wi.c revision 1.67 1 /* $NetBSD: wi.c,v 1.67 2002/04/05 00:54:51 ichiro Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.67 2002/04/05 00:54:51 ichiro Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static void wi_reset __P((struct wi_softc *));
108 static int wi_ioctl __P((struct ifnet *, u_long, caddr_t));
109 static void wi_start __P((struct ifnet *));
110 static void wi_watchdog __P((struct ifnet *));
111 static int wi_init __P((struct ifnet *));
112 static void wi_stop __P((struct ifnet *, int));
113 static void wi_rxeof __P((struct wi_softc *));
114 static void wi_txeof __P((struct wi_softc *, int));
115 static void wi_update_stats __P((struct wi_softc *));
116 static void wi_setmulti __P((struct wi_softc *));
117
118 static int wi_cmd __P((struct wi_softc *, int, int));
119 static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *));
120 static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *));
121 static int wi_read_data __P((struct wi_softc *, int,
122 int, caddr_t, int));
123 static int wi_write_data __P((struct wi_softc *, int,
124 int, caddr_t, int));
125 static int wi_seek __P((struct wi_softc *, int, int, int));
126 static int wi_alloc_nicmem __P((struct wi_softc *, int, int *));
127 static void wi_inquire __P((void *));
128 static void wi_wait_scan __P((void *));
129 static int wi_setdef __P((struct wi_softc *, struct wi_req *));
130 static int wi_getdef __P((struct wi_softc *, struct wi_req *));
131 static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int));
132
133 static int wi_media_change __P((struct ifnet *));
134 static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
135
136 static void wi_get_id __P((struct wi_softc *));
137
138 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
139 static void wi_request_fill_ssid __P((struct wi_req *,
140 struct ieee80211_nwid *));
141 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
142 struct ieee80211_nwid *));
143 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
144 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
145 static int wi_sync_media __P((struct wi_softc *, int, int));
146 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
147 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
148
149 struct wi_card_ident wi_card_ident[] = {
150 /* CARD_ID CARD_NAME FIRM_TYPE */
151 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
152 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
153 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
154 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
155 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
156 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
157 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
158 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
159 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
160 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
161 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
162 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
163 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
164 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
165 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
166 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
167 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
168 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
169 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
170 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
171 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
172 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
173 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
174 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
175 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
176 { 0, NULL, 0 },
177 };
178
179 int
180 wi_attach(sc)
181 struct wi_softc *sc;
182 {
183 struct ifnet *ifp = sc->sc_ifp;
184 struct wi_ltv_macaddr mac;
185 struct wi_ltv_gen gen;
186 static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
187 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
188 };
189 int s;
190
191 s = splnet();
192
193 callout_init(&sc->wi_inquire_ch);
194 callout_init(&sc->wi_scan_sh);
195
196 /* Make sure interrupts are disabled. */
197 CSR_WRITE_2(sc, WI_INT_EN, 0);
198 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
199
200 /* Reset the NIC. */
201 wi_reset(sc);
202
203 memset(&mac, 0, sizeof(mac));
204 /* Read the station address. */
205 mac.wi_type = WI_RID_MAC_NODE;
206 mac.wi_len = 4;
207 wi_read_record(sc, (struct wi_ltv_gen *)&mac);
208 memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
209
210 /*
211 * Check if we got anything meaningful.
212 *
213 * Is it really enough just checking against null ethernet address?
214 * Or, check against possible vendor? XXX.
215 */
216 if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
217 printf("could not get mac address, attach failed\n");
218 splx(s);
219 return 1;
220 }
221
222 printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
223
224 /* Read NIC identification */
225 wi_get_id(sc);
226
227 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
228 ifp->if_softc = sc;
229 ifp->if_start = wi_start;
230 ifp->if_ioctl = wi_ioctl;
231 ifp->if_watchdog = wi_watchdog;
232 ifp->if_init = wi_init;
233 ifp->if_stop = wi_stop;
234 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
235 #ifdef IFF_NOTRAILERS
236 ifp->if_flags |= IFF_NOTRAILERS;
237 #endif
238 IFQ_SET_READY(&ifp->if_snd);
239
240 (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
241 sizeof(WI_DEFAULT_NODENAME) - 1);
242 (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
243 sizeof(WI_DEFAULT_NETNAME) - 1);
244 (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
245 sizeof(WI_DEFAULT_IBSS) - 1);
246
247 sc->wi_portnum = WI_DEFAULT_PORT;
248 sc->wi_ptype = WI_PORTTYPE_BSS;
249 sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
250 sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
251 sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
252 sc->wi_max_data_len = WI_DEFAULT_DATALEN;
253 sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
254 sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
255 sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
256 sc->wi_roaming = WI_DEFAULT_ROAMING;
257 sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
258
259 /*
260 * Read the default channel from the NIC. This may vary
261 * depending on the country where the NIC was purchased, so
262 * we can't hard-code a default and expect it to work for
263 * everyone.
264 */
265 gen.wi_type = WI_RID_OWN_CHNL;
266 gen.wi_len = 2;
267 wi_read_record(sc, &gen);
268 sc->wi_channel = le16toh(gen.wi_val);
269
270 memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats));
271
272 /* AP info was filled with 0 */
273 memset((char *)&sc->wi_aps, 0, sizeof(sc->wi_aps));
274 sc->wi_scanning=0;
275 sc->wi_naps=0;
276
277 /*
278 * Find out if we support WEP on this card.
279 */
280 gen.wi_type = WI_RID_WEP_AVAIL;
281 gen.wi_len = 2;
282 wi_read_record(sc, &gen);
283 sc->wi_has_wep = le16toh(gen.wi_val);
284
285 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
286 #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL)
287 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
288 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0);
289 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
290 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
291 IFM_IEEE80211_ADHOC, 0), 0);
292 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
293 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
294 IFM_IEEE80211_ADHOC, 0), 0);
295 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
296 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
297 IFM_IEEE80211_ADHOC, 0), 0);
298 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
299 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
300 IFM_IEEE80211_ADHOC, 0), 0);
301 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
302 #undef ADD
303 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
304
305 /*
306 * Call MI attach routines.
307 */
308 if_attach(ifp);
309 ether_ifattach(ifp, mac.wi_mac_addr);
310
311 ifp->if_baudrate = IF_Mbps(2);
312
313 /* Attach is successful. */
314 sc->sc_attached = 1;
315
316 splx(s);
317 return 0;
318 }
319
320 static void wi_rxeof(sc)
321 struct wi_softc *sc;
322 {
323 struct ifnet *ifp;
324 struct ether_header *eh;
325 struct wi_frame rx_frame;
326 struct mbuf *m;
327 int id;
328
