wi.c revision 1.75 1 /* $NetBSD: wi.c,v 1.75 2002/08/11 00:00:41 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.75 2002/08/11 00:00:41 thorpej Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static void wi_reset __P((struct wi_softc *));
108 static int wi_ioctl __P((struct ifnet *, u_long, caddr_t));
109 static void wi_start __P((struct ifnet *));
110 static void wi_watchdog __P((struct ifnet *));
111 static int wi_init __P((struct ifnet *));
112 static void wi_stop __P((struct ifnet *, int));
113 static void wi_rxeof __P((struct wi_softc *));
114 static void wi_txeof __P((struct wi_softc *, int));
115 static void wi_update_stats __P((struct wi_softc *));
116 static void wi_setmulti __P((struct wi_softc *));
117
118 static int wi_cmd __P((struct wi_softc *, int, int));
119 static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *));
120 static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *));
121 static int wi_read_data __P((struct wi_softc *, int,
122 int, caddr_t, int));
123 static int wi_write_data __P((struct wi_softc *, int,
124 int, caddr_t, int));
125 static int wi_seek __P((struct wi_softc *, int, int, int));
126 static int wi_alloc_nicmem __P((struct wi_softc *, int, int *));
127 static void wi_inquire __P((void *));
128 static void wi_wait_scan __P((void *));
129 static int wi_setdef __P((struct wi_softc *, struct wi_req *));
130 static int wi_getdef __P((struct wi_softc *, struct wi_req *));
131 static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int));
132
133 static int wi_media_change __P((struct ifnet *));
134 static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
135
136 static void wi_get_id __P((struct wi_softc *));
137
138 static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
139 static void wi_request_fill_ssid __P((struct wi_req *,
140 struct ieee80211_nwid *));
141 static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
142 struct ieee80211_nwid *));
143 static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
144 static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
145 static int wi_sync_media __P((struct wi_softc *, int, int));
146 static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
147 static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
148
149 struct wi_card_ident wi_card_ident[] = {
150 /* CARD_ID CARD_NAME FIRM_TYPE */
151 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
152 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
153 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
154 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
155 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
156 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
157 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
158 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
159 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
160 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
161 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
162 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
163 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
164 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
165 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
166 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
167 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
168 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
169 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
170 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
171 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
172 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
173 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
174 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
175 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
176 { 0, NULL, 0 },
177 };
178
179 int
180 wi_attach(sc)
181 struct wi_softc *sc;
182 {
183 struct ifnet *ifp = sc->sc_ifp;
184 const char *sep = "";
185 struct wi_ltv_macaddr mac;
186 struct wi_ltv_gen gen;
187 static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
188 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
189 };
190 int s;
191
192 s = splnet();
193
194 callout_init(&sc->wi_inquire_ch);
195 callout_init(&sc->wi_scan_sh);
196
197 /* Make sure interrupts are disabled. */
198 CSR_WRITE_2(sc, WI_INT_EN, 0);
199 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
200
201 /* Reset the NIC. */
202 wi_reset(sc);
203
204 memset(&mac, 0, sizeof(mac));
205 /* Read the station address. */
206 mac.wi_type = WI_RID_MAC_NODE;
207 mac.wi_len = 4;
208 wi_read_record(sc, (struct wi_ltv_gen *)&mac);
209 memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
210
211 /*
212 * Check if we got anything meaningful.
213 *
214 * Is it really enough just checking against null ethernet address?
215 * Or, check against possible vendor? XXX.
216 */
217 if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
218 printf("could not get mac address, attach failed\n");
219 splx(s);
220 return 1;
221 }
222
223 printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
224
225 /* Read NIC identification */
226 wi_get_id(sc);
227
228 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
229 ifp->if_softc = sc;
230 ifp->if_start = wi_start;
231 ifp->if_ioctl = wi_ioctl;
232 ifp->if_watchdog = wi_watchdog;
233 ifp->if_init = wi_init;
234 ifp->if_stop = wi_stop;
235 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
236 #ifdef IFF_NOTRAILERS
237 ifp->if_flags |= IFF_NOTRAILERS;
238 #endif
239 IFQ_SET_READY(&ifp->if_snd);
240
241 (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
242 sizeof(WI_DEFAULT_NODENAME) - 1);
243 (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
244 sizeof(WI_DEFAULT_NETNAME) - 1);
245 (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
246 sizeof(WI_DEFAULT_IBSS) - 1);
247
248 sc->wi_portnum = WI_DEFAULT_PORT;
249 sc->wi_ptype = WI_PORTTYPE_BSS;
250 sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
251 sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
252 sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
253 sc->wi_max_data_len = WI_DEFAULT_DATALEN;
254 sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
255 sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
256 sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
257 sc->wi_roaming = WI_DEFAULT_ROAMING;
258 sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
259
260 /*
261 * Read the default channel from the NIC. This may vary
262 * depending on the country where the NIC was purchased, so
263 * we can't hard-code a default and expect it to work for
264 * everyone.
265 */
266 gen.wi_type = WI_RID_OWN_CHNL;
267 gen.wi_len = 2;
268 wi_read_record(sc, &gen);
269 sc->wi_channel = le16toh(gen.wi_val);
270
271 memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats));
272
273 /* AP info was filled with 0 */
274 memset((char *)&sc->wi_aps, 0, sizeof(sc->wi_aps));
275 sc->wi_scanning=0;
276 sc->wi_naps=0;
277
278 /*
279 * Find out if we support WEP on this card.
280 */
281 gen.wi_type = WI_RID_WEP_AVAIL;
282 gen.wi_len = 2;
283 wi_read_record(sc, &gen);
284 sc->wi_has_wep = le16toh(gen.wi_val);
285
286 /* Find supported rates. */
287 gen.wi_type = WI_RID_SUPPORT_RATE;
288 gen.wi_len = 2;
289 if (wi_read_record(sc, &gen))
290 sc->wi_supprates = WI_SUPPRATES_1M | WI_SUPPRATES_2M |
291 WI_SUPPRATES_5M | WI_SUPPRATES_11M;
292 else
293 sc->wi_supprates = le16toh(gen.wi_val);
294
295 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
296 if (sc->wi_supprates != 0)
297 printf("%s: supported rates: ", sc->sc_dev.dv_xname);
298 #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL)
299 #define PRINT(n) printf("%s%s", sep, (n)); sep = ", "
300 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
301 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0);
302 if (sc->wi_supprates & WI_SUPPRATES_1M) {
303 PRINT("1Mbps");
304 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
305 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
306 IFM_IEEE80211_ADHOC, 0), 0);
307 }
308 if (sc->wi_supprates & WI_SUPPRATES_2M) {
309 PRINT("2Mbps");
310 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
311 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
312 IFM_IEEE80211_ADHOC, 0), 0);
313 }
314 if (sc->wi_supprates & WI_SUPPRATES_5M) {
315 PRINT("5.5Mbps");
316 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
317 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
318 IFM_IEEE80211_ADHOC, 0), 0);
319 }
320 if (sc->wi_supprates & WI_SUPPRATES_11M) {
321 PRINT("11Mbps");
322 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
323 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
324 IFM_IEEE80211_ADHOC, 0), 0);
325 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
326 }
327 if (sc->wi_supprates != 0)
328 printf("\n");
329 ifmedia_set(&sc->sc_media,
330 IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
331 #undef ADD
332 #undef PRINT
333
334 /*
335 * Call MI attach routines.
