wi.c revision 1.71 1 /* $NetBSD: wi.c,v 1.71 2002/04/16 07:24:06 onoe Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.71 2002/04/16 07:24:06 onoe Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static void wi_reset __P((struct wi_softc *));
108 static int wi_ioctl __P((struct ifnet *, u_long, caddr_t));
109 static void wi_start __P((struct ifnet *));
110 static void wi_watchdog __P((struct ifnet *));
111 static int wi_init __P((struct ifnet *));
112 static void wi_stop __P((struct ifnet *, int));
113 static void wi_rxeof __P((struct wi_softc *));
114 static void wi_txeof __P((struct wi_softc *, int));
115 static void wi_update_stats __P((struct wi_softc *));
116 static void wi_setmulti __P((struct wi_softc *));
117
118 static int wi_cmd __P((struct wi_softc *, int, int));
119 static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *));
120 static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *));
121 static int wi_read_data __P((struct wi_softc *, int,
122 int, caddr_t, int));
123 static int wi_write_data __P((struct wi_softc *, int,
124 int, caddr_t, int));
125 static int wi_seek __P((struct wi_softc *, int, int, int));
126 static int wi_alloc_nicmem __P((struct wi_softc *, int, int *));
127 static void wi_inquire __P((void *));
128 static void wi_wait_scan __P((void *));
129 static int wi_setdef __P((struct wi_softc *, struct wi_req *));
130 static int wi_getdef __P((struct wi_softc *, struct wi_req *));
131 static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int));
132
133 static int wi_media_change __P((struct ifnet *));
134 static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
135
136 static void wi_get_id __P((struct wi_softc *));
137
138 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
139 static void wi_request_fill_ssid __P((struct wi_req *,
140 struct ieee80211_nwid *));
141 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
142 struct ieee80211_nwid *));
143 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
144 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
145 static int wi_sync_media __P((struct wi_softc *, int, int));
146 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
147 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
148
149 struct wi_card_ident wi_card_ident[] = {
150 /* CARD_ID CARD_NAME FIRM_TYPE */
151 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
152 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
153 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
154 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
155 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
156 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
157 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
158 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
159 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
160 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
161 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
162 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
163 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
164 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
165 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
166 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
167 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
168 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
169 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
170 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
171 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
172 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
173 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
174 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
175 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
176 { 0, NULL, 0 },
177 };
178
179 int
180 wi_attach(sc)
181 struct wi_softc *sc;
182 {
183 struct ifnet *ifp = sc->sc_ifp;
184 struct wi_ltv_macaddr mac;
185 struct wi_ltv_gen gen;
186 static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
187 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
188 };
189 int s;
190
191 s = splnet();
192
193 callout_init(&sc->wi_inquire_ch);
194 callout_init(&sc->wi_scan_sh);
195
196 /* Make sure interrupts are disabled. */
197 CSR_WRITE_2(sc, WI_INT_EN, 0);
198 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
199
200 /* Reset the NIC. */
201 wi_reset(sc);
202
203 memset(&mac, 0, sizeof(mac));
204 /* Read the station address. */
205 mac.wi_type = WI_RID_MAC_NODE;
206 mac.wi_len = 4;
207 wi_read_record(sc, (struct wi_ltv_gen *)&mac);
208 memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
209
210 /*
211 * Check if we got anything meaningful.
212 *
213 * Is it really enough just checking against null ethernet address?
214 * Or, check against possible vendor? XXX.
215 */
216 if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
217 printf("could not get mac address, attach failed\n");
218 splx(s);
219 return 1;
220 }
221
222 printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
223
224 /* Read NIC identification */
225 wi_get_id(sc);
226
227 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
228 ifp->if_softc = sc;
229 ifp->if_start = wi_start;
230 ifp->if_ioctl = wi_ioctl;
231 ifp->if_watchdog = wi_watchdog;
232 ifp->if_init = wi_init;
233 ifp->if_stop = wi_stop;
234 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
235 #ifdef IFF_NOTRAILERS
236 ifp->if_flags |= IFF_NOTRAILERS;
237 #endif
238 IFQ_SET_READY(&ifp->if_snd);
239
240 (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
241 sizeof(WI_DEFAULT_NODENAME) - 1);
242 (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
243 sizeof(WI_DEFAULT_NETNAME) - 1);
244 (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
245 sizeof(WI_DEFAULT_IBSS) - 1);
246
247 sc->wi_portnum = WI_DEFAULT_PORT;
248 sc->wi_ptype = WI_PORTTYPE_BSS;
249 sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
250 sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
251 sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
252 sc->wi_max_data_len = WI_DEFAULT_DATALEN;
253 sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
254 sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
255 sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
256 sc->wi_roaming = WI_DEFAULT_ROAMING;
257 sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
258
259 /*
260 * Read the default channel from the NIC. This may vary
261 * depending on the country where the NIC was purchased, so
262 * we can't hard-code a default and expect it to work for
263 * everyone.
264 */
265 gen.wi_type = WI_RID_OWN_CHNL;
266 gen.wi_len = 2;
267 wi_read_record(sc, &gen);
268 sc->wi_channel = le16toh(gen.wi_val);
269
270 memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats));
271
272 /* AP info was filled with 0 */
273 memset((char *)&sc->wi_aps, 0, sizeof(sc->wi_aps));
274 sc->wi_scanning=0;
275 sc->wi_naps=0;
276
277 /*
278 * Find out if we support WEP on this card.
279 */
280 gen.wi_type = WI_RID_WEP_AVAIL;
281 gen.wi_len = 2;
282 wi_read_record(sc, &gen);
283 sc->wi_has_wep = le16toh(gen.wi_val);
284
285 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
286 #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL)
287 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
288 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0);
289 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
290 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
291 IFM_IEEE80211_ADHOC, 0), 0);
292 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
293 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
294 IFM_IEEE80211_ADHOC, 0), 0);
295 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
296 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
297 IFM_IEEE80211_ADHOC, 0), 0);
298 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
299 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
300 IFM_IEEE80211_ADHOC, 0), 0);
301 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
302 #undef ADD
303 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
304
305 /*
306 * Call MI attach routines.
307 */
308 if_attach(ifp);
309 ether_ifattach(ifp, mac.wi_mac_addr);
310
311 ifp->if_baudrate = IF_Mbps(2);
312
313 /* Attach is successful. */
314 sc->sc_attached = 1;
315
316 splx(s);
317 return 0;
318 }
319
320 static void wi_rxeof(sc)
321 struct wi_softc *sc;
322 {
323 struct ifnet *ifp;
324 struct ether_header *eh;
325 struct wi_frame rx_frame;
326 struct mbuf *m;
327 int id;
328
329 ifp = sc->sc_ifp;
330
331 id = CSR_READ_2(sc, WI_RX_FID);
332
333 /* First read in the frame header */
334 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
335 ifp->if_ierrors++;
336 return;
337 }
338
339 /*
