wi.c revision 1.92 1 /* $NetBSD: wi.c,v 1.92 2002/10/01 03:24:35 onoe Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.92 2002/10/01 03:24:35 onoe Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static int wi_init(struct ifnet *);
108 static void wi_stop(struct ifnet *, int);
109 static void wi_start(struct ifnet *);
110 static int wi_reset(struct wi_softc *);
111 static void wi_watchdog(struct ifnet *);
112 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
113 static int wi_media_change(struct ifnet *);
114 static void wi_media_status(struct ifnet *, struct ifmediareq *);
115
116 static void wi_rx_intr(struct wi_softc *);
117 static void wi_tx_intr(struct wi_softc *);
118 static void wi_info_intr(struct wi_softc *);
119
120 static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
121 static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
122 static int wi_write_txrate(struct wi_softc *);
123 static int wi_write_wep(struct wi_softc *);
124 static int wi_write_multi(struct wi_softc *);
125 static int wi_alloc_fid(struct wi_softc *, int, int *);
126 static void wi_read_nicid(struct wi_softc *);
127 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
128
129 static int wi_cmd(struct wi_softc *, int, int, int, int);
130 static int wi_seek_bap(struct wi_softc *, int, int);
131 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
132 static int wi_write_bap(struct wi_softc *, int, int, void *, int);
133 static int wi_read_rid(struct wi_softc *, int, void *, int *);
134 static int wi_write_rid(struct wi_softc *, int, void *, int);
135
136 static int wi_newstate(void *, enum ieee80211_state);
137
138 static int wi_scan_ap(struct wi_softc *);
139 static void wi_scan_result(struct wi_softc *, int, int);
140
141 static inline int
142 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
143 {
144
145 val = htole16(val);
146 return wi_write_rid(sc, rid, &val, sizeof(val));
147 }
148
149 #ifdef WI_DEBUG
150 int wi_debug = 0;
151
152 #define DPRINTF(X) if (wi_debug) printf X
153 #define DPRINTF2(X) if (wi_debug > 1) printf X
154 #else
155 #define DPRINTF(X)
156 #define DPRINTF2(X)
157 #endif
158
159 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
160
161 struct wi_card_ident
162 wi_card_ident[] = {
163 /* CARD_ID CARD_NAME FIRM_TYPE */
164 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
165 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
166 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
167 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
168 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
169 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
170 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
171 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
172 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
173 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
174 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
175 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
176 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
177 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
178 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
179 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
180 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
181 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
182 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
183 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
184 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
185 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
186 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
187 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
188 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
189 { 0, NULL, 0 },
190 };
191
192 int
193 wi_attach(struct wi_softc *sc)
194 {
195 struct ieee80211com *ic = &sc->sc_ic;
196 struct ifnet *ifp = &ic->ic_if;
197 int i, nrate, mword, buflen;
198 u_int8_t r;
199 u_int16_t val;
200 u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
201 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
202 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
203 };
204 int s;
205
206 s = splnet();
207
208 /* Make sure interrupts are disabled. */
209 CSR_WRITE_2(sc, WI_INT_EN, 0);
210 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
211
212 /* Reset the NIC. */
213 if (wi_reset(sc) != 0) {
214 splx(s);
215 return 1;
216 }
217
218 buflen = IEEE80211_ADDR_LEN;
219 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
220 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
221 printf(" could not get mac address, attach failed\n");
222 splx(s);
223 return 1;
224 }
225
226 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
227
228 /* Read NIC identification */
229 wi_read_nicid(sc);
230
231 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
232 ifp->if_softc = sc;
233 ifp->if_start = wi_start;
234 ifp->if_ioctl = wi_ioctl;
235 ifp->if_watchdog = wi_watchdog;
236 ifp->if_init = wi_init;
237 ifp->if_stop = wi_stop;
238 ifp->if_flags =
239 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
240 IFQ_SET_READY(&ifp->if_snd);
241
242 ic->ic_phytype = IEEE80211_T_DS;
243 ic->ic_opmode = IEEE80211_M_STA;
244 ic->ic_flags = IEEE80211_F_HASPMGT | IEEE80211_F_HASAHDEMO;
245 ic->ic_state = IEEE80211_S_INIT;
246 ic->ic_newstate = wi_newstate;
247
248 /* Find available channel */
249 buflen = sizeof(val);
250 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
251 val = htole16(0x1fff); /* assume 1-11 */
252 for (i = 0; i < 16; i++) {
253 if (isset((u_int8_t*)&val, i))
254 setbit(ic->ic_chan_avail, i + 1);
255 }
256
257 /* Find default IBSS channel */
258 buflen = sizeof(val);
259 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0)
260 ic->ic_ibss_chan = le16toh(val);
261 else {
262 /* use lowest available channel */
263 for (i = 0; i < 16; i++) {
264 if (isset(ic->ic_chan_avail, i))
265 break;
266 }
267 ic->ic_ibss_chan = i;
268 }
269
270 /*
271 * Set flags based on firmware version.
