wi.c revision 1.91 1 /* $NetBSD: wi.c,v 1.91 2002/09/30 15:48:44 onoe Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.91 2002/09/30 15:48:44 onoe Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static int wi_init(struct ifnet *);
108 static void wi_stop(struct ifnet *, int);
109 static void wi_start(struct ifnet *);
110 static int wi_reset(struct wi_softc *);
111 static void wi_watchdog(struct ifnet *);
112 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
113 static int wi_media_change(struct ifnet *);
114 static void wi_media_status(struct ifnet *, struct ifmediareq *);
115
116 static void wi_rx_intr(struct wi_softc *);
117 static void wi_tx_intr(struct wi_softc *);
118 static void wi_info_intr(struct wi_softc *);
119
120 static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
121 static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
122 static int wi_write_txrate(struct wi_softc *);
123 static int wi_write_wep(struct wi_softc *);
124 static int wi_write_multi(struct wi_softc *);
125 static int wi_alloc_fid(struct wi_softc *, int, int *);
126 static void wi_read_nicid(struct wi_softc *);
127 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
128
129 static int wi_cmd(struct wi_softc *, int, int, int, int);
130 static int wi_seek_bap(struct wi_softc *, int, int);
131 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
132 static int wi_write_bap(struct wi_softc *, int, int, void *, int);
133 static int wi_read_rid(struct wi_softc *, int, void *, int *);
134 static int wi_write_rid(struct wi_softc *, int, void *, int);
135
136 static int wi_newstate(void *, enum ieee80211_state);
137
138 static int wi_scan_ap(struct wi_softc *);
139 static void wi_scan_result(struct wi_softc *, int, int);
140
141 static inline int
142 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
143 {
144
145 val = htole16(val);
146 return wi_write_rid(sc, rid, &val, sizeof(val));
147 }
148
149 #ifdef WI_DEBUG
150 int wi_debug = 0;
151
152 #define DPRINTF(X) if (wi_debug) printf X
153 #define DPRINTF2(X) if (wi_debug > 1) printf X
154 #else
155 #define DPRINTF(X)
156 #define DPRINTF2(X)
157 #endif
158
159 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
160
161 struct wi_card_ident
162 wi_card_ident[] = {
163 /* CARD_ID CARD_NAME FIRM_TYPE */
164 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
165 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
166 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
167 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
168 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
169 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
170 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
171 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
172 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
173 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
174 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
175 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
176 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
177 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
178 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
179 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
180 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
181 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
182 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
183 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
184 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
185 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
186 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
187 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
188 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
189 { 0, NULL, 0 },
190 };
191
192 int
193 wi_attach(struct wi_softc *sc)
194 {
195 struct ieee80211com *ic = &sc->sc_ic;
196 struct ifnet *ifp = &ic->ic_if;
197 int i, nrate, mword, buflen;
198 u_int8_t r;
199 u_int16_t val;
200 u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
201 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
202 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
203 };
204 int s;
205
206 s = splnet();
207
208 /* Make sure interrupts are disabled. */
209 CSR_WRITE_2(sc, WI_INT_EN, 0);
210 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
211
212 /* Reset the NIC. */
213 if (wi_reset(sc) != 0) {
214 splx(s);
215 return 1;
216 }
217
218 buflen = IEEE80211_ADDR_LEN;
219 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
220 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
221 printf(" could not get mac address, attach failed\n");
222 splx(s);
223 return 1;
224 }
225
226 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
227
228 /* Read NIC identification */
229 wi_read_nicid(sc);
230
231 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
232 ifp->if_softc = sc;
233 ifp->if_start = wi_start;
234 ifp->if_ioctl = wi_ioctl;
235 ifp->if_watchdog = wi_watchdog;
236 ifp->if_init = wi_init;
237 ifp->if_stop = wi_stop;
238 ifp->if_flags =
239 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
240 IFQ_SET_READY(&ifp->if_snd);
241
242 ic->ic_phytype = IEEE80211_T_DS;
243 ic->ic_opmode = IEEE80211_M_STA;
244 ic->ic_flags = IEEE80211_F_HASPMGT | IEEE80211_F_HASAHDEMO;
245 ic->ic_state = IEEE80211_S_INIT;
246 ic->ic_newstate = wi_newstate;
247
248 /* Find available channel */
249 buflen = sizeof(val);
250 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
251 val = htole16(0x1fff); /* assume 1-11 */
252 for (i = 0; i < 16; i++) {
253 if (isset((u_int8_t*)&val, i))
254 setbit(ic->ic_chan_avail, i + 1);
255 }
256
257 /* Find default IBSS channel */
258 buflen = sizeof(val);
259 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0)
260 ic->ic_ibss_chan = le16toh(val);
261 else {
262 /* use lowest available channel */
263 for (i = 0; i < 16; i++) {
264 if (isset(ic->ic_chan_avail, i))
265 break;
266 }
267 ic->ic_ibss_chan = i;
268 }
269
270 /*
271 * Set flags based on firmware version.
272 */
273 switch (sc->sc_firmware_type) {
274 case WI_LUCENT:
275 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
276 #ifdef WI_HERMES_AUTOINC_WAR
277 /* XXX: not confirmed, but never seen for recent firmware */
278 if (sc->sc_sta_firmware_ver < 40000) {
279 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
280 }
281 #endif
282 if (sc->sc_sta_firmware_ver >= 60000)
283 sc->sc_flags |= WI_FLAGS_HAS_MOR;
284 if (sc->sc_sta_firmware_ver >= 60006)
285 ic->ic_flags |= IEEE80211_F_HASIBSS;
286 sc->sc_ibss_port = 1;
287 break;
288
289 case WI_INTERSIL:
290 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
291 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
292 if (sc->sc_sta_firmware_ver >= 800) {
293 ic->ic_flags |= IEEE80211_F_HASHOSTAP;
294 ic->ic_flags |= IEEE80211_F_HASIBSS;
295 }
296 sc->sc_ibss_port = 0;
297 break;
298
299 case WI_SYMBOL:
300 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
301 if (sc->sc_sta_firmware_ver >= 25000)
302 ic->ic_flags |= IEEE80211_F_HASIBSS;
303 sc->sc_ibss_port = 4;
304 break;
305 }
306
307 /*
308 * Find out if we support WEP on this card.
309 */
310 buflen = sizeof(val);
311 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
312 val != htole16(0))
313 ic->ic_flags |= IEEE80211_F_HASWEP;
314
315 /* Find supported rates. */
316 buflen = sizeof(ratebuf);
317 if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
318 nrate = le16toh(*(u_int16_t *)ratebuf);
319 if (nrate > IEEE80211_RATE_SIZE)
320 nrate = IEEE80211_RATE_SIZE;
321 memcpy(ic->ic_sup_rates, ratebuf + 2, nrate);
322 }
323 buflen = sizeof(val);
324
325 sc->sc_max_datalen = 2304;
326 sc->sc_rts_thresh = 2347;
327 sc->sc_system_scale = 1;
328 sc->sc_cnfauthmode = 1;
329 sc->sc_roaming_mode = 1;
330
331 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
332 printf("%s: supported rates: ", sc->sc_dev.dv_xname);
333 #define ADD(s, o) ifmedia_add(&sc->sc_media, \
334 IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL)
335 ADD(IFM_AUTO, 0);
336 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
337 ADD(IFM_AUTO, IFM_IEEE80211_HOSTAP);
338 if (ic->ic_flags & IEEE80211_F_HASIBSS)
339 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC);
340 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC | IFM_FLAG0);
341 for (i = 0; i < nrate; i++) {
342 r = ic->ic_sup_rates[i];
343 mword = ieee80211_rate2media(r, IEEE80211_T_DS);
344 if (mword == 0)
345 continue;
346 printf("%s%d%sMbps", (i != 0 ? " " : ""),
347 (r & IEEE80211_RATE_VAL) / 2, ((r & 0x1) != 0 ? ".5" : ""));
348 ADD(mword, 0);
349 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
350 ADD(mword, IFM_IEEE80211_HOSTAP);
351 if (ic->ic_flags & IEEE80211_F_HASIBSS)
352 ADD(mword, IFM_IEEE80211_ADHOC);
353 ADD(mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
354 }
355 printf("\n");
356 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
357 #undef ADD
358
359 /*
360 * Call MI attach routines.