329 ifp = sc->sc_ifp;
330
331 id = CSR_READ_2(sc, WI_RX_FID);
332
333 /* First read in the frame header */
334 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
335 ifp->if_ierrors++;
336 return;
337 }
338
339 /*
340 * Drop undecryptable or packets with receive errors here
341 */
342 if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) {
343 ifp->if_ierrors++;
344 return;
345 }
346
347 MGETHDR(m, M_DONTWAIT, MT_DATA);
348 if (m == NULL) {
349 ifp->if_ierrors++;
350 return;
351 }
352 MCLGET(m, M_DONTWAIT);
353 if (!(m->m_flags & M_EXT)) {
354 m_freem(m);
355 ifp->if_ierrors++;
356 return;
357 }
358
359 /* Align the data after the ethernet header */
360 m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
361 - sizeof(struct ether_header);
362
363 eh = mtod(m, struct ether_header *);
364 m->m_pkthdr.rcvif = ifp;
365
366 if (le16toh(rx_frame.wi_status) == WI_STAT_1042 ||
367 le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL ||
368 le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) {
369 if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
370 printf("%s: oversized packet received "
371 "(wi_dat_len=%d, wi_status=0x%x)\n",
372 sc->sc_dev.dv_xname,
373 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
374 m_freem(m);
375 ifp->if_ierrors++;
376 return;
377 }
378 m->m_pkthdr.len = m->m_len =
379 le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
380
381 memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr,
382 ETHER_ADDR_LEN);
383 memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr,
384 ETHER_ADDR_LEN);
385 memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type,
386 sizeof(u_int16_t));
387
388 if (wi_read_data(sc, id, WI_802_11_OFFSET,
389 mtod(m, caddr_t) + sizeof(struct ether_header),
390 m->m_len + 2)) {
391 m_freem(m);
392 ifp->if_ierrors++;
393 return;
394 }
395 } else {
396 if ((le16toh(rx_frame.wi_dat_len) +
397 sizeof(struct ether_header)) > MCLBYTES) {
398 printf("%s: oversized packet received "
399 "(wi_dat_len=%d, wi_status=0x%x)\n",
400 sc->sc_dev.dv_xname,
401 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
402 m_freem(m);
403 ifp->if_ierrors++;
404 return;
405 }
406 m->m_pkthdr.len = m->m_len =
407 le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
408
409 if (wi_read_data(sc, id, WI_802_3_OFFSET,
410 mtod(m, caddr_t), m->m_len + 2)) {
411 m_freem(m);
412 ifp->if_ierrors++;
413 return;
414 }
415 }
416
417 ifp->if_ipackets++;
418
419 #if NBPFILTER > 0
420 /* Handle BPF listeners. */
421 if (ifp->if_bpf)
422 bpf_mtap(ifp->if_bpf, m);
423 #endif
424
425 /* Receive packet. */
426 (*ifp->if_input)(ifp, m);
427 }
428
429 static void wi_txeof(sc, status)
430 struct wi_softc *sc;
431 int status;
432 {
433 struct ifnet *ifp = sc->sc_ifp;
434
435 ifp->if_timer = 0;
436 ifp->if_flags &= ~IFF_OACTIVE;
437
438 if (status & WI_EV_TX_EXC)
439 ifp->if_oerrors++;
440 else
441 ifp->if_opackets++;
442
443 return;
444 }
445
446 void wi_inquire(xsc)
447 void *xsc;
448 {
449 struct wi_softc *sc;
450 struct ifnet *ifp;
451 int s;
452
453 sc = xsc;
454 ifp = &sc->sc_ethercom.ec_if;
455
456 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
457 return;
458
459 KASSERT(sc->sc_enabled);
460
461 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
462
463 /* Don't do this while we're transmitting */
464 if (ifp->if_flags & IFF_OACTIVE)
465 return;
466
467 s = splnet();
468 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
469 splx(s);
470 }
471
472 void wi_wait_scan(xsc)
473 void *xsc;
474 {
475 struct wi_softc *sc;
476 struct ifnet *ifp;
477 int s, result;
478
479 sc = xsc;
480 ifp = &sc->sc_ethercom.ec_if;
481
482 /* If not scanning, ignore */
483 if (!sc->wi_scanning)
484 return;
485
486 s = splnet();
487
488 /* Wait for sending complete to make INQUIRE */
489 if (ifp->if_flags & IFF_OACTIVE) {
490 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
491 splx(s);
492 return;
493 }
494
495 /* try INQUIRE */
496 result = wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS);
497 if (result == ETIMEDOUT)
498 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
499
500 splx(s);
501 }
502
503 void wi_update_stats(sc)
504 struct wi_softc *sc;
505 {
506 struct wi_ltv_gen gen;
507 struct wi_scan_header ap2_header; /* Prism2 header */
508 struct wi_scan_data_p2 ap2; /* Prism2 scantable*/
509 struct wi_scan_data ap; /* Lucent scantable */
510 struct wi_assoc assoc; /* Association Status */
511 u_int16_t id;
512 struct ifnet *ifp;
513 u_int32_t *ptr;
514 int len, naps, i, j;
515 u_int16_t t;
516
517 ifp = &sc->sc_ethercom.ec_if;
518
519 id = CSR_READ_2(sc, WI_INFO_FID);
520
521 if (wi_seek(sc, id, 0, WI_BAP1)) {
522 return;
523 }
524
525 gen.wi_len = CSR_READ_2(sc, WI_DATA1);
526 gen.wi_type = CSR_READ_2(sc, WI_DATA1);
527
528 switch (gen.wi_type) {
529 case WI_INFO_SCAN_RESULTS:
530 if (gen.wi_len <= 3) {
531 sc->wi_naps = 0;
532 sc->wi_scanning = 0;
533 break;
534 }
535 switch (sc->sc_firmware_type) {
536 case WI_INTERSIL:
537 naps = 2 * (gen.wi_len - 3) / sizeof(ap2);
538 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
539 sc->wi_naps = naps;
540 /* Read Header */
541 for(j=0; j < sizeof(ap2_header) / 2; j++)
542 ((u_int16_t *)&ap2_header)[j] =
543 CSR_READ_2(sc, WI_DATA1);
544 /* Read Data */
545 for (i=0; i < naps; i++) {
546 for(j=0; j < sizeof(ap2) / 2; j++)
547 ((u_int16_t *)&ap2)[j] =
548 CSR_READ_2(sc, WI_DATA1);
549 /* unswap 8 bit data fields: */
550 for(j=0;j<sizeof(ap.wi_bssid)/2;j++)
551 LE16TOH(((u_int16_t *)&ap.wi_bssid[0])[j]);
552 for(j=0;j<sizeof(ap.wi_name)/2;j++)
553 LE16TOH(((u_int16_t *)&ap.wi_name[0])[j]);
554 sc->wi_aps[i].scanreason = ap2_header.wi_reason;
555 memcpy(sc->wi_aps[i].bssid, ap2.wi_bssid, 6);
556 sc->wi_aps[i].channel = ap2.wi_chid;
557 sc->wi_aps[i].signal = ap2.wi_signal;
558 sc->wi_aps[i].noise = ap2.wi_noise;
559 sc->wi_aps[i].quality = ap2.wi_signal - ap2.wi_noise;
560 sc->wi_aps[i].capinfo = ap2.wi_capinfo;
561 sc->wi_aps[i].interval = ap2.wi_interval;
562 sc->wi_aps[i].rate = ap2.wi_rate;
563 if (ap2.wi_namelen > 32)
564 ap2.wi_namelen = 32;
565 sc->wi_aps[i].namelen = ap2.wi_namelen;
566 memcpy(sc->wi_aps[i].name, ap2.wi_name,
567 ap2.wi_namelen);
568 }
569 break;
570
571 case WI_LUCENT:
572 naps = 2 * gen.wi_len / sizeof(ap);
573 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
574 sc->wi_naps = naps;
575 /* Read Data*/
576 for (i=0; i < naps; i++) {
577 for(j=0; j < sizeof(ap) / 2; j++)
578 ((u_int16_t *)&ap)[j] =
579 CSR_READ_2(sc, WI_DATA1);
580 /* unswap 8 bit data fields: */
581 for(j=0;j<sizeof(ap.wi_bssid)/2;j++)
582 HTOLE16(((u_int16_t *)&ap.wi_bssid[0])[j]);
583 for(j=0;j<sizeof(ap.wi_name)/2;j++)
584 HTOLE16(((u_int16_t *)&ap.wi_name[0])[j]);
585 memcpy(sc->wi_aps[i].bssid, ap.wi_bssid, 6);
586 sc->wi_aps[i].channel = ap.wi_chid;
587 sc->wi_aps[i].signal = ap.wi_signal;
588 sc->wi_aps[i].noise = ap.wi_noise;
589 sc->wi_aps[i].quality = ap.wi_signal - ap.wi_noise;
590 sc->wi_aps[i].capinfo = ap.wi_capinfo;
591 sc->wi_aps[i].interval = ap.wi_interval;
592 if (ap.wi_namelen > 32)
593 ap.wi_namelen = 32;
594 sc->wi_aps[i].namelen = ap.wi_namelen;
595 memcpy(sc->wi_aps[i].name, ap.wi_name,
596 ap.wi_namelen);
597 }
598 break;
599 case WI_SYMBOL:
600 /* unknown */
601 break;
602 }
603 /* Done scanning */
604 sc->wi_scanning = 0;
605 break;
606
607 case WI_INFO_COUNTERS:
608 /* some card versions have a larger stats structure */
609 len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
610 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
611 ptr = (u_int32_t *)&sc->wi_stats;
612
613 for (i = 0; i < len; i++) {
614 t = CSR_READ_2(sc, WI_DATA1);
615 #ifdef WI_HERMES_STATS_WAR
616 if (t > 0xF000)
617 t = ~t & 0xFFFF;
618 #endif
619 ptr[i] += t;
620 }
621
622 ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
623 sc->wi_stats.wi_tx_multi_retries +
624 sc->wi_stats.wi_tx_retry_limit;
625 break;
626
627 case WI_INFO_LINK_STAT: {
628 static char *msg[] = {
629 "connected",
630 "disconnected",
631 "AP change",
632 "AP out of range",
633 "AP in range",
634 "Association Failed"
635 };
636
637 if (gen.wi_len != 2) {
638 #ifdef WI_DEBUG
639 printf("WI_INFO_LINK_STAT: len=%d\n", gen.wi_len);
640 #endif
641 break;
642 }
643 t = CSR_READ_2(sc, WI_DATA1);
644 if ((t < 1) || (t > 6)) {
645 #ifdef WI_DEBUG
646 printf("WI_INFO_LINK_STAT: status %d\n", t);
647 #endif
648 break;
649 }
650 /*
651 * Some cards issue streams of "connected" messages while
652 * trying to find a peer. Don't bother the user with this
653 * unless he is debugging.