336 */
337 if_attach(ifp);
338 ether_ifattach(ifp, mac.wi_mac_addr);
339
340 ifp->if_baudrate = IF_Mbps(2);
341
342 /* Attach is successful. */
343 sc->sc_attached = 1;
344
345 splx(s);
346 return 0;
347 }
348
349 static void wi_rxeof(sc)
350 struct wi_softc *sc;
351 {
352 struct ifnet *ifp;
353 struct ether_header *eh;
354 struct wi_frame rx_frame;
355 struct mbuf *m;
356 int id;
357
358 ifp = sc->sc_ifp;
359
360 id = CSR_READ_2(sc, WI_RX_FID);
361
362 /* First read in the frame header */
363 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
364 ifp->if_ierrors++;
365 return;
366 }
367
368 /*
369 * Drop undecryptable or packets with receive errors here
370 */
371 if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) {
372 ifp->if_ierrors++;
373 return;
374 }
375
376 MGETHDR(m, M_DONTWAIT, MT_DATA);
377 if (m == NULL) {
378 ifp->if_ierrors++;
379 return;
380 }
381 MCLGET(m, M_DONTWAIT);
382 if (!(m->m_flags & M_EXT)) {
383 m_freem(m);
384 ifp->if_ierrors++;
385 return;
386 }
387
388 /* Align the data after the ethernet header */
389 m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
390 - sizeof(struct ether_header);
391
392 eh = mtod(m, struct ether_header *);
393 m->m_pkthdr.rcvif = ifp;
394
395 if ((le16toh(rx_frame.wi_status) & WI_RXSTAT_MSG_TYPE) == WI_STAT_1042 ||
396 (le16toh(rx_frame.wi_status) & WI_RXSTAT_MSG_TYPE) == WI_STAT_TUNNEL ||
397 (le16toh(rx_frame.wi_status) & WI_RXSTAT_MSG_TYPE) == WI_STAT_WMP_MSG) {
398 if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
399 printf("%s: oversized packet received "
400 "(wi_dat_len=%d, wi_status=0x%x)\n",
401 sc->sc_dev.dv_xname,
402 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
403 m_freem(m);
404 ifp->if_ierrors++;
405 return;
406 }
407 m->m_pkthdr.len = m->m_len =
408 le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
409
410 memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr,
411 ETHER_ADDR_LEN);
412 memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr,
413 ETHER_ADDR_LEN);
414 memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type,
415 sizeof(u_int16_t));
416
417 if (wi_read_data(sc, id, WI_802_11_OFFSET,
418 mtod(m, caddr_t) + sizeof(struct ether_header),
419 m->m_len + 2)) {
420 m_freem(m);
421 ifp->if_ierrors++;
422 return;
423 }
424 } else {
425 if ((le16toh(rx_frame.wi_dat_len) +
426 sizeof(struct ether_header)) > MCLBYTES) {
427 printf("%s: oversized packet received "
428 "(wi_dat_len=%d, wi_status=0x%x)\n",
429 sc->sc_dev.dv_xname,
430 le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
431 m_freem(m);
432 ifp->if_ierrors++;
433 return;
434 }
435 m->m_pkthdr.len = m->m_len =
436 le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
437
438 if (wi_read_data(sc, id, WI_802_3_OFFSET,
439 mtod(m, caddr_t), m->m_len + 2)) {
440 m_freem(m);
441 ifp->if_ierrors++;
442 return;
443 }
444 }
445
446 ifp->if_ipackets++;
447
448 #if NBPFILTER > 0
449 /* Handle BPF listeners. */
450 if (ifp->if_bpf)
451 bpf_mtap(ifp->if_bpf, m);
452 #endif
453
454 /* Receive packet. */
455 (*ifp->if_input)(ifp, m);
456 }
457
458 static void wi_txeof(sc, status)
459 struct wi_softc *sc;
460 int status;
461 {
462 struct ifnet *ifp = sc->sc_ifp;
463
464 ifp->if_timer = 0;
465 ifp->if_flags &= ~IFF_OACTIVE;
466
467 if (status & WI_EV_TX_EXC)
468 ifp->if_oerrors++;
469 else
470 ifp->if_opackets++;
471
472 return;
473 }
474
475 void wi_inquire(xsc)
476 void *xsc;
477 {
478 struct wi_softc *sc;
479 struct ifnet *ifp;
480 int s;
481
482 sc = xsc;
483 ifp = &sc->sc_ethercom.ec_if;
484
485 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
486 return;
487
488 KASSERT(sc->sc_enabled);
489
490 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
491
492 /* Don't do this while we're transmitting */
493 if (ifp->if_flags & IFF_OACTIVE)
494 return;
495
496 s = splnet();
497 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
498 splx(s);
499 }
500
501 void wi_wait_scan(xsc)
502 void *xsc;
503 {
504 struct wi_softc *sc;
505 struct ifnet *ifp;
506 int s, result;
507
508 sc = xsc;
509 ifp = &sc->sc_ethercom.ec_if;
510
511 /* If not scanning, ignore */
512 if (!sc->wi_scanning)
513 return;
514
515 s = splnet();
516
517 /* Wait for sending complete to make INQUIRE */
518 if (ifp->if_flags & IFF_OACTIVE) {
519 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
520 splx(s);
521 return;
522 }
523
524 /* try INQUIRE */
525 result = wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS);
526 if (result == ETIMEDOUT)
527 callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
528
529 splx(s);
530 }
531
532 void wi_update_stats(sc)
533 struct wi_softc *sc;
534 {
535 struct wi_ltv_gen gen;
536 struct wi_scan_header ap2_header; /* Prism2 header */
537 struct wi_scan_data_p2 ap2; /* Prism2 scantable*/
538 struct wi_scan_data ap; /* Lucent scantable */
539 struct wi_assoc assoc; /* Association Status */
540 u_int16_t id;
541 struct ifnet *ifp;
542 u_int32_t *ptr;
543 int len, naps, i, j;
544 u_int16_t t;
545
546 ifp = &sc->sc_ethercom.ec_if;
547
548 id = CSR_READ_2(sc, WI_INFO_FID);
549
550 if (wi_seek(sc, id, 0, WI_BAP1)) {
551 return;
552 }
553
554 gen.wi_len = CSR_READ_2(sc, WI_DATA1);
555 gen.wi_type = CSR_READ_2(sc, WI_DATA1);
556
557 switch (gen.wi_type) {
558 case WI_INFO_SCAN_RESULTS:
559 case WI_INFO_HOST_SCAN_RESULTS:
560 if (gen.wi_len <= 3) {
561 sc->wi_naps = 0;
562 sc->wi_scanning = 0;
563 break;
564 }
565 switch (sc->sc_firmware_type) {
566 case WI_INTERSIL:
567 case WI_SYMBOL:
568 if (sc->sc_firmware_type == WI_INTERSIL) {
569 naps = 2 * (gen.wi_len - 3) / sizeof(ap2);
570 /* Read Header */
571 for(j=0; j < sizeof(ap2_header) / 2; j++)
572 ((u_int16_t *)&ap2_header)[j] =
573 CSR_READ_2(sc, WI_DATA1);
574 } else { /* WI_SYMBOL */
575 naps = 2 * (gen.wi_len - 1) / (sizeof(ap2) + 6);
576 ap2_header.wi_reason = 0;
577 }
578 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
579 sc->wi_naps = naps;
580 /* Read Data */
581 for (i=0; i < naps; i++) {
582 for(j=0; j < sizeof(ap2) / 2; j++)
583 ((u_int16_t *)&ap2)[j] =
584 CSR_READ_2(sc, WI_DATA1);
585 if (sc->sc_firmware_type == WI_SYMBOL) {
586 /* 3 more words */
587 for (j = 0; j < 3; j++)
588 CSR_READ_2(sc, WI_DATA1);
589 }
590 /* unswap 8 bit data fields: */
591 for(j=0;j<sizeof(ap.wi_bssid)/2;j++)
592 LE16TOH(((u_int16_t *)&ap.wi_bssid[0])[j]);
593 for(j=0;j<sizeof(ap.wi_name)/2;j++)
594 LE16TOH(((u_int16_t *)&ap.wi_name[0])[j]);
595 sc->wi_aps[i].scanreason = ap2_header.wi_reason;
596 memcpy(sc->wi_aps[i].bssid, ap2.wi_bssid, 6);
597 sc->wi_aps[i].channel = ap2.wi_chid;
598 sc->wi_aps[i].signal = ap2.wi_signal;
599 sc->wi_aps[i].noise = ap2.wi_noise;
600 sc->wi_aps[i].quality = ap2.wi_signal - ap2.wi_noise;
601 sc->wi_aps[i].capinfo = ap2.wi_capinfo;
602 sc->wi_aps[i].interval = ap2.wi_interval;
603 sc->wi_aps[i].rate = ap2.wi_rate;
604 if (ap2.wi_namelen > 32)
605 ap2.wi_namelen = 32;
606 sc->wi_aps[i].namelen = ap2.wi_namelen;
607 memcpy(sc->wi_aps[i].name, ap2.wi_name,
608 ap2.wi_namelen);
609 }
610 break;
611
612 case WI_LUCENT:
613 naps = 2 * gen.wi_len / sizeof(ap);
614 naps = naps > MAXAPINFO ? MAXAPINFO : naps;
615 sc->wi_naps = naps;
616 /* Read Data*/
617 for (i=0; i < naps; i++) {
618 for(j=0; j < sizeof(ap) / 2; j++)
619 ((u_int16_t *)&ap)[j] =
620 CSR_READ_2(sc, WI_DATA1);
621 /* unswap 8 bit data fields: */
622 for(j=0;j<sizeof(ap.wi_bssid)/2;j++)
623 HTOLE16(((u_int16_t *)&ap.wi_bssid[0])[j]);
624 for(j=0;j<sizeof(ap.wi_name)/2;j++)
625 HTOLE16(((u_int16_t *)&ap.wi_name[0])[j]);
626 memcpy(sc->wi_aps[i].bssid, ap.wi_bssid, 6);
627 sc->wi_aps[i].channel = ap.wi_chid;
628 sc->wi_aps[i].signal = ap.wi_signal;
629 sc->wi_aps[i].noise = ap.wi_noise;
630 sc->wi_aps[i].quality = ap.wi_signal - ap.wi_noise;
631 sc->wi_aps[i].capinfo = ap.wi_capinfo;
632 sc->wi_aps[i].interval = ap.wi_interval;
633 if (ap.wi_namelen > 32)
634 ap.wi_namelen = 32;
635 sc->wi_aps[i].namelen = ap.wi_namelen;
636 memcpy(sc->wi_aps[i].name, ap.wi_name,
637 ap.wi_namelen);
638 }
639 break;
640 }
641 /* Done scanning */
642 sc->wi_scanning = 0;
643 break;
644
645 case WI_INFO_COUNTERS:
646 /* some card versions have a larger stats structure */
647 len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
648 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
649 ptr = (u_int32_t *)&sc->wi_stats;
650
651 for (i = 0; i < len; i++) {
652 t = CSR_READ_2(sc, WI_DATA1);
653 #ifdef WI_HERMES_STATS_WAR
654 if (t > 0xF000)
655 t = ~t & 0xFFFF;
656 #endif
657 ptr[i] += t;
658 }
659
660 ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
661 sc->wi_stats.wi_tx_multi_retries +
662 sc->wi_stats.wi_tx_retry_limit;
663 break;
664
665 case WI_INFO_LINK_STAT: {
666 static char *msg[] = {
667 "connected",
668 "disconnected",
669 "AP change",
670 "AP out of range",
671 "AP in range",
672 "Association Failed"
673 };
674
675 if (gen.wi_len != 2) {
676 #ifdef WI_DEBUG
677 printf("WI_INFO_LINK_STAT: len=%d\n", gen.wi_len);
678 #endif
679 break;
680 }
681 t = CSR_READ_2(sc, WI_DATA1);
682 if ((t < 1) || (t > 6)) {
683 #ifdef WI_DEBUG
684 printf("WI_INFO_LINK_STAT: status %d\n", t);
685 #endif
686 break;
687 }
688 if (sc->sc_firmware_type == WI_SYMBOL && t == 4) {
689 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_HOST_SCAN_RESULTS);
690 break;
691 }
692 /*
693 * Some cards issue streams of "connected" messages while
694 * trying to find a peer. Don't bother the user with this
695 * unless he is debugging.
