 #if NBPFILTER > 0
418 /* Handle BPF listeners. */
419 if (ifp->if_bpf)
420 bpf_mtap(ifp->if_bpf, m);
421 #endif
422
423 /* Receive packet. */
424 (*ifp->if_input)(ifp, m);
425 }
426
427 static void wi_txeof(sc, status)
428 struct wi_softc *sc;
429 int status;
430 {
431 struct ifnet *ifp = sc->sc_ifp;
432
433 ifp->if_timer = 0;
434 ifp->if_flags &= ~IFF_OACTIVE;
435
436 if (status & WI_EV_TX_EXC)
437 ifp->if_oerrors++;
438 else
439 ifp->if_opackets++;
440
441 return;
442 }
443
444 void wi_inquire(xsc)
445 void *xsc;
446 {
447 struct wi_softc *sc;
448 struct ifnet *ifp;
449 int s;
450
451 sc = xsc;
452 ifp = &sc->sc_ethercom.ec_if;
453
454 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
455 return;
456
457 KASSERT(sc->sc_enabled);
458
459 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
460
461 /* Don't do this while we're transmitting */
462 if (ifp->if_flags & IFF_OACTIVE)
463 return;
464
465 s = splnet();
466 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
467 splx(s);
468 }
469
470 void wi_wait_scan(xsc)
471 void *xsc;
472 {
473 struct wi_softc *sc;
474 struct ifnet *ifp;
475 int s, result;
476
477 sc = xsc;
478 ifp = &sc->sc_ethercom.ec_if;
479
480 /* If not scanning, ignore */
481 if (!sc->wi_scanning)
482 return;
483
484 s = splnet();
485
486 /* Wait for sending complete to make INQUIRE */
487 if (ifp->if_flags & IFF_OACTIVE) {
488 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
489 splx(s);
490 return;
491 }
492
493 /* try INQUIRE */
494 result = wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS);
495 if (result == ETIMEDOUT)
496 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
497
498 splx(s);
499 }
500
501 void wi_update_stats(sc)
502 struct wi_softc *sc;
503 {
504 struct wi_ltv_gen gen;
505 struct wi_scan_header ap2_header; /* Prism2 header */
506 struct wi_scan_data_p2 ap2; /* Prism2 scantable*/
507 struct wi_scan_data ap; /* Lucent scantable */
508 struct wi_assoc assoc; /* Association Status */
509 u_int16_t id;
510 struct ifnet *ifp;
511 u_int32_t *ptr;
512 int len, naps, i, j;
513 u_int16_t t;
514
515 ifp = &sc->sc_ethercom.ec_if;
516
517 id = CSR_READ_2(sc, WI_INFO_FID);
518
519 if (wi_seek(sc, id, 0, WI_BAP1)) {
520 return;
521 }
522
523 gen.wi_len = CSR_READ_2(sc, WI_DATA1);
524 gen.wi_type = CSR_READ_2(sc, WI_DATA1);
525
526 switch (gen.wi_type) {
527 case WI_INFO_SCAN_RESULTS:
528 if (gen.wi_len <= 3) {
529 sc->wi_naps = 0;
530 sc->wi_scanning = 0;
531 break;
532 }
533 switch (sc->sc_firmware_type) {
534 case WI_INTERSIL:
535 naps = 2 * (gen.wi_len - 3) / sizeof(ap2);
536 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
537 sc->wi_naps = naps;
538 /* Read Header */
539 for(j=0; j < sizeof(ap2_header) / 2; j++)
540 ((u_int16_t *)&ap2_header)[j] =
541 CSR_READ_2(sc, WI_DATA1);
542 /* Read Data */
543 for (i=0; i < naps; i++) {
544 for(j=0; j < sizeof(ap2) / 2; j++)
545 ((u_int16_t *)&ap2)[j] =
546 CSR_READ_2(sc, WI_DATA1);
547 /* unswap 8 bit data fields: */
548 for(j=0;j<sizeof(ap.wi_bssid)/2;j++)
549 LE16TOH(((u_int16_t *)&ap.wi_bssid[0])[j]);
550 for(j=0;j<sizeof(ap.wi_name)/2;j++)
551 LE16TOH(((u_int16_t *)&ap.wi_name[0])[j]);
552 sc->wi_aps[i].scanreason = ap2_header.wi_reason;
553 memcpy(sc->wi_aps[i].bssid, ap2.wi_bssid, 6);
554 sc->wi_aps[i].channel = ap2.wi_chid;
555 sc->wi_aps[i].signal = ap2.wi_signal;
556 sc->wi_aps[i].noise = ap2.wi_noise;
557 sc->wi_aps[i].quality = ap2.wi_signal - ap2.wi_noise;
558 sc->wi_aps[i].capinfo = ap2.wi_capinfo;
559 sc->wi_aps[i].interval = ap2.wi_interval;
560 sc->wi_aps[i].rate = ap2.wi_rate;
561 if (ap2.wi_namelen > 32)
562 ap2.wi_namelen = 32;
563 sc->wi_aps[i].namelen = ap2.wi_namelen;
564 memcpy(sc->wi_aps[i].name, ap2.wi_name,
565 ap2.wi_namelen);
566 }
567 break;
568
569 case WI_LUCENT:
570 naps = 2 * gen.wi_len / sizeof(ap);
571 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
572 sc->wi_naps = naps;
573 /* Read Data*/
574 for (i=0; i < naps; i++) {
575 for(j=0; j < sizeof(ap) / 2; j++)
576 ((u_int16_t *)&ap)[j] =
577 CSR_READ_2(sc, WI_DATA1);
578 /* unswap 8 bit data fields: */
579 for(j=0;j<sizeof(ap.wi_bssid)/2;j++)
580 HTOLE16(((u_int16_t *)&ap.wi_bssid[0])[j]);
581 for(j=0;j<sizeof(ap.wi_name)/2;j++)
582 HTOLE16(((u_int16_t *)&ap.wi_name[0])[j]);
583 memcpy(sc->wi_aps[i].bssid, ap.wi_bssid, 6);
584 sc->wi_aps[i].channel = ap.wi_chid;
585 sc->wi_aps[i].signal = ap.wi_signal;
586 sc->wi_aps[i].noise = ap.wi_noise;
587 sc->wi_aps[i].quality = ap.wi_signal - ap.wi_noise;
588 sc->wi_aps[i].capinfo = ap.wi_capinfo;
589 sc->wi_aps[i].interval = ap.wi_interval;
590 if (ap.wi_namelen > 32)
591 ap.wi_namelen = 32;
592 sc->wi_aps[i].namelen = ap.wi_namelen;
593 memcpy(sc->wi_aps[i].name, ap.wi_name,
594 ap.wi_namelen);
595 }
596 break;
597 case WI_SYMBOL:
598 /* unknown */
599 break;
600 }
601 /* Done scanning */
602 sc->wi_scanning = 0;
603 break;
604
605 case WI_INFO_COUNTERS:
606 /* some card versions have a larger stats structure */
607 len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
608 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
609 ptr = (u_int32_t *)&sc->wi_stats;
610
611 for (i = 0; i < len; i++) {
612 t = CSR_READ_2(sc, WI_DATA1);
613 #ifdef WI_HERMES_STATS_WAR
614 if (t > 0xF000)
615 t = ~t & 0xFFFF;
616 #endif
617 ptr[i] += t;
618 }
619
620 ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
621 sc->wi_stats.wi_tx_multi_retries +
622 sc->wi_stats.wi_tx_retry_limit;
623 break;
624
625 case WI_INFO_LINK_STAT: {
626 static char *msg[] = {
627 "connected",
628 "disconnected",
629 "AP change",
630 "AP out of range",
631 "AP in range",
632 "Association Failed"
633 };
634
635 if (gen.wi_len != 2) {
636 #ifdef WI_DEBUG
637 printf("WI_INFO_LINK_STAT: len=%d\n", gen.wi_len);
638 #endif
639 break;
640 }
641 t = CSR_READ_2(sc, WI_DATA1);
642 if ((t < 1) || (t > 6)) {
643 #ifdef WI_DEBUG
644 printf("WI_INFO_LINK_STAT: status %d\n", t);
645 #endif
646 break;
647 }
648 /*
649 * Some cards issue streams of "connected" messages while
650 * trying to find a peer. Don't bother the user with this
651 * unless he is debugging.