361 */
362
363 if_attach(ifp);
364 ieee80211_ifattach(ifp);
365
366 /* Attach is successful. */
367 sc->sc_attached = 1;
368
369 splx(s);
370 return 0;
371 }
372
373 int
374 wi_detach(struct wi_softc *sc)
375 {
376 struct ifnet *ifp = &sc->sc_ic.ic_if;
377 int s;
378
379 if (!sc->sc_attached)
380 return 0;
381
382 s = splnet();
383
384 /* Delete all remaining media. */
385 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
386
387 ieee80211_ifdetach(ifp);
388 if_detach(ifp);
389 if (sc->sc_enabled) {
390 if (sc->sc_disable)
391 (*sc->sc_disable)(sc);
392 sc->sc_enabled = 0;
393 }
394 splx(s);
395 return 0;
396 }
397
398 int
399 wi_activate(struct device *self, enum devact act)
400 {
401 struct wi_softc *sc = (struct wi_softc *)self;
402 int rv = 0, s;
403
404 s = splnet();
405 switch (act) {
406 case DVACT_ACTIVATE:
407 rv = EOPNOTSUPP;
408 break;
409
410 case DVACT_DEACTIVATE:
411 if_deactivate(&sc->sc_ic.ic_if);
412 break;
413 }
414 splx(s);
415 return rv;
416 }
417
418 void
419 wi_power(struct wi_softc *sc, int why)
420 {
421 struct ifnet *ifp = &sc->sc_ic.ic_if;
422 int s;
423
424 s = splnet();
425 switch (why) {
426 case PWR_SUSPEND:
427 case PWR_STANDBY:
428 wi_stop(ifp, 1);
429 break;
430 case PWR_RESUME:
431 if (ifp->if_flags & IFF_UP) {
432 wi_init(ifp);
433 (void)wi_intr(sc);
434 }
435 break;
436 case PWR_SOFTSUSPEND:
437 case PWR_SOFTSTANDBY:
438 case PWR_SOFTRESUME:
439 break;
440 }
441 splx(s);
442 }
443
444 void
445 wi_shutdown(struct wi_softc *sc)
446 {
447 struct ifnet *ifp = &sc->sc_ic.ic_if;
448
449 if (sc->sc_attached)
450 wi_stop(ifp, 1);
451 }
452
453 int
454 wi_intr(void *arg)
455 {
456 int i;
457 struct wi_softc *sc = arg;
458 struct ifnet *ifp = &sc->sc_ic.ic_if;
459 u_int16_t status, raw_status, last_status;
460
461 if (sc->sc_enabled == 0 ||
462 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
463 (ifp->if_flags & IFF_RUNNING) == 0)
464 return 0;
465
466 if ((ifp->if_flags & IFF_UP) == 0) {
467 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
468 CSR_WRITE_2(sc, WI_INT_EN, 0);
469 return 1;
470 }
471
472 /* maximum 10 loops per interrupt */
473 last_status = 0;
474 for (i = 0; i < 10; i++) {
475 /*
476 * Only believe a status bit when we enter wi_intr, or when
477 * the bit was "off" the last time through the loop. This is
478 * my strategy to avoid racing the hardware/firmware if I
479 * can re-read the event status register more quickly than
480 * it is updated.
481 */
482 raw_status = CSR_READ_2(sc, WI_EVENT_STAT);
483 status = raw_status & ~last_status;
484 if ((status & WI_INTRS) == 0)
485 break;
486 last_status = raw_status;
487
488 if (status & WI_EV_RX)
489 wi_rx_intr(sc);
490
491 if (status & WI_EV_ALLOC)
492 wi_tx_intr(sc);
493
494 if (status & WI_EV_INFO)
495 wi_info_intr(sc);
496
497 if (!(ifp->if_flags & IFF_OACTIVE) &&
498 !IFQ_IS_EMPTY(&ifp->if_snd))
499 wi_start(ifp);
500 }
501
502 return 1;
503 }
504
505 static int
506 wi_init(struct ifnet *ifp)
507 {
508 struct wi_softc *sc = ifp->if_softc;
509 struct ieee80211com *ic = &sc->sc_ic;
510 struct wi_joinreq join;
511 int i;
512 int error = 0, wasenabled;
513
514 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
515 wasenabled = sc->sc_enabled;
516 if (!sc->sc_enabled) {
517 if ((error = (*sc->sc_enable)(sc)) != 0)
518 goto out;
519 sc->sc_enabled = 1;
520 } else
521 wi_stop(ifp, 0);
522
523 /* Symbol firmware cannot be initialized more than once */
524 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
525 if ((error = wi_reset(sc)) != 0)
526 goto out;
527 }
528
529 /* common 802.11 configuration */
530 switch (ic->ic_opmode) {
531 case IEEE80211_M_STA:
532 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
533 break;
534 case IEEE80211_M_IBSS:
535 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
536 break;
537 case IEEE80211_M_AHDEMO:
538 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
539 break;
540 case IEEE80211_M_HOSTAP:
541 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
542 break;
543 }
544
545 /* Intersil interprets this RID as joining ESS even in IBSS mode */
546 if (sc->sc_firmware_type == WI_LUCENT &&
547 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
548 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
549 else
550 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
551 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
552 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
553 ic->ic_des_esslen);
554 wi_write_val(sc, WI_RID_OWN_CHNL, ic->ic_ibss_chan);
555 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
556 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
557 wi_write_val(sc, WI_RID_PM_ENABLED,
558 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
559
560 /* not yet common 802.11 configuration */
561 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
562 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
563
564 /* driver specific 802.11 configuration */
565 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
566 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
567 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
568 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
569 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
570 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
571 wi_write_txrate(sc);
572 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
573
574 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
575 /* XXX: these configurations may be intersil only */
576 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
577 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
578 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
579 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
580 }
581
582 /*
583 * Initialize promisc mode.
584 * Being in the Host-AP mode causes a great
585 * deal of pain if primisc mode is set.
586 * Therefore we avoid confusing the firmware
587 * and always reset promisc mode in Host-AP
588 * mode. Host-AP sees all the packets anyway.