340 * Drop undecryptable or packets with receive errors here
341 */
342 if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) {
343 ifp->if_ierrors++;
344 return;
345 }
346
347 MGETHDR(m, M_DONTWAIT, MT_DATA);
348 if (m == NULL) {
349 ifp->if_ierrors++;
350 return;
351 }
352 MCLGET(m, M_DONTWAIT);
353 if (!(m->m_flags & M_EXT)) {
354 m_freem(m);
355 ifp->if_ierrors++;
356 return;
357 }
358
359 /* Align the data after the ethernet header */
360 m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
361 - sizeof(struct ether_header);
362
363 eh = mtod(m, struct ether_header *);
364 m->m_pkthdr.rcvif = ifp;
365
366 if (le16toh(rx_frame.wi_status) == WI_STAT_1042 ||
367 le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL ||
368 le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) {
369 if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
370 printf("%s: oversized packet received "
371 "(wi_dat_len=%d, wi_status=0x%x)\n",
372 sc->sc_dev.dv_xname,
373 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
374 m_freem(m);
375 ifp->if_ierrors++;
376 return;
377 }
378 m->m_pkthdr.len = m->m_len =
379 le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
380
381 memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr,
382 ETHER_ADDR_LEN);
383 memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr,
384 ETHER_ADDR_LEN);
385 memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type,
386 sizeof(u_int16_t));
387
388 if (wi_read_data(sc, id, WI_802_11_OFFSET,
389 mtod(m, caddr_t) + sizeof(struct ether_header),
390 m->m_len + 2)) {
391 m_freem(m);
392 ifp->if_ierrors++;
393 return;
394 }
395 } else {
396 if ((le16toh(rx_frame.wi_dat_len) +
397 sizeof(struct ether_header)) > MCLBYTES) {
398 printf("%s: oversized packet received "
399 "(wi_dat_len=%d, wi_status=0x%x)\n",
400 sc->sc_dev.dv_xname,
401 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
402 m_freem(m);
403 ifp->if_ierrors++;
404 return;
405 }
406 m->m_pkthdr.len = m->m_len =
407 le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
408
409 if (wi_read_data(sc, id, WI_802_3_OFFSET,
410 mtod(m, caddr_t), m->m_len + 2)) {
411 m_freem(m);
412 ifp->if_ierrors++;
413 return;
414 }
415 }
416
417 ifp->if_ipackets++;
418
419 #if NBPFILTER > 0
420 /* Handle BPF listeners. */
421 if (ifp->if_bpf)
422 bpf_mtap(ifp->if_bpf, m);
423 #endif
424
425 /* Receive packet. */
426 (*ifp->if_input)(ifp, m);
427 }
428
429 static void wi_txeof(sc, status)
430 struct wi_softc *sc;
431 int status;
432 {
433 struct ifnet *ifp = sc->sc_ifp;
434
435 ifp->if_timer = 0;
436 ifp->if_flags &= ~IFF_OACTIVE;
437
438 if (status & WI_EV_TX_EXC)
439 ifp->if_oerrors++;
440 else
441 ifp->if_opackets++;
442
443 return;
444 }
445
446 void wi_inquire(xsc)
447 void *xsc;
448 {
449 struct wi_softc *sc;
450 struct ifnet *ifp;
451 int s;
452
453 sc = xsc;
454 ifp = &sc->sc_ethercom.ec_if;
455
456 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
457 return;
458
459 KASSERT(sc->sc_enabled);
460
461 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
462
463 /* Don't do this while we're transmitting */
464 if (ifp->if_flags & IFF_OACTIVE)
465 return;
466
467 s = splnet();
468 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
469 splx(s);
470 }
471
472 void wi_wait_scan(xsc)
473 void *xsc;
474 {
475 struct wi_softc *sc;
476 struct ifnet *ifp;
477 int s, result;
478
479 sc = xsc;
480 ifp = &sc->sc_ethercom.ec_if;
481
482 /* If not scanning, ignore */
483 if (!sc->wi_scanning)
484 return;
485
486 s = splnet();
487
488 /* Wait for sending complete to make INQUIRE */
489 if (ifp->if_flags & IFF_OACTIVE) {
490 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
491 splx(s);
492 return;
493 }
494
495 /* try INQUIRE */
496 result = wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS);
497 if (result == ETIMEDOUT)
498 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
499
500 splx(s);
501 }
502
503 void wi_update_stats(sc)
504 struct wi_softc *sc;
505 {
506 struct wi_ltv_gen gen;
507 struct wi_scan_header ap2_header; /* Prism2 header */
508 struct wi_scan_data_p2 ap2; /* Prism2 scantable*/
509 struct wi_scan_data ap; /* Lucent scantable */
510 struct wi_assoc assoc; /* Association Status */
511 u_int16_t id;
512 struct ifnet *ifp;
513 u_int32_t *ptr;
514 int len, naps, i, j;
515 u_int16_t t;
516
517 ifp = &sc->sc_ethercom.ec_if;
518
519 id = CSR_READ_2(sc, WI_INFO_FID);
520
521 if (wi_seek(sc, id, 0, WI_BAP1)) {
522 return;
523 }
524
525 gen.wi_len = CSR_READ_2(sc, WI_DATA1);
526 gen.wi_type = CSR_READ_2(sc, WI_DATA1);
527
528 switch (gen.wi_type) {
529 case WI_INFO_SCAN_RESULTS:
530 case WI_INFO_HOST_SCAN_RESULTS:
531 if (gen.wi_len <= 3) {
532 sc->wi_naps = 0;
533 sc->wi_scanning = 0;
534 break;
535 }
536 switch (sc->sc_firmware_type) {
537 case WI_INTERSIL:
538 case WI_SYMBOL:
539 if (sc->sc_firmware_type == WI_INTERSIL) {
540 naps = 2 * (gen.wi_len - 3) / sizeof(ap2);
541 /* Read Header */
542 for(j=0; j < sizeof(ap2_header) / 2; j++)
543 ((u_int16_t *)&ap2_header)[j] =
544 CSR_READ_2(sc, WI_DATA1);
545 } else { /* WI_SYMBOL */
546 naps = 2 * (gen.wi_len - 1) / (sizeof(ap2) + 6);
547 ap2_header.wi_reason = 0;
548 }
549 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
550 sc->wi_naps = naps;
551 /* Read Data */
552 for (i=0; i < naps; i++) {
553 for(j=0; j < sizeof(ap2) / 2; j++)
554 ((u_int16_t *)&ap2)[j] =
555 CSR_READ_2(sc, WI_DATA1);
556 if (sc->sc_firmware_type == WI_SYMBOL) {
557 /* 3 more words */
558 for (j = 0; j < 3; j++)
559 CSR_READ_2(sc, WI_DATA1);
560 }
561 /* unswap 8 bit data fields: */
562 for(j=0;j<sizeof(ap.wi_bssid)/2;j++)
563 LE16TOH(((u_int16_t *)&ap.wi_bssid[0])[j]);
564 for(j=0;j<sizeof(ap.wi_name)/2;j++)
565 LE16TOH(((u_int16_t *)&ap.wi_name[0])[j]);
566 sc->wi_aps[i].scanreason = ap2_header.wi_reason;
567 memcpy(sc->wi_aps[i].bssid, ap2.wi_bssid, 6);
568 sc->wi_aps[i].channel = ap2.wi_chid;
569 sc->wi_aps[i].signal = ap2.wi_signal;
570 sc->wi_aps[i].noise = ap2.wi_noise;
571 sc->wi_aps[i].quality = ap2.wi_signal - ap2.wi_noise;
572 sc->wi_aps[i].capinfo = ap2.wi_capinfo;
573 sc->wi_aps[i].interval = ap2.wi_interval;
574 sc->wi_aps[i].rate = ap2.wi_rate;
575 if (ap2.wi_namelen > 32)
576 ap2.wi_namelen = 32;
577 sc->wi_aps[i].namelen = ap2.wi_namelen;
578 memcpy(sc->wi_aps[i].name, ap2.wi_name,
579 ap2.wi_namelen);
580 }
581 break;
582
583 case WI_LUCENT:
584 naps = 2 * gen.wi_len / sizeof(ap);
585 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
586 sc->wi_naps = naps;
587 /* Read Data*/
588 for (i=0; i < naps; i++) {
589 for(j=0; j < sizeof(ap) / 2; j++)
590 ((u_int16_t *)&ap)[j] =
591 CSR_READ_2(sc, WI_DATA1);
592 /* unswap 8 bit data fields: */
593 for(j=0;j<sizeof(ap.wi_bssid)/2;j++)
594 HTOLE16(((u_int16_t *)&ap.wi_bssid[0])[j]);
595 for(j=0;j<sizeof(ap.wi_name)/2;j++)
596 HTOLE16(((u_int16_t *)&ap.wi_name[0])[j]);
597 memcpy(sc->wi_aps[i].bssid, ap.wi_bssid, 6);
598 sc->wi_aps[i].channel = ap.wi_chid;
599 sc->wi_aps[i].signal = ap.wi_signal;
600 sc->wi_aps[i].noise = ap.wi_noise;
601 sc->wi_aps[i].quality = ap.wi_signal - ap.wi_noise;
602 sc->wi_aps[i].capinfo = ap.wi_capinfo;
603 sc->wi_aps[i].interval = ap.wi_interval;
604 if (ap.wi_namelen > 32)
605 ap.wi_namelen = 32;
606 sc->wi_aps[i].namelen = ap.wi_namelen;
607 memcpy(sc->wi_aps[i].name, ap.wi_name,
608 ap.wi_namelen);
609 }
610 break;
611 }
612 /* Done scanning */
613 sc->wi_scanning = 0;
614 break;
615
616 case WI_INFO_COUNTERS:
617 /* some card versions have a larger stats structure */
618 len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
619 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
620 ptr = (u_int32_t *)&sc->wi_stats;
621
622 for (i = 0; i < len; i++) {
623 t = CSR_READ_2(sc, WI_DATA1);
624 #ifdef WI_HERMES_STATS_WAR
625 if (t > 0xF000)
626 t = ~t & 0xFFFF;
627 #endif
628 ptr[i] += t;
629 }
630
631 ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
632 sc->wi_stats.wi_tx_multi_retries +
633 sc->wi_stats.wi_tx_retry_limit;
634 break;
635
636 case WI_INFO_LINK_STAT: {
637 static char *msg[] = {
638 "connected",
639 "disconnected",
640 "AP change",
641 "AP out of range",
642 "AP in range",
643 "Association Failed"
644 };
645
646 if (gen.wi_len != 2) {
647 #ifdef WI_DEBUG
648 printf("WI_INFO_LINK_STAT: len=%d\n", gen.wi_len);
649 #endif
650 break;
651 }
652 t = CSR_READ_2(sc, WI_DATA1);
653 if ((t < 1) || (t > 6)) {
654 #ifdef WI_DEBUG
655 printf("WI_INFO_LINK_STAT: status %d\n", t);
656 #endif
657 break;
658 }
659 if (sc->sc_firmware_type == WI_SYMBOL && t == 4) {
660 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_HOST_SCAN_RESULTS);
661 break;
662 }
663 /*
664 * Some cards issue streams of "connected" messages while
665 * trying to find a peer. Don't bother the user with this
666 * unless he is debugging.