696 */
697 if (ifp->if_flags & IFF_DEBUG)
698 printf("%s: %s\n", sc->sc_dev.dv_xname, msg[t - 1]);
699 break;
700 }
701
702 case WI_INFO_ASSOC_STAT: {
703 static char *msg[] = {
704 "STA Associated",
705 "STA Reassociated",
706 "STA Disassociated",
707 "Association Failure",
708 "Authentication Failed"
709 };
710 if (gen.wi_len != 10)
711 break;
712 for (i=0; i < gen.wi_len - 1; i++)
713 ((u_int16_t *)&assoc)[i] = CSR_READ_2(sc, WI_DATA1);
714 /* unswap 8 bit data fields: */
715 for(j=0;j<sizeof(assoc.wi_assoc_sta)/2;j++)
716 HTOLE16(((u_int16_t *)&assoc.wi_assoc_sta[0])[j]);
717 for(j=0;j<sizeof(assoc.wi_assoc_osta)/2;j++)
718 HTOLE16(((u_int16_t *)&assoc.wi_assoc_osta[0])[j]);
719 switch (assoc.wi_assoc_stat) {
720 case ASSOC:
721 case DISASSOC:
722 case ASSOCFAIL:
723 case AUTHFAIL:
724 printf("%s: %s, AP = %02x:%02x:%02x:%02x:%02x:%02x\n",
725 sc->sc_dev.dv_xname,
726 msg[assoc.wi_assoc_stat - 1],
727 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
728 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
729 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff);
730 break;
731 case REASSOC:
732 printf("%s: %s, AP = %02x:%02x:%02x:%02x:%02x:%02x, "
733 "OldAP = %02x:%02x:%02x:%02x:%02x:%02x\n",
734 sc->sc_dev.dv_xname, msg[assoc.wi_assoc_stat - 1],
735 assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
736 assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
737 assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff,
738 assoc.wi_assoc_osta[0]&0xff, assoc.wi_assoc_osta[1]&0xff,
739 assoc.wi_assoc_osta[2]&0xff, assoc.wi_assoc_osta[3]&0xff,
740 assoc.wi_assoc_osta[4]&0xff, assoc.wi_assoc_osta[5]&0xff);
741 break;
742 }
743 }
744
745 default:
746 #ifdef WI_DEBUG
747 printf("%s: got info type: 0x%04x len=0x%04x\n",
748 sc->sc_dev.dv_xname, gen.wi_type,gen.wi_len);
749 #endif
750 #if 0
751 for (i = 0; i < gen.wi_len; i++) {
752 t = CSR_READ_2(sc, WI_DATA1);
753 printf("[0x%02x] = 0x%04x\n", i, t);
754 }
755 #endif
756 break;
757 }
758 }
759
760 int wi_intr(arg)
761 void *arg;
762 {
763 struct wi_softc *sc = arg;
764 struct ifnet *ifp;
765 u_int16_t status;
766
767 if (sc->sc_enabled == 0 ||
768 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
769 (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
770 return (0);
771
772 ifp = &sc->sc_ethercom.ec_if;
773
774 if (!(ifp->if_flags & IFF_UP)) {
775 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
776 CSR_WRITE_2(sc, WI_INT_EN, 0);
777 return 1;
778 }
779
780 /* Disable interrupts. */
781 CSR_WRITE_2(sc, WI_INT_EN, 0);
782
783 status = CSR_READ_2(sc, WI_EVENT_STAT);
784 CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
785
786 if (status & WI_EV_RX) {
787 wi_rxeof(sc);
788 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
789 }
790
791 if (status & WI_EV_TX) {
792 wi_txeof(sc, status);
793 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
794 }
795
796 if (status & WI_EV_ALLOC) {
797 int id;
798 id = CSR_READ_2(sc, WI_ALLOC_FID);
799 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
800 if (id == sc->wi_tx_data_id)
801 wi_txeof(sc, status);
802 }
803
804 if (status & WI_EV_INFO) {
805 wi_update_stats(sc);
806 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
807 }
808
809 if (status & WI_EV_TX_EXC) {
810 wi_txeof(sc, status);
811 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
812 }
813
814 if (status & WI_EV_INFO_DROP) {
815 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
816 }
817
818 /* Re-enable interrupts. */
819 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
820
821 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
822 wi_start(ifp);
823
824 return 1;
825 }
826
827 /* Must be called at proper protection level! */
828 static int
829 wi_cmd(sc, cmd, val)
830 struct wi_softc *sc;
831 int cmd;
832 int val;
833 {
834 int i, s = 0;
835
836 /* wait for the busy bit to clear */
837 for (i = 0; i < WI_TIMEOUT; i++) {
838 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
839 break;
840 }
841
842 if (i == WI_TIMEOUT) {
843 printf("%s: wi_cmd: BUSY did not clear, cmd=0x%x\n",
844 sc->sc_dev.dv_xname, cmd);
845 return EIO;
846 }
847
848 CSR_WRITE_2(sc, WI_PARAM0, val);
849 CSR_WRITE_2(sc, WI_PARAM1, 0);
850 CSR_WRITE_2(sc, WI_PARAM2, 0);
851 CSR_WRITE_2(sc, WI_COMMAND, cmd);
852
853 /* wait for the cmd completed bit */
854 for (i = 0; i < WI_TIMEOUT; i++) {
855 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
856 break;
857 DELAY(1);
858 }
859
860 /* Ack the command */
861 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
862
863 s = CSR_READ_2(sc, WI_STATUS);
864 if (s & WI_STAT_CMD_RESULT)
865 return(EIO);
866
867 if (i == WI_TIMEOUT) {
868 if (!sc->wi_scanning)
869 printf("%s: command timed out, cmd=0x%x\n",
870 sc->sc_dev.dv_xname, cmd);
871 return(ETIMEDOUT);
872 }
873
874 return(0);
875 }
876
877 static void
878 wi_reset(sc)
879 struct wi_softc *sc;
880 {
881
882 DELAY(100*1000); /* 100 m sec */
883 if (wi_cmd(sc, WI_CMD_INI, 0))
884 printf("%s: init failed\n", sc->sc_dev.dv_xname);
885 CSR_WRITE_2(sc, WI_INT_EN, 0);
886 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
887
888 /* Calibrate timer. */
889 WI_SETVAL(WI_RID_TICK_TIME, 8);
890
891 return;
892 }
893
894 /*
895 * Read an LTV record from the NIC.
896 */
897 static int wi_read_record(sc, ltv)
898 struct wi_softc *sc;
899 struct wi_ltv_gen *ltv;
900 {
901 u_int16_t *ptr;
902 int len, code;
903 struct wi_ltv_gen *oltv, p2ltv;
904
905 if (sc->sc_firmware_type != WI_LUCENT) {
906 oltv = ltv;
907 switch (ltv->wi_type) {
908 case WI_RID_ENCRYPTION:
909 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
910 p2ltv.wi_len = 2;
911 ltv = &p2ltv;
912 break;
913 case WI_RID_TX_CRYPT_KEY:
914 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
915 p2ltv.wi_len = 2;
916 ltv = &p2ltv;
917 break;
918 case WI_RID_ROAMING_MODE:
919 if (sc->sc_firmware_type == WI_INTERSIL)
920 break;
921 /* not supported */
922 ltv->wi_len = 1;
923 return 0;
924 case WI_RID_MICROWAVE_OVEN:
925 /* not supported */
926 ltv->wi_len = 1;
927 return 0;
928 }
929 }
930
931 /* Tell the NIC to enter record read mode. */
932 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
933 return(EIO);
934
935 /* Seek to the record. */
936 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
937 return(EIO);
938
939 /*
940 * Read the length and record type and make sure they
941 * match what we expect (this verifies that we have enough
942 * room to hold all of the returned data).
943 */
944 len = CSR_READ_2(sc, WI_DATA1);
945 if (len > ltv->wi_len)
946 return(ENOSPC);
947 code = CSR_READ_2(sc, WI_DATA1);
948 if (code != ltv->wi_type)
949 return(EIO);
950
951 ltv->wi_len = len;
952 ltv->wi_type = code;
953
954 /* Now read the data. */
955 ptr = <v->wi_val;
956 if (ltv->wi_len > 1)
957 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
958
959 if (sc->sc_firmware_type != WI_LUCENT) {
960 int v;
961
962 switch (oltv->wi_type) {
963 case WI_RID_TX_RATE:
964 case WI_RID_CUR_TX_RATE:
965 switch (le16toh(ltv->wi_val)) {
966 case 1: v = 1; break;
967 case 2: v = 2; break;
968 case 3: v = 6; break;
969 case 4: v = 5; break;
970 case 7: v = 7; break;
971 case 8: v = 11; break;
972 case 15: v = 3; break;
973 default: v = 0x100 + le16toh(ltv->wi_val); break;
974 }
975 oltv->wi_val = htole16(v);
976 break;
977 case WI_RID_ENCRYPTION:
978 oltv->wi_len = 2;
979 if (le16toh(ltv->wi_val) & 0x01)
980 oltv->wi_val = htole16(1);
981 else
982 oltv->wi_val = htole16(0);
983 break;
984 case WI_RID_TX_CRYPT_KEY:
985 oltv->wi_len = 2;
986 oltv->wi_val = ltv->wi_val;
987 break;
988 case WI_RID_AUTH_CNTL:
989 oltv->wi_len = 2;
990 if (le16toh(ltv->wi_val) & 0x01)
991 oltv->wi_val = htole16(1);
992 else if (le16toh(ltv->wi_val) & 0x02)
993 oltv->wi_val = htole16(2);
994 break;
995 }
996 }
997
998 return(0);
999 }
1000
1001 /*
1002 * Same as read, except we inject data instead of reading it.