589 */
590 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
591 (ifp->if_flags & IFF_PROMISC) != 0) {
592 wi_write_val(sc, WI_RID_PROMISC, 1);
593 } else {
594 wi_write_val(sc, WI_RID_PROMISC, 0);
595 }
596
597 /* Configure WEP. */
598 if (ic->ic_flags & IEEE80211_F_HASWEP)
599 wi_write_wep(sc);
600
601 /* Set multicast filter. */
602 wi_write_multi(sc);
603
604 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
605 if (sc->sc_firmware_type == WI_SYMBOL)
606 sc->sc_buflen = 1585; /* XXX */
607 for (i = 0; i < WI_NTXBUF; i++) {
608 error = wi_alloc_fid(sc, sc->sc_buflen,
609 &sc->sc_txd[i].d_fid);
610 if (error) {
611 printf("%s: tx buffer allocation failed\n",
612 sc->sc_dev.dv_xname);
613 goto out;
614 }
615 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
616 sc->sc_txd[i].d_fid));
617 sc->sc_txd[i].d_len = 0;
618 }
619 if (ic->ic_opmode == IEEE80211_M_IBSS)
620 ic->ic_flags |= IEEE80211_F_IBSSON;
621 else
622 ic->ic_flags &= ~IEEE80211_F_IBSSON;
623
624 /* Enable port 0 */
625 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
626 ifp->if_flags |= IFF_RUNNING;
627 ifp->if_flags &= ~IFF_OACTIVE;
628 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
629 ic->ic_opmode == IEEE80211_M_HOSTAP)
630 wi_newstate(sc, IEEE80211_S_RUN);
631
632 /* Enable interrupts */
633 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
634
635 if (!wasenabled && ic->ic_opmode == IEEE80211_M_HOSTAP) {
636 /* XXX: some card need to be re-enabled for hostap */
637 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
638 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
639 }
640
641 if (ic->ic_opmode == IEEE80211_M_STA &&
642 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
643 ic->ic_des_chan != IEEE80211_CHAN_ANY)) {
644 memset(&join, 0, sizeof(join));
645 if (ic->ic_flags & IEEE80211_F_DESBSSID)
646 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
647 if (ic->ic_des_chan != IEEE80211_CHAN_ANY)
648 join.wi_chan = htole16(ic->ic_des_chan);
649 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
650 }
651
652 out:
653 if (error) {
654 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
655 wi_stop(ifp, 1);
656 }
657 DPRINTF(("wi_init: return %d\n", error));
658 return error;
659 }
660
661 static void
662 wi_stop(struct ifnet *ifp, int disable)
663 {
664 struct wi_softc *sc = ifp->if_softc;
665
666 DPRINTF(("wi_stop: disable %d\n", disable));
667 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
668 if (sc->sc_enabled) {
669 CSR_WRITE_2(sc, WI_INT_EN, 0);
670 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
671 if (disable) {
672 if (sc->sc_disable)
673 (*sc->sc_disable)(sc);
674 sc->sc_enabled = 0;
675 }
676 }
677
678 sc->sc_tx_timer = 0;
679 sc->sc_scan_timer = 0;
680 sc->sc_naps = 0;
681 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
682 ifp->if_timer = 0;
683 }
684
685 static void
686 wi_start(struct ifnet *ifp)
687 {
688 struct wi_softc *sc = ifp->if_softc;
689 struct ieee80211com *ic = &sc->sc_ic;
690 struct ieee80211_frame *wh;
691 struct mbuf *m0, *m;
692 struct wi_frame frmhdr;
693 int cur, fid, off;
694
695 if (ifp->if_flags & IFF_OACTIVE)
696 return;
697
698 memset(&frmhdr, 0, sizeof(frmhdr));
699 cur = sc->sc_txnext;
700 for (;;) {
701 IF_POLL(&ic->ic_mgtq, m0);
702 if (m0 != NULL) {
703 if (sc->sc_txd[cur].d_len != 0) {
704 ifp->if_flags |= IFF_OACTIVE;
705 break;
706 }
707 IF_DEQUEUE(&ic->ic_mgtq, m0);
708 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
709 (caddr_t)&frmhdr.wi_ehdr);
710 frmhdr.wi_ehdr.ether_type = 0;
711 wh = mtod(m0, struct ieee80211_frame *);
712 } else {
713 if (ic->ic_state != IEEE80211_S_RUN)
714 break;
715 IFQ_POLL(&ifp->if_snd, m0);
716 if (m0 == NULL)
717 break;
718 if (sc->sc_txd[cur].d_len != 0) {
719 ifp->if_flags |= IFF_OACTIVE;
720 break;
721 }
722 IFQ_DEQUEUE(&ifp->if_snd, m0);
723 ifp->if_opackets++;
724 m_copydata(m0, 0, ETHER_HDR_LEN,
725 (caddr_t)&frmhdr.wi_ehdr);
726 #if NBPFILTER > 0
727 if (ifp->if_bpf)
728 bpf_mtap(ifp->if_bpf, m0);
729 #endif
730
731 if ((m0 = ieee80211_encap(ifp, m0)) == NULL) {
732 ifp->if_oerrors++;
733 continue;
734 }
735 wh = mtod(m0, struct ieee80211_frame *);
736 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
737 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
738 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
739 IEEE80211_FC0_TYPE_DATA &&
740 ieee80211_find_node(ic, wh->i_addr1) == NULL) {
741 m_freem(m0);
742 ifp->if_oerrors++;
743 continue;
744 }
745 if (ic->ic_flags & IEEE80211_F_WEPON)
746 wh->i_fc[1] |= IEEE80211_FC1_WEP;
747
748 }
749 #if NBPFILTER > 0
750 if (ic->ic_rawbpf)
751 bpf_mtap(ic->ic_rawbpf, m0);
752 #endif
753 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11);
754 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
755 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
756 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
757 ifp->if_oerrors++;
758 continue;
759 }
760 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
761 }
762 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
763 (caddr_t)&frmhdr.wi_whdr);
764 m_adj(m0, sizeof(struct ieee80211_frame));
765 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
766 #if NBPFILTER > 0
767 if (sc->sc_drvbpf) {
768 struct mbuf mb;
769
770 M_COPY_PKTHDR(&mb, m0);
771 mb.m_data = (caddr_t)&frmhdr;
772 mb.m_len = sizeof(frmhdr);
773 mb.m_next = m0;
774 mb.m_pkthdr.len += mb.m_len;
775 bpf_mtap(sc->sc_drvbpf, &mb);
776 }
777 #endif
778 fid = sc->sc_txd[cur].d_fid;
779 wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr));
780 off = sizeof(frmhdr);
781 for (m = m0; m != NULL; m = m->m_next) {
782 if (m->m_len == 0)
783 continue;
784 wi_write_bap(sc, fid, off, m->m_data, m->m_len);
785 off += m->m_len;
786 }
787 m_freem(m0);
788 sc->sc_txd[cur].d_len = off;
789 if (sc->sc_txcur == cur) {
790 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
791 printf("%s: xmit failed\n",
792 sc->sc_dev.dv_xname);
793 sc->sc_txd[cur].d_len = 0;
794 continue;
795 }
796 sc->sc_tx_timer = 5;
797 ifp->if_timer = 1;
798 }
799 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF;
800 }
801 }
802
803
804 static int
805 wi_reset(struct wi_softc *sc)
806 {
807 int i, error;
808
809 DPRINTF(("wi_reset\n"));
810 error = 0;
811 for (i = 0; i < 5; i++) {
812 DELAY(20*1000); /* XXX: way too long! */
813 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
814 break;
815 }
816 if (error) {
817 printf("%s: init failed\n", sc->sc_dev.dv_xname);
818 return error;
819 }
820 CSR_WRITE_2(sc, WI_INT_EN, 0);
821 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
822
823 /* Calibrate timer. */
824 wi_write_val(sc, WI_RID_TICK_TIME, 0);
825 return 0;
826 }
827
828 static void
829 wi_watchdog(struct ifnet *ifp)
830 {
831 struct wi_softc *sc = ifp->if_softc;
832
833 ifp->if_timer = 0;
834 if (!sc->sc_enabled)
835 return;
836
837 if (sc->sc_tx_timer) {
838 if (--sc->sc_tx_timer == 0) {
839 printf("%s: device timeout\n", ifp->if_xname);
840 ifp->if_oerrors++;
841 wi_init(ifp);
842 return;
843 }
844 ifp->if_timer = 1;
845 }
846
847 if (sc->sc_scan_timer) {
848 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
849 sc->sc_firmware_type == WI_INTERSIL) {
850 DPRINTF(("wi_watchdog: inquire scan\n"));
851 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
852 }
853 if (sc->sc_scan_timer)
854 ifp->if_timer = 1;
855 }
856
857 /* TODO: rate control */
858 ieee80211_watchdog(ifp);
859 }
860
861 static int
862 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
863 {
864 struct wi_softc *sc = ifp->if_softc;
865 struct ieee80211com *ic = &sc->sc_ic;
866 struct ifreq *ifr = (struct ifreq *)data;
867 int s, error = 0;
868
869 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
870 return ENXIO;
871
872 s = splnet();
873
874 switch (cmd) {
875 case SIOCSIFFLAGS:
876 if (ifp->if_flags & IFF_UP) {
877 if (sc->sc_enabled) {
878 /*
879 * To avoid rescanning another access point,
880 * do not call wi_init() here. Instead,
881 * only reflect promisc mode settings.