652 */
653 if (ifp->if_flags & IFF_DEBUG)
654 printf("%s: %s\n", sc->sc_dev.dv_xname, msg[t - 1]);
655 break;
656 }
657
658 case WI_INFO_ASSOC_STAT: {
659 static char *msg[] = {
660 "STA Associated",
661 "STA Reassociated",
662 "STA Disassociated",
663 "Association Failure",
664 "Authentication Failed"
665 };
666 if (gen.wi_len != 10)
667 break;
668 for (i=0; i < gen.wi_len - 1; i++)
669 ((u_int16_t *)&assoc)[i] = CSR_READ_2(sc, WI_DATA1);
670 /* unswap 8 bit data fields: */
671 for(j=0;j<sizeof(assoc.wi_assoc_sta)/2;j++)
672 HTOLE16(((u_int16_t *)&assoc.wi_assoc_sta[0])[j]);
673 for(j=0;j<sizeof(assoc.wi_assoc_osta)/2;j++)
674 HTOLE16(((u_int16_t *)&assoc.wi_assoc_osta[0])[j]);
675 switch (assoc.wi_assoc_stat) {
676 case ASSOC:
677 case DISASSOC:
678 case ASSOCFAIL:
679 case AUTHFAIL:
680 printf("%s: %s, AP = %02x:%02x:%02x:%02x:%02x:%02x\n",
681 sc->sc_dev.dv_xname,
682 msg[assoc.wi_assoc_stat - 1],
683 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
684 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
685 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff);
686 break;
687 case REASSOC:
688 printf("%s: %s, AP = %02x:%02x:%02x:%02x:%02x:%02x, "
689 "OldAP = %02x:%02x:%02x:%02x:%02x:%02x\n",
690 sc->sc_dev.dv_xname, msg[assoc.wi_assoc_stat - 1],
691 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
692 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
693 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff,
694 assoc.wi_assoc_osta[0]&0xff, assoc.wi_assoc_osta[1]&0xff,
695 assoc.wi_assoc_osta[2]&0xff, assoc.wi_assoc_osta[3]&0xff,
696 assoc.wi_assoc_osta[4]&0xff, assoc.wi_assoc_osta[5]&0xff);
697 break;
698 }
699 }
700 default:
701 #ifdef WI_DEBUG
702 printf("%s: got info type: 0x%04x len=0x%04x\n",
703 sc->sc_dev.dv_xname, gen.wi_type,gen.wi_len);
704 #endif
705 #if 0
706 for (i = 0; i < gen.wi_len; i++) {
707 t = CSR_READ_2(sc, WI_DATA1);
708 printf("[0x%02x] = 0x%04x\n", i, t);
709 }
710 #endif
711 break;
712 }
713 }
714
715 int wi_intr(arg)
716 void *arg;
717 {
718 struct wi_softc *sc = arg;
719 struct ifnet *ifp;
720 u_int16_t status;
721
722 if (sc->sc_enabled == 0 ||
723 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
724 (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
725 return (0);
726
727 ifp = &sc->sc_ethercom.ec_if;
728
729 if (!(ifp->if_flags & IFF_UP)) {
730 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
731 CSR_WRITE_2(sc, WI_INT_EN, 0);
732 return 1;
733 }
734
735 /* Disable interrupts. */
736 CSR_WRITE_2(sc, WI_INT_EN, 0);
737
738 status = CSR_READ_2(sc, WI_EVENT_STAT);
739 CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
740
741 if (status & WI_EV_RX) {
742 wi_rxeof(sc);
743 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
744 }
745
746 if (status & WI_EV_TX) {
747 wi_txeof(sc, status);
748 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
749 }
750
751 if (status & WI_EV_ALLOC) {
752 int id;
753 id = CSR_READ_2(sc, WI_ALLOC_FID);
754 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
755 if (id == sc->wi_tx_data_id)
756 wi_txeof(sc, status);
757 }
758
759 if (status & WI_EV_INFO) {
760 wi_update_stats(sc);
761 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
762 }
763
764 if (status & WI_EV_TX_EXC) {
765 wi_txeof(sc, status);
766 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
767 }
768
769 if (status & WI_EV_INFO_DROP) {
770 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
771 }
772
773 /* Re-enable interrupts. */
774 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
775
776 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
777 wi_start(ifp);
778
779 return 1;
780 }
781
782 /* Must be called at proper protection level! */
783 static int
784 wi_cmd(sc, cmd, val)
785 struct wi_softc *sc;
786 int cmd;
787 int val;
788 {
789 int i, s = 0;
790
791 /* wait for the busy bit to clear */
792 for (i = 0; i < WI_TIMEOUT; i++) {
793 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
794 break;
795 }
796
797 if (i == WI_TIMEOUT) {
798 printf("%s: wi_cmd: BUSY did not clear, cmd=0x%x\n",
799 sc->sc_dev.dv_xname, cmd);
800 return EIO;
801 }
802
803 CSR_WRITE_2(sc, WI_PARAM0, val);
804 CSR_WRITE_2(sc, WI_PARAM1, 0);
805 CSR_WRITE_2(sc, WI_PARAM2, 0);
806 CSR_WRITE_2(sc, WI_COMMAND, cmd);
807
808 /* wait for the cmd completed bit */
809 for (i = 0; i < WI_TIMEOUT; i++) {
810 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
811 break;
812 DELAY(1);
813 }
814
815 /* Ack the command */
816 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
817
818 s = CSR_READ_2(sc, WI_STATUS);
819 if (s & WI_STAT_CMD_RESULT)
820 return(EIO);
821
822 if (i == WI_TIMEOUT) {
823 if (!sc->wi_scanning)
824 printf("%s: command timed out, cmd=0x%x\n",
825 sc->sc_dev.dv_xname, cmd);
826 return(ETIMEDOUT);
827 }
828
829 return(0);
830 }
831
832 static void
833 wi_reset(sc)
834 struct wi_softc *sc;
835 {
836
837 DELAY(100*1000); /* 100 m sec */
838 if (wi_cmd(sc, WI_CMD_INI, 0))
839 printf("%s: init failed\n", sc->sc_dev.dv_xname);
840 CSR_WRITE_2(sc, WI_INT_EN, 0);
841 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
842
843 /* Calibrate timer. */
844 WI_SETVAL(WI_RID_TICK_TIME, 8);
845
846 return;
847 }
848
849 /*
850 * Read an LTV record from the NIC.
851 */
852 static int wi_read_record(sc, ltv)
853 struct wi_softc *sc;
854 struct wi_ltv_gen *ltv;
855 {
856 u_int16_t *ptr;
857 int len, code;
858 struct wi_ltv_gen *oltv, p2ltv;
859
860 if (sc->sc_firmware_type != WI_LUCENT) {
861 oltv = ltv;
862 switch (ltv->wi_type) {
863 case WI_RID_ENCRYPTION:
864 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
865 p2ltv.wi_len = 2;
866 ltv = &p2ltv;
867 break;
868 case WI_RID_TX_CRYPT_KEY:
869 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
870 p2ltv.wi_len = 2;
871 ltv = &p2ltv;
872 break;
873 }
874 }
875
876 /* Tell the NIC to enter record read mode. */
877 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
878 return(EIO);
879
880 /* Seek to the record. */
881 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
882 return(EIO);
883
884 /*
885 * Read the length and record type and make sure they
886 * match what we expect (this verifies that we have enough
887 * room to hold all of the returned data).