667 */
668 if (ifp->if_flags & IFF_DEBUG)
669 printf("%s: %s\n", sc->sc_dev.dv_xname, msg[t - 1]);
670 break;
671 }
672
673 case WI_INFO_ASSOC_STAT: {
674 static char *msg[] = {
675 "STA Associated",
676 "STA Reassociated",
677 "STA Disassociated",
678 "Association Failure",
679 "Authentication Failed"
680 };
681 if (gen.wi_len != 10)
682 break;
683 for (i=0; i < gen.wi_len - 1; i++)
684 ((u_int16_t *)&assoc)[i] = CSR_READ_2(sc, WI_DATA1);
685 /* unswap 8 bit data fields: */
686 for(j=0;j<sizeof(assoc.wi_assoc_sta)/2;j++)
687 HTOLE16(((u_int16_t *)&assoc.wi_assoc_sta[0])[j]);
688 for(j=0;j<sizeof(assoc.wi_assoc_osta)/2;j++)
689 HTOLE16(((u_int16_t *)&assoc.wi_assoc_osta[0])[j]);
690 switch (assoc.wi_assoc_stat) {
691 case ASSOC:
692 case DISASSOC:
693 case ASSOCFAIL:
694 case AUTHFAIL:
695 printf("%s: %s, AP = %02x:%02x:%02x:%02x:%02x:%02x\n",
696 sc->sc_dev.dv_xname,
697 msg[assoc.wi_assoc_stat - 1],
698 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
699 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
700 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff);
701 break;
702 case REASSOC:
703 printf("%s: %s, AP = %02x:%02x:%02x:%02x:%02x:%02x, "
704 "OldAP = %02x:%02x:%02x:%02x:%02x:%02x\n",
705 sc->sc_dev.dv_xname, msg[assoc.wi_assoc_stat - 1],
706 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
707 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
708 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff,
709 assoc.wi_assoc_osta[0]&0xff, assoc.wi_assoc_osta[1]&0xff,
710 assoc.wi_assoc_osta[2]&0xff, assoc.wi_assoc_osta[3]&0xff,
711 assoc.wi_assoc_osta[4]&0xff, assoc.wi_assoc_osta[5]&0xff);
712 break;
713 }
714 }
715
716 default:
717 #ifdef WI_DEBUG
718 printf("%s: got info type: 0x%04x len=0x%04x\n",
719 sc->sc_dev.dv_xname, gen.wi_type,gen.wi_len);
720 #endif
721 #if 0
722 for (i = 0; i < gen.wi_len; i++) {
723 t = CSR_READ_2(sc, WI_DATA1);
724 printf("[0x%02x] = 0x%04x\n", i, t);
725 }
726 #endif
727 break;
728 }
729 }
730
731 int wi_intr(arg)
732 void *arg;
733 {
734 struct wi_softc *sc = arg;
735 struct ifnet *ifp;
736 u_int16_t status;
737
738 if (sc->sc_enabled == 0 ||
739 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
740 (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
741 return (0);
742
743 ifp = &sc->sc_ethercom.ec_if;
744
745 if (!(ifp->if_flags & IFF_UP)) {
746 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
747 CSR_WRITE_2(sc, WI_INT_EN, 0);
748 return 1;
749 }
750
751 /* Disable interrupts. */
752 CSR_WRITE_2(sc, WI_INT_EN, 0);
753
754 status = CSR_READ_2(sc, WI_EVENT_STAT);
755 CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
756
757 if (status & WI_EV_RX) {
758 wi_rxeof(sc);
759 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
760 }
761
762 if (status & WI_EV_TX) {
763 wi_txeof(sc, status);
764 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
765 }
766
767 if (status & WI_EV_ALLOC) {
768 int id;
769 id = CSR_READ_2(sc, WI_ALLOC_FID);
770 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
771 if (id == sc->wi_tx_data_id)
772 wi_txeof(sc, status);
773 }
774
775 if (status & WI_EV_INFO) {
776 wi_update_stats(sc);
777 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
778 }
779
780 if (status & WI_EV_TX_EXC) {
781 wi_txeof(sc, status);
782 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
783 }
784
785 if (status & WI_EV_INFO_DROP) {
786 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
787 }
788
789 /* Re-enable interrupts. */
790 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
791
792 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
793 wi_start(ifp);
794
795 return 1;
796 }
797
798 /* Must be called at proper protection level! */
799 static int
800 wi_cmd(sc, cmd, val)
801 struct wi_softc *sc;
802 int cmd;
803 int val;
804 {
805 int i, s = 0;
806
807 /* wait for the busy bit to clear */
808 for (i = 0; i < WI_TIMEOUT; i++) {
809 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
810 break;
811 }
812
813 if (i == WI_TIMEOUT) {
814 printf("%s: wi_cmd: BUSY did not clear, cmd=0x%x\n",
815 sc->sc_dev.dv_xname, cmd);
816 return EIO;
817 }
818
819 CSR_WRITE_2(sc, WI_PARAM0, val);
820 CSR_WRITE_2(sc, WI_PARAM1, 0);
821 CSR_WRITE_2(sc, WI_PARAM2, 0);
822 CSR_WRITE_2(sc, WI_COMMAND, cmd);
823
824 /* wait for the cmd completed bit */
825 for (i = 0; i < WI_TIMEOUT; i++) {
826 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
827 break;
828 DELAY(1);
829 }
830
831 /* Ack the command */
832 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
833
834 s = CSR_READ_2(sc, WI_STATUS);
835 if (s & WI_STAT_CMD_RESULT)
836 return(EIO);
837
838 if (i == WI_TIMEOUT) {
839 if (!sc->wi_scanning)
840 printf("%s: command timed out, cmd=0x%x\n",
841 sc->sc_dev.dv_xname, cmd);
842 return(ETIMEDOUT);
843 }
844
845 return(0);
846 }
847
848 static void
849 wi_reset(sc)
850 struct wi_softc *sc;
851 {
852
853 DELAY(100*1000); /* 100 m sec */
854 if (wi_cmd(sc, WI_CMD_INI, 0))
855 printf("%s: init failed\n", sc->sc_dev.dv_xname);
856 CSR_WRITE_2(sc, WI_INT_EN, 0);
857 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
858
859 /* Calibrate timer. */
860 WI_SETVAL(WI_RID_TICK_TIME, 8);
861
862 return;
863 }
864
865 /*
866 * Read an LTV record from the NIC.
867 */
868 static int wi_read_record(sc, ltv)
869 struct wi_softc *sc;
870 struct wi_ltv_gen *ltv;
871 {
872 u_int16_t *ptr;
873 int len, code;
874 struct wi_ltv_gen *oltv, p2ltv;
875
876 if (sc->sc_firmware_type != WI_LUCENT) {
877 oltv = ltv;
878 switch (ltv->wi_type) {
879 case WI_RID_ENCRYPTION:
880 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
881 p2ltv.wi_len = 2;
882 ltv = &p2ltv;
883 break;
884 case WI_RID_TX_CRYPT_KEY:
885 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
886 p2ltv.wi_len = 2;
887 ltv = &p2ltv;
888 break;
889 case WI_RID_ROAMING_MODE:
890 if (sc->sc_firmware_type == WI_INTERSIL)
891 break;
892 /* not supported */
893 ltv->wi_len = 1;
894 return 0;
895 case WI_RID_MICROWAVE_OVEN:
896 /* not supported */
897 ltv->wi_len = 1;
898 return 0;
899 }
900 }
901
902 /* Tell the NIC to enter record read mode. */
903 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
904 return(EIO);
905
906 /* Seek to the record. */
907 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
908 return(EIO);
909
910 /*
911 * Read the length and record type and make sure they
912 * match what we expect (this verifies that we have enough
913 * room to hold all of the returned data).
914 */
915 len = CSR_READ_2(sc, WI_DATA1);
916 if (len > ltv->wi_len)
917 return(ENOSPC);
918 code = CSR_READ_2(sc, WI_DATA1);
919 if (code != ltv->wi_type)
920 return(EIO);
921
922 ltv->wi_len = len;
923 ltv->wi_type = code;
924
925 /* Now read the data. */
926 ptr = <v->wi_val;
927 if (ltv->wi_len > 1)
928 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
929
930 if (sc->sc_firmware_type != WI_LUCENT) {
931 int v;
932
933 switch (oltv->wi_type) {
934 case WI_RID_TX_RATE:
935 case WI_RID_CUR_TX_RATE:
936 switch (le16toh(ltv->wi_val)) {
937 case 1: v = 1; break;
938 case 2: v = 2; break;
939 case 3: v = 6; break;
940 case 4: v = 5; break;
941 case 7: v = 7; break;
942 case 8: v = 11; break;
943 case 15: v = 3; break;
944 default: v = 0x100 + le16toh(ltv->wi_val); break;
945 }
946 oltv->wi_val = htole16(v);
947 break;
948 case WI_RID_ENCRYPTION:
949 oltv->wi_len = 2;
950 if (le16toh(ltv->wi_val) & 0x01)
951 oltv->wi_val = htole16(1);
952 else
953 oltv->wi_val = htole16(0);
954 break;
955 case WI_RID_TX_CRYPT_KEY:
956 oltv->wi_len = 2;
957 oltv->wi_val = ltv->wi_val;
958 break;
959 case WI_RID_AUTH_CNTL:
960 oltv->wi_len = 2;
961 if (le16toh(ltv->wi_val) & 0x01)
962 oltv->wi_val = htole16(1);
963 else if (le16toh(ltv->wi_val) & 0x02)
964 oltv->wi_val = htole16(2);
965 break;
966 }
967 }
968
969 return(0);
970 }
971
972 /*
973 * Same as read, except we inject data instead of reading it.