272 */
273 switch (sc->sc_firmware_type) {
274 case WI_LUCENT:
275 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
276 #ifdef WI_HERMES_AUTOINC_WAR
277 /* XXX: not confirmed, but never seen for recent firmware */
278 if (sc->sc_sta_firmware_ver < 40000) {
279 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
280 }
281 #endif
282 if (sc->sc_sta_firmware_ver >= 60000)
283 sc->sc_flags |= WI_FLAGS_HAS_MOR;
284 if (sc->sc_sta_firmware_ver >= 60006)
285 ic->ic_flags |= IEEE80211_F_HASIBSS;
286 sc->sc_ibss_port = 1;
287 break;
288
289 case WI_INTERSIL:
290 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
291 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
292 if (sc->sc_sta_firmware_ver >= 800) {
293 ic->ic_flags |= IEEE80211_F_HASHOSTAP;
294 ic->ic_flags |= IEEE80211_F_HASIBSS;
295 }
296 sc->sc_ibss_port = 0;
297 break;
298
299 case WI_SYMBOL:
300 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
301 if (sc->sc_sta_firmware_ver >= 25000)
302 ic->ic_flags |= IEEE80211_F_HASIBSS;
303 sc->sc_ibss_port = 4;
304 break;
305 }
306
307 /*
308 * Find out if we support WEP on this card.
309 */
310 buflen = sizeof(val);
311 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
312 val != htole16(0))
313 ic->ic_flags |= IEEE80211_F_HASWEP;
314
315 /* Find supported rates. */
316 buflen = sizeof(ratebuf);
317 if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
318 nrate = le16toh(*(u_int16_t *)ratebuf);
319 if (nrate > IEEE80211_RATE_SIZE)
320 nrate = IEEE80211_RATE_SIZE;
321 memcpy(ic->ic_sup_rates, ratebuf + 2, nrate);
322 }
323 buflen = sizeof(val);
324
325 sc->sc_max_datalen = 2304;
326 sc->sc_rts_thresh = 2347;
327 sc->sc_system_scale = 1;
328 sc->sc_cnfauthmode = 1;
329 sc->sc_roaming_mode = 1;
330
331 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
332 printf("%s: supported rates: ", sc->sc_dev.dv_xname);
333 #define ADD(s, o) ifmedia_add(&sc->sc_media, \
334 IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL)
335 ADD(IFM_AUTO, 0);
336 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
337 ADD(IFM_AUTO, IFM_IEEE80211_HOSTAP);
338 if (ic->ic_flags & IEEE80211_F_HASIBSS)
339 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC);
340 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC | IFM_FLAG0);
341 for (i = 0; i < nrate; i++) {
342 r = ic->ic_sup_rates[i];
343 mword = ieee80211_rate2media(r, IEEE80211_T_DS);
344 if (mword == 0)
345 continue;
346 printf("%s%d%sMbps", (i != 0 ? " " : ""),
347 (r & IEEE80211_RATE_VAL) / 2, ((r & 0x1) != 0 ? ".5" : ""));
348 ADD(mword, 0);
349 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
350 ADD(mword, IFM_IEEE80211_HOSTAP);
351 if (ic->ic_flags & IEEE80211_F_HASIBSS)
352 ADD(mword, IFM_IEEE80211_ADHOC);
353 ADD(mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
354 }
355 printf("\n");
356 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
357 #undef ADD
358
359 /*
360 * Call MI attach routines.