888 */
889 len = CSR_READ_2(sc, WI_DATA1);
890 if (len > ltv->wi_len)
891 return(ENOSPC);
892 code = CSR_READ_2(sc, WI_DATA1);
893 if (code != ltv->wi_type)
894 return(EIO);
895
896 ltv->wi_len = len;
897 ltv->wi_type = code;
898
899 /* Now read the data. */
900 ptr = <v->wi_val;
901 if (ltv->wi_len > 1)
902 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
903
904 if (sc->sc_firmware_type != WI_LUCENT) {
905 int v;
906
907 switch (oltv->wi_type) {
908 case WI_RID_TX_RATE:
909 case WI_RID_CUR_TX_RATE:
910 switch (le16toh(ltv->wi_val)) {
911 case 1: v = 1; break;
912 case 2: v = 2; break;
913 case 3: v = 6; break;
914 case 4: v = 5; break;
915 case 7: v = 7; break;
916 case 8: v = 11; break;
917 case 15: v = 3; break;
918 default: v = 0x100 + le16toh(ltv->wi_val); break;
919 }
920 oltv->wi_val = htole16(v);
921 break;
922 case WI_RID_ENCRYPTION:
923 oltv->wi_len = 2;
924 if (le16toh(ltv->wi_val) & 0x01)
925 oltv->wi_val = htole16(1);
926 else
927 oltv->wi_val = htole16(0);
928 break;
929 case WI_RID_TX_CRYPT_KEY:
930 oltv->wi_len = 2;
931 oltv->wi_val = ltv->wi_val;
932 break;
933 case WI_RID_AUTH_CNTL:
934 oltv->wi_len = 2;
935 if (le16toh(ltv->wi_val) & 0x01)
936 oltv->wi_val = htole16(1);
937 else if (le16toh(ltv->wi_val) & 0x02)
938 oltv->wi_val = htole16(2);
939 break;
940 }
941 }
942
943 return(0);
944 }
945
946 /*
947 * Same as read, except we inject data instead of reading it.
948 */
949 static int wi_write_record(sc, ltv)
950 struct wi_softc *sc;
951 struct wi_ltv_gen *ltv;
952 {
953 u_int16_t *ptr;
954 int i;
955 struct wi_ltv_gen p2ltv;
956
957 if (sc->sc_firmware_type != WI_LUCENT) {
958 int v;
959
960 switch (ltv->wi_type) {
961 case WI_RID_TX_RATE:
962 p2ltv.wi_type = WI_RID_TX_RATE;
963 p2ltv.wi_len = 2;
964 switch (le16toh(ltv->wi_val)) {
965 case 1: v = 1; break;
966 case 2: v = 2; break;
967 case 3: v = 15; break;
968 case 5: v = 4; break;
969 case 6: v = 3; break;
970 case 7: v = 7; break;
971 case 11: v = 8; break;
972 default: return EINVAL;
973 }
974 p2ltv.wi_val = htole16(v);
975 ltv = &p2ltv;
976 break;
977 case WI_RID_ENCRYPTION:
978 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
979 p2ltv.wi_len = 2;
980 if (le16toh(ltv->wi_val))
981 p2ltv.wi_val = htole16(PRIVACY_INVOKED |
982 EXCLUDE_UNENCRYPTED);
983 else
984 p2ltv.wi_val =
985 htole16(HOST_ENCRYPT | HOST_DECRYPT);
986 ltv = &p2ltv;
987 break;
988 case WI_RID_TX_CRYPT_KEY:
989 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
990 p2ltv.wi_len = 2;
991 p2ltv.wi_val = ltv->wi_val;
992 ltv = &p2ltv;
993 break;
994 case WI_RID_DEFLT_CRYPT_KEYS:
995 {
996 int error;
997 int keylen;
998 struct wi_ltv_str ws;
999 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv;
1000
1001 keylen = wk->wi_keys[sc->wi_tx_key].wi_keylen;
1002
1003 for (i = 0; i < 4; i++) {
1004 memset(&ws, 0, sizeof(ws));
1005 ws.wi_len = (keylen > 5) ? 8 : 4;
1006 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
1007 memcpy(ws.wi_str,
1008 &wk->wi_keys[i].wi_keydat, keylen);
1009 error = wi_write_record(sc,
1010 (struct wi_ltv_gen *)&ws);
1011 if (error)
1012 return error;
1013 }
1014 return 0;
1015 }
1016 case WI_RID_AUTH_CNTL:
1017 p2ltv.wi_type = WI_RID_AUTH_CNTL;
1018 p2ltv.wi_len = 2;
1019 if (le16toh(ltv->wi_val) == 1)
1020 p2ltv.wi_val = htole16(0x01);
1021 else if (le16toh(ltv->wi_val) == 2)
1022 p2ltv.wi_val = htole16(0x02);
1023 ltv = &p2ltv;
1024 break;
1025 }
1026 }
1027
1028 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
1029 return(EIO);
1030
1031 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
1032 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
1033
1034 /* Write data */
1035 ptr = <v->wi_val;
1036 if (ltv->wi_len > 1)
1037 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
1038
1039 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
1040 return(EIO);
1041
1042 return(0);
1043 }
1044
1045 static int wi_seek(sc, id, off, chan)
1046 struct wi_softc *sc;
1047 int id, off, chan;
1048 {
1049 int i;
1050 int selreg, offreg;
1051 int status;
1052
1053 switch (chan) {
1054 case WI_BAP0:
1055 selreg = WI_SEL0;
1056 offreg = WI_OFF0;
1057 break;
1058 case WI_BAP1:
1059 selreg = WI_SEL1;
1060 offreg = WI_OFF1;
1061 break;
1062 default:
1063 printf("%s: invalid data path: %x\n",
1064 sc->sc_dev.dv_xname, chan);
1065 return(EIO);
1066 }
1067
1068 CSR_WRITE_2(sc, selreg, id);
1069 CSR_WRITE_2(sc, offreg, off);
1070
1071 for (i = 0; i < WI_TIMEOUT; i++) {
1072 status = CSR_READ_2(sc, offreg);
1073 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
1074 break;
1075 }
1076
1077 if (i == WI_TIMEOUT) {
1078 printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
1079 sc->sc_dev.dv_xname, id, off, status);
1080 return(ETIMEDOUT);
1081 }
1082 return(0);
1083 }
1084
1085 static int wi_read_data(sc, id, off, buf, len)
1086 struct wi_softc *sc;
1087 int id, off;
1088 caddr_t buf;
1089 int len;
1090 {
1091 u_int16_t *ptr;
1092
1093 if (wi_seek(sc, id, off, WI_BAP1))
1094 return(EIO);
1095
1096 ptr = (u_int16_t *)buf;
1097 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
1098
1099 return(0);
1100 }
1101
1102 /*
1103 * According to the comments in the HCF Light code, there is a bug in
1104 * the Hermes (or possibly in certain Hermes firmware revisions) where
1105 * the chip's internal autoincrement counter gets thrown off during
1106 * data writes: the autoincrement is missed, causing one data word to
1107 * be overwritten and subsequent words to be written to the wrong memory
1108 * locations. The end result is that we could end up transmitting bogus
1109 * frames without realizing it. The workaround for this is to write a
1110 * couple of extra guard words after the end of the transfer, then
1111 * attempt to read then back. If we fail to locate the guard words where
1112 * we expect them, we preform the transfer over again.
1113 */
1114 static int wi_write_data(sc, id, off, buf, len)
1115 struct wi_softc *sc;
1116 int id, off;
1117 caddr_t buf;
1118 int len;
1119 {
1120 u_int16_t *ptr;
1121
1122 #ifdef WI_HERMES_AUTOINC_WAR
1123 again:
1124 #endif
1125
1126 if (wi_seek(sc, id, off, WI_BAP0))
1127 return(EIO);
1128
1129 ptr = (u_int16_t *)buf;
1130 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
1131
1132 #ifdef WI_HERMES_AUTOINC_WAR
1133 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1134 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1135
1136 if (wi_seek(sc, id, off + len, WI_BAP0))
1137 return(EIO);
1138
1139 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1140 CSR_READ_2(sc, WI_DATA0) != 0x5678)
1141 goto again;
1142 #endif
1143
1144 return(0);
1145 }
1146
1147 /*
1148 * Allocate a region of memory inside the NIC and zero
1149 * it out.