1003 */
1004 static int wi_write_record(sc, ltv)
1005 struct wi_softc *sc;
1006 struct wi_ltv_gen *ltv;
1007 {
1008 u_int16_t *ptr;
1009 int i;
1010 struct wi_ltv_gen p2ltv;
1011
1012 if (sc->sc_firmware_type != WI_LUCENT) {
1013 int v;
1014
1015 switch (ltv->wi_type) {
1016 case WI_RID_TX_RATE:
1017 p2ltv.wi_type = WI_RID_TX_RATE;
1018 p2ltv.wi_len = 2;
1019 switch (le16toh(ltv->wi_val)) {
1020 case 1: v = 1; break;
1021 case 2: v = 2; break;
1022 case 3: v = 15; break;
1023 case 5: v = 4; break;
1024 case 6: v = 3; break;
1025 case 7: v = 7; break;
1026 case 11: v = 8; break;
1027 default: return EINVAL;
1028 }
1029 p2ltv.wi_val = htole16(v);
1030 ltv = &p2ltv;
1031 break;
1032 case WI_RID_ENCRYPTION:
1033 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
1034 p2ltv.wi_len = 2;
1035 if (le16toh(ltv->wi_val))
1036 p2ltv.wi_val = htole16(PRIVACY_INVOKED |
1037 EXCLUDE_UNENCRYPTED);
1038 else
1039 p2ltv.wi_val =
1040 htole16(HOST_ENCRYPT | HOST_DECRYPT);
1041 ltv = &p2ltv;
1042 break;
1043 case WI_RID_TX_CRYPT_KEY:
1044 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
1045 p2ltv.wi_len = 2;
1046 p2ltv.wi_val = ltv->wi_val;
1047 ltv = &p2ltv;
1048 break;
1049 case WI_RID_DEFLT_CRYPT_KEYS:
1050 {
1051 int error;
1052 int keylen;
1053 struct wi_ltv_str ws;
1054 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv;
1055
1056 keylen = wk->wi_keys[sc->wi_tx_key].wi_keylen;
1057
1058 for (i = 0; i < 4; i++) {
1059 memset(&ws, 0, sizeof(ws));
1060 ws.wi_len = (keylen > 5) ? 8 : 4;
1061 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
1062 memcpy(ws.wi_str,
1063 &wk->wi_keys[i].wi_keydat, keylen);
1064 error = wi_write_record(sc,
1065 (struct wi_ltv_gen *)&ws);
1066 if (error)
1067 return error;
1068 }
1069 return 0;
1070 }
1071 case WI_RID_AUTH_CNTL:
1072 p2ltv.wi_type = WI_RID_AUTH_CNTL;
1073 p2ltv.wi_len = 2;
1074 if (le16toh(ltv->wi_val) == 1)
1075 p2ltv.wi_val = htole16(0x01);
1076 else if (le16toh(ltv->wi_val) == 2)
1077 p2ltv.wi_val = htole16(0x02);
1078 ltv = &p2ltv;
1079 break;
1080
1081 case WI_RID_ROAMING_MODE:
1082 if (sc->sc_firmware_type == WI_INTERSIL)
1083 break;
1084 /* not supported */
1085 return 0;
1086
1087 case WI_RID_MICROWAVE_OVEN:
1088 /* not supported */
1089 return 0;
1090 }
1091 }
1092
1093 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
1094 return(EIO);
1095
1096 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
1097 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
1098
1099 /* Write data */
1100 ptr = <v->wi_val;
1101 if (ltv->wi_len > 1)
1102 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
1103
1104 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
1105 return(EIO);
1106
1107 return(0);
1108 }
1109
1110 static int wi_seek(sc, id, off, chan)
1111 struct wi_softc *sc;
1112 int id, off, chan;
1113 {
1114 int i;
1115 int selreg, offreg;
1116 int status;
1117
1118 switch (chan) {
1119 case WI_BAP0:
1120 selreg = WI_SEL0;
1121 offreg = WI_OFF0;
1122 break;
1123 case WI_BAP1:
1124 selreg = WI_SEL1;
1125 offreg = WI_OFF1;
1126 break;
1127 default:
1128 printf("%s: invalid data path: %x\n",
1129 sc->sc_dev.dv_xname, chan);
1130 return(EIO);
1131 }
1132
1133 CSR_WRITE_2(sc, selreg, id);
1134 CSR_WRITE_2(sc, offreg, off);
1135
1136 for (i = 0; i < WI_TIMEOUT; i++) {
1137 status = CSR_READ_2(sc, offreg);
1138 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
1139 break;
1140 }
1141
1142 if (i == WI_TIMEOUT) {
1143 printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
1144 sc->sc_dev.dv_xname, id, off, status);
1145 return(ETIMEDOUT);
1146 }
1147 return(0);
1148 }
1149
1150 static int wi_read_data(sc, id, off, buf, len)
1151 struct wi_softc *sc;
1152 int id, off;
1153 caddr_t buf;
1154 int len;
1155 {
1156 u_int16_t *ptr;
1157
1158 if (wi_seek(sc, id, off, WI_BAP1))
1159 return(EIO);
1160
1161 ptr = (u_int16_t *)buf;
1162 CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
1163
1164 return(0);
1165 }
1166
1167 /*
1168 * According to the comments in the HCF Light code, there is a bug in
1169 * the Hermes (or possibly in certain Hermes firmware revisions) where
1170 * the chip's internal autoincrement counter gets thrown off during
1171 * data writes: the autoincrement is missed, causing one data word to
1172 * be overwritten and subsequent words to be written to the wrong memory
1173 * locations. The end result is that we could end up transmitting bogus
1174 * frames without realizing it. The workaround for this is to write a
1175 * couple of extra guard words after the end of the transfer, then
1176 * attempt to read then back. If we fail to locate the guard words where
1177 * we expect them, we preform the transfer over again.
1178 */
1179 static int wi_write_data(sc, id, off, buf, len)
1180 struct wi_softc *sc;
1181 int id, off;
1182 caddr_t buf;
1183 int len;
1184 {
1185 u_int16_t *ptr;
1186
1187 #ifdef WI_HERMES_AUTOINC_WAR
1188 again:
1189 #endif
1190
1191 if (wi_seek(sc, id, off, WI_BAP0))
1192 return(EIO);
1193
1194 ptr = (u_int16_t *)buf;
1195 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
1196
1197 #ifdef WI_HERMES_AUTOINC_WAR
1198 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1199 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1200
1201 if (wi_seek(sc, id, off + len, WI_BAP0))
1202 return(EIO);
1203
1204 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1205 CSR_READ_2(sc, WI_DATA0) != 0x5678)
1206 goto again;
1207 #endif
1208
1209 return(0);
1210 }
1211
1212 /*
1213 * Allocate a region of memory inside the NIC and zero
1214 * it out.