654 */
655 if (ifp->if_flags & IFF_DEBUG)
656 printf("%s: %s\n", sc->sc_dev.dv_xname, msg[t - 1]);
657 break;
658 }
659
660 case WI_INFO_ASSOC_STAT: {
661 static char *msg[] = {
662 "STA Associated",
663 "STA Reassociated",
664 "STA Disassociated",
665 "Association Failure",
666 "Authentication Failed"
667 };
668 if (gen.wi_len != 10)
669 break;
670 for (i=0; i < gen.wi_len - 1; i++)
671 ((u_int16_t *)&assoc)[i] = CSR_READ_2(sc, WI_DATA1);
672 /* unswap 8 bit data fields: */
673 for(j=0;j<sizeof(assoc.wi_assoc_sta)/2;j++)
674 HTOLE16(((u_int16_t *)&assoc.wi_assoc_sta[0])[j]);
675 for(j=0;j<sizeof(assoc.wi_assoc_osta)/2;j++)
676 HTOLE16(((u_int16_t *)&assoc.wi_assoc_osta[0])[j]);
677 switch (assoc.wi_assoc_stat) {
678 case ASSOC:
679 case DISASSOC:
680 case ASSOCFAIL:
681 case AUTHFAIL:
682 printf("%s: %s, AP = %02x:%02x:%02x:%02x:%02x:%02x\n",
683 sc->sc_dev.dv_xname,
684 msg[assoc.wi_assoc_stat - 1],
685 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
686 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
687 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff);
688 break;
689 case REASSOC:
690 printf("%s: %s, AP = %02x:%02x:%02x:%02x:%02x:%02x, "
691 "OldAP = %02x:%02x:%02x:%02x:%02x:%02x\n",
692 sc->sc_dev.dv_xname, msg[assoc.wi_assoc_stat - 1],
693 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
694 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
695 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff,
696 assoc.wi_assoc_osta[0]&0xff, assoc.wi_assoc_osta[1]&0xff,
697 assoc.wi_assoc_osta[2]&0xff, assoc.wi_assoc_osta[3]&0xff,
698 assoc.wi_assoc_osta[4]&0xff, assoc.wi_assoc_osta[5]&0xff);
699 break;
700 }
701 }
702 default:
703 #ifdef WI_DEBUG
704 printf("%s: got info type: 0x%04x len=0x%04x\n",
705 sc->sc_dev.dv_xname, gen.wi_type,gen.wi_len);
706 #endif
707 #if 0
708 for (i = 0; i < gen.wi_len; i++) {
709 t = CSR_READ_2(sc, WI_DATA1);
710 printf("[0x%02x] = 0x%04x\n", i, t);
711 }
712 #endif
713 break;
714 }
715 }
716
717 int wi_intr(arg)
718 void *arg;
719 {
720 struct wi_softc *sc = arg;
721 struct ifnet *ifp;
722 u_int16_t status;
723
724 if (sc->sc_enabled == 0 ||
725 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
726 (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
727 return (0);
728
729 ifp = &sc->sc_ethercom.ec_if;
730
731 if (!(ifp->if_flags & IFF_UP)) {
732 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
733 CSR_WRITE_2(sc, WI_INT_EN, 0);
734 return 1;
735 }
736
737 /* Disable interrupts. */
738 CSR_WRITE_2(sc, WI_INT_EN, 0);
739
740 status = CSR_READ_2(sc, WI_EVENT_STAT);
741 CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
742
743 if (status & WI_EV_RX) {
744 wi_rxeof(sc);
745 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
746 }
747
748 if (status & WI_EV_TX) {
749 wi_txeof(sc, status);
750 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
751 }
752
753 if (status & WI_EV_ALLOC) {
754 int id;
755 id = CSR_READ_2(sc, WI_ALLOC_FID);
756 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
757 if (id == sc->wi_tx_data_id)
758 wi_txeof(sc, status);
759 }
760
761 if (status & WI_EV_INFO) {
762 wi_update_stats(sc);
763 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
764 }
765
766 if (status & WI_EV_TX_EXC) {
767 wi_txeof(sc, status);
768 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
769 }
770
771 if (status & WI_EV_INFO_DROP) {
772 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
773 }
774
775 /* Re-enable interrupts. */
776 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
777
778 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
779 wi_start(ifp);
780
781 return 1;
782 }
783
784 /* Must be called at proper protection level! */
785 static int
786 wi_cmd(sc, cmd, val)
787 struct wi_softc *sc;
788 int cmd;
789 int val;
790 {
791 int i, s = 0;
792
793 /* wait for the busy bit to clear */
794 for (i = 0; i < WI_TIMEOUT; i++) {
795 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
796 break;
797 }
798
799 if (i == WI_TIMEOUT) {
800 printf("%s: wi_cmd: BUSY did not clear, cmd=0x%x\n",
801 sc->sc_dev.dv_xname, cmd);
802 return EIO;
803 }
804
805 CSR_WRITE_2(sc, WI_PARAM0, val);
806 CSR_WRITE_2(sc, WI_PARAM1, 0);
807 CSR_WRITE_2(sc, WI_PARAM2, 0);
808 CSR_WRITE_2(sc, WI_COMMAND, cmd);
809
810 /* wait for the cmd completed bit */
811 for (i = 0; i < WI_TIMEOUT; i++) {
812 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
813 break;
814 DELAY(1);
815 }
816
817 /* Ack the command */
818 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
819
820 s = CSR_READ_2(sc, WI_STATUS);
821 if (s & WI_STAT_CMD_RESULT)
822 return(EIO);
823
824 if (i == WI_TIMEOUT) {
825 if (!sc->wi_scanning)
826 printf("%s: command timed out, cmd=0x%x\n",
827 sc->sc_dev.dv_xname, cmd);
828 return(ETIMEDOUT);
829 }
830
831 return(0);
832 }
833
834 static void
835 wi_reset(sc)
836 struct wi_softc *sc;
837 {
838
839 DELAY(100*1000); /* 100 m sec */
840 if (wi_cmd(sc, WI_CMD_INI, 0))
841 printf("%s: init failed\n", sc->sc_dev.dv_xname);
842 CSR_WRITE_2(sc, WI_INT_EN, 0);
843 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
844
845 /* Calibrate timer. */
846 WI_SETVAL(WI_RID_TICK_TIME, 8);
847
848 return;
849 }
850
851 /*
852 * Read an LTV record from the NIC.
853 */
854 static int wi_read_record(sc, ltv)
855 struct wi_softc *sc;
856 struct wi_ltv_gen *ltv;
857 {
858 u_int16_t *ptr;
859 int len, code;
860 struct wi_ltv_gen *oltv, p2ltv;
861
862 if (sc->sc_firmware_type != WI_LUCENT) {
863 oltv = ltv;
864 switch (ltv->wi_type) {
865 case WI_RID_ENCRYPTION:
866 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
867 p2ltv.wi_len = 2;
868 ltv = &p2ltv;
869 break;
870 case WI_RID_TX_CRYPT_KEY:
871 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
872 p2ltv.wi_len = 2;
873 ltv = &p2ltv;
874 break;
875 }
876 }
877
878 /* Tell the NIC to enter record read mode. */
879 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
880 return(EIO);
881
882 /* Seek to the record. */
883 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
884 return(EIO);
885
886 /*
887 * Read the length and record type and make sure they
888 * match what we expect (this verifies that we have enough
889 * room to hold all of the returned data).
890 */
891 len = CSR_READ_2(sc, WI_DATA1);
892 if (len > ltv->wi_len)
893 return(ENOSPC);
894 code = CSR_READ_2(sc, WI_DATA1);
895 if (code != ltv->wi_type)
896 return(EIO);
897
898 ltv->wi_len = len;
899 ltv->wi_type = code;
900
901 /* Now read the data. */
902 ptr = <v->wi_val;
903 if (ltv->wi_len > 1)
904 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
905
906 if (sc->sc_firmware_type != WI_LUCENT) {
907 int v;
908
909 switch (oltv->wi_type) {
910 case WI_RID_TX_RATE:
911 case WI_RID_CUR_TX_RATE:
912 switch (le16toh(ltv->wi_val)) {
913 case 1: v = 1; break;
914 case 2: v = 2; break;
915 case 3: v = 6; break;
916 case 4: v = 5; break;
917 case 7: v = 7; break;
918 case 8: v = 11; break;
919 case 15: v = 3; break;
920 default: v = 0x100 + le16toh(ltv->wi_val); break;
921 }
922 oltv->wi_val = htole16(v);
923 break;
924 case WI_RID_ENCRYPTION:
925 oltv->wi_len = 2;
926 if (le16toh(ltv->wi_val) & 0x01)
927 oltv->wi_val = htole16(1);
928 else
929 oltv->wi_val = htole16(0);
930 break;
931 case WI_RID_TX_CRYPT_KEY:
932 oltv->wi_len = 2;
933 oltv->wi_val = ltv->wi_val;
934 break;
935 case WI_RID_AUTH_CNTL:
936 oltv->wi_len = 2;
937 if (le16toh(ltv->wi_val) & 0x01)
938 oltv->wi_val = htole16(1);
939 else if (le16toh(ltv->wi_val) & 0x02)
940 oltv->wi_val = htole16(2);
941 break;
942 }
943 }
944
945 return(0);
946 }
947
948 /*
949 * Same as read, except we inject data instead of reading it.