1150 */
1151 static int wi_alloc_nicmem(sc, len, id)
1152 struct wi_softc *sc;
1153 int len;
1154 int *id;
1155 {
1156 int i;
1157
1158 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
1159 printf("%s: failed to allocate %d bytes on NIC\n",
1160 sc->sc_dev.dv_xname, len);
1161 return(ENOMEM);
1162 }
1163
1164 for (i = 0; i < WI_TIMEOUT; i++) {
1165 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1166 break;
1167 }
1168
1169 if (i == WI_TIMEOUT) {
1170 printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
1171 return(ETIMEDOUT);
1172 }
1173
1174 *id = CSR_READ_2(sc, WI_ALLOC_FID);
1175 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1176
1177 if (wi_seek(sc, *id, 0, WI_BAP0)) {
1178 printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
1179 return(EIO);
1180 }
1181
1182 for (i = 0; i < len / 2; i++)
1183 CSR_WRITE_2(sc, WI_DATA0, 0);
1184
1185 return(0);
1186 }
1187
1188 static void wi_setmulti(sc)
1189 struct wi_softc *sc;
1190 {
1191 struct ifnet *ifp;
1192 int i = 0;
1193 struct wi_ltv_mcast mcast;
1194 struct ether_multi *enm;
1195 struct ether_multistep estep;
1196 struct ethercom *ec = &sc->sc_ethercom;
1197
1198 ifp = &sc->sc_ethercom.ec_if;
1199
1200 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1201 allmulti:
1202 ifp->if_flags |= IFF_ALLMULTI;
1203 memset((char *)&mcast, 0, sizeof(mcast));
1204 mcast.wi_type = WI_RID_MCAST_LIST;
1205 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
1206
1207 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1208 return;
1209 }
1210
1211 i = 0;
1212 ETHER_FIRST_MULTI(estep, ec, enm);
1213 while (enm != NULL) {
1214 /* Punt on ranges or too many multicast addresses. */
1215 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1216 ETHER_ADDR_LEN) != 0 ||
1217 i >= 16)
1218 goto allmulti;
1219
1220 memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo,
1221 ETHER_ADDR_LEN);
1222 i++;
1223 ETHER_NEXT_MULTI(estep, enm);
1224 }
1225
1226 ifp->if_flags &= ~IFF_ALLMULTI;
1227 mcast.wi_type = WI_RID_MCAST_LIST;
1228 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
1229 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1230 }
1231
1232 static int
1233 wi_setdef(sc, wreq)
1234 struct wi_softc *sc;
1235 struct wi_req *wreq;
1236 {
1237 struct sockaddr_dl *sdl;
1238 struct ifnet *ifp;
1239 int error = 0;
1240
1241 ifp = &sc->sc_ethercom.ec_if;
1242
1243 switch(wreq->wi_type) {
1244 case WI_RID_MAC_NODE:
1245 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1246 memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val,
1247 ETHER_ADDR_LEN);
1248 memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN);
1249 break;
1250 case WI_RID_PORTTYPE:
1251 error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
1252 break;
1253 case WI_RID_TX_RATE:
1254 error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
1255 break;
1256 case WI_RID_MAX_DATALEN:
1257 sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1258 break;
1259 case WI_RID_RTS_THRESH:
1260 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1261 break;
1262 case WI_RID_SYSTEM_SCALE:
1263 sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1264 break;
1265 case WI_RID_CREATE_IBSS:
1266 if (sc->sc_firmware_type == WI_LUCENT)
1267 sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1268 break;
1269 case WI_RID_OWN_CHNL:
1270 sc->wi_channel = le16toh(wreq->wi_val[0]);
1271 break;
1272 case WI_RID_NODENAME:
1273 error = wi_set_ssid(&sc->wi_nodeid,
1274 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1275 break;
1276 case WI_RID_DESIRED_SSID:
1277 error = wi_set_ssid(&sc->wi_netid,
1278 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1279 break;
1280 case WI_RID_OWN_SSID:
1281 error = wi_set_ssid(&sc->wi_ibssid,
1282 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1283 break;
1284 case WI_RID_PM_ENABLED:
1285 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1286 break;
1287 case WI_RID_MICROWAVE_OVEN:
1288 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1289 break;
1290 case WI_RID_MAX_SLEEP:
1291 sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1292 break;
1293 case WI_RID_AUTH_CNTL:
1294 sc->wi_authtype = le16toh(wreq->wi_val[0]);
1295 break;
1296 case WI_RID_ROAMING_MODE:
1297 sc->wi_roaming = le16toh(wreq->wi_val[0]);
1298 break;
1299 case WI_RID_ENCRYPTION:
1300 sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1301 break;
1302 case WI_RID_TX_CRYPT_KEY:
1303 sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1304 break;
1305 case WI_RID_DEFLT_CRYPT_KEYS:
1306 memcpy((char *)&sc->wi_keys, (char *)wreq,
1307 sizeof(struct wi_ltv_keys));
1308 break;
1309 default:
1310 error = EINVAL;
1311 break;
1312 }
1313
1314 return (error);
1315 }
1316
1317 static int
1318 wi_getdef(sc, wreq)
1319 struct wi_softc *sc;
1320 struct wi_req *wreq;
1321 {
1322 struct sockaddr_dl *sdl;
1323 struct ifnet *ifp;
1324 int error = 0;
1325
1326 ifp = &sc->sc_ethercom.ec_if;
1327
1328 wreq->wi_len = 2; /* XXX */
1329 switch (wreq->wi_type) {
1330 case WI_RID_MAC_NODE:
1331 wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
1332 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1333 memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN);
1334 memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1335 break;
1336 case WI_RID_PORTTYPE:
1337 wreq->wi_val[0] = htole16(sc->wi_ptype);
1338 break;
1339 case WI_RID_TX_RATE:
1340 wreq->wi_val[0] = htole16(sc->wi_tx_rate);
1341 break;
1342 case WI_RID_MAX_DATALEN:
1343 wreq->wi_val[0] = htole16(sc->wi_max_data_len);
1344 break;
1345 case WI_RID_RTS_THRESH:
1346 wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
1347 break;
1348 case WI_RID_SYSTEM_SCALE:
1349 wreq->wi_val[0] = htole16(sc->wi_ap_density);
1350 break;
1351 case WI_RID_CREATE_IBSS:
1352 if (sc->sc_firmware_type == WI_LUCENT)
1353 wreq->wi_val[0] = htole16(sc->wi_create_ibss);
1354 break;
1355 case WI_RID_OWN_CHNL:
1356 wreq->wi_val[0] = htole16(sc->wi_channel);
1357 break;
1358 case WI_RID_NODENAME:
1359 wi_request_fill_ssid(wreq, &sc->wi_nodeid);
1360 break;
1361 case WI_RID_DESIRED_SSID:
1362 wi_request_fill_ssid(wreq, &sc->wi_netid);
1363 break;
1364 case WI_RID_OWN_SSID:
1365 wi_request_fill_ssid(wreq, &sc->wi_ibssid);
1366 break;
1367 case WI_RID_PM_ENABLED:
1368 wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
1369 break;
1370 case WI_RID_MICROWAVE_OVEN:
1371 wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
1372 break;
1373 case WI_RID_MAX_SLEEP:
1374 wreq->wi_val[0] = htole16(sc->wi_max_sleep);
1375 break;
1376 case WI_RID_AUTH_CNTL:
1377 wreq->wi_val[0] = htole16(sc->wi_authtype);
1378 break;
1379 case WI_RID_ROAMING_MODE:
1380 wreq->wi_val[0] = htole16(sc->wi_roaming);
1381 break;
1382 case WI_RID_WEP_AVAIL:
1383 wreq->wi_val[0] = htole16(sc->wi_has_wep);
1384 break;
1385 case WI_RID_ENCRYPTION:
1386 wreq->wi_val[0] = htole16(sc->wi_use_wep);
1387 break;
1388 case WI_RID_TX_CRYPT_KEY:
1389 wreq->wi_val[0] = htole16(sc->wi_tx_key);
1390 break;
1391 case WI_RID_DEFLT_CRYPT_KEYS:
1392 wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
1393 memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
1394 break;
1395 default:
1396 #if 0
1397 error = EIO;
1398 #else
1399 #ifdef WI_DEBUG
1400 printf("%s: wi_getdef: unknown request %d\n",
1401 sc->sc_dev.dv_xname, wreq->wi_type);
1402 #endif
1403 #endif
1404 break;
1405 }
1406
1407 return (error);
1408 }
1409
1410 static int
1411 wi_ioctl(ifp, command, data)
1412 struct ifnet *ifp;
1413 u_long command;
1414 caddr_t data;
1415 {
1416 int s, error = 0;
1417 int len;
1418 struct wi_softc *sc = ifp->if_softc;
1419 struct wi_req wreq;
1420 struct ifreq *ifr;
1421 struct proc *p = curproc;
1422 struct ieee80211_nwid nwid;
1423
1424 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1425 return (ENXIO);
1426
1427 s = splnet();
1428
1429 ifr = (struct ifreq *)data;
1430 switch (command) {
1431 case SIOCSIFADDR:
1432 case SIOCGIFADDR:
1433 case SIOCSIFMTU:
1434 error = ether_ioctl(ifp, command, data);
1435 break;
1436 case SIOCSIFFLAGS:
1437 if (ifp->if_flags & IFF_UP) {
1438 if (ifp->if_flags & IFF_RUNNING &&
1439 ifp->if_flags & IFF_PROMISC &&
1440 !(sc->wi_if_flags & IFF_PROMISC)) {
1441 WI_SETVAL(WI_RID_PROMISC, 1);
1442 } else if (ifp->if_flags & IFF_RUNNING &&
1443 !(ifp->if_flags & IFF_PROMISC) &&
1444 sc->wi_if_flags & IFF_PROMISC) {
1445 WI_SETVAL(WI_RID_PROMISC, 0);
1446 }
1447 wi_init(ifp);
1448 } else {
1449 if (ifp->if_flags & IFF_RUNNING) {
1450 wi_stop(ifp, 0);
1451 }
1452 }
1453 sc->wi_if_flags = ifp->if_flags;
1454
1455 if (!(ifp->if_flags & IFF_UP)) {
1456 if (sc->sc_enabled) {
1457 if (sc->sc_disable)
1458 (*sc->sc_disable)(sc);
1459 sc->sc_enabled = 0;
1460 ifp->if_flags &= ~IFF_RUNNING;
1461 }
1462 }
1463 error = 0;
1464 break;
1465 case SIOCADDMULTI:
1466 case SIOCDELMULTI:
1467 error = (command == SIOCADDMULTI) ?
1468 ether_addmulti(ifr, &sc->sc_ethercom) :
1469 ether_delmulti(ifr, &sc->sc_ethercom);
1470 if (error == ENETRESET) {
1471 if (sc->sc_enabled != 0) {
1472 /*
1473 * Multicast list has changed. Set the
1474 * hardware filter accordingly.
1475 */
1476 wi_setmulti(sc);
1477 }
1478 error = 0;
1479 }
1480 break;
1481 case SIOCSIFMEDIA:
1482 case SIOCGIFMEDIA:
1483 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1484 break;
1485 case SIOCGWAVELAN:
1486 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1487 if (error)
1488 break;
1489 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1490 memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats,
1491 sizeof(sc->wi_stats));
1492 wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1493 } else if (wreq.wi_type == WI_RID_READ_APS) {
1494 if (sc->wi_scanning) {
1495 error = EINPROGRESS;
1496 break;
1497 } else {
1498 len = sc->wi_naps * sizeof(struct wi_apinfo);
1499 len = len > WI_MAX_DATALEN ? WI_MAX_DATALEN : len;
1500 len = len / sizeof(struct wi_apinfo);
1501 memcpy((char *)&wreq.wi_val, (char *)&len, sizeof(len));
1502 memcpy((char *)&wreq.wi_val + sizeof(len),
1503 (char *)&sc->wi_aps,
1504 len * sizeof(struct wi_apinfo));
1505 }
1506 } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1507 /* For non-root user, return all-zeroes keys */
1508 if (suser(p->p_ucred, &p->p_acflag))
1509 memset((char *)&wreq, 0,
1510 sizeof(struct wi_ltv_keys));
1511 else
1512 memcpy((char *)&wreq, (char *)&sc->wi_keys,
1513 sizeof(struct wi_ltv_keys));
1514 } else {
1515 if (sc->sc_enabled == 0)
1516 error = wi_getdef(sc, &wreq);
1517 else if (wreq.wi_len > WI_MAX_DATALEN)
1518 error = EINVAL;
1519 else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1520 error = EINVAL;
1521 }
1522 if (error == 0)
1523 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1524 break;
1525 case SIOCSWAVELAN:
1526 error = suser(p->p_ucred, &p->p_acflag);
1527 if (error)
1528 break;
1529 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1530 if (error)
1531 break;
1532 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1533 if (sc->sc_enabled)
1534 wi_inquire(sc);
1535 break;
1536 } else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1537 error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1538 wreq.wi_len);
1539 } else if (wreq.wi_type == WI_RID_SCAN_APS) {
1540 if (wreq.wi_len != 4) {
1541 error = EINVAL;
1542 break;
1543 }
1544 if (!sc->wi_scanning) {
1545 if (sc->sc_firmware_type != WI_LUCENT) {
1546 wreq.wi_type = WI_RID_SCAN_REQ;
1547 error = wi_write_record(sc,
1548 (struct wi_ltv_gen *)&wreq);
1549 }
1550 if (!error) {
1551 sc->wi_scanning = 1;
1552 callout_reset(&sc->wi_scan_sh, hz * 1,
1553 wi_wait_scan, sc);
1554 }
1555 }
1556 } else {
1557 if (wreq.wi_len > WI_MAX_DATALEN)
1558 error = EINVAL;
1559 else if (sc->sc_enabled != 0)
1560 error = wi_write_record(sc,
1561 (struct wi_ltv_gen *)&wreq);
1562 if (error == 0)
1563 error = wi_setdef(sc, &wreq);
1564 if (error == 0 && sc->sc_enabled != 0)
1565 /* Reinitialize WaveLAN. */
1566 wi_init(ifp);
1567 }
1568 break;
1569 case SIOCG80211NWID:
1570 if (sc->sc_enabled == 0) {
1571 /* Return the desired ID */
1572 error = copyout(&sc->wi_netid, ifr->ifr_data,
1573 sizeof(sc->wi_netid));
1574 } else {
1575 wreq.wi_type = WI_RID_CURRENT_SSID;
1576 wreq.wi_len = WI_MAX_DATALEN;
1577 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
1578 le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
1579 error = EINVAL;
1580 else {
1581 wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
1582 le16toh(wreq.wi_val[0]));
1583 error = copyout(&nwid, ifr->ifr_data,
1584 sizeof(nwid));
1585 }
1586 }
1587 break;
1588 case SIOCS80211NWID:
1589 error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
1590 if (error != 0)
1591 break;
1592 if (nwid.i_len > IEEE80211_NWID_LEN) {
1593 error = EINVAL;
1594 break;
1595 }
1596 if (sc->wi_netid.i_len == nwid.i_len &&
1597 memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
1598 break;
1599 wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
1600 if (sc->sc_enabled != 0)
1601 /* Reinitialize WaveLAN. */
1602 wi_init(ifp);
1603 break;
1604 case SIOCS80211NWKEY:
1605 error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
1606 break;
1607 case SIOCG80211NWKEY:
1608 error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
1609 break;
1610 case SIOCS80211POWER:
1611 error = wi_set_pm(sc, (struct ieee80211_power *)data);
1612 break;
1613 case SIOCG80211POWER:
1614 error = wi_get_pm(sc, (struct ieee80211_power *)data);
1615 break;
1616
1617 default:
1618 error = EINVAL;
1619 break;
1620 }
1621
1622 splx(s);
1623 return (error);
1624 }
1625
1626 static int
1627 wi_init(ifp)
1628 struct ifnet *ifp;
1629 {
1630 struct wi_softc *sc = ifp->if_softc;
1631 struct wi_req wreq;