1215 */
1216 static int wi_alloc_nicmem(sc, len, id)
1217 struct wi_softc *sc;
1218 int len;
1219 int *id;
1220 {
1221 int i;
1222
1223 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
1224 printf("%s: failed to allocate %d bytes on NIC\n",
1225 sc->sc_dev.dv_xname, len);
1226 return(ENOMEM);
1227 }
1228
1229 for (i = 0; i < WI_TIMEOUT; i++) {
1230 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1231 break;
1232 }
1233
1234 if (i == WI_TIMEOUT) {
1235 printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
1236 return(ETIMEDOUT);
1237 }
1238
1239 *id = CSR_READ_2(sc, WI_ALLOC_FID);
1240 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1241
1242 if (wi_seek(sc, *id, 0, WI_BAP0)) {
1243 printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
1244 return(EIO);
1245 }
1246
1247 for (i = 0; i < len / 2; i++)
1248 CSR_WRITE_2(sc, WI_DATA0, 0);
1249
1250 return(0);
1251 }
1252
1253 static void wi_setmulti(sc)
1254 struct wi_softc *sc;
1255 {
1256 struct ifnet *ifp;
1257 int i = 0;
1258 struct wi_ltv_mcast mcast;
1259 struct ether_multi *enm;
1260 struct ether_multistep estep;
1261 struct ethercom *ec = &sc->sc_ethercom;
1262
1263 ifp = &sc->sc_ethercom.ec_if;
1264
1265 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1266 allmulti:
1267 ifp->if_flags |= IFF_ALLMULTI;
1268 memset((char *)&mcast, 0, sizeof(mcast));
1269 mcast.wi_type = WI_RID_MCAST_LIST;
1270 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
1271
1272 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1273 return;
1274 }
1275
1276 i = 0;
1277 ETHER_FIRST_MULTI(estep, ec, enm);
1278 while (enm != NULL) {
1279 /* Punt on ranges or too many multicast addresses. */
1280 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1281 ETHER_ADDR_LEN) != 0 ||
1282 i >= 16)
1283 goto allmulti;
1284
1285 memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo,
1286 ETHER_ADDR_LEN);
1287 i++;
1288 ETHER_NEXT_MULTI(estep, enm);
1289 }
1290
1291 ifp->if_flags &= ~IFF_ALLMULTI;
1292 mcast.wi_type = WI_RID_MCAST_LIST;
1293 mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
1294 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1295 }
1296
1297 static int
1298 wi_setdef(sc, wreq)
1299 struct wi_softc *sc;
1300 struct wi_req *wreq;
1301 {
1302 struct sockaddr_dl *sdl;
1303 struct ifnet *ifp;
1304 int error = 0;
1305
1306 ifp = &sc->sc_ethercom.ec_if;
1307
1308 switch(wreq->wi_type) {
1309 case WI_RID_MAC_NODE:
1310 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1311 memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val,
1312 ETHER_ADDR_LEN);
1313 memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN);
1314 break;
1315 case WI_RID_PORTTYPE:
1316 error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
1317 break;
1318 case WI_RID_TX_RATE:
1319 error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
1320 break;
1321 case WI_RID_MAX_DATALEN:
1322 sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1323 break;
1324 case WI_RID_RTS_THRESH:
1325 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1326 break;
1327 case WI_RID_SYSTEM_SCALE:
1328 sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1329 break;
1330 case WI_RID_CREATE_IBSS:
1331 if (sc->sc_firmware_type != WI_INTERSIL)
1332 sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1333 break;
1334 case WI_RID_OWN_CHNL:
1335 sc->wi_channel = le16toh(wreq->wi_val[0]);
1336 break;
1337 case WI_RID_NODENAME:
1338 error = wi_set_ssid(&sc->wi_nodeid,
1339 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1340 break;
1341 case WI_RID_DESIRED_SSID:
1342 error = wi_set_ssid(&sc->wi_netid,
1343 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1344 break;
1345 case WI_RID_OWN_SSID:
1346 error = wi_set_ssid(&sc->wi_ibssid,
1347 (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
1348 break;
1349 case WI_RID_PM_ENABLED:
1350 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1351 break;
1352 case WI_RID_MICROWAVE_OVEN:
1353 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1354 break;
1355 case WI_RID_MAX_SLEEP:
1356 sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1357 break;
1358 case WI_RID_AUTH_CNTL:
1359 sc->wi_authtype = le16toh(wreq->wi_val[0]);
1360 break;
1361 case WI_RID_ROAMING_MODE:
1362 sc->wi_roaming = le16toh(wreq->wi_val[0]);
1363 break;
1364 case WI_RID_ENCRYPTION:
1365 sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1366 break;
1367 case WI_RID_TX_CRYPT_KEY:
1368 sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1369 break;
1370 case WI_RID_DEFLT_CRYPT_KEYS:
1371 memcpy((char *)&sc->wi_keys, (char *)wreq,
1372 sizeof(struct wi_ltv_keys));
1373 break;
1374 default:
1375 error = EINVAL;
1376 break;
1377 }
1378
1379 return (error);
1380 }
1381
1382 static int
1383 wi_getdef(sc, wreq)
1384 struct wi_softc *sc;
1385 struct wi_req *wreq;
1386 {
1387 struct sockaddr_dl *sdl;
1388 struct ifnet *ifp;
1389 int error = 0;
1390
1391 ifp = &sc->sc_ethercom.ec_if;
1392
1393 wreq->wi_len = 2; /* XXX */
1394 switch (wreq->wi_type) {
1395 case WI_RID_MAC_NODE:
1396 wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
1397 sdl = (struct sockaddr_dl *)ifp->if_sadl;
1398 memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN);
1399 memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1400 break;
1401 case WI_RID_PORTTYPE:
1402 wreq->wi_val[0] = htole16(sc->wi_ptype);
1403 break;
1404 case WI_RID_TX_RATE:
1405 wreq->wi_val[0] = htole16(sc->wi_tx_rate);
1406 break;
1407 case WI_RID_MAX_DATALEN:
1408 wreq->wi_val[0] = htole16(sc->wi_max_data_len);
1409 break;
1410 case WI_RID_RTS_THRESH:
1411 wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
1412 break;
1413 case WI_RID_SYSTEM_SCALE:
1414 wreq->wi_val[0] = htole16(sc->wi_ap_density);
1415 break;
1416 case WI_RID_CREATE_IBSS:
1417 if (sc->sc_firmware_type != WI_INTERSIL)
1418 wreq->wi_val[0] = htole16(sc->wi_create_ibss);
1419 break;
1420 case WI_RID_OWN_CHNL:
1421 wreq->wi_val[0] = htole16(sc->wi_channel);
1422 break;
1423 case WI_RID_NODENAME:
1424 wi_request_fill_ssid(wreq, &sc->wi_nodeid);
1425 break;
1426 case WI_RID_DESIRED_SSID:
1427 wi_request_fill_ssid(wreq, &sc->wi_netid);
1428 break;
1429 case WI_RID_OWN_SSID:
1430 wi_request_fill_ssid(wreq, &sc->wi_ibssid);
1431 break;
1432 case WI_RID_PM_ENABLED:
1433 wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
1434 break;
1435 case WI_RID_MICROWAVE_OVEN:
1436 wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
1437 break;
1438 case WI_RID_MAX_SLEEP:
1439 wreq->wi_val[0] = htole16(sc->wi_max_sleep);
1440 break;
1441 case WI_RID_AUTH_CNTL:
1442 wreq->wi_val[0] = htole16(sc->wi_authtype);
1443 break;
1444 case WI_RID_ROAMING_MODE:
1445 wreq->wi_val[0] = htole16(sc->wi_roaming);
1446 break;
1447 case WI_RID_WEP_AVAIL:
1448 wreq->wi_val[0] = htole16(sc->wi_has_wep);
1449 break;
1450 case WI_RID_ENCRYPTION:
1451 wreq->wi_val[0] = htole16(sc->wi_use_wep);
1452 break;
1453 case WI_RID_TX_CRYPT_KEY:
1454 wreq->wi_val[0] = htole16(sc->wi_tx_key);
1455 break;
1456 case WI_RID_DEFLT_CRYPT_KEYS:
1457 wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
1458 memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
1459 break;
1460 default:
1461 #if 0
1462 error = EIO;
1463 #else
1464 #ifdef WI_DEBUG
1465 printf("%s: wi_getdef: unknown request %d\n",
1466 sc->sc_dev.dv_xname, wreq->wi_type);
1467 #endif
1468 #endif
1469 break;
1470 }
1471
1472 return (error);
1473 }
1474
1475 static int
1476 wi_ioctl(ifp, command, data)
1477 struct ifnet *ifp;
1478 u_long command;
1479 caddr_t data;
1480 {
1481 int s, error = 0;
1482 int len;
1483 struct wi_softc *sc = ifp->if_softc;
1484 struct wi_req wreq;
1485 struct ifreq *ifr;
1486 struct proc *p = curproc;
1487 struct ieee80211_nwid nwid;
1488
1489 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1490 return (ENXIO);
1491
1492 s = splnet();
1493
1494 ifr = (struct ifreq *)data;
1495 switch (command) {
1496 case SIOCSIFADDR:
1497 case SIOCGIFADDR:
1498 case SIOCSIFMTU:
1499 error = ether_ioctl(ifp, command, data);
1500 break;
1501 case SIOCSIFFLAGS:
1502 if (ifp->if_flags & IFF_UP) {
1503 if (ifp->if_flags & IFF_RUNNING &&
1504 ifp->if_flags & IFF_PROMISC &&
1505 !(sc->wi_if_flags & IFF_PROMISC)) {
1506 WI_SETVAL(WI_RID_PROMISC, 1);
1507 } else if (ifp->if_flags & IFF_RUNNING &&
1508 !(ifp->if_flags & IFF_PROMISC) &&
1509 sc->wi_if_flags & IFF_PROMISC) {
1510 WI_SETVAL(WI_RID_PROMISC, 0);
1511 }
1512 wi_init(ifp);
1513 } else {
1514 if (ifp->if_flags & IFF_RUNNING) {
1515 wi_stop(ifp, 0);
1516 }
1517 }
1518 sc->wi_if_flags = ifp->if_flags;
1519
1520 if (!(ifp->if_flags & IFF_UP)) {
1521 if (sc->sc_enabled) {
1522 if (sc->sc_disable)
1523 (*sc->sc_disable)(sc);
1524 sc->sc_enabled = 0;
1525 ifp->if_flags &= ~IFF_RUNNING;
1526 }
1527 }
1528 error = 0;
1529 break;
1530 case SIOCADDMULTI:
1531 case SIOCDELMULTI:
1532 error = (command == SIOCADDMULTI) ?
1533 ether_addmulti(ifr, &sc->sc_ethercom) :
1534 ether_delmulti(ifr, &sc->sc_ethercom);
1535 if (error == ENETRESET) {
1536 if (sc->sc_enabled != 0) {
1537 /*
1538 * Multicast list has changed. Set the
1539 * hardware filter accordingly.