974 */
975 static int wi_write_record(sc, ltv)
976 struct wi_softc *sc;
977 struct wi_ltv_gen *ltv;
978 {
979 u_int16_t *ptr;
980 int i;
981 struct wi_ltv_gen p2ltv;
982
983 if (sc->sc_firmware_type != WI_LUCENT) {
984 int v;
985
986 switch (ltv->wi_type) {
987 case WI_RID_TX_RATE:
988 p2ltv.wi_type = WI_RID_TX_RATE;
989 p2ltv.wi_len = 2;
990 switch (le16toh(ltv->wi_val)) {
991 case 1: v = 1; break;
992 case 2: v = 2; break;
993 case 3: v = 15; break;
994 case 5: v = 4; break;
995 case 6: v = 3; break;
996 case 7: v = 7; break;
997 case 11: v = 8; break;
998 default: return EINVAL;
999 }
1000 p2ltv.wi_val = htole16(v);
1001 ltv = &p2ltv;
1002 break;
1003 case WI_RID_ENCRYPTION:
1004 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
1005 p2ltv.wi_len = 2;
1006 if (le16toh(ltv->wi_val))
1007 p2ltv.wi_val = htole16(PRIVACY_INVOKED |
1008 EXCLUDE_UNENCRYPTED);
1009 else
1010 p2ltv.wi_val =
1011 htole16(HOST_ENCRYPT | HOST_DECRYPT);
1012 ltv = &p2ltv;
1013 break;
1014 case WI_RID_TX_CRYPT_KEY:
1015 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
1016 p2ltv.wi_len = 2;
1017 p2ltv.wi_val = ltv->wi_val;
1018 ltv = &p2ltv;
1019 break;
1020 case WI_RID_DEFLT_CRYPT_KEYS:
1021 {
1022 int error;
1023 int keylen;
1024 struct wi_ltv_str ws;
1025 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv;
1026
1027 keylen = wk->wi_keys[sc->wi_tx_key].wi_keylen;
1028
1029 for (i = 0; i < 4; i++) {
1030 memset(&ws, 0, sizeof(ws));
1031 ws.wi_len = (keylen > 5) ? 8 : 4;
1032 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
1033 memcpy(ws.wi_str,
1034 &wk->wi_keys[i].wi_keydat, keylen);
1035 error = wi_write_record(sc,
1036 (struct wi_ltv_gen *)&ws);
1037 if (error)
1038 return error;
1039 }
1040 return 0;
1041 }
1042 case WI_RID_AUTH_CNTL:
1043 p2ltv.wi_type = WI_RID_AUTH_CNTL;
1044 p2ltv.wi_len = 2;
1045 if (le16toh(ltv->wi_val) == 1)
1046 p2ltv.wi_val = htole16(0x01);
1047 else if (le16toh(ltv->wi_val) == 2)
1048 p2ltv.wi_val = htole16(0x02);
1049 ltv = &p2ltv;
1050 break;
1051
1052 case WI_RID_ROAMING_MODE:
1053 if (sc->sc_firmware_type == WI_INTERSIL)
1054 break;
1055 /* not supported */
1056 return 0;
1057
1058 case WI_RID_MICROWAVE_OVEN:
1059 /* not supported */
1060 return 0;
1061 }
1062 }
1063
1064 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
1065 return(EIO);
1066
1067 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
1068 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
1069
1070 /* Write data */
1071 ptr = <v->wi_val;
1072 if (ltv->wi_len > 1)
1073 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
1074
1075 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
1076 return(EIO);
1077
1078 return(0);
1079 }
1080
1081 static int wi_seek(sc, id, off, chan)
1082 struct wi_softc *sc;
1083 int id, off, chan;
1084 {
1085 int i;
1086 int selreg, offreg;
1087 int status;
1088
1089 switch (chan) {
1090 case WI_BAP0:
1091 selreg = WI_SEL0;
1092 offreg = WI_OFF0;
1093 break;
1094 case WI_BAP1:
1095 selreg = WI_SEL1;
1096 offreg = WI_OFF1;
1097 break;
1098 default:
1099 printf("%s: invalid data path: %x\n",
1100 sc->sc_dev.dv_xname, chan);
1101 return(EIO);
1102 }
1103
1104 CSR_WRITE_2(sc, selreg, id);
1105 CSR_WRITE_2(sc, offreg, off);
1106
1107 for (i = 0; i < WI_TIMEOUT; i++) {
1108 status = CSR_READ_2(sc, offreg);
1109 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
1110 break;
1111 }
1112
1113 if (i == WI_TIMEOUT) {
1114 printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
1115 sc->sc_dev.dv_xname, id, off, status);
1116 return(ETIMEDOUT);
1117 }
1118 return(0);
1119 }
1120
1121 static int wi_read_data(sc, id, off, buf, len)
1122 struct wi_softc *sc;
1123 int id, off;
1124 caddr_t buf;
1125 int len;
1126 {
1127 u_int16_t *ptr;
1128
1129 if (wi_seek(sc, id, off, WI_BAP1))
1130 return(EIO);
1131
1132 ptr = (u_int16_t *)buf;
1133 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
1134
1135 return(0);
1136 }
1137
1138 /*
1139 * According to the comments in the HCF Light code, there is a bug in
1140 * the Hermes (or possibly in certain Hermes firmware revisions) where
1141 * the chip's internal autoincrement counter gets thrown off during
1142 * data writes: the autoincrement is missed, causing one data word to
1143 * be overwritten and subsequent words to be written to the wrong memory
1144 * locations. The end result is that we could end up transmitting bogus
1145 * frames without realizing it. The workaround for this is to write a
1146 * couple of extra guard words after the end of the transfer, then
1147 * attempt to read then back. If we fail to locate the guard words where
1148 * we expect them, we preform the transfer over again.
1149 */
1150 static int wi_write_data(sc, id, off, buf, len)
1151 struct wi_softc *sc;
1152 int id, off;
1153 caddr_t buf;
1154 int len;
1155 {
1156 u_int16_t *ptr;
1157
1158 #ifdef WI_HERMES_AUTOINC_WAR
1159 again:
1160 #endif
1161
1162 if (wi_seek(sc, id, off, WI_BAP0))
1163 return(EIO);
1164
1165 ptr = (u_int16_t *)buf;
1166 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
1167
1168 #ifdef WI_HERMES_AUTOINC_WAR
1169 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1170 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1171
1172 if (wi_seek(sc, id, off + len, WI_BAP0))
1173 return(EIO);
1174
1175 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1176 CSR_READ_2(sc, WI_DATA0) != 0x5678)
1177 goto again;
1178 #endif
1179
1180 return(0);
1181 }
1182
1183 /*
1184 * Allocate a region of memory inside the NIC and zero
1185 * it out.