1632 struct wi_ltv_macaddr mac;
1633 int error, id = 0, wasenabled;
1634
1635 wasenabled = sc->sc_enabled;
1636 if (!sc->sc_enabled) {
1637 if ((error = (*sc->sc_enable)(sc)) != 0)
1638 goto out;
1639 sc->sc_enabled = 1;
1640 }
1641
1642 wi_stop(ifp, 0);
1643 /* Symbol firmware cannot be initialized more than once */
1644 if (!(sc->sc_firmware_type == WI_SYMBOL && wasenabled))
1645 wi_reset(sc);
1646
1647 /* Program max data length. */
1648 WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1649
1650 /* Enable/disable IBSS creation. */
1651 if (sc->sc_firmware_type == WI_LUCENT)
1652 WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1653
1654 /* Set the port type. */
1655 WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1656
1657 /* Program the RTS/CTS threshold. */
1658 WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1659
1660 /* Program the TX rate */
1661 WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1662
1663 /* Access point density */
1664 WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1665
1666 /* Power Management Enabled */
1667 WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1668
1669 /* Power Managment Max Sleep */
1670 WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1671
1672 /* Roaming type */
1673 WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
1674
1675 /* Specify the IBSS name */
1676 wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
1677
1678 /* Specify the network name */
1679 wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
1680
1681 /* Specify the frequency to use */
1682 WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1683
1684 /* Program the nodename. */
1685 wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
1686
1687 /* Set our MAC address. */
1688 mac.wi_len = 4;
1689 mac.wi_type = WI_RID_MAC_NODE;
1690 memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
1691 wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1692
1693 /* Initialize promisc mode. */
1694 if (ifp->if_flags & IFF_PROMISC) {
1695 WI_SETVAL(WI_RID_PROMISC, 1);
1696 } else {
1697 WI_SETVAL(WI_RID_PROMISC, 0);
1698 }
1699
1700 /* Configure WEP. */
1701 if (sc->wi_has_wep) {
1702 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1703 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1704 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1705 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1706 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1707 if (sc->sc_firmware_type != WI_LUCENT && sc->wi_use_wep) {
1708 /*
1709 * ONLY HWB3163 EVAL-CARD Firmware version
1710 * less than 0.8 variant2
1711 *
1712 * If promiscuous mode disable, Prism2 chip
1713 * does not work with WEP .
1714 * It is under investigation for details.
1715 * (ichiro (at) netbsd.org)
1716 */
1717 if (sc->sc_firmware_type == WI_INTERSIL &&
1718 sc->sc_sta_firmware_ver < 802 ) {
1719 /* firm ver < 0.8 variant 2 */
1720 WI_SETVAL(WI_RID_PROMISC, 1);
1721 }
1722 WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
1723 }
1724 }
1725
1726 /* Set multicast filter. */
1727 wi_setmulti(sc);
1728
1729 /* Enable desired port */
1730 wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
1731
1732 /* scanning variable is modal, therefore reinit to OFF, in case it was on. */
1733 sc->wi_scanning=0;
1734 sc->wi_naps=0;
1735
1736 if ((error = wi_alloc_nicmem(sc,
1737 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1738 printf("%s: tx buffer allocation failed\n",
1739 sc->sc_dev.dv_xname);
1740 goto out;
1741 }
1742 sc->wi_tx_data_id = id;
1743
1744 if ((error = wi_alloc_nicmem(sc,
1745 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1746 printf("%s: mgmt. buffer allocation failed\n",
1747 sc->sc_dev.dv_xname);
1748 goto out;
1749 }
1750 sc->wi_tx_mgmt_id = id;
1751
1752 /* Enable interrupts */
1753 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1754
1755 ifp->if_flags |= IFF_RUNNING;
1756 ifp->if_flags &= ~IFF_OACTIVE;
1757
1758 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
1759
1760 out:
1761 if (error) {
1762 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1763 ifp->if_timer = 0;
1764 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1765 }
1766 return (error);
1767 }
1768
1769 static void
1770 wi_start(ifp)
1771 struct ifnet *ifp;
1772 {
1773 struct wi_softc *sc;
1774 struct mbuf *m0;
1775 struct wi_frame tx_frame;
1776 struct ether_header *eh;
1777 int id;
1778
1779 sc = ifp->if_softc;
1780
1781 if (ifp->if_flags & IFF_OACTIVE)
1782 return;
1783
1784 IFQ_DEQUEUE(&ifp->if_snd, m0);
1785 if (m0 == NULL)
1786 return;
1787
1788 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1789 id = sc->wi_tx_data_id;
1790 eh = mtod(m0, struct ether_header *);
1791
1792 /*
1793 * Use RFC1042 encoding for IP and ARP datagrams,
1794 * 802.3 for anything else.
1795 */
1796 if (ntohs(eh->ether_type) == ETHERTYPE_IP ||
1797 ntohs(eh->ether_type) == ETHERTYPE_ARP ||
1798 ntohs(eh->ether_type) == ETHERTYPE_REVARP ||
1799 ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
1800 memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost,
1801 ETHER_ADDR_LEN);
1802 memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost,
1803 ETHER_ADDR_LEN);
1804 memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost,
1805 ETHER_ADDR_LEN);
1806 memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost,
1807 ETHER_ADDR_LEN);
1808
1809 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1810 tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
1811 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1812 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1813 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1814 tx_frame.wi_type = eh->ether_type;
1815
1816 m_copydata(m0, sizeof(struct ether_header),
1817 m0->m_pkthdr.len - sizeof(struct ether_header),
1818 (caddr_t)&sc->wi_txbuf);
1819
1820 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1821 sizeof(struct wi_frame));
1822 wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1823 (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1824 } else {
1825 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
1826
1827 m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1828
1829 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1830 sizeof(struct wi_frame));
1831 wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1832 m0->m_pkthdr.len + 2);
1833 }
1834
1835 #if NBPFILTER > 0
1836 /*
1837 * If there's a BPF listener, bounce a copy of
1838 * this frame to him.
1839 */
1840 if (ifp->if_bpf)
1841 bpf_mtap(ifp->if_bpf, m0);
1842 #endif
1843
1844 m_freem(m0);
1845
1846 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1847 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1848
1849 ifp->if_flags |= IFF_OACTIVE;
1850
1851 /*
1852 * Set a timeout in case the chip goes out to lunch.