1540 */
1541 wi_setmulti(sc);
1542 }
1543 error = 0;
1544 }
1545 break;
1546 case SIOCSIFMEDIA:
1547 case SIOCGIFMEDIA:
1548 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1549 break;
1550 case SIOCGWAVELAN:
1551 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1552 if (error)
1553 break;
1554 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1555 memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats,
1556 sizeof(sc->wi_stats));
1557 wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1558 } else if (wreq.wi_type == WI_RID_READ_APS) {
1559 if (sc->wi_scanning) {
1560 error = EINPROGRESS;
1561 break;
1562 } else {
1563 len = sc->wi_naps * sizeof(struct wi_apinfo);
1564 len = len > WI_MAX_DATALEN ? WI_MAX_DATALEN : len;
1565 len = len / sizeof(struct wi_apinfo);
1566 memcpy((char *)&wreq.wi_val, (char *)&len, sizeof(len));
1567 memcpy((char *)&wreq.wi_val + sizeof(len),
1568 (char *)&sc->wi_aps,
1569 len * sizeof(struct wi_apinfo));
1570 }
1571 } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1572 /* For non-root user, return all-zeroes keys */
1573 if (suser(p->p_ucred, &p->p_acflag))
1574 memset((char *)&wreq, 0,
1575 sizeof(struct wi_ltv_keys));
1576 else
1577 memcpy((char *)&wreq, (char *)&sc->wi_keys,
1578 sizeof(struct wi_ltv_keys));
1579 } else {
1580 if (sc->sc_enabled == 0)
1581 error = wi_getdef(sc, &wreq);
1582 else if (wreq.wi_len > WI_MAX_DATALEN)
1583 error = EINVAL;
1584 else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1585 error = EINVAL;
1586 }
1587 if (error == 0)
1588 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1589 break;
1590 case SIOCSWAVELAN:
1591 error = suser(p->p_ucred, &p->p_acflag);
1592 if (error)
1593 break;
1594 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1595 if (error)
1596 break;
1597 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1598 if (sc->sc_enabled)
1599 wi_inquire(sc);
1600 break;
1601 } else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1602 error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1603 wreq.wi_len);
1604 } else if (wreq.wi_type == WI_RID_SCAN_APS) {
1605 if (wreq.wi_len != 4) {
1606 error = EINVAL;
1607 break;
1608 }
1609 if (!sc->wi_scanning) {
1610 switch (sc->sc_firmware_type) {
1611 case WI_LUCENT:
1612 break;
1613 case WI_INTERSIL:
1614 wreq.wi_type = WI_RID_SCAN_REQ;
1615 error = wi_write_record(sc,
1616 (struct wi_ltv_gen *)&wreq);
1617 break;
1618 case WI_SYMBOL:
1619 /*
1620 * XXX only supported on 3.x ?
1621 */
1622 wreq.wi_type = WI_RID_BCAST_SCAN_REQ;
1623 wreq.wi_val[0] =
1624 BSCAN_BCAST | BSCAN_ONETIME;
1625 wreq.wi_len = 2;
1626 error = wi_write_record(sc,
1627 (struct wi_ltv_gen *)&wreq);
1628 break;
1629 }
1630 if (!error) {
1631 sc->wi_scanning = 1;
1632 callout_reset(&sc->wi_scan_sh, hz * 1,
1633 wi_wait_scan, sc);
1634 }
1635 }
1636 } else {
1637 if (wreq.wi_len > WI_MAX_DATALEN)
1638 error = EINVAL;
1639 else if (sc->sc_enabled != 0)
1640 error = wi_write_record(sc,
1641 (struct wi_ltv_gen *)&wreq);
1642 if (error == 0)
1643 error = wi_setdef(sc, &wreq);
1644 if (error == 0 && sc->sc_enabled != 0)
1645 /* Reinitialize WaveLAN. */
1646 wi_init(ifp);
1647 }
1648 break;
1649 case SIOCG80211NWID:
1650 if (sc->sc_enabled == 0) {
1651 /* Return the desired ID */
1652 error = copyout(&sc->wi_netid, ifr->ifr_data,
1653 sizeof(sc->wi_netid));
1654 } else {
1655 wreq.wi_type = WI_RID_CURRENT_SSID;
1656 wreq.wi_len = WI_MAX_DATALEN;
1657 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
1658 le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
1659 error = EINVAL;
1660 else {
1661 wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
1662 le16toh(wreq.wi_val[0]));
1663 error = copyout(&nwid, ifr->ifr_data,
1664 sizeof(nwid));
1665 }
1666 }
1667 break;
1668 case SIOCS80211NWID:
1669 error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
1670 if (error != 0)
1671 break;
1672 if (nwid.i_len > IEEE80211_NWID_LEN) {
1673 error = EINVAL;
1674 break;
1675 }
1676 if (sc->wi_netid.i_len == nwid.i_len &&
1677 memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
1678 break;
1679 wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
1680 if (sc->sc_enabled != 0)
1681 /* Reinitialize WaveLAN. */
1682 wi_init(ifp);
1683 break;
1684 case SIOCS80211NWKEY:
1685 error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
1686 break;
1687 case SIOCG80211NWKEY:
1688 error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
1689 break;
1690 case SIOCS80211POWER:
1691 error = wi_set_pm(sc, (struct ieee80211_power *)data);
1692 break;
1693 case SIOCG80211POWER:
1694 error = wi_get_pm(sc, (struct ieee80211_power *)data);
1695 break;
1696
1697 default:
1698 error = EINVAL;
1699 break;
1700 }
1701
1702 splx(s);
1703 return (error);
1704 }
1705
1706 static int
1707 wi_init(ifp)
1708 struct ifnet *ifp;
1709 {
1710 struct wi_softc *sc = ifp->if_softc;
1711 struct wi_req wreq;
1712 struct wi_ltv_macaddr mac;
1713 int error, id = 0, wasenabled;
1714
1715 wasenabled = sc->sc_enabled;
1716 if (!sc->sc_enabled) {
1717 if ((error = (*sc->sc_enable)(sc)) != 0)
1718 goto out;
1719 sc->sc_enabled = 1;
1720 }
1721
1722 wi_stop(ifp, 0);
1723 /* Symbol firmware cannot be initialized more than once */
1724 if (!(sc->sc_firmware_type == WI_SYMBOL && wasenabled))
1725 wi_reset(sc);
1726
1727 /* Program max data length. */
1728 WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1729
1730 /* Enable/disable IBSS creation. */
1731 if (sc->sc_firmware_type != WI_INTERSIL)
1732 WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1733
1734 /* Set the port type. */
1735 WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1736
1737 /* Program the RTS/CTS threshold. */
1738 WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1739
1740 /* Program the TX rate */
1741 WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1742
1743 /* Access point density */
1744 WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1745
1746 /* Power Management Enabled */
1747 WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1748
1749 /* Power Managment Max Sleep */
1750 WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1751
1752 /* Roaming type */
1753 WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
1754
1755 /* Specify the IBSS name */
1756 wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
1757
1758 /* Specify the network name */
1759 wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
1760
1761 /* Specify the frequency to use */
1762 WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1763
1764 /* Program the nodename. */
1765 wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
1766
1767 /* Set our MAC address. */
1768 mac.wi_len = 4;
1769 mac.wi_type = WI_RID_MAC_NODE;
1770 memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
1771 wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1772
1773 /* Initialize promisc mode. */
1774 if (ifp->if_flags & IFF_PROMISC) {
1775 WI_SETVAL(WI_RID_PROMISC, 1);
1776 } else {
1777 WI_SETVAL(WI_RID_PROMISC, 0);
1778 }
1779
1780 /* Configure WEP. */
1781 if (sc->wi_has_wep) {
1782 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1783 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1784 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1785 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1786 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1787 if (sc->sc_firmware_type != WI_LUCENT && sc->wi_use_wep) {
1788 /*
1789 * ONLY HWB3163 EVAL-CARD Firmware version
1790 * less than 0.8 variant2
1791 *
1792 * If promiscuous mode disable, Prism2 chip
1793 * does not work with WEP .
1794 * It is under investigation for details.
1795 * (ichiro (at) netbsd.org)
1796 */
1797 if (sc->sc_firmware_type == WI_INTERSIL &&
1798 sc->sc_sta_firmware_ver < 802 ) {
1799 /* firm ver < 0.8 variant 2 */
1800 WI_SETVAL(WI_RID_PROMISC, 1);
1801 }
1802 WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
1803 }
1804 }
1805
1806 /* Set multicast filter. */
1807 wi_setmulti(sc);
1808
1809 /* Enable desired port */
1810 wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
1811
1812 /* scanning variable is modal, therefore reinit to OFF, in case it was on. */
1813 sc->wi_scanning=0;
1814 sc->wi_naps=0;
1815
1816 if ((error = wi_alloc_nicmem(sc,
1817 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1818 printf("%s: tx buffer allocation failed\n",
1819 sc->sc_dev.dv_xname);
1820 goto out;
1821 }
1822 sc->wi_tx_data_id = id;
1823
1824 if ((error = wi_alloc_nicmem(sc,
1825 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
1826 printf("%s: mgmt. buffer allocation failed\n",
1827 sc->sc_dev.dv_xname);
1828 goto out;
1829 }
1830 sc->wi_tx_mgmt_id = id;
1831
1832 /* Enable interrupts */
1833 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1834
1835 ifp->if_flags |= IFF_RUNNING;
1836 ifp->if_flags &= ~IFF_OACTIVE;
1837
1838 callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
1839
1840 out:
1841 if (error) {
1842 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1843 ifp->if_timer = 0;
1844 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1845 }
1846 return (error);
1847 }
1848
1849 static void
1850 wi_start(ifp)
1851 struct ifnet *ifp;
1852 {
1853 struct wi_softc *sc;
1854 struct mbuf *m0;
1855 struct wi_frame tx_frame;
1856 struct ether_header *eh;
1857 int id;
1858
1859 sc = ifp->if_softc;
1860
1861 if (ifp->if_flags & IFF_OACTIVE)
1862 return;
1863
1864 IFQ_DEQUEUE(&ifp->if_snd, m0);
1865 if (m0 == NULL)
1866 return;
1867
1868 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1869 id = sc->wi_tx_data_id;
1870 eh = mtod(m0, struct ether_header *);
1871
1872 /*
1873 * Use RFC1042 encoding for IP and ARP datagrams,
1874 * 802.3 for anything else.