361 */
362
363 if_attach(ifp);
364 ieee80211_ifattach(ifp);
365
366 /* Attach is successful. */
367 sc->sc_attached = 1;
368
369 splx(s);
370 return 0;
371 }
372
373 int
374 wi_detach(struct wi_softc *sc)
375 {
376 struct ifnet *ifp = &sc->sc_ic.ic_if;
377 int s;
378
379 if (!sc->sc_attached)
380 return 0;
381
382 s = splnet();
383
384 /* Delete all remaining media. */
385 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
386
387 ieee80211_ifdetach(ifp);
388 if_detach(ifp);
389 if (sc->sc_enabled) {
390 if (sc->sc_disable)
391 (*sc->sc_disable)(sc);
392 sc->sc_enabled = 0;
393 }
394 splx(s);
395 return 0;
396 }
397
398 int
399 wi_activate(struct device *self, enum devact act)
400 {
401 struct wi_softc *sc = (struct wi_softc *)self;
402 int rv = 0, s;
403
404 s = splnet();
405 switch (act) {
406 case DVACT_ACTIVATE:
407 rv = EOPNOTSUPP;
408 break;
409
410 case DVACT_DEACTIVATE:
411 if_deactivate(&sc->sc_ic.ic_if);
412 break;
413 }
414 splx(s);
415 return rv;
416 }
417
418 void
419 wi_power(struct wi_softc *sc, int why)
420 {
421 struct ifnet *ifp = &sc->sc_ic.ic_if;
422 int s;
423
424 s = splnet();
425 switch (why) {
426 case PWR_SUSPEND:
427 case PWR_STANDBY:
428 wi_stop(ifp, 1);
429 break;
430 case PWR_RESUME:
431 if (ifp->if_flags & IFF_UP) {
432 wi_init(ifp);
433 (void)wi_intr(sc);
434 }
435 break;
436 case PWR_SOFTSUSPEND:
437 case PWR_SOFTSTANDBY:
438 case PWR_SOFTRESUME:
439 break;
440 }
441 splx(s);
442 }
443
444 void
445 wi_shutdown(struct wi_softc *sc)
446 {
447 struct ifnet *ifp = &sc->sc_ic.ic_if;
448
449 if (sc->sc_attached)
450 wi_stop(ifp, 1);
451 }
452
453 int
454 wi_intr(void *arg)
455 {
456 int i;
457 struct wi_softc *sc = arg;
458 struct ifnet *ifp = &sc->sc_ic.ic_if;
459 u_int16_t status, raw_status, last_status;
460
461 if (sc->sc_enabled == 0 ||
462 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
463 (ifp->if_flags & IFF_RUNNING) == 0)
464 return 0;
465
466 if ((ifp->if_flags & IFF_UP) == 0) {
467 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
468 CSR_WRITE_2(sc, WI_INT_EN, 0);
469 return 1;
470 }
471
472 /* maximum 10 loops per interrupt */
473 last_status = 0;
474 for (i = 0; i < 10; i++) {
475 /*
476 * Only believe a status bit when we enter wi_intr, or when
477 * the bit was "off" the last time through the loop. This is
478 * my strategy to avoid racing the hardware/firmware if I
479 * can re-read the event status register more quickly than
480 * it is updated.