1186 */
1187 static int wi_alloc_nicmem(sc, len, id)
1188 struct wi_softc *sc;
1189 int len;
1190 int *id;
1191 {
1192 int i;
1193
1194 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
1195 printf("%s: failed to allocate %d bytes on NIC\n",
1196 sc->sc_dev.dv_xname, len);
1197 return(ENOMEM);
1198 }
1199
1200 for (i = 0; i < WI_TIMEOUT; i++) {
1201 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1202 break;
1203 }
1204
1205 if (i == WI_TIMEOUT) {
1206 printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
1207 return(ETIMEDOUT);
1208 }
1209
1210 *id = CSR_READ_2(sc, WI_ALLOC_FID);
1211 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1212
1213 if (wi_seek(sc, *id, 0, WI_BAP0)) {
1214 printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
1215 return(EIO);
1216 }
1217
1218 for (i = 0; i < len / 2; i++)
1219 CSR_WRITE_2(sc, WI_DATA0, 0);
1220
1221 return(0);
1222 }
1223
1224 static void wi_setmulti(sc)
1225 struct wi_softc *sc;
1226 {
1227 struct ifnet *ifp;
1228 int i = 0;
1229 struct wi_ltv_mcast mcast;
1230 struct ether_multi *enm;
1231 struct ether_multistep estep;
1232 struct ethercom *ec = &sc->sc_ethercom;
1233
1234 ifp = &sc->sc_ethercom.ec_if;
1235
1236 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1237 allmulti:
1238 ifp->if_flags |= IFF_ALLMULTI;
1239 memset((char *)&mcast, 0, sizeof(mcast));
1240 mcast.wi_type = WI_RID_MCAST_LIST;
1241 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
1242
1243 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1244 return;
1245 }
1246
1247 i = 0;
1248 ETHER_FIRST_MULTI(estep, ec, enm);
1249 while (enm != NULL) {
1250 /* Punt on ranges or too many multicast addresses. */
1251 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1252 ETHER_ADDR_LEN) != 0 ||
1253 i >= 16)
1254 goto allmulti;
1255
1256 memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo,
1257 ETHER_ADDR_LEN);
1258 i++;
1259 ETHER_NEXT_MULTI(estep, enm);
1260 }
1261
1262 ifp->if_flags &= ~IFF_ALLMULTI;
1263 mcast.wi_type = WI_RID_MCAST_LIST;
1264 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
1265 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1266 }
1267
1268 static int
1269 wi_setdef(sc, wreq)
1270 struct wi_softc *sc;
1271 struct wi_req *wreq;
1272 {
1273 struct sockaddr_dl *sdl;
1274 struct ifnet *ifp;
1275 int error = 0;
1276
1277 ifp = &sc->sc_ethercom.ec_if;
1278
1279 switch(wreq->wi_type) {
1280 case WI_RID_MAC_NODE:
1281 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1282 memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val,
1283 ETHER_ADDR_LEN);
1284 memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN);
1285 break;
1286 case WI_RID_PORTTYPE:
1287 error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
1288 break;
1289 case WI_RID_TX_RATE:
1290 error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
1291 break;
1292 case WI_RID_MAX_DATALEN:
1293 sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1294 break;
1295 case WI_RID_RTS_THRESH:
1296 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1297 break;
1298 case WI_RID_SYSTEM_SCALE:
1299 sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1300 break;
1301 case WI_RID_CREATE_IBSS:
1302 if (sc->sc_firmware_type != WI_INTERSIL)
1303 sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1304 break;
1305 case WI_RID_OWN_CHNL:
1306 sc->wi_channel = le16toh(wreq->wi_val[0]);
1307 break;
1308 case WI_RID_NODENAME:
1309 error = wi_set_ssid(&sc->wi_nodeid,
1310 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1311 break;
1312 case WI_RID_DESIRED_SSID:
1313 error = wi_set_ssid(&sc->wi_netid,
1314 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1315 break;
1316 case WI_RID_OWN_SSID:
1317 error = wi_set_ssid(&sc->wi_ibssid,
1318 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1319 break;
1320 case WI_RID_PM_ENABLED:
1321 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1322 break;
1323 case WI_RID_MICROWAVE_OVEN:
1324 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1325 break;
1326 case WI_RID_MAX_SLEEP:
1327 sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1328 break;
1329 case WI_RID_AUTH_CNTL:
1330 sc->wi_authtype = le16toh(wreq->wi_val[0]);
1331 break;
1332 case WI_RID_ROAMING_MODE:
1333 sc->wi_roaming = le16toh(wreq->wi_val[0]);
1334 break;
1335 case WI_RID_ENCRYPTION:
1336 sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1337 break;
1338 case WI_RID_TX_CRYPT_KEY:
1339 sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1340 break;
1341 case WI_RID_DEFLT_CRYPT_KEYS:
1342 memcpy((char *)&sc->wi_keys, (char *)wreq,
1343 sizeof(struct wi_ltv_keys));
1344 break;
1345 default:
1346 error = EINVAL;
1347 break;
1348 }
1349
1350 return (error);
1351 }
1352
1353 static int
1354 wi_getdef(sc, wreq)
1355 struct wi_softc *sc;
1356 struct wi_req *wreq;
1357 {
1358 struct sockaddr_dl *sdl;
1359 struct ifnet *ifp;
1360 int error = 0;
1361
1362 ifp = &sc->sc_ethercom.ec_if;
1363
1364 wreq->wi_len = 2; /* XXX */
1365 switch (wreq->wi_type) {
1366 case WI_RID_MAC_NODE:
1367 wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
1368 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1369 memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN);
1370 memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1371 break;
1372 case WI_RID_PORTTYPE:
1373 wreq->wi_val[0] = htole16(sc->wi_ptype);
1374 break;
1375 case WI_RID_TX_RATE:
1376 wreq->wi_val[0] = htole16(sc->wi_tx_rate);
1377 break;
1378 case WI_RID_MAX_DATALEN:
1379 wreq->wi_val[0] = htole16(sc->wi_max_data_len);
1380 break;
1381 case WI_RID_RTS_THRESH:
1382 wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
1383 break;
1384 case WI_RID_SYSTEM_SCALE:
1385 wreq->wi_val[0] = htole16(sc->wi_ap_density);
1386 break;
1387 case WI_RID_CREATE_IBSS:
1388 if (sc->sc_firmware_type != WI_INTERSIL)
1389 wreq->wi_val[0] = htole16(sc->wi_create_ibss);
1390 break;
1391 case WI_RID_OWN_CHNL:
1392 wreq->wi_val[0] = htole16(sc->wi_channel);
1393 break;
1394 case WI_RID_NODENAME:
1395 wi_request_fill_ssid(wreq, &sc->wi_nodeid);
1396 break;
1397 case WI_RID_DESIRED_SSID:
1398 wi_request_fill_ssid(wreq, &sc->wi_netid);
1399 break;
1400 case WI_RID_OWN_SSID:
1401 wi_request_fill_ssid(wreq, &sc->wi_ibssid);
1402 break;
1403 case WI_RID_PM_ENABLED:
1404 wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
1405 break;
1406 case WI_RID_MICROWAVE_OVEN:
1407 wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
1408 break;
1409 case WI_RID_MAX_SLEEP:
1410 wreq->wi_val[0] = htole16(sc->wi_max_sleep);
1411 break;
1412 case WI_RID_AUTH_CNTL:
1413 wreq->wi_val[0] = htole16(sc->wi_authtype);
1414 break;
1415 case WI_RID_ROAMING_MODE:
1416 wreq->wi_val[0] = htole16(sc->wi_roaming);
1417 break;
1418 case WI_RID_WEP_AVAIL:
1419 wreq->wi_val[0] = htole16(sc->wi_has_wep);
1420 break;
1421 case WI_RID_ENCRYPTION:
1422 wreq->wi_val[0] = htole16(sc->wi_use_wep);
1423 break;
1424 case WI_RID_TX_CRYPT_KEY:
1425 wreq->wi_val[0] = htole16(sc->wi_tx_key);
1426 break;
1427 case WI_RID_DEFLT_CRYPT_KEYS:
1428 wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
1429 memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
1430 break;
1431 default:
1432 #if 0
1433 error = EIO;
1434 #else
1435 #ifdef WI_DEBUG
1436 printf("%s: wi_getdef: unknown request %d\n",
1437 sc->sc_dev.dv_xname, wreq->wi_type);
1438 #endif
1439 #endif
1440 break;
1441 }
1442
1443 return (error);
1444 }
1445
1446 static int
1447 wi_ioctl(ifp, command, data)
1448 struct ifnet *ifp;
1449 u_long command;
1450 caddr_t data;
1451 {
1452 int s, error = 0;
1453 int len;
1454 struct wi_softc *sc = ifp->if_softc;
1455 struct wi_req wreq;
1456 struct ifreq *ifr;
1457 struct proc *p = curproc;
1458 struct ieee80211_nwid nwid;
1459
1460 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1461 return (ENXIO);
1462
1463 s = splnet();
1464
1465 ifr = (struct ifreq *)data;
1466 switch (command) {
1467 case SIOCSIFADDR:
1468 case SIOCGIFADDR:
1469 case SIOCSIFMTU:
1470 error = ether_ioctl(ifp, command, data);
1471 break;
1472 case SIOCSIFFLAGS:
1473 if (ifp->if_flags & IFF_UP) {
1474 if (ifp->if_flags & IFF_RUNNING &&
1475 ifp->if_flags & IFF_PROMISC &&
1476 !(sc->wi_if_flags & IFF_PROMISC)) {
1477 WI_SETVAL(WI_RID_PROMISC, 1);
1478 } else if (ifp->if_flags & IFF_RUNNING &&
1479 !(ifp->if_flags & IFF_PROMISC) &&
1480 sc->wi_if_flags & IFF_PROMISC) {
1481 WI_SETVAL(WI_RID_PROMISC, 0);
1482 }
1483 wi_init(ifp);
1484 } else {
1485 if (ifp->if_flags & IFF_RUNNING) {
1486 wi_stop(ifp, 0);
1487 }
1488 }
1489 sc->wi_if_flags = ifp->if_flags;
1490
1491 if (!(ifp->if_flags & IFF_UP)) {
1492 if (sc->sc_enabled) {
1493 if (sc->sc_disable)
1494 (*sc->sc_disable)(sc);
1495 sc->sc_enabled = 0;
1496 ifp->if_flags &= ~IFF_RUNNING;
1497 }
1498 }
1499 error = 0;
1500 break;
1501 case SIOCADDMULTI:
1502 case SIOCDELMULTI:
1503 error = (command == SIOCADDMULTI) ?
1504 ether_addmulti(ifr, &sc->sc_ethercom) :
1505 ether_delmulti(ifr, &sc->sc_ethercom);
1506 if (error == ENETRESET) {
1507 if (sc->sc_enabled != 0) {
1508 /*
1509 * Multicast list has changed. Set the
1510 * hardware filter accordingly.