882 */
883 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
884 (ifp->if_flags & IFF_PROMISC) != 0)
885 wi_write_val(sc, WI_RID_PROMISC, 1);
886 else
887 wi_write_val(sc, WI_RID_PROMISC, 0);
888 } else
889 error = wi_init(ifp);
890 } else if (sc->sc_enabled)
891 wi_stop(ifp, 1);
892 break;
893 case SIOCSIFMEDIA:
894 case SIOCGIFMEDIA:
895 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
896 break;
897 case SIOCADDMULTI:
898 case SIOCDELMULTI:
899 error = (cmd == SIOCADDMULTI) ?
900 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
901 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
902 if (error == ENETRESET) {
903 if (sc->sc_enabled) {
904 /* do not rescan */
905 error = wi_write_multi(sc);
906 } else
907 error = 0;
908 }
909 break;
910 case SIOCGIFGENERIC:
911 error = wi_get_cfg(ifp, cmd, data);
912 break;
913 case SIOCSIFGENERIC:
914 error = suser(curproc->p_ucred, &curproc->p_acflag);
915 if (error)
916 break;
917 error = wi_set_cfg(ifp, cmd, data);
918 if (error == ENETRESET) {
919 if (sc->sc_enabled)
920 error = wi_init(ifp);
921 else
922 error = 0;
923 }
924 break;
925 default:
926 error = ieee80211_ioctl(ifp, cmd, data);
927 if (error == ENETRESET) {
928 if (sc->sc_enabled)
929 error = wi_init(ifp);
930 else
931 error = 0;
932 }
933 break;
934 }
935 splx(s);
936 return error;
937 }
938
939 static int
940 wi_media_change(struct ifnet *ifp)
941 {
942 struct wi_softc *sc = ifp->if_softc;
943 struct ieee80211com *ic = &sc->sc_ic;
944 struct ifmedia_entry *ime;
945 enum ieee80211_opmode newmode;
946 int i, rate, error = 0;
947
948 ime = sc->sc_media.ifm_cur;
949 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
950 i = -1;
951 } else {
952 rate = ieee80211_media2rate(ime->ifm_media, IEEE80211_T_DS);
953 if (rate == 0)
954 return EINVAL;
955 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
956 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL) == rate)
957 break;
958 }
959 if (i == IEEE80211_RATE_SIZE)
960 return EINVAL;
961 }
962 if (ic->ic_fixed_rate != i) {
963 ic->ic_fixed_rate = i;
964 error = ENETRESET;
965 }
966
967 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
968 (ime->ifm_media & IFM_FLAG0))
969 newmode = IEEE80211_M_AHDEMO;
970 else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
971 newmode = IEEE80211_M_IBSS;
972 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
973 newmode = IEEE80211_M_HOSTAP;
974 else
975 newmode = IEEE80211_M_STA;
976 if (ic->ic_opmode != newmode) {
977 ic->ic_opmode = newmode;
978 error = ENETRESET;
979 }
980 if (error == ENETRESET) {
981 if (sc->sc_enabled)
982 error = wi_init(ifp);
983 else
984 error = 0;
985 }
986 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
987
988 return error;
989 }
990
991 static void
992 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
993 {
994 struct wi_softc *sc = ifp->if_softc;
995 struct ieee80211com *ic = &sc->sc_ic;
996 u_int16_t val;
997 int rate, len;
998
999 if (sc->sc_enabled == 0) {
1000 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1001 imr->ifm_status = 0;
1002 return;
1003 }
1004
1005 imr->ifm_status = IFM_AVALID;
1006 imr->ifm_active = IFM_IEEE80211;
1007 if (ic->ic_state == IEEE80211_S_RUN)
1008 imr->ifm_status |= IFM_ACTIVE;
1009 if (ic->ic_fixed_rate != -1)
1010 rate = ic->ic_sup_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1011 else {
1012 len = sizeof(val);
1013 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1014 rate = 0;
1015 else {
1016 /* convert to 802.11 rate */
1017 rate = val * 2;
1018 if (rate == 12)
1019 rate = 11; /* 5.5Mbps */
1020 }
1021 }
1022 imr->ifm_active |= ieee80211_rate2media(rate, IEEE80211_T_DS);
1023 switch (ic->ic_opmode) {
1024 case IEEE80211_M_STA:
1025 break;
1026 case IEEE80211_M_IBSS:
1027 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1028 break;
1029 case IEEE80211_M_AHDEMO:
1030 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1031 break;
1032 case IEEE80211_M_HOSTAP:
1033 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1034 break;
1035 }
1036 }
1037
1038 static void
1039 wi_rx_intr(struct wi_softc *sc)
1040 {
1041 struct ieee80211com *ic = &sc->sc_ic;
1042 struct ifnet *ifp = &ic->ic_if;
1043 struct wi_frame frmhdr;
1044 struct mbuf *m;
1045 struct ieee80211_frame *wh;
1046 u_int16_t status;
1047 int fid, len, off;
1048
1049 fid = CSR_READ_2(sc, WI_RX_FID);
1050
1051 /* First read in the frame header */
1052 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1053 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1054 ifp->if_ierrors++;
1055 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1056 return;
1057 }
1058
1059 /*
1060 * Drop undecryptable or packets with receive errors here
1061 */
1062 status = le16toh(frmhdr.wi_status);
1063 if (status & WI_STAT_ERRSTAT) {
1064 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1065 ifp->if_ierrors++;
1066 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1067 return;
1068 }
1069
1070 len = le16toh(frmhdr.wi_dat_len);
1071 off = ALIGN(sizeof(struct ieee80211_frame));
1072
1073 MGETHDR(m, M_DONTWAIT, MT_DATA);
1074 if (m == NULL) {
1075 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1076 ifp->if_ierrors++;
1077 DPRINTF(("wi_rx_intr: MGET failed\n"));
1078 return;
1079 }
1080 if (off + len > MHLEN) {
1081 MCLGET(m, M_DONTWAIT);
1082 if ((m->m_flags & M_EXT) == 0) {
1083 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1084 m_freem(m);
1085 ifp->if_ierrors++;
1086 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1087 return;
1088 }
1089 }
1090
1091 m->m_data += off - sizeof(struct ieee80211_frame);
1092 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1093 wi_read_bap(sc, fid, sizeof(frmhdr),
1094 m->m_data + sizeof(struct ieee80211_frame), len);
1095 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1096 m->m_pkthdr.rcvif = ifp;
1097
1098 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1099
1100 #if NBPFILTER > 0
1101 if (sc->sc_drvbpf) {
1102 struct mbuf mb;
1103
1104 M_COPY_PKTHDR(&mb, m);
1105 mb.m_data = (caddr_t)&frmhdr;
1106 mb.m_len = sizeof(frmhdr);
1107 mb.m_next = m;
1108 mb.m_pkthdr.len += mb.m_len;
1109 bpf_mtap(sc->sc_drvbpf, &mb);
1110 }
1111 #endif
1112 wh = mtod(m, struct ieee80211_frame *);
1113 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1114 /*
1115 * WEP is decrypted by hardware. Clear WEP bit
1116 * header for ieee80211_input().