1875 */
1876 if (eh->ether_type == htons(ETHERTYPE_IP) ||
1877 eh->ether_type == htons(ETHERTYPE_ARP) ||
1878 eh->ether_type == htons(ETHERTYPE_REVARP) ||
1879 eh->ether_type == htons(ETHERTYPE_IPV6)) {
1880 memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost,
1881 ETHER_ADDR_LEN);
1882 memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost,
1883 ETHER_ADDR_LEN);
1884 memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost,
1885 ETHER_ADDR_LEN);
1886 memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost,
1887 ETHER_ADDR_LEN);
1888
1889 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1890 tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
1891 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1892 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1893 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1894 tx_frame.wi_type = eh->ether_type;
1895
1896 m_copydata(m0, sizeof(struct ether_header),
1897 m0->m_pkthdr.len - sizeof(struct ether_header),
1898 (caddr_t)&sc->wi_txbuf);
1899
1900 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1901 sizeof(struct wi_frame));
1902 wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1903 (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1904 } else {
1905 tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
1906
1907 m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1908
1909 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1910 sizeof(struct wi_frame));
1911 wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1912 m0->m_pkthdr.len + 2);
1913 }
1914
1915 #if NBPFILTER > 0
1916 /*
1917 * If there's a BPF listener, bounce a copy of
1918 * this frame to him.
1919 */
1920 if (ifp->if_bpf)
1921 bpf_mtap(ifp->if_bpf, m0);
1922 #endif
1923
1924 m_freem(m0);
1925
1926 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1927 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1928
1929 ifp->if_flags |= IFF_OACTIVE;
1930
1931 /*
1932 * Set a timeout in case the chip goes out to lunch.
1933 */
1934 ifp->if_timer = 5;
1935
1936 return;
1937 }
1938
1939 static int
1940 wi_mgmt_xmit(sc, data, len)
1941 struct wi_softc *sc;
1942 caddr_t data;
1943 int len;
1944 {
1945 struct wi_frame tx_frame;
1946 int id;
1947 struct wi_80211_hdr *hdr;
1948 caddr_t dptr;
1949
1950 hdr = (struct wi_80211_hdr *)data;
1951 dptr = data + sizeof(struct wi_80211_hdr);
1952
1953 memset((char *)&tx_frame, 0, sizeof(tx_frame));
1954 id = sc->wi_tx_mgmt_id;
1955
1956 memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr,
1957 sizeof(struct wi_80211_hdr));
1958
1959 tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
1960 tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1961
1962 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1963 wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1964 (len - sizeof(struct wi_80211_hdr)) + 2);
1965
1966 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1967 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1968 return(EIO);
1969 }
1970
1971 return(0);
1972 }
1973
1974 static void
1975 wi_stop(ifp, disable)
1976 struct ifnet *ifp;
1977 {
1978 struct wi_softc *sc = ifp->if_softc;
1979
1980 CSR_WRITE_2(sc, WI_INT_EN, 0);
1981 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1982
1983 callout_stop(&sc->wi_inquire_ch);
1984 callout_stop(&sc->wi_scan_sh);
1985
1986 if (disable) {
1987 if (sc->sc_enabled) {
1988 if (sc->sc_disable)
1989 (*sc->sc_disable)(sc);
1990 sc->sc_enabled = 0;
1991 }
1992 }
1993
1994 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1995 ifp->if_timer = 0;
1996 }
1997
1998 static void
1999 wi_watchdog(ifp)
2000 struct ifnet *ifp;
2001 {
2002 struct wi_softc *sc;
2003
2004 sc = ifp->if_softc;
2005
2006 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2007
2008 wi_init(ifp);
2009
2010 ifp->if_oerrors++;
2011
2012 return;
2013 }
2014
2015 void
2016 wi_shutdown(sc)
2017 struct wi_softc *sc;
2018 {
2019 int s;
2020
2021 s = splnet();
2022 if (sc->sc_enabled) {
2023 if (sc->sc_disable)
2024 (*sc->sc_disable)(sc);
2025 sc->sc_enabled = 0;
2026 }
2027 splx(s);
2028 }
2029
2030 int
2031 wi_activate(self, act)
2032 struct device *self;
2033 enum devact act;
2034 {
2035 struct wi_softc *sc = (struct wi_softc *)self;
2036 int rv = 0, s;
2037
2038 s = splnet();
2039 switch (act) {
2040 case DVACT_ACTIVATE:
2041 rv = EOPNOTSUPP;
2042 break;
2043
2044 case DVACT_DEACTIVATE:
2045 if_deactivate(&sc->sc_ethercom.ec_if);
2046 break;
2047 }
2048 splx(s);
2049 return (rv);
2050 }
2051
2052 static void
2053 wi_get_id(sc)
2054 struct wi_softc *sc;
2055 {
2056 struct wi_ltv_ver ver;
2057 struct wi_card_ident *id;
2058
2059 /* getting chip identity */
2060 memset(&ver, 0, sizeof(ver));
2061 ver.wi_type = WI_RID_CARD_ID;
2062 ver.wi_len = 5;
2063 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
2064 printf("%s: using ", sc->sc_dev.dv_xname);
2065
2066 sc->sc_firmware_type = WI_NOTYPE;
2067 for (id = wi_card_ident; id->card_name != NULL; id++) {
2068 if (le16toh(ver.wi_ver[0]) == id->card_id) {
2069 printf("%s", id->card_name);
2070 sc->sc_firmware_type = id->firm_type;
2071 break;
2072 }
2073 }
2074 if (sc->sc_firmware_type == WI_NOTYPE) {
2075 if (le16toh(ver.wi_ver[0]) & 0x8000) {
2076 printf("Unknown PRISM2 chip");
2077 sc->sc_firmware_type = WI_INTERSIL;
2078 } else {
2079 printf("Unknown Lucent chip");
2080 sc->sc_firmware_type = WI_LUCENT;
2081 }
2082 }
2083
2084 /* get primary firmware version (Only Prism chips) */
2085 if (sc->sc_firmware_type != WI_LUCENT) {
2086 memset(&ver, 0, sizeof(ver));
2087 ver.wi_type = WI_RID_PRI_IDENTITY;
2088 ver.wi_len = 5;
2089 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
2090 LE16TOH(ver.wi_ver[1]);
2091 LE16TOH(ver.wi_ver[2]);
2092 LE16TOH(ver.wi_ver[3]);
2093 sc->sc_pri_firmware_ver = ver.wi_ver[2] * 10000 +
2094 ver.wi_ver[3] * 100 + ver.wi_ver[1];
2095 }
2096
2097 /* get station firmware version */
2098 memset(&ver, 0, sizeof(ver));
2099 ver.wi_type = WI_RID_STA_IDENTITY;
2100 ver.wi_len = 5;
2101 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
2102 LE16TOH(ver.wi_ver[1]);
2103 LE16TOH(ver.wi_ver[2]);
2104 LE16TOH(ver.wi_ver[3]);
2105 sc->sc_sta_firmware_ver = ver.wi_ver[2] * 10000 +
2106 ver.wi_ver[3] * 100 + ver.wi_ver[1];
2107 if (sc->sc_firmware_type == WI_INTERSIL &&
2108 (sc->sc_sta_firmware_ver == 10102 || sc->sc_sta_firmware_ver == 20102)) {
2109 struct wi_ltv_str sver;
2110 char *p;
2111
2112 memset(&sver, 0, sizeof(sver));
2113 sver.wi_type = WI_RID_SYMBOL_IDENTITY;
2114 sver.wi_len = 7;
2115 /* value should be the format like "V2.00-11" */
2116 if (wi_read_record(sc, (struct wi_ltv_gen *)&sver) == 0 &&
2117 *(p = (char *)sver.wi_str) >= 'A' &&
2118 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
2119 sc->sc_firmware_type = WI_SYMBOL;
2120 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
2121 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
2122 (p[6] - '0') * 10 + (p[7] - '0');
2123 }
2124 }
2125
2126 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
2127 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
2128 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
2129 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
2130 printf("Primary (%u.%u.%u), ", sc->sc_pri_firmware_ver / 10000,
2131 (sc->sc_pri_firmware_ver % 10000) / 100,
2132 sc->sc_pri_firmware_ver % 100);
2133 printf("Station (%u.%u.%u)\n",
2134 sc->sc_sta_firmware_ver / 10000, (sc->sc_sta_firmware_ver % 10000) / 100,
2135 sc->sc_sta_firmware_ver % 100);
2136
2137 return;
2138 }
2139
2140 int
2141 wi_detach(sc)
2142 struct wi_softc *sc;
2143 {
2144 struct ifnet *ifp = sc->sc_ifp;
2145 int s;
2146
2147 if (!sc->sc_attached)
2148 return (0);
2149
2150 s = splnet();