950 */
951 static int wi_write_record(sc, ltv)
952 struct wi_softc *sc;
953 struct wi_ltv_gen *ltv;
954 {
955 u_int16_t *ptr;
956 int i;
957 struct wi_ltv_gen p2ltv;
958
959 if (sc->sc_firmware_type != WI_LUCENT) {
960 int v;
961
962 switch (ltv->wi_type) {
963 case WI_RID_TX_RATE:
964 p2ltv.wi_type = WI_RID_TX_RATE;
965 p2ltv.wi_len = 2;
966 switch (le16toh(ltv->wi_val)) {
967 case 1: v = 1; break;
968 case 2: v = 2; break;
969 case 3: v = 15; break;
970 case 5: v = 4; break;
971 case 6: v = 3; break;
972 case 7: v = 7; break;
973 case 11: v = 8; break;
974 default: return EINVAL;
975 }
976 p2ltv.wi_val = htole16(v);
977 ltv = &p2ltv;
978 break;
979 case WI_RID_ENCRYPTION:
980 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
981 p2ltv.wi_len = 2;
982 if (le16toh(ltv->wi_val))
983 p2ltv.wi_val = htole16(PRIVACY_INVOKED |
984 EXCLUDE_UNENCRYPTED);
985 else
986 p2ltv.wi_val =
987 htole16(HOST_ENCRYPT | HOST_DECRYPT);
988 ltv = &p2ltv;
989 break;
990 case WI_RID_TX_CRYPT_KEY:
991 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
992 p2ltv.wi_len = 2;
993 p2ltv.wi_val = ltv->wi_val;
994 ltv = &p2ltv;
995 break;
996 case WI_RID_DEFLT_CRYPT_KEYS:
997 {
998 int error;
999 int keylen;
1000 struct wi_ltv_str ws;
1001 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv;
1002
1003 keylen = wk->wi_keys[sc->wi_tx_key].wi_keylen;
1004
1005 for (i = 0; i < 4; i++) {
1006 memset(&ws, 0, sizeof(ws));
1007 ws.wi_len = (keylen > 5) ? 8 : 4;
1008 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
1009 memcpy(ws.wi_str,
1010 &wk->wi_keys[i].wi_keydat, keylen);
1011 error = wi_write_record(sc,
1012 (struct wi_ltv_gen *)&ws);
1013 if (error)
1014 return error;
1015 }
1016 return 0;
1017 }
1018 case WI_RID_AUTH_CNTL:
1019 p2ltv.wi_type = WI_RID_AUTH_CNTL;
1020 p2ltv.wi_len = 2;
1021 if (le16toh(ltv->wi_val) == 1)
1022 p2ltv.wi_val = htole16(0x01);
1023 else if (le16toh(ltv->wi_val) == 2)
1024 p2ltv.wi_val = htole16(0x02);
1025 ltv = &p2ltv;
1026 break;
1027 }
1028 }
1029
1030 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
1031 return(EIO);
1032
1033 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
1034 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
1035
1036 /* Write data */
1037 ptr = <v->wi_val;
1038 if (ltv->wi_len > 1)
1039 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
1040
1041 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
1042 return(EIO);
1043
1044 return(0);
1045 }
1046
1047 static int wi_seek(sc, id, off, chan)
1048 struct wi_softc *sc;
1049 int id, off, chan;
1050 {
1051 int i;
1052 int selreg, offreg;
1053 int status;
1054
1055 switch (chan) {
1056 case WI_BAP0:
1057 selreg = WI_SEL0;
1058 offreg = WI_OFF0;
1059 break;
1060 case WI_BAP1:
1061 selreg = WI_SEL1;
1062 offreg = WI_OFF1;
1063 break;
1064 default:
1065 printf("%s: invalid data path: %x\n",
1066 sc->sc_dev.dv_xname, chan);
1067 return(EIO);
1068 }
1069
1070 CSR_WRITE_2(sc, selreg, id);
1071 CSR_WRITE_2(sc, offreg, off);
1072
1073 for (i = 0; i < WI_TIMEOUT; i++) {
1074 status = CSR_READ_2(sc, offreg);
1075 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
1076 break;
1077 }
1078
1079 if (i == WI_TIMEOUT) {
1080 printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
1081 sc->sc_dev.dv_xname, id, off, status);
1082 return(ETIMEDOUT);
1083 }
1084 return(0);
1085 }
1086
1087 static int wi_read_data(sc, id, off, buf, len)
1088 struct wi_softc *sc;
1089 int id, off;
1090 caddr_t buf;
1091 int len;
1092 {
1093 u_int16_t *ptr;
1094
1095 if (wi_seek(sc, id, off, WI_BAP1))
1096 return(EIO);
1097
1098 ptr = (u_int16_t *)buf;
1099 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
1100
1101 return(0);
1102 }
1103
1104 /*
1105 * According to the comments in the HCF Light code, there is a bug in
1106 * the Hermes (or possibly in certain Hermes firmware revisions) where
1107 * the chip's internal autoincrement counter gets thrown off during
1108 * data writes: the autoincrement is missed, causing one data word to
1109 * be overwritten and subsequent words to be written to the wrong memory
1110 * locations. The end result is that we could end up transmitting bogus
1111 * frames without realizing it. The workaround for this is to write a
1112 * couple of extra guard words after the end of the transfer, then
1113 * attempt to read then back. If we fail to locate the guard words where
1114 * we expect them, we preform the transfer over again.
1115 */
1116 static int wi_write_data(sc, id, off, buf, len)
1117 struct wi_softc *sc;
1118 int id, off;
1119 caddr_t buf;
1120 int len;
1121 {
1122 u_int16_t *ptr;
1123
1124 #ifdef WI_HERMES_AUTOINC_WAR
1125 again:
1126 #endif
1127
1128 if (wi_seek(sc, id, off, WI_BAP0))
1129 return(EIO);
1130
1131 ptr = (u_int16_t *)buf;
1132 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
1133
1134 #ifdef WI_HERMES_AUTOINC_WAR
1135 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1136 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1137
1138 if (wi_seek(sc, id, off + len, WI_BAP0))
1139 return(EIO);
1140
1141 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1142 CSR_READ_2(sc, WI_DATA0) != 0x5678)
1143 goto again;
1144 #endif
1145
1146 return(0);
1147 }
1148
1149 /*
1150 * Allocate a region of memory inside the NIC and zero
1151 * it out.
1152 */
1153 static int wi_alloc_nicmem(sc, len, id)
1154 struct wi_softc *sc;
1155 int len;
1156 int *id;
1157 {
1158 int i;
1159
1160 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
1161 printf("%s: failed to allocate %d bytes on NIC\n",
1162 sc->sc_dev.dv_xname, len);
1163 return(ENOMEM);
1164 }
1165
1166 for (i = 0; i < WI_TIMEOUT; i++) {
1167 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1168 break;
1169 }
1170
1171 if (i == WI_TIMEOUT) {
1172 printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
1173 return(ETIMEDOUT);
1174 }
1175
1176 *id = CSR_READ_2(sc, WI_ALLOC_FID);
1177 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1178
1179 if (wi_seek(sc, *id, 0, WI_BAP0)) {
1180 printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
1181 return(EIO);
1182 }
1183
1184 for (i = 0; i < len / 2; i++)
1185 CSR_WRITE_2(sc, WI_DATA0, 0);
1186
1187 return(0);
1188 }
1189
1190 static void wi_setmulti(sc)
1191 struct wi_softc *sc;
1192 {
1193 struct ifnet *ifp;
1194 int i = 0;
1195 struct wi_ltv_mcast mcast;
1196 struct ether_multi *enm;
1197 struct ether_multistep estep;
1198 struct ethercom *ec = &sc->sc_ethercom;
1199
1200 ifp = &sc->sc_ethercom.ec_if;
1201
1202 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1203 allmulti:
1204 ifp->if_flags |= IFF_ALLMULTI;
1205 memset((char *)&mcast, 0, sizeof(mcast));
1206 mcast.wi_type = WI_RID_MCAST_LIST;
1207 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
1208
1209 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1210 return;
1211 }
1212
1213 i = 0;
1214 ETHER_FIRST_MULTI(estep, ec, enm);
1215 while (enm != NULL) {
1216 /* Punt on ranges or too many multicast addresses. */
1217 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1218 ETHER_ADDR_LEN) != 0 ||
1219 i >= 16)
1220 goto allmulti;
1221
1222 memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo,
1223 ETHER_ADDR_LEN);
1224 i++;