1511 */
1512 wi_setmulti(sc);
1513 }
1514 error = 0;
1515 }
1516 break;
1517 case SIOCSIFMEDIA:
1518 case SIOCGIFMEDIA:
1519 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1520 break;
1521 case SIOCGWAVELAN:
1522 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1523 if (error)
1524 break;
1525 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1526 memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats,
1527 sizeof(sc->wi_stats));
1528 wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1529 } else if (wreq.wi_type == WI_RID_READ_APS) {
1530 if (sc->wi_scanning) {
1531 error = EINPROGRESS;
1532 break;
1533 } else {
1534 len = sc->wi_naps * sizeof(struct wi_apinfo);
1535 len = len > WI_MAX_DATALEN ? WI_MAX_DATALEN : len;
1536 len = len / sizeof(struct wi_apinfo);
1537 memcpy((char *)&wreq.wi_val, (char *)&len, sizeof(len));
1538 memcpy((char *)&wreq.wi_val + sizeof(len),
1539 (char *)&sc->wi_aps,
1540 len * sizeof(struct wi_apinfo));
1541 }
1542 } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1543 /* For non-root user, return all-zeroes keys */
1544 if (suser(p->p_ucred, &p->p_acflag))
1545 memset((char *)&wreq, 0,
1546 sizeof(struct wi_ltv_keys));
1547 else
1548 memcpy((char *)&wreq, (char *)&sc->wi_keys,
1549 sizeof(struct wi_ltv_keys));
1550 } else {
1551 if (sc->sc_enabled == 0)
1552 error = wi_getdef(sc, &wreq);
1553 else if (wreq.wi_len > WI_MAX_DATALEN)
1554 error = EINVAL;
1555 else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1556 error = EINVAL;
1557 }
1558 if (error == 0)
1559 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1560 break;
1561 case SIOCSWAVELAN:
1562 error = suser(p->p_ucred, &p->p_acflag);
1563 if (error)
1564 break;
1565 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1566 if (error)
1567 break;
1568 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1569 if (sc->sc_enabled)
1570 wi_inquire(sc);
1571 break;
1572 } else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1573 error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1574 wreq.wi_len);
1575 } else if (wreq.wi_type == WI_RID_SCAN_APS) {
1576 if (wreq.wi_len != 4) {
1577 error = EINVAL;
1578 break;
1579 }
1580 if (!sc->wi_scanning) {
1581 switch (sc->sc_firmware_type) {
1582 case WI_LUCENT:
1583 break;
1584 case WI_INTERSIL:
1585 wreq.wi_type = WI_RID_SCAN_REQ;
1586 error = wi_write_record(sc,
1587 (struct wi_ltv_gen *)&wreq);
1588 break;
1589 case WI_SYMBOL:
1590 /*
1591 * XXX only supported on 3.x ?
1592 */
1593 wreq.wi_type = WI_RID_BCAST_SCAN_REQ;
1594 wreq.wi_val[0] =
1595 BSCAN_BCAST | BSCAN_ONETIME;
1596 wreq.wi_len = 2;
1597 error = wi_write_record(sc,
1598 (struct wi_ltv_gen *)&wreq);
1599 break;
1600 }
1601 if (!error) {
1602 sc->wi_scanning = 1;
1603 callout_reset(&sc->wi_scan_sh, hz * 1,
1604 wi_wait_scan, sc);
1605 }
1606 }
1607 } else {
1608 if (wreq.wi_len > WI_MAX_DATALEN)
1609 error = EINVAL;
1610 else if (sc->sc_enabled != 0)
1611 error = wi_write_record(sc,
1612 (struct wi_ltv_gen *)&wreq);
1613 if (error == 0)
1614 error = wi_setdef(sc, &wreq);
1615 if (error == 0 && sc->sc_enabled != 0)
1616 /* Reinitialize WaveLAN. */
1617 wi_init(ifp);
1618 }
1619 break;
1620 case SIOCG80211NWID:
1621 if (sc->sc_enabled == 0) {
1622 /* Return the desired ID */
1623 error = copyout(&sc->wi_netid, ifr->ifr_data,
1624 sizeof(sc->wi_netid));
1625 } else {
1626 wreq.wi_type = WI_RID_CURRENT_SSID;
1627 wreq.wi_len = WI_MAX_DATALEN;
1628 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
1629 le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
1630 error = EINVAL;
1631 else {
1632 wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
1633 le16toh(wreq.wi_val[0]));
1634 error = copyout(&nwid, ifr->ifr_data,
1635 sizeof(nwid));
1636 }
1637 }
1638 break;
1639 case SIOCS80211NWID:
1640 error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
1641 if (error != 0)
1642 break;
1643 if (nwid.i_len > IEEE80211_NWID_LEN) {
1644 error = EINVAL;
1645 break;
1646 }
1647 if (sc->wi_netid.i_len == nwid.i_len &&
1648 memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
1649 break;
1650 wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
1651 if (sc->sc_enabled != 0)
1652 /* Reinitialize WaveLAN. */
1653 wi_init(ifp);
1654 break;
1655 case SIOCS80211NWKEY:
1656 error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
1657 break;
1658 case SIOCG80211NWKEY:
1659 error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
1660 break;
1661 case SIOCS80211POWER:
1662 error = wi_set_pm(sc, (struct ieee80211_power *)data);
1663 break;
1664 case SIOCG80211POWER:
1665 error = wi_get_pm(sc, (struct ieee80211_power *)data);
1666 break;
1667
1668 default:
1669 error = EINVAL;
1670 break;
1671 }
1672
1673 splx(s);
1674 return (error);
1675 }
1676
1677 static int
1678 wi_init(ifp)
1679 struct ifnet *ifp;
1680 {
1681 struct wi_softc *sc = ifp->if_softc;
1682 struct wi_req wreq;
1683 struct wi_ltv_macaddr mac;
1684 int error, id = 0, wasenabled;
1685
1686 wasenabled = sc->sc_enabled;
1687 if (!sc->sc_enabled) {
1688 if ((error = (*sc->sc_enable)(sc)) != 0)
1689 goto out;
1690 sc->sc_enabled = 1;
1691 }
1692
1693 wi_stop(ifp, 0);
1694 /* Symbol firmware cannot be initialized more than once */
1695 if (!(sc->sc_firmware_type == WI_SYMBOL && wasenabled))
1696 wi_reset(sc);
1697
1698 /* Program max data length. */
1699 WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1700
1701 /* Enable/disable IBSS creation. */
1702 if (sc->sc_firmware_type != WI_INTERSIL)
1703 WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1704
1705 /* Set the port type. */
1706 WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1707
1708 /* Program the RTS/CTS threshold. */
1709 WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1710
1711 /* Program the TX rate */
1712 WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1713
1714 /* Access point density */
1715 WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1716
1717 /* Power Management Enabled */
1718 WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1719
1720 /* Power Managment Max Sleep */
1721 WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1722
1723 /* Roaming type */
1724 WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
1725
1726 /* Specify the IBSS name */
1727 wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
1728
1729 /* Specify the network name */
1730 wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
1731
1732 /* Specify the frequency to use */
1733 WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1734
1735 /* Program the nodename. */
1736 wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
1737
1738 /* Set our MAC address. */
1739 mac.wi_len = 4;
1740 mac.wi_type = WI_RID_MAC_NODE;
1741 memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
1742 wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1743
1744 /* Initialize promisc mode. */
1745 if (ifp->if_flags & IFF_PROMISC) {
1746 WI_SETVAL(WI_RID_PROMISC, 1);
1747 } else {
1748 WI_SETVAL(WI_RID_PROMISC, 0);
1749 }
1750
1751 /* Configure WEP. */
1752 if (sc->wi_has_wep) {
1753 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1754 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1755 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1756 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1757 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1758 if (sc->sc_firmware_type != WI_LUCENT && sc->wi_use_wep) {
1759 /*
1760 * ONLY HWB3163 EVAL-CARD Firmware version
1761 * less than 0.8 variant2
1762 *
1763 * If promiscuous mode disable, Prism2 chip
1764 * does not work with WEP .
1765 * It is under investigation for details.
1766 * (ichiro (at) netbsd.org)
1767 */
1768 if (sc->sc_firmware_type == WI_INTERSIL &&
1769 sc->sc_sta_firmware_ver < 802 ) {
1770 /* firm ver < 0.8 variant 2 */
1771 WI_SETVAL(WI_RID_PROMISC, 1);
1772 }
1773 WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
1774 }
1775 }
1776
1777 /* Set multicast filter. */
1778 wi_setmulti(sc);
1779
1780 /* Enable desired port */
1781 wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
1782
1783 /* scanning variable is modal, therefore reinit to OFF, in case it was on. */
1784 sc->wi_scanning=0;
1785 sc->wi_naps=0;
1786
1787 if ((error = wi_alloc_nicmem(sc,
1788 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1789 printf("%s: tx buffer allocation failed\n",
1790 sc->sc_dev.dv_xname);
1791 goto out;
1792 }
1793 sc->wi_tx_data_id = id;
1794
1795 if ((error = wi_alloc_nicmem(sc,
1796 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1797 printf("%s: mgmt. buffer allocation failed\n",
1798 sc->sc_dev.dv_xname);
1799 goto out;
1800 }
1801 sc->wi_tx_mgmt_id = id;
1802
1803 /* Enable interrupts */
1804 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1805
1806 ifp->if_flags |= IFF_RUNNING;
1807 ifp->if_flags &= ~IFF_OACTIVE;
1808
1809 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
1810
1811 out:
1812 if (error) {
1813 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1814 ifp->if_timer = 0;
1815 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1816 }
1817 return (error);
1818 }
1819
1820 static void
1821 wi_start(ifp)
1822 struct ifnet *ifp;
1823 {
1824 struct wi_softc *sc;
1825 struct mbuf *m0;
1826 struct wi_frame tx_frame;
1827 struct ether_header *eh;
1828 int id;
1829
1830 sc = ifp->if_softc;
1831
1832 if (ifp->if_flags & IFF_OACTIVE)
1833 return;
1834
1835 IFQ_DEQUEUE(&ifp->if_snd, m0);
1836 if (m0 == NULL)
1837 return;
1838
1839 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1840 id = sc->wi_tx_data_id;
1841 eh = mtod(m0, struct ether_header *);
1842
1843 /*
1844 * Use RFC1042 encoding for IP and ARP datagrams,
1845 * 802.3 for anything else.