1117 */
1118 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1119 }
1120 ieee80211_input(ifp, m, 0 /*rssi*/, 0 /*rstamp*/);
1121 }
1122
1123 static void
1124 wi_tx_intr(struct wi_softc *sc)
1125 {
1126 struct ieee80211com *ic = &sc->sc_ic;
1127 struct ifnet *ifp = &ic->ic_if;
1128 int fid, cur;
1129
1130 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1131 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1132
1133 cur = sc->sc_txcur;
1134 if (sc->sc_txd[cur].d_fid != fid) {
1135 printf("%s: bad alloc %x != %x\n",
1136 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid);
1137 return;
1138 }
1139 sc->sc_tx_timer = 0;
1140 sc->sc_txd[cur].d_len = 0;
1141 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF;
1142 if (sc->sc_txd[cur].d_len == 0)
1143 ifp->if_flags &= ~IFF_OACTIVE;
1144 else {
1145 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1146 0, 0)) {
1147 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1148 sc->sc_txd[cur].d_len = 0;
1149 } else {
1150 sc->sc_tx_timer = 5;
1151 ifp->if_timer = 1;
1152 }
1153 }
1154 }
1155
1156 static void
1157 wi_info_intr(struct wi_softc *sc)
1158 {
1159 struct ieee80211com *ic = &sc->sc_ic;
1160 struct ifnet *ifp = &ic->ic_if;
1161 int i, fid, len, off;
1162 u_int16_t ltbuf[2];
1163 u_int16_t stat;
1164 u_int32_t *ptr;
1165
1166 fid = CSR_READ_2(sc, WI_INFO_FID);
1167 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1168
1169 switch (le16toh(ltbuf[1])) {
1170
1171 case WI_INFO_LINK_STAT:
1172 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1173 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1174 switch (le16toh(stat)) {
1175 case CONNECTED:
1176 if (ic->ic_state == IEEE80211_S_RUN)
1177 break;
1178 /* FALLTHROUGH */
1179 case AP_CHANGE:
1180 case AP_IN_RANGE:
1181 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
1182 break;
1183 case AP_OUT_OF_RANGE:
1184 if (sc->sc_firmware_type == WI_SYMBOL &&
1185 sc->sc_scan_timer > 0) {
1186 if (wi_cmd(sc, WI_CMD_INQUIRE,
1187 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1188 sc->sc_scan_timer = 0;
1189 break;
1190 }
1191 /* FALLTHROUGH */
1192 case DISCONNECTED:
1193 case ASSOC_FAILED:
1194 if (ic->ic_opmode == IEEE80211_M_STA)
1195 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
1196 break;
1197 }
1198 break;
1199
1200 case WI_INFO_COUNTERS:
1201 /* some card versions have a larger stats structure */
1202 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1203 ptr = (u_int32_t *)&sc->sc_stats;
1204 off = sizeof(ltbuf);
1205 for (i = 0; i < len; i++, off += 2, ptr++) {
1206 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1207 #ifdef WI_HERMES_STATS_WAR
1208 if (stat & 0xf000)
1209 stat = ~stat;
1210 #endif
1211 *ptr += stat;
1212 }
1213 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1214 sc->sc_stats.wi_tx_multi_retries +
1215 sc->sc_stats.wi_tx_retry_limit;
1216 break;
1217
1218 case WI_INFO_SCAN_RESULTS:
1219 case WI_INFO_HOST_SCAN_RESULTS:
1220 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1221 break;
1222
1223 default:
1224 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1225 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1226 break;
1227 }
1228 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1229 }
1230
1231 /*
1232 * Allocate a region of memory inside the NIC and zero
1233 * it out.
1234 */
1235 static int
1236 wi_write_multi(struct wi_softc *sc)
1237 {
1238 struct ifnet *ifp = &sc->sc_ic.ic_if;
1239 int n = 0;
1240 struct wi_mcast mlist;
1241 struct ether_multi *enm;
1242 struct ether_multistep estep;
1243
1244 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1245 allmulti:
1246 ifp->if_flags |= IFF_ALLMULTI;
1247 memset(&mlist, 0, sizeof(mlist));
1248 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1249 sizeof(mlist));
1250 }
1251
1252 n = 0;
1253 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1254 while (enm != NULL) {
1255 /* Punt on ranges or too many multicast addresses. */
1256 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1257 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1258 goto allmulti;
1259
1260 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1261 n++;
1262 ETHER_NEXT_MULTI(estep, enm);
1263 }
1264 ifp->if_flags &= ~IFF_ALLMULTI;
1265 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1266 IEEE80211_ADDR_LEN * n);
1267 }
1268
1269
1270 static void
1271 wi_read_nicid(sc)
1272 struct wi_softc *sc;
1273 {
1274 struct wi_card_ident *id;
1275 char *p;
1276 int len;
1277 u_int16_t ver[4];
1278
1279 /* getting chip identity */
1280 memset(ver, 0, sizeof(ver));
1281 len = sizeof(ver);
1282 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1283 printf("%s: using ", sc->sc_dev.dv_xname);
1284 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1285
1286 sc->sc_firmware_type = WI_NOTYPE;
1287 for (id = wi_card_ident; id->card_name != NULL; id++) {
1288 if (le16toh(ver[0]) == id->card_id) {
1289 printf("%s", id->card_name);
1290 sc->sc_firmware_type = id->firm_type;
1291 break;
1292 }
1293 }
1294 if (sc->sc_firmware_type == WI_NOTYPE) {
1295 if (le16toh(ver[0]) & 0x8000) {
1296 printf("Unknown PRISM2 chip");
1297 sc->sc_firmware_type = WI_INTERSIL;
1298 } else {
1299 printf("Unknown Lucent chip");
1300 sc->sc_firmware_type = WI_LUCENT;
1301 }
1302 }
1303
1304 /* get primary firmware version (Only Prism chips) */
1305 if (sc->sc_firmware_type != WI_LUCENT) {
1306 memset(ver, 0, sizeof(ver));
1307 len = sizeof(ver);
1308 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1309 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1310 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1311 DPRINTF2(("wi_read_nicid: PRI_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1312 }
1313
1314 /* get station firmware version */
1315 memset(ver, 0, sizeof(ver));
1316 len = sizeof(ver);
1317 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1318 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1319 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1320 DPRINTF2(("wi_read_nicid: STA_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1321 if (sc->sc_firmware_type == WI_INTERSIL &&
1322 (sc->sc_sta_firmware_ver == 10102 ||
1323 sc->sc_sta_firmware_ver == 20102)) {
1324 char ident[12];
1325 memset(ident, 0, sizeof(ident));
1326 len = sizeof(ident);
1327 /* value should be the format like "V2.00-11" */
1328 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1329 *(p = (char *)ident) >= 'A' &&
1330 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1331 sc->sc_firmware_type = WI_SYMBOL;
1332 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1333 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1334 (p[6] - '0') * 10 + (p[7] - '0');
1335 }
1336 DPRINTF2(("wi_read_nicid: SYMBOL_ID: %x %x %x %x\n", le16toh(ident[0]), le16toh(ident[1]), le16toh(ident[2]), le16toh(ident[3])));
1337 }
1338
1339 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1340 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1341 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1342 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1343 printf("Primary (%u.%u.%u), ",
1344 sc->sc_pri_firmware_ver / 10000,
1345 (sc->sc_pri_firmware_ver % 10000) / 100,
1346 sc->sc_pri_firmware_ver % 100);
1347 printf("Station (%u.%u.%u)\n",
1348 sc->sc_sta_firmware_ver / 10000,