1225 ETHER_NEXT_MULTI(estep, enm);
1226 }
1227
1228 ifp->if_flags &= ~IFF_ALLMULTI;
1229 mcast.wi_type = WI_RID_MCAST_LIST;
1230 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
1231 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1232 }
1233
1234 static int
1235 wi_setdef(sc, wreq)
1236 struct wi_softc *sc;
1237 struct wi_req *wreq;
1238 {
1239 struct sockaddr_dl *sdl;
1240 struct ifnet *ifp;
1241 int error = 0;
1242
1243 ifp = &sc->sc_ethercom.ec_if;
1244
1245 switch(wreq->wi_type) {
1246 case WI_RID_MAC_NODE:
1247 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1248 memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val,
1249 ETHER_ADDR_LEN);
1250 memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN);
1251 break;
1252 case WI_RID_PORTTYPE:
1253 error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
1254 break;
1255 case WI_RID_TX_RATE:
1256 error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
1257 break;
1258 case WI_RID_MAX_DATALEN:
1259 sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1260 break;
1261 case WI_RID_RTS_THRESH:
1262 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1263 break;
1264 case WI_RID_SYSTEM_SCALE:
1265 sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1266 break;
1267 case WI_RID_CREATE_IBSS:
1268 if (sc->sc_firmware_type == WI_LUCENT)
1269 sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1270 break;
1271 case WI_RID_OWN_CHNL:
1272 sc->wi_channel = le16toh(wreq->wi_val[0]);
1273 break;
1274 case WI_RID_NODENAME:
1275 error = wi_set_ssid(&sc->wi_nodeid,
1276 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1277 break;
1278 case WI_RID_DESIRED_SSID:
1279 error = wi_set_ssid(&sc->wi_netid,
1280 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1281 break;
1282 case WI_RID_OWN_SSID:
1283 error = wi_set_ssid(&sc->wi_ibssid,
1284 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1285 break;
1286 case WI_RID_PM_ENABLED:
1287 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1288 break;
1289 case WI_RID_MICROWAVE_OVEN:
1290 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1291 break;
1292 case WI_RID_MAX_SLEEP:
1293 sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1294 break;
1295 case WI_RID_AUTH_CNTL:
1296 sc->wi_authtype = le16toh(wreq->wi_val[0]);
1297 break;
1298 case WI_RID_ROAMING_MODE:
1299 sc->wi_roaming = le16toh(wreq->wi_val[0]);
1300 break;
1301 case WI_RID_ENCRYPTION:
1302 sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1303 break;
1304 case WI_RID_TX_CRYPT_KEY:
1305 sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1306 break;
1307 case WI_RID_DEFLT_CRYPT_KEYS:
1308 memcpy((char *)&sc->wi_keys, (char *)wreq,
1309 sizeof(struct wi_ltv_keys));
1310 break;
1311 default:
1312 error = EINVAL;
1313 break;
1314 }
1315
1316 return (error);
1317 }
1318
1319 static int
1320 wi_getdef(sc, wreq)
1321 struct wi_softc *sc;
1322 struct wi_req *wreq;
1323 {
1324 struct sockaddr_dl *sdl;
1325 struct ifnet *ifp;
1326 int error = 0;
1327
1328 ifp = &sc->sc_ethercom.ec_if;
1329
1330 wreq->wi_len = 2; /* XXX */
1331 switch (wreq->wi_type) {
1332 case WI_RID_MAC_NODE:
1333 wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
1334 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1335 memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN);
1336 memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1337 break;
1338 case WI_RID_PORTTYPE:
1339 wreq->wi_val[0] = htole16(sc->wi_ptype);
1340 break;
1341 case WI_RID_TX_RATE:
1342 wreq->wi_val[0] = htole16(sc->wi_tx_rate);
1343 break;
1344 case WI_RID_MAX_DATALEN:
1345 wreq->wi_val[0] = htole16(sc->wi_max_data_len);
1346 break;
1347 case WI_RID_RTS_THRESH:
1348 wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
1349 break;
1350 case WI_RID_SYSTEM_SCALE:
1351 wreq->wi_val[0] = htole16(sc->wi_ap_density);
1352 break;
1353 case WI_RID_CREATE_IBSS:
1354 if (sc->sc_firmware_type == WI_LUCENT)
1355 wreq->wi_val[0] = htole16(sc->wi_create_ibss);
1356 break;
1357 case WI_RID_OWN_CHNL:
1358 wreq->wi_val[0] = htole16(sc->wi_channel);
1359 break;
1360 case WI_RID_NODENAME:
1361 wi_request_fill_ssid(wreq, &sc->wi_nodeid);
1362 break;
1363 case WI_RID_DESIRED_SSID:
1364 wi_request_fill_ssid(wreq, &sc->wi_netid);
1365 break;
1366 case WI_RID_OWN_SSID:
1367 wi_request_fill_ssid(wreq, &sc->wi_ibssid);
1368 break;
1369 case WI_RID_PM_ENABLED:
1370 wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
1371 break;
1372 case WI_RID_MICROWAVE_OVEN:
1373 wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
1374 break;
1375 case WI_RID_MAX_SLEEP:
1376 wreq->wi_val[0] = htole16(sc->wi_max_sleep);
1377 break;
1378 case WI_RID_AUTH_CNTL:
1379 wreq->wi_val[0] = htole16(sc->wi_authtype);
1380 break;
1381 case WI_RID_ROAMING_MODE:
1382 wreq->wi_val[0] = htole16(sc->wi_roaming);
1383 break;
1384 case WI_RID_WEP_AVAIL:
1385 wreq->wi_val[0] = htole16(sc->wi_has_wep);
1386 break;
1387 case WI_RID_ENCRYPTION:
1388 wreq->wi_val[0] = htole16(sc->wi_use_wep);
1389 break;
1390 case WI_RID_TX_CRYPT_KEY:
1391 wreq->wi_val[0] = htole16(sc->wi_tx_key);
1392 break;
1393 case WI_RID_DEFLT_CRYPT_KEYS:
1394 wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
1395 memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
1396 break;
1397 default:
1398 #if 0
1399 error = EIO;
1400 #else
1401 #ifdef WI_DEBUG
1402 printf("%s: wi_getdef: unknown request %d\n",
1403 sc->sc_dev.dv_xname, wreq->wi_type);
1404 #endif
1405 #endif
1406 break;
1407 }
1408
1409 return (error);
1410 }
1411
1412 static int
1413 wi_ioctl(ifp, command, data)
1414 struct ifnet *ifp;
1415 u_long command;
1416 caddr_t data;
1417 {
1418 int s, error = 0;
1419 int len;
1420 struct wi_softc *sc = ifp->if_softc;
1421 struct wi_req wreq;
1422 struct ifreq *ifr;
1423 struct proc *p = curproc;
1424 struct ieee80211_nwid nwid;
1425
1426 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1427 return (ENXIO);
1428
1429 s = splnet();
1430
1431 ifr = (struct ifreq *)data;
1432 switch (command) {
1433 case SIOCSIFADDR:
1434 case SIOCGIFADDR:
1435 case SIOCSIFMTU:
1436 error = ether_ioctl(ifp, command, data);
1437 break;
1438 case SIOCSIFFLAGS:
1439 if (ifp->if_flags & IFF_UP) {
1440 if (ifp->if_flags & IFF_RUNNING &&
1441 ifp->if_flags & IFF_PROMISC &&
1442 !(sc->wi_if_flags & IFF_PROMISC)) {
1443 WI_SETVAL(WI_RID_PROMISC, 1);
1444 } else if (ifp->if_flags & IFF_RUNNING &&
1445 !(ifp->if_flags & IFF_PROMISC) &&
1446 sc->wi_if_flags & IFF_PROMISC) {
1447 WI_SETVAL(WI_RID_PROMISC, 0);
1448 }
1449 wi_init(ifp);
1450 } else {
1451 if (ifp->if_flags & IFF_RUNNING) {
1452 wi_stop(ifp, 0);
1453 }
1454 }
1455 sc->wi_if_flags = ifp->if_flags;
1456
1457 if (!(ifp->if_flags & IFF_UP)) {
1458 if (sc->sc_enabled) {
1459 if (sc->sc_disable)
1460 (*sc->sc_disable)(sc);
1461 sc->sc_enabled = 0;
1462 ifp->if_flags &= ~IFF_RUNNING;
1463 }
1464 }
1465 error = 0;
1466 break;
1467 case SIOCADDMULTI:
1468 case SIOCDELMULTI:
1469 error = (command == SIOCADDMULTI) ?
1470 ether_addmulti(ifr, &sc->sc_ethercom) :
1471 ether_delmulti(ifr, &sc->sc_ethercom);
1472 if (error == ENETRESET) {
1473 if (sc->sc_enabled != 0) {
1474 /*
1475 * Multicast list has changed. Set the
1476 * hardware filter accordingly.