1853 */
1854 ifp->if_timer = 5;
1855
1856 return;
1857 }
1858
1859 static int
1860 wi_mgmt_xmit(sc, data, len)
1861 struct wi_softc *sc;
1862 caddr_t data;
1863 int len;
1864 {
1865 struct wi_frame tx_frame;
1866 int id;
1867 struct wi_80211_hdr *hdr;
1868 caddr_t dptr;
1869
1870 hdr = (struct wi_80211_hdr *)data;
1871 dptr = data + sizeof(struct wi_80211_hdr);
1872
1873 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1874 id = sc->wi_tx_mgmt_id;
1875
1876 memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr,
1877 sizeof(struct wi_80211_hdr));
1878
1879 tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
1880 tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1881
1882 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1883 wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1884 (len - sizeof(struct wi_80211_hdr)) + 2);
1885
1886 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1887 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1888 return(EIO);
1889 }
1890
1891 return(0);
1892 }
1893
1894 static void
1895 wi_stop(ifp, disable)
1896 struct ifnet *ifp;
1897 {
1898 struct wi_softc *sc = ifp->if_softc;
1899
1900 CSR_WRITE_2(sc, WI_INT_EN, 0);
1901 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1902
1903 callout_stop(&sc->wi_inquire_ch);
1904 callout_stop(&sc->wi_scan_sh);
1905
1906 if (disable) {
1907 if (sc->sc_enabled) {
1908 if (sc->sc_disable)
1909 (*sc->sc_disable)(sc);
1910 sc->sc_enabled = 0;
1911 }
1912 }
1913
1914 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1915 ifp->if_timer = 0;
1916 }
1917
1918 static void
1919 wi_watchdog(ifp)
1920 struct ifnet *ifp;
1921 {
1922 struct wi_softc *sc;
1923
1924 sc = ifp->if_softc;
1925
1926 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1927
1928 wi_init(ifp);
1929
1930 ifp->if_oerrors++;
1931
1932 return;
1933 }
1934
1935 void
1936 wi_shutdown(sc)
1937 struct wi_softc *sc;
1938 {
1939 int s;
1940
1941 s = splnet();
1942 if (sc->sc_enabled) {
1943 if (sc->sc_disable)
1944 (*sc->sc_disable)(sc);
1945 sc->sc_enabled = 0;
1946 }
1947 splx(s);
1948 }
1949
1950 int
1951 wi_activate(self, act)
1952 struct device *self;
1953 enum devact act;
1954 {
1955 struct wi_softc *sc = (struct wi_softc *)self;
1956 int rv = 0, s;
1957
1958 s = splnet();
1959 switch (act) {
1960 case DVACT_ACTIVATE:
1961 rv = EOPNOTSUPP;
1962 break;
1963
1964 case DVACT_DEACTIVATE:
1965 if_deactivate(&sc->sc_ethercom.ec_if);
1966 break;
1967 }
1968 splx(s);
1969 return (rv);
1970 }
1971
1972 static void
1973 wi_get_id(sc)
1974 struct wi_softc *sc;
1975 {
1976 struct wi_ltv_ver ver;
1977 struct wi_card_ident *id;
1978
1979 /* getting chip identity */
1980 memset(&ver, 0, sizeof(ver));
1981 ver.wi_type = WI_RID_CARD_ID;
1982 ver.wi_len = 5;
1983 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1984 printf("%s: using ", sc->sc_dev.dv_xname);
1985
1986 sc->sc_firmware_type = NULL;
1987 for (id = wi_card_ident; id->card_name != NULL; id++) {
1988 if (le16toh(ver.wi_ver[0]) == id->card_id) {
1989 printf("%s", id->card_name);
1990 sc->sc_firmware_type = id->firm_type;
1991 break;
1992 }
1993 }
1994 if (!sc->sc_firmware_type) {
1995 if (le16toh(ver.wi_ver[0]) & 0x8000) {
1996 printf("Unknown PRISM2 chip");
1997 sc->sc_firmware_type = WI_INTERSIL;
1998 } else {
1999 printf("Unknown Lucent chip");
2000 sc->sc_firmware_type = WI_LUCENT;
2001 }
2002 }
2003
2004 /* get primary firmware version */
2005 memset(&ver, 0, sizeof(ver));
2006 ver.wi_type = WI_RID_PRI_IDENTITY;
2007 ver.wi_len = 5;
2008 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
2009 LE16TOH(ver.wi_ver[1]);
2010 LE16TOH(ver.wi_ver[2]);
2011 LE16TOH(ver.wi_ver[3]);
2012 sc->sc_pri_firmware_ver = ver.wi_ver[2] * 10000 +
2013 ver.wi_ver[3] * 100 + ver.wi_ver[1];
2014
2015 /* get station firmware version */
2016 memset(&ver, 0, sizeof(ver));
2017 ver.wi_type = WI_RID_STA_IDENTITY;
2018 ver.wi_len = 5;
2019 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
2020 LE16TOH(ver.wi_ver[1]);
2021 LE16TOH(ver.wi_ver[2]);
2022 LE16TOH(ver.wi_ver[3]);
2023 sc->sc_sta_firmware_ver = ver.wi_ver[2] * 10000 +
2024 ver.wi_ver[3] * 100 + ver.wi_ver[1];
2025 if (sc->sc_firmware_type == WI_INTERSIL &&
2026 (sc->sc_sta_firmware_ver == 10102 || sc->sc_sta_firmware_ver == 20102)) {
2027 struct wi_ltv_str sver;
2028 char *p;
2029
2030 memset(&sver, 0, sizeof(sver));
2031 sver.wi_type = WI_RID_SYMBOL_IDENTITY;
2032 sver.wi_len = 7;
2033 /* value should be "V2.00-11" */
2034 if (wi_read_record(sc, (struct wi_ltv_gen *)&sver) == 0 &&
2035 *(p = (char *)sver.wi_str) == 'V' &&
2036 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
2037 sc->sc_firmware_type = WI_SYMBOL;
2038 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
2039 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
2040 (p[6] - '0') * 10 + (p[7] - '0');
2041 }
2042 }
2043
2044 printf("\n%s Firmware: ",
2045 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
2046 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
2047 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
2048 printf("Primary (%u.%u.%u), ", sc->sc_pri_firmware_ver / 10000,
2049 (sc->sc_pri_firmware_ver % 10000) / 100,
2050 sc->sc_pri_firmware_ver % 100);
2051 printf("Station (%u.%u.%u)\n",
2052 sc->sc_sta_firmware_ver / 10000, (sc->sc_sta_firmware_ver % 10000) / 100,
2053 sc->sc_sta_firmware_ver % 100);
2054
2055 return;
2056 }
2057
2058 int
2059 wi_detach(sc)
2060 struct wi_softc *sc;
2061 {
2062 struct ifnet *ifp = sc->sc_ifp;
2063 int s;
2064
2065 if (!sc->sc_attached)
2066 return (0);
2067
2068 s = splnet();
2069 callout_stop(&sc->wi_inquire_ch);
2070
2071 /* Delete all remaining media. */
2072 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
2073
2074 ether_ifdetach(ifp);
2075 if_detach(ifp);
2076 if (sc->sc_enabled) {
2077 if (sc->sc_disable)
2078 (*sc->sc_disable)(sc);
2079 sc->sc_enabled = 0;
2080 }
2081 splx(s);
2082 return (0);
2083 }
2084
2085 void
2086 wi_power(sc, why)
2087 struct wi_softc *sc;
2088 int why;
2089 {
2090 int s;
2091
2092 if (!sc->sc_enabled)
2093 return;
2094
2095 s = splnet();
2096 switch (why) {
2097 case PWR_SUSPEND:
2098 case PWR_STANDBY:
2099 wi_stop(sc->sc_ifp, 0);
2100 if (sc->sc_enabled) {
2101 if (sc->sc_disable)
2102 (*sc->sc_disable)(sc);
2103 }
2104 break;
2105 case PWR_RESUME:
2106 sc->sc_enabled = 0;
2107 wi_init(sc->sc_ifp);
2108 (void)wi_intr(sc);
2109 break;
2110 case PWR_SOFTSUSPEND:
2111 case PWR_SOFTSTANDBY:
2112 case PWR_SOFTRESUME:
2113 break;
2114 }
2115 splx(s);
2116 }
2117
2118 static int
2119 wi_set_ssid(ws, id, len)
2120 struct ieee80211_nwid *ws;
2121 u_int8_t *id;
2122 int len;
2123 {
2124