481 */
482 raw_status = CSR_READ_2(sc, WI_EVENT_STAT);
483 status = raw_status & ~last_status;
484 if ((status & WI_INTRS) == 0)
485 break;
486 last_status = raw_status;
487
488 if (status & WI_EV_RX)
489 wi_rx_intr(sc);
490
491 if (status & WI_EV_ALLOC)
492 wi_tx_intr(sc);
493
494 if (status & WI_EV_INFO)
495 wi_info_intr(sc);
496
497 if (!(ifp->if_flags & IFF_OACTIVE) &&
498 !IFQ_IS_EMPTY(&ifp->if_snd))
499 wi_start(ifp);
500 }
501
502 return 1;
503 }
504
505 static int
506 wi_init(struct ifnet *ifp)
507 {
508 struct wi_softc *sc = ifp->if_softc;
509 struct ieee80211com *ic = &sc->sc_ic;
510 struct wi_joinreq join;
511 int i;
512 int error = 0, wasenabled;
513
514 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
515 wasenabled = sc->sc_enabled;
516 if (!sc->sc_enabled) {
517 if ((error = (*sc->sc_enable)(sc)) != 0)
518 goto out;
519 sc->sc_enabled = 1;
520 } else
521 wi_stop(ifp, 0);
522
523 /* Symbol firmware cannot be initialized more than once */
524 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
525 if ((error = wi_reset(sc)) != 0)
526 goto out;
527 }
528
529 /* common 802.11 configuration */
530 switch (ic->ic_opmode) {
531 case IEEE80211_M_STA:
532 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
533 break;
534 case IEEE80211_M_IBSS:
535 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
536 break;
537 case IEEE80211_M_AHDEMO:
538 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
539 break;
540 case IEEE80211_M_HOSTAP:
541 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
542 break;
543 }
544
545 /* Intersil interprets this RID as joining ESS even in IBSS mode */
546 if (sc->sc_firmware_type == WI_LUCENT &&
547 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
548 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
549 else
550 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
551 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
552 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
553 ic->ic_des_esslen);
554 wi_write_val(sc, WI_RID_OWN_CHNL, ic->ic_ibss_chan);
555 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
556 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
557 wi_write_val(sc, WI_RID_PM_ENABLED,
558 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
559
560 /* not yet common 802.11 configuration */
561 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
562 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
563
564 /* driver specific 802.11 configuration */
565 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
566 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
567 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
568 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
569 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
570 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
571 wi_write_txrate(sc);
572 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
573
574 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
575 /* XXX: these configurations may be intersil only */
576 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
577 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
578 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
579 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
580 }
581
582 /*
583 * Initialize promisc mode.
584 * Being in the Host-AP mode causes a great
585 * deal of pain if primisc mode is set.
586 * Therefore we avoid confusing the firmware
587 * and always reset promisc mode in Host-AP
588 * mode. Host-AP sees all the packets anyway.
589 */
590 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
591 (ifp->if_flags & IFF_PROMISC) != 0) {
592 wi_write_val(sc, WI_RID_PROMISC, 1);
593 } else {
594 wi_write_val(sc, WI_RID_PROMISC, 0);
595 }
596
597 /* Configure WEP. */
598 if (ic->ic_flags & IEEE80211_F_HASWEP)
599 wi_write_wep(sc);
600
601 /* Set multicast filter. */
602 wi_write_multi(sc);
603
604 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
605 if (sc->sc_firmware_type == WI_SYMBOL)
606 sc->sc_buflen = 1585; /* XXX */
607 for (i = 0; i < WI_NTXBUF; i++) {
608 error = wi_alloc_fid(sc, sc->sc_buflen,
609 &sc->sc_txd[i].d_fid);
610 if (error) {
611 printf("%s: tx buffer allocation failed\n",
612 sc->sc_dev.dv_xname);
613 goto out;
614 }
615 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
616 sc->sc_txd[i].d_fid));
617 sc->sc_txd[i].d_len = 0;
618 }
619 sc->sc_txcur = sc->sc_txnext = 0;
620 if (ic->ic_opmode == IEEE80211_M_IBSS)