1349 (sc->sc_sta_firmware_ver % 10000) / 100,
1350 sc->sc_sta_firmware_ver % 100);
1351 }
1352
1353 static int
1354 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1355 {
1356 struct wi_ssid ssid;
1357
1358 if (buflen > IEEE80211_NWID_LEN)
1359 return ENOBUFS;
1360 ssid.wi_len = htole16(buflen);
1361 memcpy(ssid.wi_ssid, buf, buflen);
1362 return wi_write_rid(sc, rid, &ssid, sizeof(ssid.wi_len) + buflen);
1363 }
1364
1365 static int
1366 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1367 {
1368 struct wi_softc *sc = ifp->if_softc;
1369 struct ieee80211com *ic = &sc->sc_ic;
1370 struct ifreq *ifr = (struct ifreq *)data;
1371 struct wi_req wreq;
1372 int len, n, error;
1373
1374 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1375 if (error)
1376 return error;
1377 len = (wreq.wi_len - 1) * 2;
1378 if (len < sizeof(u_int16_t))
1379 return ENOSPC;
1380 if (len > sizeof(wreq.wi_val))
1381 len = sizeof(wreq.wi_val);
1382
1383 switch (wreq.wi_type) {
1384
1385 case WI_RID_IFACE_STATS:
1386 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1387 if (len < sizeof(sc->sc_stats))
1388 error = ENOSPC;
1389 else
1390 len = sizeof(sc->sc_stats);
1391 break;
1392
1393 case WI_RID_ENCRYPTION:
1394 case WI_RID_TX_CRYPT_KEY:
1395 case WI_RID_DEFLT_CRYPT_KEYS:
1396 return ieee80211_cfgget(ifp, cmd, data);
1397
1398 case WI_RID_TX_RATE:
1399 if (ic->ic_fixed_rate < 0)
1400 wreq.wi_val[0] = htole16(3); /*XXX*/
1401 else
1402 wreq.wi_val[0] = htole16(
1403 (ic->ic_sup_rates[ic->ic_fixed_rate] &
1404 IEEE80211_RATE_VAL) / 2);
1405 len = sizeof(u_int16_t);
1406 break;
1407
1408 case WI_RID_MICROWAVE_OVEN:
1409 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1410 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1411 &len);
1412 break;
1413 }
1414 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1415 len = sizeof(u_int16_t);
1416 break;
1417
1418 case WI_RID_ROAMING_MODE:
1419 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
1420 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1421 &len);
1422 break;
1423 }
1424 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
1425 len = sizeof(u_int16_t);
1426 break;
1427
1428 case WI_RID_SYSTEM_SCALE:
1429 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
1430 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1431 &len);
1432 break;
1433 }
1434 wreq.wi_val[0] = htole16(sc->sc_system_scale);
1435 len = sizeof(u_int16_t);
1436 break;
1437
1438 case WI_RID_READ_APS:
1439 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1440 return ieee80211_cfgget(ifp, cmd, data);
1441 if (sc->sc_scan_timer > 0) {
1442 error = EINPROGRESS;
1443 break;
1444 }
1445 n = sc->sc_naps;
1446 if (len < sizeof(n)) {
1447 error = ENOSPC;
1448 break;
1449 }
1450 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
1451 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
1452 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
1453 memcpy(wreq.wi_val, &n, sizeof(n));
1454 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
1455 sizeof(struct wi_apinfo) * n);
1456 break;
1457
1458 default:
1459 if (sc->sc_enabled) {
1460 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1461 &len);
1462 break;
1463 }
1464 switch (wreq.wi_type) {
1465 case WI_RID_MAX_DATALEN:
1466 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
1467 len = sizeof(u_int16_t);
1468 break;
1469 case WI_RID_RTS_THRESH:
1470 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
1471 len = sizeof(u_int16_t);
1472 break;
1473 case WI_RID_CNFAUTHMODE:
1474 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
1475 len = sizeof(u_int16_t);
1476 break;
1477 case WI_RID_NODENAME:
1478 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
1479 error = ENOSPC;
1480 break;
1481 }
1482 len = sc->sc_nodelen + sizeof(u_int16_t);
1483 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
1484 memcpy(&wreq.wi_val[1], sc->sc_nodename,
1485 sc->sc_nodelen);
1486 break;
1487 default:
1488 return ieee80211_cfgget(ifp, cmd, data);
1489 }
1490 break;
1491 }
1492 if (error)
1493 return error;
1494 wreq.wi_len = (len + 1) / 2 + 1;
1495 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
1496 }
1497
1498 static int
1499 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1500 {
1501 struct wi_softc *sc = ifp->if_softc;
1502 struct ieee80211com *ic = &sc->sc_ic;
1503 struct ifreq *ifr = (struct ifreq *)data;
1504 struct wi_req wreq;
1505 struct mbuf *m;
1506 int i, len, error;
1507
1508 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1509 if (error)
1510 return error;
1511 len = (wreq.wi_len - 1) * 2;
1512 switch (wreq.wi_type) {
1513 case WI_RID_NODENAME:
1514 if (le16toh(wreq.wi_val[0]) * 2 > len ||
1515 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
1516 error = ENOSPC;
1517 break;
1518 }
1519 if (sc->sc_enabled) {
1520 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1521 len);
1522 if (error)
1523 break;
1524 }
1525 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
1526 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
1527 break;
1528
1529 case WI_RID_MICROWAVE_OVEN:
1530 case WI_RID_ROAMING_MODE:
1531 case WI_RID_SYSTEM_SCALE:
1532 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
1533 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
1534 break;
1535 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
1536 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
1537 break;
1538 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
1539 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
1540 break;
1541 /* FALLTHROUGH */
1542 case WI_RID_RTS_THRESH:
1543 case WI_RID_CNFAUTHMODE:
1544 case WI_RID_MAX_DATALEN:
1545 if (sc->sc_enabled) {
1546 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1547 sizeof(u_int16_t));
1548 if (error)
1549 break;
1550 }
1551 switch (wreq.wi_type) {
1552 case WI_RID_RTS_THRESH:
1553 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
1554 break;
1555 case WI_RID_MICROWAVE_OVEN:
1556 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
1557 break;
1558 case WI_RID_ROAMING_MODE:
1559 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
1560 break;
1561 case WI_RID_SYSTEM_SCALE:
1562 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
1563 break;
1564 case WI_RID_CNFAUTHMODE:
1565 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
1566 break;
1567 case WI_RID_MAX_DATALEN:
1568 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
1569 break;
1570 }
1571 break;
1572
1573 case WI_RID_TX_RATE:
1574 switch (le16toh(wreq.wi_val[0])) {
1575 case 3:
1576 ic->ic_fixed_rate = -1;
1577 break;
1578 default:
1579 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1580 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL)
1581 / 2 == le16toh(wreq.wi_val[0]))
1582 break;
1583 }
1584 if (i == IEEE80211_RATE_SIZE)
1585 return EINVAL;
1586 ic->ic_fixed_rate = i;
1587 }
1588 if (sc->sc_enabled)
1589 error = wi_write_txrate(sc);
1590 break;
1591
1592 case WI_RID_SCAN_APS:
1593 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
1594 error = wi_scan_ap(sc);
1595 break;
1596
1597 case WI_RID_MGMT_XMIT:
1598 if (!sc->sc_enabled) {
1599 error = ENETDOWN;
1600 break;
1601 }
1602 if (ic->ic_mgtq.ifq_len > 5) {
1603 error = EAGAIN;
1604 break;
1605 }
1606 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