1477 */
1478 wi_setmulti(sc);
1479 }
1480 error = 0;
1481 }
1482 break;
1483 case SIOCSIFMEDIA:
1484 case SIOCGIFMEDIA:
1485 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1486 break;
1487 case SIOCGWAVELAN:
1488 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1489 if (error)
1490 break;
1491 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1492 memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats,
1493 sizeof(sc->wi_stats));
1494 wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1495 } else if (wreq.wi_type == WI_RID_READ_APS) {
1496 if (sc->wi_scanning) {
1497 error = EINPROGRESS;
1498 break;
1499 } else {
1500 len = sc->wi_naps * sizeof(struct wi_apinfo);
1501 len = len > WI_MAX_DATALEN ? WI_MAX_DATALEN : len;
1502 len = len / sizeof(struct wi_apinfo);
1503 memcpy((char *)&wreq.wi_val, (char *)&len, sizeof(len));
1504 memcpy((char *)&wreq.wi_val + sizeof(len),
1505 (char *)&sc->wi_aps,
1506 len * sizeof(struct wi_apinfo));
1507 }
1508 } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1509 /* For non-root user, return all-zeroes keys */
1510 if (suser(p->p_ucred, &p->p_acflag))
1511 memset((char *)&wreq, 0,
1512 sizeof(struct wi_ltv_keys));
1513 else
1514 memcpy((char *)&wreq, (char *)&sc->wi_keys,
1515 sizeof(struct wi_ltv_keys));
1516 } else {
1517 if (sc->sc_enabled == 0)
1518 error = wi_getdef(sc, &wreq);
1519 else if (wreq.wi_len > WI_MAX_DATALEN)
1520 error = EINVAL;
1521 else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1522 error = EINVAL;
1523 }
1524 if (error == 0)
1525 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1526 break;
1527 case SIOCSWAVELAN:
1528 error = suser(p->p_ucred, &p->p_acflag);
1529 if (error)
1530 break;
1531 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1532 if (error)
1533 break;
1534 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1535 if (sc->sc_enabled)
1536 wi_inquire(sc);
1537 break;
1538 } else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1539 error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1540 wreq.wi_len);
1541 } else if (wreq.wi_type == WI_RID_SCAN_APS) {
1542 if (wreq.wi_len != 4) {
1543 error = EINVAL;
1544 break;
1545 }
1546 if (!sc->wi_scanning) {
1547 if (sc->sc_firmware_type != WI_LUCENT) {
1548 wreq.wi_type = WI_RID_SCAN_REQ;
1549 error = wi_write_record(sc,
1550 (struct wi_ltv_gen *)&wreq);
1551 }
1552 if (!error) {
1553 sc->wi_scanning = 1;
1554 callout_reset(&sc->wi_scan_sh, hz * 1,
1555 wi_wait_scan, sc);
1556 }
1557 }
1558 } else {
1559 if (wreq.wi_len > WI_MAX_DATALEN)
1560 error = EINVAL;
1561 else if (sc->sc_enabled != 0)
1562 error = wi_write_record(sc,
1563 (struct wi_ltv_gen *)&wreq);
1564 if (error == 0)
1565 error = wi_setdef(sc, &wreq);
1566 if (error == 0 && sc->sc_enabled != 0)
1567 /* Reinitialize WaveLAN. */
1568 wi_init(ifp);
1569 }
1570 break;
1571 case SIOCG80211NWID:
1572 if (sc->sc_enabled == 0) {
1573 /* Return the desired ID */
1574 error = copyout(&sc->wi_netid, ifr->ifr_data,
1575 sizeof(sc->wi_netid));
1576 } else {
1577 wreq.wi_type = WI_RID_CURRENT_SSID;
1578 wreq.wi_len = WI_MAX_DATALEN;
1579 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
1580 le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
1581 error = EINVAL;
1582 else {
1583 wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
1584 le16toh(wreq.wi_val[0]));
1585 error = copyout(&nwid, ifr->ifr_data,
1586 sizeof(nwid));
1587 }
1588 }
1589 break;
1590 case SIOCS80211NWID:
1591 error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
1592 if (error != 0)
1593 break;
1594 if (nwid.i_len > IEEE80211_NWID_LEN) {
1595 error = EINVAL;
1596 break;
1597 }
1598 if (sc->wi_netid.i_len == nwid.i_len &&
1599 memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
1600 break;
1601 wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
1602 if (sc->sc_enabled != 0)
1603 /* Reinitialize WaveLAN. */
1604 wi_init(ifp);
1605 break;
1606 case SIOCS80211NWKEY:
1607 error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
1608 break;
1609 case SIOCG80211NWKEY:
1610 error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
1611 break;
1612 case SIOCS80211POWER:
1613 error = wi_set_pm(sc, (struct ieee80211_power *)data);
1614 break;
1615 case SIOCG80211POWER:
1616 error = wi_get_pm(sc, (struct ieee80211_power *)data);
1617 break;
1618
1619 default:
1620 error = EINVAL;
1621 break;
1622 }
1623
1624 splx(s);
1625 return (error);
1626 }
1627
1628 static int
1629 wi_init(ifp)
1630 struct ifnet *ifp;
1631 {
1632 struct wi_softc *sc = ifp->if_softc;
1633 struct wi_req wreq;
1634 struct wi_ltv_macaddr mac;
1635 int error, id = 0, wasenabled;
1636
1637 wasenabled = sc->sc_enabled;
1638 if (!sc->sc_enabled) {
1639 if ((error = (*sc->sc_enable)(sc)) != 0)
1640 goto out;
1641 sc->sc_enabled = 1;
1642 }
1643
1644 wi_stop(ifp, 0);
1645 /* Symbol firmware cannot be initialized more than once */
1646 if (!(sc->sc_firmware_type == WI_SYMBOL && wasenabled))
1647 wi_reset(sc);
1648
1649 /* Program max data length. */
1650 WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1651
1652 /* Enable/disable IBSS creation. */
1653 if (sc->sc_firmware_type == WI_LUCENT)
1654 WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1655
1656 /* Set the port type. */
1657 WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1658
1659 /* Program the RTS/CTS threshold. */
1660 WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1661
1662 /* Program the TX rate */
1663 WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1664
1665 /* Access point density */
1666 WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1667
1668 /* Power Management Enabled */
1669 WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1670
1671 /* Power Managment Max Sleep */
1672 WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1673
1674 /* Roaming type */
1675 WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
1676
1677 /* Specify the IBSS name */
1678 wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
1679
1680 /* Specify the network name */
1681 wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
1682
1683 /* Specify the frequency to use */
1684 WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1685
1686 /* Program the nodename. */
1687 wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
1688
1689 /* Set our MAC address. */
1690 mac.wi_len = 4;
1691 mac.wi_type = WI_RID_MAC_NODE;
1692 memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
1693 wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1694
1695 /* Initialize promisc mode. */
1696 if (ifp->if_flags & IFF_PROMISC) {
1697 WI_SETVAL(WI_RID_PROMISC, 1);
1698 } else {
1699 WI_SETVAL(WI_RID_PROMISC, 0);
1700 }
1701
1702 /* Configure WEP. */
1703 if (sc->wi_has_wep) {
1704 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1705 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1706 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1707 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1708 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1709 if (sc->sc_firmware_type != WI_LUCENT && sc->wi_use_wep) {
1710 /*
1711 * ONLY HWB3163 EVAL-CARD Firmware version
1712 * less than 0.8 variant2
1713 *
1714 * If promiscuous mode disable, Prism2 chip
1715 * does not work with WEP .
1716 * It is under investigation for details.
1717 * (ichiro (at) netbsd.org)
1718 */
1719 if (sc->sc_firmware_type == WI_INTERSIL &&
1720 sc->sc_sta_firmware_ver < 802 ) {
1721 /* firm ver < 0.8 variant 2 */
1722 WI_SETVAL(WI_RID_PROMISC, 1);
1723 }
1724 WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
1725 }
1726 }
1727
1728 /* Set multicast filter. */
1729 wi_setmulti(sc);
1730
1731 /* Enable desired port */
1732 wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
1733
1734 /* scanning variable is modal, therefore reinit to OFF, in case it was on. */
1735 sc->wi_scanning=0;
1736 sc->wi_naps=0;
1737
1738 if ((error = wi_alloc_nicmem(sc,
1739 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1740 printf("%s: tx buffer allocation failed\n",
1741 sc->sc_dev.dv_xname);
1742 goto out;
1743 }
1744 sc->wi_tx_data_id = id;
1745
1746 if ((error = wi_alloc_nicmem(sc,
1747 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1748 printf("%s: mgmt. buffer allocation failed\n",
1749 sc->sc_dev.dv_xname);
1750 goto out;
1751 }
1752 sc->wi_tx_mgmt_id = id;
1753
1754 /* Enable interrupts */
1755 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1756
1757 ifp->if_flags |= IFF_RUNNING;
1758 ifp->if_flags &= ~IFF_OACTIVE;
1759
1760 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
1761
1762 out:
1763 if (error) {
1764 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1765 ifp->if_timer = 0;
1766 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1767 }
1768 return (error);
1769 }
1770
1771 static void
1772 wi_start(ifp)
1773 struct ifnet *ifp;
1774 {
1775 struct wi_softc *sc;
1776 struct mbuf *m0;
1777 struct wi_frame tx_frame;
1778 struct ether_header *eh;
1779 int id;
1780
1781 sc = ifp->if_softc;
1782
1783 if (ifp->if_flags & IFF_OACTIVE)
1784 return;
1785
1786 IFQ_DEQUEUE(&ifp->if_snd, m0);
1787 if (m0 == NULL)
1788 return;
1789
1790 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1791 id = sc->wi_tx_data_id;
1792 eh = mtod(m0, struct ether_header *);
1793
1794 /*
1795 * Use RFC1042 encoding for IP and ARP datagrams,
1796 * 802.3 for anything else.