2151 callout_stop(&sc->wi_inquire_ch);
2152
2153 /* Delete all remaining media. */
2154 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
2155
2156 ether_ifdetach(ifp);
2157 if_detach(ifp);
2158 if (sc->sc_enabled) {
2159 if (sc->sc_disable)
2160 (*sc->sc_disable)(sc);
2161 sc->sc_enabled = 0;
2162 }
2163 splx(s);
2164 return (0);
2165 }
2166
2167 void
2168 wi_power(sc, why)
2169 struct wi_softc *sc;
2170 int why;
2171 {
2172 int s;
2173
2174 if (!sc->sc_enabled)
2175 return;
2176
2177 s = splnet();
2178 switch (why) {
2179 case PWR_SUSPEND:
2180 case PWR_STANDBY:
2181 wi_stop(sc->sc_ifp, 0);
2182 if (sc->sc_enabled) {
2183 if (sc->sc_disable)
2184 (*sc->sc_disable)(sc);
2185 }
2186 break;
2187 case PWR_RESUME:
2188 sc->sc_enabled = 0;
2189 wi_init(sc->sc_ifp);
2190 (void)wi_intr(sc);
2191 break;
2192 case PWR_SOFTSUSPEND:
2193 case PWR_SOFTSTANDBY:
2194 case PWR_SOFTRESUME:
2195 break;
2196 }
2197 splx(s);
2198 }
2199
2200 static int
2201 wi_set_ssid(ws, id, len)
2202 struct ieee80211_nwid *ws;
2203 u_int8_t *id;
2204 int len;
2205 {
2206
2207 if (len > IEEE80211_NWID_LEN)
2208 return (EINVAL);
2209 ws->i_len = len;
2210 memcpy(ws->i_nwid, id, len);
2211 return (0);
2212 }
2213
2214 static void
2215 wi_request_fill_ssid(wreq, ws)
2216 struct wi_req *wreq;
2217 struct ieee80211_nwid *ws;
2218 {
2219 int len = ws->i_len;
2220
2221 memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
2222 wreq->wi_val[0] = htole16(len);
2223 wreq->wi_len = roundup(len, 2) / 2 + 2;
2224 memcpy(&wreq->wi_val[1], ws->i_nwid, len);
2225 }
2226
2227 static int
2228 wi_write_ssid(sc, type, wreq, ws)
2229 struct wi_softc *sc;
2230 int type;
2231 struct wi_req *wreq;
2232 struct ieee80211_nwid *ws;
2233 {
2234
2235 wreq->wi_type = type;
2236 wi_request_fill_ssid(wreq, ws);
2237 return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
2238 }
2239
2240 static int
2241 wi_sync_media(sc, ptype, txrate)
2242 struct wi_softc *sc;
2243 int ptype;
2244 int txrate;
2245 {
2246 int media = sc->sc_media.ifm_cur->ifm_media;
2247 int options = IFM_OPTIONS(media);
2248 int subtype;
2249
2250 switch (txrate) {
2251 case 1:
2252 subtype = IFM_IEEE80211_DS1;
2253 break;
2254 case 2:
2255 subtype = IFM_IEEE80211_DS2;
2256 break;
2257 case 3:
2258 subtype = IFM_AUTO;
2259 break;
2260 case 5:
2261 subtype = IFM_IEEE80211_DS5;
2262 break;
2263 case 11:
2264 subtype = IFM_IEEE80211_DS11;
2265 break;
2266 default:
2267 subtype = IFM_MANUAL; /* Unable to represent */
2268 break;
2269 }
2270 switch (ptype) {
2271 case WI_PORTTYPE_ADHOC:
2272 options |= IFM_IEEE80211_ADHOC;
2273 break;
2274 case WI_PORTTYPE_BSS:
2275 options &= ~IFM_IEEE80211_ADHOC;
2276 break;
2277 default:
2278 subtype = IFM_MANUAL; /* Unable to represent */
2279 break;
2280 }
2281 media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
2282 IFM_INST(media));
2283 if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
2284 return (EINVAL);
2285 ifmedia_set(&sc->sc_media, media);
2286 sc->wi_ptype = ptype;
2287 sc->wi_tx_rate = txrate;
2288 return (0);
2289 }
2290
2291 static int
2292 wi_media_change(ifp)
2293 struct ifnet *ifp;
2294 {
2295 struct wi_softc *sc = ifp->if_softc;
2296 int otype = sc->wi_ptype;
2297 int orate = sc->wi_tx_rate;
2298
2299 if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2300 sc->wi_ptype = WI_PORTTYPE_ADHOC;
2301 else
2302 sc->wi_ptype = WI_PORTTYPE_BSS;
2303
2304 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
2305 case IFM_IEEE80211_DS1:
2306 sc->wi_tx_rate = 1;
2307 break;
2308 case IFM_IEEE80211_DS2:
2309 sc->wi_tx_rate = 2;
2310 break;
2311 case IFM_AUTO:
2312 sc->wi_tx_rate = 3;
2313 break;
2314 case IFM_IEEE80211_DS5:
2315 sc->wi_tx_rate = 5;
2316 break;
2317 case IFM_IEEE80211_DS11:
2318 sc->wi_tx_rate = 11;
2319 break;
2320 }
2321
2322 if (sc->sc_enabled != 0) {
2323 if (otype != sc->wi_ptype ||
2324 orate != sc->wi_tx_rate)
2325 wi_init(ifp);
2326 }
2327
2328 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
2329
2330 return (0);
2331 }
2332
2333 static void
2334 wi_media_status(ifp, imr)
2335 struct ifnet *ifp;
2336 struct ifmediareq *imr;
2337 {
2338 struct wi_softc *sc = ifp->if_softc;
2339
2340 if (sc->sc_enabled == 0) {
2341 imr->ifm_active = IFM_IEEE80211|IFM_NONE;
2342 imr->ifm_status = 0;
2343 return;
2344 }
2345
2346 imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
2347 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2348 }
2349
2350 static int
2351 wi_set_nwkey(sc, nwkey)
2352 struct wi_softc *sc;
2353 struct ieee80211_nwkey *nwkey;
2354 {
2355 int i, error;
2356 size_t len;
2357 struct wi_req wreq;
2358 struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
2359
2360 if (!sc->wi_has_wep)
2361 return ENODEV;
2362 if (nwkey->i_defkid <= 0 ||
2363 nwkey->i_defkid > IEEE80211_WEP_NKID)
2364 return EINVAL;
2365 memcpy(wk, &sc->wi_keys, sizeof(*wk));
2366 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2367 if (nwkey->i_key[i].i_keydat == NULL)
2368 continue;
2369 len = nwkey->i_key[i].i_keylen;
2370 if (len > sizeof(wk->wi_keys[i].wi_keydat))
2371 return EINVAL;
2372 error = copyin(nwkey->i_key[i].i_keydat,
2373 wk->wi_keys[i].wi_keydat, len);
2374 if (error)
2375 return error;
2376 wk->wi_keys[i].wi_keylen = htole16(len);
2377 }
2378
2379 wk->wi_len = (sizeof(*wk) / 2) + 1;
2380 wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2381 if (sc->sc_enabled != 0) {
2382 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2383 if (error)
2384 return error;
2385 }
2386 error = wi_setdef(sc, &wreq);
2387 if (error)
2388 return error;
2389
2390 wreq.wi_len = 2;
2391 wreq.wi_type = WI_RID_TX_CRYPT_KEY;
2392 wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
2393 if (sc->sc_enabled != 0) {
2394 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2395 if (error)
2396 return error;
2397 }
2398 error = wi_setdef(sc, &wreq);
2399 if (error)
2400 return error;
2401
2402 wreq.wi_type = WI_RID_ENCRYPTION;
2403 wreq.wi_val[0] = htole16(nwkey->i_wepon);
2404 if (sc->sc_enabled != 0) {
2405 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
2406 if (error)
2407 return error;
2408 }
2409 error = wi_setdef(sc, &wreq);
2410 if (error)
2411 return error;
2412
2413 if (sc->sc_enabled != 0)
2414 wi_init(&sc->sc_ethercom.ec_if);
2415 return 0;
2416 }
2417
2418 static int
2419 wi_get_nwkey(sc, nwkey)
2420 struct wi_softc *sc;
2421 struct ieee80211_nwkey *nwkey;
2422 {
2423 int i, len, error;
2424 struct wi_ltv_keys *wk = &sc->wi_keys;
2425
2426 if (!sc->wi_has_wep)
2427 return ENODEV;
2428 nwkey->i_wepon = sc->wi_use_wep;
2429 nwkey->i_defkid = sc->wi_tx_key + 1;
2430
2431 /* do not show any keys to non-root user */
2432 error = suser(curproc->p_ucred, &curproc->p_acflag);
2433 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2434 if (nwkey->i_key[i].i_keydat == NULL)
2435 continue;
2436 /* error holds results of suser() for the first time */
2437 if (error)
2438 return error;
2439 len = le16toh(wk->wi_keys[i].wi_keylen);
2440 if (nwkey->i_key[i].i_keylen < len)
2441 return ENOSPC;
2442 nwkey->i_key[i].i_keylen = len;
2443 error = copyout(wk->wi_keys[i].wi_keydat,
2444 nwkey->i_key[i].i_keydat, len);
2445 if (error)
2446 return error;
2447 }
2448 return 0;
2449 }
2450
2451 static int
2452 wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
2453 {
2454
2455 sc->wi_pm_enabled = power->i_enabled;
2456 sc->wi_max_sleep = power->i_maxsleep;
2457
2458 if (sc->sc_enabled)
2459 return (wi_init(&sc->sc_ethercom.ec_if));
2460
2461 return (0);
2462 }
2463
2464 static int
2465 wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
2466 {
2467
2468 power->i_enabled = sc->wi_pm_enabled;
2469 power->i_maxsleep = sc->wi_max_sleep;
2470
2471 return (0);
2472 }
2473