1607 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
1608 if (m == NULL) {
1609 error = ENOMEM;
1610 break;
1611 }
1612 IF_ENQUEUE(&ic->ic_mgtq, m);
1613 break;
1614
1615 default:
1616 if (sc->sc_enabled) {
1617 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1618 len);
1619 if (error)
1620 break;
1621 }
1622 error = ieee80211_cfgset(ifp, cmd, data);
1623 break;
1624 }
1625 return error;
1626 }
1627
1628 static int
1629 wi_write_txrate(struct wi_softc *sc)
1630 {
1631 struct ieee80211com *ic = &sc->sc_ic;
1632 int i;
1633 u_int16_t rate;
1634
1635 if (ic->ic_fixed_rate < 0)
1636 rate = 0; /* auto */
1637 else
1638 rate = (ic->ic_sup_rates[ic->ic_fixed_rate] &
1639 IEEE80211_RATE_VAL) / 2;
1640
1641 /* rate: 0, 1, 2, 5, 11 */
1642
1643 switch (sc->sc_firmware_type) {
1644 case WI_LUCENT:
1645 if (rate == 0)
1646 rate = 3; /* auto */
1647 break;
1648 default:
1649 for (i = 8; i > 0; i >>= 1) {
1650 if (rate >= i)
1651 break;
1652 }
1653 if (i == 0)
1654 rate = 0xf; /* auto */
1655 else
1656 rate = i;
1657 break;
1658 }
1659 return wi_write_val(sc, WI_RID_TX_RATE, rate);
1660 }
1661
1662 static int
1663 wi_write_wep(struct wi_softc *sc)
1664 {
1665 struct ieee80211com *ic = &sc->sc_ic;
1666 int error = 0;
1667 int i, keylen;
1668 u_int16_t val;
1669 struct wi_key wkey[IEEE80211_WEP_NKID];
1670
1671 switch (sc->sc_firmware_type) {
1672 case WI_LUCENT:
1673 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
1674 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
1675 if (error)
1676 break;
1677 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
1678 if (error)
1679 break;
1680 memset(wkey, 0, sizeof(wkey));
1681 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1682 keylen = ic->ic_nw_keys[i].wk_len;
1683 wkey[i].wi_keylen = htole16(keylen);
1684 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
1685 keylen);
1686 }
1687 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
1688 wkey, sizeof(wkey));
1689 break;
1690
1691 case WI_INTERSIL:
1692 case WI_SYMBOL:
1693 if (ic->ic_flags & IEEE80211_F_WEPON) {
1694 /*
1695 * ONLY HWB3163 EVAL-CARD Firmware version
1696 * less than 0.8 variant2
1697 *
1698 * If promiscuous mode disable, Prism2 chip
1699 * does not work with WEP .
1700 * It is under investigation for details.
1701 * (ichiro (at) netbsd.org)
1702 */
1703 if (sc->sc_firmware_type == WI_INTERSIL &&
1704 sc->sc_sta_firmware_ver < 802 ) {
1705 /* firm ver < 0.8 variant 2 */
1706 wi_write_val(sc, WI_RID_PROMISC, 1);
1707 }
1708 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1709 sc->sc_cnfauthmode);
1710 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
1711 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1712 val |= HOST_ENCRYPT;
1713 } else {
1714 wi_write_val(sc, WI_RID_CNFAUTHMODE, 1); /* open */
1715 val = HOST_ENCRYPT | HOST_DECRYPT;
1716 }
1717 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
1718 if (error)
1719 break;
1720 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
1721 ic->ic_wep_txkey);
1722 if (error)
1723 break;
1724 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1725 keylen = ic->ic_nw_keys[i].wk_len;
1726 if (keylen > IEEE80211_WEP_KEYLEN)
1727 keylen = 13; /* 104bit keys */
1728 else
1729 keylen = IEEE80211_WEP_KEYLEN;
1730 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
1731 ic->ic_nw_keys[i].wk_key, keylen);
1732 if (error)
1733 break;
1734 }
1735 break;
1736 }
1737 return error;
1738 }
1739
1740 /* Must be called at proper protection level! */
1741 static int
1742 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
1743 {
1744 int i, status;
1745
1746 /* wait for the busy bit to clear */
1747 for (i = 0; ; i++) {
1748 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
1749 break;
1750 if (i == WI_TIMEOUT) {
1751 printf("%s: wi_cmd: BUSY did not clear, "
1752 "cmd=0x%x, prev=0x%x\n", sc->sc_dev.dv_xname,
1753 cmd, CSR_READ_2(sc, WI_COMMAND));
1754 return EIO;
1755 }
1756 DELAY(1);
1757 }
1758
1759 CSR_WRITE_2(sc, WI_PARAM0, val0);
1760 CSR_WRITE_2(sc, WI_PARAM1, val1);
1761 CSR_WRITE_2(sc, WI_PARAM2, val2);
1762 CSR_WRITE_2(sc, WI_COMMAND, cmd);
1763
1764 if (cmd == WI_CMD_INI) {
1765 /* XXX: should sleep here. */
1766 DELAY(100*1000);
1767 }
1768 /* wait for the cmd completed bit */
1769 for (i = 0; i < WI_TIMEOUT; i++) {
1770 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
1771 break;
1772 DELAY(1);
1773 }
1774
1775 status = CSR_READ_2(sc, WI_STATUS);
1776
1777 /* Ack the command */
1778 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1779
1780 if (i == WI_TIMEOUT) {
1781 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
1782 sc->sc_dev.dv_xname, cmd, val0);
1783 return ETIMEDOUT;
1784 }
1785
1786 if (status & WI_STAT_CMD_RESULT) {
1787 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
1788 sc->sc_dev.dv_xname, cmd, val0);
1789 return EIO;
1790 }
1791 return 0;
1792 }
1793
1794 static int
1795 wi_seek_bap(struct wi_softc *sc, int id, int off)
1796 {
1797 int i, status;
1798
1799 CSR_WRITE_2(sc, WI_SEL0, id);
1800 CSR_WRITE_2(sc, WI_OFF0, off);
1801
1802 for (i = 0; ; i++) {
1803 status = CSR_READ_2(sc, WI_OFF0);
1804 if ((status & WI_OFF_BUSY) == 0)
1805 break;
1806 if (i == WI_TIMEOUT) {
1807 printf("%s: timeout in wi_seek to %x/%x\n",
1808 sc->sc_dev.dv_xname, id, off);
1809 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1810 return ETIMEDOUT;
1811 }
1812 DELAY(1);
1813 }
1814 if (status & WI_OFF_ERR) {
1815 printf("%s: failed in wi_seek to %x/%x\n",
1816 sc->sc_dev.dv_xname, id, off);
1817 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1818 return EIO;
1819 }
1820 sc->sc_bap_id = id;
1821 sc->sc_bap_off = off;
1822 return 0;
1823 }
1824
1825 static int
1826 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1827 {
1828 int error, cnt;
1829
1830 if (buflen == 0)
1831 return 0;
1832 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1833 if ((error = wi_seek_bap(sc, id, off)) != 0)
1834 return error;
1835 }
1836 cnt = (buflen + 1) / 2;
1837 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1838 sc->sc_bap_off += cnt * 2;
1839 return 0;
1840 }
1841
1842 static int
1843 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1844 {
1845 int error, cnt;
1846
1847 if (buflen == 0)
1848 return 0;
1849
1850 #ifdef WI_HERMES_AUTOINC_WAR
1851 again:
1852 #endif
1853 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1854 if ((error = wi_seek_bap(sc, id, off)) != 0)
1855 return error;
1856 }
1857 cnt = (buflen + 1) / 2;
1858 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1859 sc->sc_bap_off += cnt * 2;
1860
1861 #ifdef WI_HERMES_AUTOINC_WAR
1862 /*
1863 * According to the comments in the HCF Light code, there is a bug
1864 * in the Hermes (or possibly in certain Hermes firmware revisions)
1865 * where the chip's internal autoincrement counter gets thrown off
1866 * during data writes: the autoincrement is missed, causing one
1867 * data word to be overwritten and subsequent words to be written to
1868 * the wrong memory locations. The end result is that we could end
1869 * up transmitting bogus frames without realizing it. The workaround
1870 * for this is to write a couple of extra guard words after the end
1871 * of the transfer, then attempt to read then back. If we fail to
1872 * locate the guard words where we expect them, we preform the
1873 * transfer over again.