1797 */
1798 if (ntohs(eh->ether_type) == ETHERTYPE_IP ||
1799 ntohs(eh->ether_type) == ETHERTYPE_ARP ||
1800 ntohs(eh->ether_type) == ETHERTYPE_REVARP ||
1801 ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
1802 memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost,
1803 ETHER_ADDR_LEN);
1804 memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost,
1805 ETHER_ADDR_LEN);
1806 memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost,
1807 ETHER_ADDR_LEN);
1808 memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost,
1809 ETHER_ADDR_LEN);
1810
1811 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1812 tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
1813 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1814 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1815 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1816 tx_frame.wi_type = eh->ether_type;
1817
1818 m_copydata(m0, sizeof(struct ether_header),
1819 m0->m_pkthdr.len - sizeof(struct ether_header),
1820 (caddr_t)&sc->wi_txbuf);
1821
1822 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1823 sizeof(struct wi_frame));
1824 wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1825 (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1826 } else {
1827 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
1828
1829 m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1830
1831 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1832 sizeof(struct wi_frame));
1833 wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1834 m0->m_pkthdr.len + 2);
1835 }
1836
1837 #if NBPFILTER > 0
1838 /*
1839 * If there's a BPF listener, bounce a copy of
1840 * this frame to him.
1841 */
1842 if (ifp->if_bpf)
1843 bpf_mtap(ifp->if_bpf, m0);
1844 #endif
1845
1846 m_freem(m0);
1847
1848 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1849 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1850
1851 ifp->if_flags |= IFF_OACTIVE;
1852
1853 /*
1854 * Set a timeout in case the chip goes out to lunch.
1855 */
1856 ifp->if_timer = 5;
1857
1858 return;
1859 }
1860
1861 static int
1862 wi_mgmt_xmit(sc, data, len)
1863 struct wi_softc *sc;
1864 caddr_t data;
1865 int len;
1866 {
1867 struct wi_frame tx_frame;
1868 int id;
1869 struct wi_80211_hdr *hdr;
1870 caddr_t dptr;
1871
1872 hdr = (struct wi_80211_hdr *)data;
1873 dptr = data + sizeof(struct wi_80211_hdr);
1874
1875 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1876 id = sc->wi_tx_mgmt_id;
1877
1878 memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr,
1879 sizeof(struct wi_80211_hdr));
1880
1881 tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
1882 tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1883
1884 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1885 wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1886 (len - sizeof(struct wi_80211_hdr)) + 2);
1887
1888 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1889 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1890 return(EIO);
1891 }
1892
1893 return(0);
1894 }
1895
1896 static void
1897 wi_stop(ifp, disable)
1898 struct ifnet *ifp;
1899 {
1900 struct wi_softc *sc = ifp->if_softc;
1901
1902 CSR_WRITE_2(sc, WI_INT_EN, 0);
1903 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1904
1905 callout_stop(&sc->wi_inquire_ch);
1906 callout_stop(&sc->wi_scan_sh);
1907
1908 if (disable) {
1909 if (sc->sc_enabled) {
1910 if (sc->sc_disable)
1911 (*sc->sc_disable)(sc);
1912 sc->sc_enabled = 0;
1913 }
1914 }
1915
1916 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1917 ifp->if_timer = 0;
1918 }
1919
1920 static void
1921 wi_watchdog(ifp)
1922 struct ifnet *ifp;
1923 {
1924 struct wi_softc *sc;
1925
1926 sc = ifp->if_softc;
1927
1928 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1929
1930 wi_init(ifp);
1931
1932 ifp->if_oerrors++;
1933
1934 return;
1935 }
1936
1937 void
1938 wi_shutdown(sc)
1939 struct wi_softc *sc;
1940 {
1941 int s;
1942
1943 s = splnet();
1944 if (sc->sc_enabled) {
1945 if (sc->sc_disable)
1946 (*sc->sc_disable)(sc);
1947 sc->sc_enabled = 0;
1948 }
1949 splx(s);
1950 }
1951
1952 int
1953 wi_activate(self, act)
1954 struct device *self;
1955 enum devact act;
1956 {
1957 struct wi_softc *sc = (struct wi_softc *)self;
1958 int rv = 0, s;
1959
1960 s = splnet();
1961 switch (act) {
1962 case DVACT_ACTIVATE:
1963 rv = EOPNOTSUPP;
1964 break;
1965
1966 case DVACT_DEACTIVATE:
1967 if_deactivate(&sc->sc_ethercom.ec_if);
1968 break;
1969 }
1970 splx(s);
1971 return (rv);
1972 }
1973
1974 static void
1975 wi_get_id(sc)
1976 struct wi_softc *sc;
1977 {
1978 struct wi_ltv_ver ver;
1979 struct wi_card_ident *id;
1980
1981 /* getting chip identity */
1982 memset(&ver, 0, sizeof(ver));
1983 ver.wi_type = WI_RID_CARD_ID;
1984 ver.wi_len = 5;
1985 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
1986 printf("%s: using ", sc->sc_dev.dv_xname);
1987
1988 sc->sc_firmware_type = WI_NOTYPE;
1989 for (id = wi_card_ident; id->card_name != NULL; id++) {
1990 if (le16toh(ver.wi_ver[0]) == id->card_id) {
1991 printf("%s", id->card_name);
1992 sc->sc_firmware_type = id->firm_type;
1993 break;
1994 }
1995 }
1996 if (sc->sc_firmware_type == WI_NOTYPE) {
1997 if (le16toh(ver.wi_ver[0]) & 0x8000) {
1998 printf("Unknown PRISM2 chip");
1999 sc->sc_firmware_type = WI_INTERSIL;
2000 } else {
2001 printf("Unknown Lucent chip");
2002 sc->sc_firmware_type = WI_LUCENT;
2003 }
2004 }
2005
2006 /* get primary firmware version (Only Prism chips) */
2007 if (sc->sc_firware_type != WI_LUCENT) {
2008 memset(&ver, 0, sizeof(ver));
2009 ver.wi_type = WI_RID_PRI_IDENTITY;
2010 ver.wi_len = 5;
2011 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
2012 LE16TOH(ver.wi_ver[1]);
2013 LE16TOH(ver.wi_ver[2]);
2014 LE16TOH(ver.wi_ver[3]);
2015 sc->sc_pri_firmware_ver = ver.wi_ver[2] * 10000 +
2016 ver.wi_ver[3] * 100 + ver.wi_ver[1];
2017 }
2018
2019 /* get station firmware version */
2020 memset(&ver, 0, sizeof(ver));
2021 ver.wi_type = WI_RID_STA_IDENTITY;
2022 ver.wi_len = 5;
2023 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
2024 LE16TOH(ver.wi_ver[1]);
2025 LE16TOH(ver.wi_ver[2]);
2026 LE16TOH(ver.wi_ver[3]);
2027 sc->sc_sta_firmware_ver = ver.wi_ver[2] * 10000 +
2028 ver.wi_ver[3] * 100 + ver.wi_ver[1];
2029 if (sc->sc_firmware_type == WI_INTERSIL &&
2030 (sc->sc_sta_firmware_ver == 10102 || sc->sc_sta_firmware_ver == 20102)) {
2031 struct wi_ltv_str sver;
2032 char *p;
2033
2034 memset(&sver, 0, sizeof(sver));
2035 sver.wi_type = WI_RID_SYMBOL_IDENTITY;
2036 sver.wi_len = 7;
2037 /* value should be "V2.00-11" */
2038 if (wi_read_record(sc, (struct wi_ltv_gen *)&sver) == 0 &&
2039 *(p = (char *)sver.wi_str) == 'V' &&
2040 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
2041 sc->sc_firmware_type = WI_SYMBOL;
2042 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
2043 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
2044 (p[6] - '0') * 10 + (p[7] - '0');
2045 }
2046 }
2047
2048 printf("\n%s Firmware: ",
2049 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
2050 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
2051 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
2052 printf("Primary (%u.%u.%u), ", sc->sc_pri_firmware_ver / 10000,
2053 (sc->sc_pri_firmware_ver % 10000) / 100,
2054 sc->sc_pri_firmware_ver % 100);
2055 printf("Station (%u.%u.%u)\n",
2056 sc->sc_sta_firmware_ver / 10000, (sc->sc_sta_firmware_ver % 10000) / 100,
2057 sc->sc_sta_firmware_ver % 100);
2058
2059 return;
2060 }
2061
2062 int
2063 wi_detach(sc)
2064 struct wi_softc *sc;
2065 {
2066 struct ifnet *ifp = sc->sc_ifp;
2067 int s;
2068
2069 if (!sc->sc_attached)
2070 return (0);
2071
2072 s = splnet();