1846 */
1847 if (ntohs(eh->ether_type) == ETHERTYPE_IP ||
1848 ntohs(eh->ether_type) == ETHERTYPE_ARP ||
1849 ntohs(eh->ether_type) == ETHERTYPE_REVARP ||
1850 ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
1851 memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost,
1852 ETHER_ADDR_LEN);
1853 memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost,
1854 ETHER_ADDR_LEN);
1855 memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost,
1856 ETHER_ADDR_LEN);
1857 memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost,
1858 ETHER_ADDR_LEN);
1859
1860 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1861 tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
1862 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1863 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1864 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1865 tx_frame.wi_type = eh->ether_type;
1866
1867 m_copydata(m0, sizeof(struct ether_header),
1868 m0->m_pkthdr.len - sizeof(struct ether_header),
1869 (caddr_t)&sc->wi_txbuf);
1870
1871 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1872 sizeof(struct wi_frame));
1873 wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1874 (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1875 } else {
1876 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
1877
1878 m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1879
1880 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1881 sizeof(struct wi_frame));
1882 wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1883 m0->m_pkthdr.len + 2);
1884 }
1885
1886 #if NBPFILTER > 0
1887 /*
1888 * If there's a BPF listener, bounce a copy of
1889 * this frame to him.
1890 */
1891 if (ifp->if_bpf)
1892 bpf_mtap(ifp->if_bpf, m0);
1893 #endif
1894
1895 m_freem(m0);
1896
1897 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1898 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1899
1900 ifp->if_flags |= IFF_OACTIVE;
1901
1902 /*
1903 * Set a timeout in case the chip goes out to lunch.
1904 */
1905 ifp->if_timer = 5;
1906
1907 return;
1908 }
1909
1910 static int
1911 wi_mgmt_xmit(sc, data, len)
1912 struct wi_softc *sc;
1913 caddr_t data;
1914 int len;
1915 {
1916 struct wi_frame tx_frame;
1917 int id;
1918 struct wi_80211_hdr *hdr;
1919 caddr_t dptr;
1920
1921 hdr = (struct wi_80211_hdr *)data;
1922 dptr = data + sizeof(struct wi_80211_hdr);
1923
1924 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1925 id = sc->wi_tx_mgmt_id;
1926
1927 memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr,
1928 sizeof(struct wi_80211_hdr));
1929
1930 tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
1931 tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1932
1933 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1934 wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1935 (len - sizeof(struct wi_80211_hdr)) + 2);
1936
1937 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1938 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1939 return(EIO);
1940 }
1941
1942 return(0);
1943 }
1944
1945 static void
1946 wi_stop(ifp, disable)
1947 struct ifnet *ifp;
1948 {
1949 struct wi_softc *sc = ifp->if_softc;
1950
1951 CSR_WRITE_2(sc, WI_INT_EN, 0);
1952 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1953
1954 callout_stop(&sc->wi_inquire_ch);
1955 callout_stop(&sc->wi_scan_sh);
1956
1957 if (disable) {
1958 if (sc->sc_enabled) {
1959 if (sc->sc_disable)
1960 (*sc->sc_disable)(sc);
1961 sc->sc_enabled = 0;
1962 }
1963 }
1964
1965 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1966 ifp->if_timer = 0;
1967 }
1968
1969 static void
1970 wi_watchdog(ifp)
1971 struct ifnet *ifp;
1972 {
1973 struct wi_softc *sc;
1974
1975 sc = ifp->if_softc;
1976
1977 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1978
1979 wi_init(ifp);
1980
1981 ifp->if_oerrors++;
1982
1983 return;
1984 }
1985
1986 void
1987 wi_shutdown(sc)
1988 struct wi_softc *sc;
1989 {
1990 int s;
1991
1992 s = splnet();
1993 if (sc->sc_enabled) {
1994 if (sc->sc_disable)
1995 (*sc->sc_disable)(sc);
1996 sc->sc_enabled = 0;
1997 }
1998 splx(s);
1999 }
2000
2001 int
2002 wi_activate(self, act)
2003 struct device *self;
2004 enum devact act;
2005 {
2006 struct wi_softc *sc = (struct wi_softc *)self;
2007 int rv = 0, s;
2008
2009 s = splnet();
2010 switch (act) {
2011 case DVACT_ACTIVATE:
2012 rv = EOPNOTSUPP;
2013 break;
2014
2015 case DVACT_DEACTIVATE:
2016 if_deactivate(&sc->sc_ethercom.ec_if);
2017 break;
2018 }
2019 splx(s);
2020 return (rv);
2021 }
2022
2023 static void
2024 wi_get_id(sc)
2025 struct wi_softc *sc;
2026 {
2027 struct wi_ltv_ver ver;
2028 struct wi_card_ident *id;
2029
2030 /* getting chip identity */
2031 memset(&ver, 0, sizeof(ver));
2032 ver.wi_type = WI_RID_CARD_ID;
2033 ver.wi_len = 5;
2034 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
2035 printf("%s: using ", sc->sc_dev.dv_xname);
2036
2037 sc->sc_firmware_type = WI_NOTYPE;
2038 for (id = wi_card_ident; id->card_name != NULL; id++) {
2039 if (le16toh(ver.wi_ver[0]) == id->card_id) {
2040 printf("%s", id->card_name);
2041 sc->sc_firmware_type = id->firm_type;
2042 break;
2043 }
2044 }
2045 if (sc->sc_firmware_type == WI_NOTYPE) {
2046 if (le16toh(ver.wi_ver[0]) & 0x8000) {
2047 printf("Unknown PRISM2 chip");
2048 sc->sc_firmware_type = WI_INTERSIL;
2049 } else {
2050 printf("Unknown Lucent chip");
2051 sc->sc_firmware_type = WI_LUCENT;
2052 }
2053 }
2054
2055 /* get primary firmware version (Only Prism chips) */
2056 if (sc->sc_firmware_type != WI_LUCENT) {
2057 memset(&ver, 0, sizeof(ver));
2058 ver.wi_type = WI_RID_PRI_IDENTITY;
2059 ver.wi_len = 5;
2060 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
2061 LE16TOH(ver.wi_ver[1]);
2062 LE16TOH(ver.wi_ver[2]);
2063 LE16TOH(ver.wi_ver[3]);
2064 sc->sc_pri_firmware_ver = ver.wi_ver[2] * 10000 +
2065 ver.wi_ver[3] * 100 + ver.wi_ver[1];
2066 }
2067
2068 /* get station firmware version */
2069 memset(&ver, 0, sizeof(ver));
2070 ver.wi_type = WI_RID_STA_IDENTITY;
2071 ver.wi_len = 5;
2072 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
2073 LE16TOH(ver.wi_ver[1]);
2074 LE16TOH(ver.wi_ver[2]);
2075 LE16TOH(ver.wi_ver[3]);
2076 sc->sc_sta_firmware_ver = ver.wi_ver[2] * 10000 +
2077 ver.wi_ver[3] * 100 + ver.wi_ver[1];
2078 if (sc->sc_firmware_type == WI_INTERSIL &&
2079 (sc->sc_sta_firmware_ver == 10102 || sc->sc_sta_firmware_ver == 20102)) {
2080 struct wi_ltv_str sver;
2081 char *p;
2082
2083 memset(&sver, 0, sizeof(sver));
2084 sver.wi_type = WI_RID_SYMBOL_IDENTITY;
2085 sver.wi_len = 7;
2086 /* value should be the format like "V2.00-11" */
2087 if (wi_read_record(sc, (struct wi_ltv_gen *)&sver) == 0 &&
2088 *(p = (char *)sver.wi_str) >= 'A' &&
2089 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
2090 sc->sc_firmware_type = WI_SYMBOL;
2091 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
2092 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
2093 (p[6] - '0') * 10 + (p[7] - '0');
2094 }
2095 }
2096
2097 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
2098 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
2099 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
2100 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
2101 printf("Primary (%u.%u.%u), ", sc->sc_pri_firmware_ver / 10000,
2102 (sc->sc_pri_firmware_ver % 10000) / 100,
2103 sc->sc_pri_firmware_ver % 100);
2104 printf("Station (%u.%u.%u)\n",
2105 sc->sc_sta_firmware_ver / 10000, (sc->sc_sta_firmware_ver % 10000) / 100,
2106 sc->sc_sta_firmware_ver % 100);
2107
2108 return;
2109 }
2110
2111 int
2112 wi_detach(sc)
2113 struct wi_softc *sc;
2114 {
2115 struct ifnet *ifp = sc->sc_ifp;
2116 int s;
2117
2118 if (!sc->sc_attached)
2119 return (0);
2120
2121 s = splnet();