2125 if (len > IEEE80211_NWID_LEN)
2126 return (EINVAL);
2127 ws->i_len = len;
2128 memcpy(ws->i_nwid, id, len);
2129 return (0);
2130 }
2131
2132 static void
2133 wi_request_fill_ssid(wreq, ws)
2134 struct wi_req *wreq;
2135 struct ieee80211_nwid *ws;
2136 {
2137 int len = ws->i_len;
2138
2139 memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
2140 wreq->wi_val[0] = htole16(len);
2141 wreq->wi_len = roundup(len, 2) / 2 + 2;
2142 memcpy(&wreq->wi_val[1], ws->i_nwid, len);
2143 }
2144
2145 static int
2146 wi_write_ssid(sc, type, wreq, ws)
2147 struct wi_softc *sc;
2148 int type;
2149 struct wi_req *wreq;
2150 struct ieee80211_nwid *ws;
2151 {
2152
2153 wreq->wi_type = type;
2154 wi_request_fill_ssid(wreq, ws);
2155 return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
2156 }
2157
2158 static int
2159 wi_sync_media(sc, ptype, txrate)
2160 struct wi_softc *sc;
2161 int ptype;
2162 int txrate;
2163 {
2164 int media = sc->sc_media.ifm_cur->ifm_media;
2165 int options = IFM_OPTIONS(media);
2166 int subtype;
2167
2168 switch (txrate) {
2169 case 1:
2170 subtype = IFM_IEEE80211_DS1;
2171 break;
2172 case 2:
2173 subtype = IFM_IEEE80211_DS2;
2174 break;
2175 case 3:
2176 subtype = IFM_AUTO;
2177 break;
2178 case 5:
2179 subtype = IFM_IEEE80211_DS5;
2180 break;
2181 case 11:
2182 subtype = IFM_IEEE80211_DS11;
2183 break;
2184 default:
2185 subtype = IFM_MANUAL; /* Unable to represent */
2186 break;
2187 }
2188 switch (ptype) {
2189 case WI_PORTTYPE_ADHOC:
2190 options |= IFM_IEEE80211_ADHOC;
2191 break;
2192 case WI_PORTTYPE_BSS:
2193 options &= ~IFM_IEEE80211_ADHOC;
2194 break;
2195 default:
2196 subtype = IFM_MANUAL; /* Unable to represent */
2197 break;
2198 }
2199 media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
2200 IFM_INST(media));
2201 if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
2202 return (EINVAL);
2203 ifmedia_set(&sc->sc_media, media);
2204 sc->wi_ptype = ptype;
2205 sc->wi_tx_rate = txrate;
2206 return (0);
2207 }
2208
2209 static int
2210 wi_media_change(ifp)
2211 struct ifnet *ifp;
2212 {
2213 struct wi_softc *sc = ifp->if_softc;
2214 int otype = sc->wi_ptype;
2215 int orate = sc->wi_tx_rate;
2216
2217 if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2218 sc->wi_ptype = WI_PORTTYPE_ADHOC;
2219 else
2220 sc->wi_ptype = WI_PORTTYPE_BSS;
2221
2222 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
2223 case IFM_IEEE80211_DS1:
2224 sc->wi_tx_rate = 1;
2225 break;
2226 case IFM_IEEE80211_DS2:
2227 sc->wi_tx_rate = 2;
2228 break;
2229 case IFM_AUTO:
2230 sc->wi_tx_rate = 3;
2231 break;
2232 case IFM_IEEE80211_DS5:
2233 sc->wi_tx_rate = 5;
2234 break;
2235 case IFM_IEEE80211_DS11:
2236 sc->wi_tx_rate = 11;
2237 break;
2238 }
2239
2240 if (sc->sc_enabled != 0) {
2241 if (otype != sc->wi_ptype ||
2242 orate != sc->wi_tx_rate)
2243 wi_init(ifp);
2244 }
2245
2246 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
2247
2248 return (0);
2249 }
2250
2251 static void
2252 wi_media_status(ifp, imr)
2253 struct ifnet *ifp;
2254 struct ifmediareq *imr;
2255 {
2256 struct wi_softc *sc = ifp->if_softc;
2257
2258 if (sc->sc_enabled == 0) {
2259 imr->ifm_active = IFM_IEEE80211|IFM_NONE;
2260 imr->ifm_status = 0;
2261 return;
2262 }
2263
2264 imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
2265 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2266 }
2267
2268 static int
2269 wi_set_nwkey(sc, nwkey)
2270 struct wi_softc *sc;
2271 struct ieee80211_nwkey *nwkey;
2272 {
2273 int i, error;
2274 size_t len;
2275 struct wi_req wreq;
2276 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
2277
2278 if (!sc->wi_has_wep)
2279 return ENODEV;
2280 if (nwkey->i_defkid <= 0 ||
2281 nwkey->i_defkid > IEEE80211_WEP_NKID)
2282 return EINVAL;
2283 memcpy(wk, &sc->wi_keys, sizeof(*wk));
2284 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2285 if (nwkey->i_key[i].i_keydat == NULL)
2286 continue;
2287 len = nwkey->i_key[i].i_keylen;
2288 if (len > sizeof(wk->wi_keys[i].wi_keydat))
2289 return EINVAL;
2290 error = copyin(nwkey->i_key[i].i_keydat,
2291 wk->wi_keys[i].wi_keydat, len);
2292 if (error)
2293 return error;
2294 wk->wi_keys[i].wi_keylen = htole16(len);
2295 }
2296
2297 wk->wi_len = (sizeof(*wk) / 2) + 1;
2298 wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2299 if (sc->sc_enabled != 0) {
2300 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2301 if (error)
2302 return error;
2303 }
2304 error = wi_setdef(sc, &wreq);
2305 if (error)
2306 return error;
2307
2308 wreq.wi_len = 2;
2309 wreq.wi_type = WI_RID_TX_CRYPT_KEY;
2310 wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
2311 if (sc->sc_enabled != 0) {
2312 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2313 if (error)
2314 return error;
2315 }
2316 error = wi_setdef(sc, &wreq);
2317 if (error)
2318 return error;
2319
2320 wreq.wi_type = WI_RID_ENCRYPTION;
2321 wreq.wi_val[0] = htole16(nwkey->i_wepon);
2322 if (sc->sc_enabled != 0) {
2323 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2324 if (error)
2325 return error;
2326 }
2327 error = wi_setdef(sc, &wreq);
2328 if (error)
2329 return error;
2330
2331 if (sc->sc_enabled != 0)
2332 wi_init(&sc->sc_ethercom.ec_if);
2333 return 0;
2334 }
2335
2336 static int
2337 wi_get_nwkey(sc, nwkey)
2338 struct wi_softc *sc;
2339 struct ieee80211_nwkey *nwkey;
2340 {
2341 int i, len, error;
2342 struct wi_ltv_keys *wk = &sc->wi_keys;
2343
2344 if (!sc->wi_has_wep)
2345 return ENODEV;
2346 nwkey->i_wepon = sc->wi_use_wep;
2347 nwkey->i_defkid = sc->wi_tx_key + 1;
2348
2349 /* do not show any keys to non-root user */
2350 error = suser(curproc->p_ucred, &curproc->p_acflag);
2351 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2352 if (nwkey->i_key[i].i_keydat == NULL)
2353 continue;
2354 /* error holds results of suser() for the first time */
2355 if (error)
2356 return error;
2357 len = le16toh(wk->wi_keys[i].wi_keylen);
2358 if (nwkey->i_key[i].i_keylen < len)
2359 return ENOSPC;
2360 nwkey->i_key[i].i_keylen = len;
2361 error = copyout(wk->wi_keys[i].wi_keydat,
2362 nwkey->i_key[i].i_keydat, len);
2363 if (error)
2364 return error;
2365 }
2366 return 0;
2367 }
2368
2369 static int
2370 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
2371 {
2372
2373 sc->wi_pm_enabled = power->i_enabled;
2374 sc->wi_max_sleep = power->i_maxsleep;
2375
2376 if (sc->sc_enabled)
2377 return (wi_init(&sc->sc_ethercom.ec_if));
2378
2379 return (0);
2380 }
2381
2382 static int
2383 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
2384 {
2385
2386 power->i_enabled = sc->wi_pm_enabled;
2387 power->i_maxsleep = sc->wi_max_sleep;
2388
2389 return (0);
2390 }
2391