2073 callout_stop(&sc->wi_inquire_ch);
2074
2075 /* Delete all remaining media. */
2076 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
2077
2078 ether_ifdetach(ifp);
2079 if_detach(ifp);
2080 if (sc->sc_enabled) {
2081 if (sc->sc_disable)
2082 (*sc->sc_disable)(sc);
2083 sc->sc_enabled = 0;
2084 }
2085 splx(s);
2086 return (0);
2087 }
2088
2089 void
2090 wi_power(sc, why)
2091 struct wi_softc *sc;
2092 int why;
2093 {
2094 int s;
2095
2096 if (!sc->sc_enabled)
2097 return;
2098
2099 s = splnet();
2100 switch (why) {
2101 case PWR_SUSPEND:
2102 case PWR_STANDBY:
2103 wi_stop(sc->sc_ifp, 0);
2104 if (sc->sc_enabled) {
2105 if (sc->sc_disable)
2106 (*sc->sc_disable)(sc);
2107 }
2108 break;
2109 case PWR_RESUME:
2110 sc->sc_enabled = 0;
2111 wi_init(sc->sc_ifp);
2112 (void)wi_intr(sc);
2113 break;
2114 case PWR_SOFTSUSPEND:
2115 case PWR_SOFTSTANDBY:
2116 case PWR_SOFTRESUME:
2117 break;
2118 }
2119 splx(s);
2120 }
2121
2122 static int
2123 wi_set_ssid(ws, id, len)
2124 struct ieee80211_nwid *ws;
2125 u_int8_t *id;
2126 int len;
2127 {
2128
2129 if (len > IEEE80211_NWID_LEN)
2130 return (EINVAL);
2131 ws->i_len = len;
2132 memcpy(ws->i_nwid, id, len);
2133 return (0);
2134 }
2135
2136 static void
2137 wi_request_fill_ssid(wreq, ws)
2138 struct wi_req *wreq;
2139 struct ieee80211_nwid *ws;
2140 {
2141 int len = ws->i_len;
2142
2143 memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
2144 wreq->wi_val[0] = htole16(len);
2145 wreq->wi_len = roundup(len, 2) / 2 + 2;
2146 memcpy(&wreq->wi_val[1], ws->i_nwid, len);
2147 }
2148
2149 static int
2150 wi_write_ssid(sc, type, wreq, ws)
2151 struct wi_softc *sc;
2152 int type;
2153 struct wi_req *wreq;
2154 struct ieee80211_nwid *ws;
2155 {
2156
2157 wreq->wi_type = type;
2158 wi_request_fill_ssid(wreq, ws);
2159 return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
2160 }
2161
2162 static int
2163 wi_sync_media(sc, ptype, txrate)
2164 struct wi_softc *sc;
2165 int ptype;
2166 int txrate;
2167 {
2168 int media = sc->sc_media.ifm_cur->ifm_media;
2169 int options = IFM_OPTIONS(media);
2170 int subtype;
2171
2172 switch (txrate) {
2173 case 1:
2174 subtype = IFM_IEEE80211_DS1;
2175 break;
2176 case 2:
2177 subtype = IFM_IEEE80211_DS2;
2178 break;
2179 case 3:
2180 subtype = IFM_AUTO;
2181 break;
2182 case 5:
2183 subtype = IFM_IEEE80211_DS5;
2184 break;
2185 case 11:
2186 subtype = IFM_IEEE80211_DS11;
2187 break;
2188 default:
2189 subtype = IFM_MANUAL; /* Unable to represent */
2190 break;
2191 }
2192 switch (ptype) {
2193 case WI_PORTTYPE_ADHOC:
2194 options |= IFM_IEEE80211_ADHOC;
2195 break;
2196 case WI_PORTTYPE_BSS:
2197 options &= ~IFM_IEEE80211_ADHOC;
2198 break;
2199 default:
2200 subtype = IFM_MANUAL; /* Unable to represent */
2201 break;
2202 }
2203 media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
2204 IFM_INST(media));
2205 if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
2206 return (EINVAL);
2207 ifmedia_set(&sc->sc_media, media);
2208 sc->wi_ptype = ptype;
2209 sc->wi_tx_rate = txrate;
2210 return (0);
2211 }
2212
2213 static int
2214 wi_media_change(ifp)
2215 struct ifnet *ifp;
2216 {
2217 struct wi_softc *sc = ifp->if_softc;
2218 int otype = sc->wi_ptype;
2219 int orate = sc->wi_tx_rate;
2220
2221 if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2222 sc->wi_ptype = WI_PORTTYPE_ADHOC;
2223 else
2224 sc->wi_ptype = WI_PORTTYPE_BSS;
2225
2226 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
2227 case IFM_IEEE80211_DS1:
2228 sc->wi_tx_rate = 1;
2229 break;
2230 case IFM_IEEE80211_DS2:
2231 sc->wi_tx_rate = 2;
2232 break;
2233 case IFM_AUTO:
2234 sc->wi_tx_rate = 3;
2235 break;
2236 case IFM_IEEE80211_DS5:
2237 sc->wi_tx_rate = 5;
2238 break;
2239 case IFM_IEEE80211_DS11:
2240 sc->wi_tx_rate = 11;
2241 break;
2242 }
2243
2244 if (sc->sc_enabled != 0) {
2245 if (otype != sc->wi_ptype ||
2246 orate != sc->wi_tx_rate)
2247 wi_init(ifp);
2248 }
2249
2250 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
2251
2252 return (0);
2253 }
2254
2255 static void
2256 wi_media_status(ifp, imr)
2257 struct ifnet *ifp;
2258 struct ifmediareq *imr;
2259 {
2260 struct wi_softc *sc = ifp->if_softc;
2261
2262 if (sc->sc_enabled == 0) {
2263 imr->ifm_active = IFM_IEEE80211|IFM_NONE;
2264 imr->ifm_status = 0;
2265 return;
2266 }
2267
2268 imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
2269 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2270 }
2271
2272 static int
2273 wi_set_nwkey(sc, nwkey)
2274 struct wi_softc *sc;
2275 struct ieee80211_nwkey *nwkey;
2276 {
2277 int i, error;
2278 size_t len;
2279 struct wi_req wreq;
2280 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
2281
2282 if (!sc->wi_has_wep)
2283 return ENODEV;
2284 if (nwkey->i_defkid <= 0 ||
2285 nwkey->i_defkid > IEEE80211_WEP_NKID)
2286 return EINVAL;
2287 memcpy(wk, &sc->wi_keys, sizeof(*wk));
2288 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2289 if (nwkey->i_key[i].i_keydat == NULL)
2290 continue;
2291 len = nwkey->i_key[i].i_keylen;
2292 if (len > sizeof(wk->wi_keys[i].wi_keydat))
2293 return EINVAL;
2294 error = copyin(nwkey->i_key[i].i_keydat,
2295 wk->wi_keys[i].wi_keydat, len);
2296 if (error)
2297 return error;
2298 wk->wi_keys[i].wi_keylen = htole16(len);
2299 }
2300
2301 wk->wi_len = (sizeof(*wk) / 2) + 1;
2302 wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2303 if (sc->sc_enabled != 0) {
2304 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2305 if (error)
2306 return error;
2307 }
2308 error = wi_setdef(sc, &wreq);
2309 if (error)
2310 return error;
2311
2312 wreq.wi_len = 2;
2313 wreq.wi_type = WI_RID_TX_CRYPT_KEY;
2314 wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
2315 if (sc->sc_enabled != 0) {
2316 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2317 if (error)
2318 return error;
2319 }
2320 error = wi_setdef(sc, &wreq);
2321 if (error)
2322 return error;
2323
2324 wreq.wi_type = WI_RID_ENCRYPTION;
2325 wreq.wi_val[0] = htole16(nwkey->i_wepon);
2326 if (sc->sc_enabled != 0) {
2327 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2328 if (error)
2329 return error;
2330 }
2331 error = wi_setdef(sc, &wreq);
2332 if (error)
2333 return error;
2334
2335 if (sc->sc_enabled != 0)
2336 wi_init(&sc->sc_ethercom.ec_if);
2337 return 0;
2338 }
2339
2340 static int
2341 wi_get_nwkey(sc, nwkey)
2342 struct wi_softc *sc;
2343 struct ieee80211_nwkey *nwkey;
2344 {
2345 int i, len, error;
2346 struct wi_ltv_keys *wk = &sc->wi_keys;
2347
2348 if (!sc->wi_has_wep)
2349 return ENODEV;
2350 nwkey->i_wepon = sc->wi_use_wep;
2351 nwkey->i_defkid = sc->wi_tx_key + 1;
2352
2353 /* do not show any keys to non-root user */
2354 error = suser(curproc->p_ucred, &curproc->p_acflag);
2355 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2356 if (nwkey->i_key[i].i_keydat == NULL)
2357 continue;
2358 /* error holds results of suser() for the first time */
2359 if (error)
2360 return error;
2361 len = le16toh(wk->wi_keys[i].wi_keylen);
2362 if (nwkey->i_key[i].i_keylen < len)
2363 return ENOSPC;
2364 nwkey->i_key[i].i_keylen = len;
2365 error = copyout(wk->wi_keys[i].wi_keydat,
2366 nwkey->i_key[i].i_keydat, len);
2367 if (error)
2368 return error;
2369 }
2370 return 0;
2371 }
2372
2373 static int
2374 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
2375 {
2376
2377 sc->wi_pm_enabled = power->i_enabled;
2378 sc->wi_max_sleep = power->i_maxsleep;
2379
2380 if (sc->sc_enabled)
2381 return (wi_init(&sc->sc_ethercom.ec_if));
2382
2383 return (0);
2384 }
2385
2386 static int
2387 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
2388 {
2389
2390 power->i_enabled = sc->wi_pm_enabled;
2391 power->i_maxsleep = sc->wi_max_sleep;
2392
2393 return (0);
2394 }
2395