2122 callout_stop(&sc->wi_inquire_ch);
2123
2124 /* Delete all remaining media. */
2125 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
2126
2127 ether_ifdetach(ifp);
2128 if_detach(ifp);
2129 if (sc->sc_enabled) {
2130 if (sc->sc_disable)
2131 (*sc->sc_disable)(sc);
2132 sc->sc_enabled = 0;
2133 }
2134 splx(s);
2135 return (0);
2136 }
2137
2138 void
2139 wi_power(sc, why)
2140 struct wi_softc *sc;
2141 int why;
2142 {
2143 int s;
2144
2145 if (!sc->sc_enabled)
2146 return;
2147
2148 s = splnet();
2149 switch (why) {
2150 case PWR_SUSPEND:
2151 case PWR_STANDBY:
2152 wi_stop(sc->sc_ifp, 0);
2153 if (sc->sc_enabled) {
2154 if (sc->sc_disable)
2155 (*sc->sc_disable)(sc);
2156 }
2157 break;
2158 case PWR_RESUME:
2159 sc->sc_enabled = 0;
2160 wi_init(sc->sc_ifp);
2161 (void)wi_intr(sc);
2162 break;
2163 case PWR_SOFTSUSPEND:
2164 case PWR_SOFTSTANDBY:
2165 case PWR_SOFTRESUME:
2166 break;
2167 }
2168 splx(s);
2169 }
2170
2171 static int
2172 wi_set_ssid(ws, id, len)
2173 struct ieee80211_nwid *ws;
2174 u_int8_t *id;
2175 int len;
2176 {
2177
2178 if (len > IEEE80211_NWID_LEN)
2179 return (EINVAL);
2180 ws->i_len = len;
2181 memcpy(ws->i_nwid, id, len);
2182 return (0);
2183 }
2184
2185 static void
2186 wi_request_fill_ssid(wreq, ws)
2187 struct wi_req *wreq;
2188 struct ieee80211_nwid *ws;
2189 {
2190 int len = ws->i_len;
2191
2192 memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
2193 wreq->wi_val[0] = htole16(len);
2194 wreq->wi_len = roundup(len, 2) / 2 + 2;
2195 memcpy(&wreq->wi_val[1], ws->i_nwid, len);
2196 }
2197
2198 static int
2199 wi_write_ssid(sc, type, wreq, ws)
2200 struct wi_softc *sc;
2201 int type;
2202 struct wi_req *wreq;
2203 struct ieee80211_nwid *ws;
2204 {
2205
2206 wreq->wi_type = type;
2207 wi_request_fill_ssid(wreq, ws);
2208 return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
2209 }
2210
2211 static int
2212 wi_sync_media(sc, ptype, txrate)
2213 struct wi_softc *sc;
2214 int ptype;
2215 int txrate;
2216 {
2217 int media = sc->sc_media.ifm_cur->ifm_media;
2218 int options = IFM_OPTIONS(media);
2219 int subtype;
2220
2221 switch (txrate) {
2222 case 1:
2223 subtype = IFM_IEEE80211_DS1;
2224 break;
2225 case 2:
2226 subtype = IFM_IEEE80211_DS2;
2227 break;
2228 case 3:
2229 subtype = IFM_AUTO;
2230 break;
2231 case 5:
2232 subtype = IFM_IEEE80211_DS5;
2233 break;
2234 case 11:
2235 subtype = IFM_IEEE80211_DS11;
2236 break;
2237 default:
2238 subtype = IFM_MANUAL; /* Unable to represent */
2239 break;
2240 }
2241 switch (ptype) {
2242 case WI_PORTTYPE_ADHOC:
2243 options |= IFM_IEEE80211_ADHOC;
2244 break;
2245 case WI_PORTTYPE_BSS:
2246 options &= ~IFM_IEEE80211_ADHOC;
2247 break;
2248 default:
2249 subtype = IFM_MANUAL; /* Unable to represent */
2250 break;
2251 }
2252 media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
2253 IFM_INST(media));
2254 if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
2255 return (EINVAL);
2256 ifmedia_set(&sc->sc_media, media);
2257 sc->wi_ptype = ptype;
2258 sc->wi_tx_rate = txrate;
2259 return (0);
2260 }
2261
2262 static int
2263 wi_media_change(ifp)
2264 struct ifnet *ifp;
2265 {
2266 struct wi_softc *sc = ifp->if_softc;
2267 int otype = sc->wi_ptype;
2268 int orate = sc->wi_tx_rate;
2269
2270 if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2271 sc->wi_ptype = WI_PORTTYPE_ADHOC;
2272 else
2273 sc->wi_ptype = WI_PORTTYPE_BSS;
2274
2275 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
2276 case IFM_IEEE80211_DS1:
2277 sc->wi_tx_rate = 1;
2278 break;
2279 case IFM_IEEE80211_DS2:
2280 sc->wi_tx_rate = 2;
2281 break;
2282 case IFM_AUTO:
2283 sc->wi_tx_rate = 3;
2284 break;
2285 case IFM_IEEE80211_DS5:
2286 sc->wi_tx_rate = 5;
2287 break;
2288 case IFM_IEEE80211_DS11:
2289 sc->wi_tx_rate = 11;
2290 break;
2291 }
2292
2293 if (sc->sc_enabled != 0) {
2294 if (otype != sc->wi_ptype ||
2295 orate != sc->wi_tx_rate)
2296 wi_init(ifp);
2297 }
2298
2299 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
2300
2301 return (0);
2302 }
2303
2304 static void
2305 wi_media_status(ifp, imr)
2306 struct ifnet *ifp;
2307 struct ifmediareq *imr;
2308 {
2309 struct wi_softc *sc = ifp->if_softc;
2310
2311 if (sc->sc_enabled == 0) {
2312 imr->ifm_active = IFM_IEEE80211|IFM_NONE;
2313 imr->ifm_status = 0;
2314 return;
2315 }
2316
2317 imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
2318 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2319 }
2320
2321 static int
2322 wi_set_nwkey(sc, nwkey)
2323 struct wi_softc *sc;
2324 struct ieee80211_nwkey *nwkey;
2325 {
2326 int i, error;
2327 size_t len;
2328 struct wi_req wreq;
2329 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
2330
2331 if (!sc->wi_has_wep)
2332 return ENODEV;
2333 if (nwkey->i_defkid <= 0 ||
2334 nwkey->i_defkid > IEEE80211_WEP_NKID)
2335 return EINVAL;
2336 memcpy(wk, &sc->wi_keys, sizeof(*wk));
2337 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2338 if (nwkey->i_key[i].i_keydat == NULL)
2339 continue;
2340 len = nwkey->i_key[i].i_keylen;
2341 if (len > sizeof(wk->wi_keys[i].wi_keydat))
2342 return EINVAL;
2343 error = copyin(nwkey->i_key[i].i_keydat,
2344 wk->wi_keys[i].wi_keydat, len);
2345 if (error)
2346 return error;
2347 wk->wi_keys[i].wi_keylen = htole16(len);
2348 }
2349
2350 wk->wi_len = (sizeof(*wk) / 2) + 1;
2351 wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2352 if (sc->sc_enabled != 0) {
2353 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2354 if (error)
2355 return error;
2356 }
2357 error = wi_setdef(sc, &wreq);
2358 if (error)
2359 return error;
2360
2361 wreq.wi_len = 2;
2362 wreq.wi_type = WI_RID_TX_CRYPT_KEY;
2363 wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
2364 if (sc->sc_enabled != 0) {
2365 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2366 if (error)
2367 return error;
2368 }
2369 error = wi_setdef(sc, &wreq);
2370 if (error)
2371 return error;
2372
2373 wreq.wi_type = WI_RID_ENCRYPTION;
2374 wreq.wi_val[0] = htole16(nwkey->i_wepon);
2375 if (sc->sc_enabled != 0) {
2376 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2377 if (error)
2378 return error;
2379 }
2380 error = wi_setdef(sc, &wreq);
2381 if (error)
2382 return error;
2383
2384 if (sc->sc_enabled != 0)
2385 wi_init(&sc->sc_ethercom.ec_if);
2386 return 0;
2387 }
2388
2389 static int
2390 wi_get_nwkey(sc, nwkey)
2391 struct wi_softc *sc;
2392 struct ieee80211_nwkey *nwkey;
2393 {
2394 int i, len, error;
2395 struct wi_ltv_keys *wk = &sc->wi_keys;
2396
2397 if (!sc->wi_has_wep)
2398 return ENODEV;
2399 nwkey->i_wepon = sc->wi_use_wep;
2400 nwkey->i_defkid = sc->wi_tx_key + 1;
2401
2402 /* do not show any keys to non-root user */
2403 error = suser(curproc->p_ucred, &curproc->p_acflag);
2404 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2405 if (nwkey->i_key[i].i_keydat == NULL)
2406 continue;
2407 /* error holds results of suser() for the first time */
2408 if (error)
2409 return error;
2410 len = le16toh(wk->wi_keys[i].wi_keylen);
2411 if (nwkey->i_key[i].i_keylen < len)
2412 return ENOSPC;
2413 nwkey->i_key[i].i_keylen = len;
2414 error = copyout(wk->wi_keys[i].wi_keydat,
2415 nwkey->i_key[i].i_keydat, len);
2416 if (error)
2417 return error;
2418 }
2419 return 0;
2420 }
2421
2422 static int
2423 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
2424 {
2425
2426 sc->wi_pm_enabled = power->i_enabled;
2427 sc->wi_max_sleep = power->i_maxsleep;
2428
2429 if (sc->sc_enabled)
2430 return (wi_init(&sc->sc_ethercom.ec_if));
2431
2432 return (0);
2433 }
2434
2435 static int
2436 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
2437 {
2438
2439 power->i_enabled = sc->wi_pm_enabled;
2440 power->i_maxsleep = sc->wi_max_sleep;
2441
2442 return (0);
2443 }
2444