1874 */
1875 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
1876 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1877 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1878 wi_seek_bap(sc, id, sc->sc_bap_off);
1879 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1880 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1881 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
1882 printf("%s: detect auto increment bug, try again\n",
1883 sc->sc_dev.dv_xname);
1884 goto again;
1885 }
1886 }
1887 #endif
1888 return 0;
1889 }
1890
1891 static int
1892 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
1893 {
1894 int i;
1895
1896 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
1897 printf("%s: failed to allocate %d bytes on NIC\n",
1898 sc->sc_dev.dv_xname, len);
1899 return ENOMEM;
1900 }
1901
1902 for (i = 0; i < WI_TIMEOUT; i++) {
1903 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1904 break;
1905 if (i == WI_TIMEOUT) {
1906 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
1907 return ETIMEDOUT;
1908 }
1909 DELAY(1);
1910 }
1911 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
1912 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1913 return 0;
1914 }
1915
1916 static int
1917 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
1918 {
1919 int error, len;
1920 u_int16_t ltbuf[2];
1921
1922 /* Tell the NIC to enter record read mode. */
1923 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
1924 if (error)
1925 return error;
1926
1927 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
1928 if (error)
1929 return error;
1930
1931 if (le16toh(ltbuf[1]) != rid) {
1932 printf("%s: record read mismatch, rid=%x, got=%x\n",
1933 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
1934 return EIO;
1935 }
1936 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
1937 if (*buflenp < len) {
1938 printf("%s: record buffer is too small, "
1939 "rid=%x, size=%d, len=%d\n",
1940 sc->sc_dev.dv_xname, rid, *buflenp, len);
1941 return ENOSPC;
1942 }
1943 *buflenp = len;
1944 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
1945 }
1946
1947 static int
1948 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
1949 {
1950 int error;
1951 u_int16_t ltbuf[2];
1952
1953 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
1954 ltbuf[1] = htole16(rid);
1955
1956 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
1957 if (error)
1958 return error;
1959 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
1960 if (error)
1961 return error;
1962
1963 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
1964 }
1965
1966 static int
1967 wi_newstate(void *arg, enum ieee80211_state nstate)
1968 {
1969 struct wi_softc *sc = arg;
1970 struct ieee80211com *ic = &sc->sc_ic;
1971 struct ieee80211_node *ni = &ic->ic_bss;
1972 int buflen;
1973 u_int16_t val;
1974 struct wi_ssid ssid;
1975 enum ieee80211_state ostate;
1976 #ifdef WI_DEBUG
1977 static const char *stname[] =
1978 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
1979 #endif /* WI_DEBUG */
1980
1981 ostate = ic->ic_state;
1982 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
1983
1984 ic->ic_state = nstate;
1985 switch (nstate) {
1986 case IEEE80211_S_INIT:
1987 ic->ic_flags &= ~IEEE80211_F_SIBSS;
1988 return 0;
1989
1990 case IEEE80211_S_RUN:
1991 buflen = IEEE80211_ADDR_LEN;
1992 wi_read_rid(sc, WI_RID_CURRENT_BSSID, ni->ni_bssid, &buflen);
1993 IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
1994 buflen = sizeof(val);
1995 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
1996 ni->ni_chan = le16toh(val);
1997
1998 buflen = sizeof(ssid);
1999 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2000 ni->ni_esslen = le16toh(ssid.wi_len);
2001 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2002 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2003 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2004 break;
2005
2006 case IEEE80211_S_SCAN:
2007 case IEEE80211_S_AUTH:
2008 case IEEE80211_S_ASSOC:
2009 break;
2010 }
2011
2012 /* skip standard ieee80211 handling */
2013 return EINPROGRESS;
2014 }
2015
2016 static int
2017 wi_scan_ap(struct wi_softc *sc)
2018 {
2019 int error = 0;
2020 u_int16_t val[2];
2021
2022 if (!sc->sc_enabled)
2023 return ENXIO;
2024 switch (sc->sc_firmware_type) {
2025 case WI_LUCENT:
2026 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2027 break;
2028 case WI_INTERSIL:
2029 val[0] = 0x3fff; /* channel */
2030 val[1] = 0x000f; /* tx rate */
2031 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2032 break;
2033 case WI_SYMBOL:
2034 /*
2035 * XXX only supported on 3.x ?
2036 */
2037 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2038 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2039 val, sizeof(val[0]));
2040 break;
2041 }
2042 if (error == 0) {
2043 sc->sc_scan_timer = WI_SCAN_WAIT;
2044 sc->sc_ic.ic_if.if_timer = 1;
2045 DPRINTF(("wi_scan_ap: start scanning\n"));
2046 }
2047 return error;
2048 }
2049
2050 static void
2051 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2052 {
2053 int i, naps, off, szbuf;
2054 struct wi_scan_header ws_hdr; /* Prism2 header */
2055 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2056 struct wi_apinfo *ap;
2057
2058 off = sizeof(u_int16_t) * 2;
2059 memset(&ws_hdr, 0, sizeof(ws_hdr));
2060 switch (sc->sc_firmware_type) {
2061 case WI_INTERSIL:
2062 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2063 off += sizeof(ws_hdr);
2064 szbuf = sizeof(struct wi_scan_data_p2);
2065 break;
2066 case WI_SYMBOL:
2067 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2068 break;
2069 case WI_LUCENT:
2070 szbuf = sizeof(struct wi_scan_data);
2071 break;
2072 }
2073 naps = (cnt * 2 + 2 - off) / szbuf;
2074 if (naps > MAXAPINFO)
2075 naps = MAXAPINFO;
2076 sc->sc_naps = naps;
2077 /* Read Data */
2078 ap = sc->sc_aps;
2079 memset(&ws_dat, 0, sizeof(ws_dat));
2080 for (i = 0; i < naps; i++, ap++) {
2081 wi_read_bap(sc, fid, off, &ws_dat,
2082 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2083 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
2084 ether_sprintf(ws_dat.wi_bssid)));
2085 off += szbuf;
2086 ap->scanreason = le16toh(ws_hdr.wi_reason);
2087 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2088 ap->channel = le16toh(ws_dat.wi_chid);
2089 ap->signal = le16toh(ws_dat.wi_signal);
2090 ap->noise = le16toh(ws_dat.wi_noise);
2091 ap->quality = ap->signal - ap->noise;
2092 ap->capinfo = le16toh(ws_dat.wi_capinfo);
2093 ap->interval = le16toh(ws_dat.wi_interval);
2094 ap->rate = le16toh(ws_dat.wi_rate);
2095 ap->namelen = le16toh(ws_dat.wi_namelen);
2096 if (ap->namelen > sizeof(ap->name))
2097 ap->namelen = sizeof(ap->name);
2098 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2099 }
2100 /* Done scanning */
2101 sc->sc_scan_timer = 0;
2102 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
2103 }
2104