621 ic->ic_flags |= IEEE80211_F_IBSSON;
622 else
623 ic->ic_flags &= ~IEEE80211_F_IBSSON;
624
625 /* Enable port 0 */
626 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
627 ifp->if_flags |= IFF_RUNNING;
628 ifp->if_flags &= ~IFF_OACTIVE;
629 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
630 ic->ic_opmode == IEEE80211_M_HOSTAP)
631 wi_newstate(sc, IEEE80211_S_RUN);
632
633 /* Enable interrupts */
634 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
635
636 if (!wasenabled && ic->ic_opmode == IEEE80211_M_HOSTAP) {
637 /* XXX: some card need to be re-enabled for hostap */
638 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
639 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
640 }
641
642 if (ic->ic_opmode == IEEE80211_M_STA &&
643 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
644 ic->ic_des_chan != IEEE80211_CHAN_ANY)) {
645 memset(&join, 0, sizeof(join));
646 if (ic->ic_flags & IEEE80211_F_DESBSSID)
647 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
648 if (ic->ic_des_chan != IEEE80211_CHAN_ANY)
649 join.wi_chan = htole16(ic->ic_des_chan);
650 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
651 }
652
653 out:
654 if (error) {
655 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
656 wi_stop(ifp, 1);
657 }
658 DPRINTF(("wi_init: return %d\n", error));
659 return error;
660 }
661
662 static void
663 wi_stop(struct ifnet *ifp, int disable)
664 {
665 struct wi_softc *sc = ifp->if_softc;
666
667 DPRINTF(("wi_stop: disable %d\n", disable));
668 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
669 if (sc->sc_enabled) {
670 CSR_WRITE_2(sc, WI_INT_EN, 0);
671 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
672 if (disable) {
673 if (sc->sc_disable)
674 (*sc->sc_disable)(sc);
675 sc->sc_enabled = 0;
676 }
677 }
678
679 sc->sc_tx_timer = 0;
680 sc->sc_scan_timer = 0;
681 sc->sc_naps = 0;
682 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
683 ifp->if_timer = 0;
684 }
685
686 static void
687 wi_start(struct ifnet *ifp)
688 {
689 struct wi_softc *sc = ifp->if_softc;
690 struct ieee80211com *ic = &sc->sc_ic;
691 struct ieee80211_frame *wh;
692 struct mbuf *m0, *m;
693 struct wi_frame frmhdr;
694 int cur, fid, off;
695
696 if (ifp->if_flags & IFF_OACTIVE)
697 return;
698
699 memset(&frmhdr, 0, sizeof(frmhdr));
700 cur = sc->sc_txnext;
701 for (;;) {
702 IF_POLL(&ic->ic_mgtq, m0);
703 if (m0 != NULL) {
704 if (sc->sc_txd[cur].d_len != 0) {
705 ifp->if_flags |= IFF_OACTIVE;
706 break;
707 }
708 IF_DEQUEUE(&ic->ic_mgtq, m0);
709 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
710 (caddr_t)&frmhdr.wi_ehdr);
711 frmhdr.wi_ehdr.ether_type = 0;
712 wh = mtod(m0, struct ieee80211_frame *);
713 } else {
714 if (ic->ic_state != IEEE80211_S_RUN)
715 break;
716 IFQ_POLL(&ifp->if_snd, m0);
717 if (m0 == NULL)
718 break;
719 if (sc->sc_txd[cur].d_len != 0) {
720 ifp->if_flags |= IFF_OACTIVE;
721 break;
722 }
723 IFQ_DEQUEUE(&ifp->if_snd, m0);
724 ifp->if_opackets++;
725 m_copydata(m0, 0, ETHER_HDR_LEN,
726 (caddr_t)&frmhdr.wi_ehdr);
727 #if NBPFILTER > 0
728 if (ifp->if_bpf)
729 bpf_mtap(ifp->if_bpf, m0);
730 #endif
731
732 if ((m0 = ieee80211_encap(ifp, m0)) == NULL) {
733 ifp->if_oerrors++;
734 continue;
735 }
736 wh = mtod(m0, struct ieee80211_frame *);
737 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
738 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
739 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
740 IEEE80211_FC0_TYPE_DATA &&
741 ieee80211_find_node(ic, wh->i_addr1) == NULL) {
742 m_freem(m0);
743 ifp->if_oerrors++;
744 continue;
745 }
746 if (ic->ic_flags & IEEE80211_F_WEPON)
747 wh->i_fc[1] |= IEEE80211_FC1_WEP;
748
749 }
750 #if NBPFILTER > 0
751 if (ic->ic_rawbpf)
752 bpf_mtap(ic->ic_rawbpf, m0);
753 #endif
754 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11);
755 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
756 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
757 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
758 ifp->if_oerrors++;
759 continue;
760 }
761 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
762 }
763 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
764 (caddr_t)&frmhdr.wi_whdr);
765 m_adj(m0, sizeof(struct ieee80211_frame));
766 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
767 #if NBPFILTER > 0
768 if (sc->sc_drvbpf) {
769 struct mbuf mb;
770
771 M_COPY_PKTHDR(&mb, m0);
772 mb.m_data = (caddr_t)&frmhdr;
773 mb.m_len = sizeof(frmhdr);
774 mb.m_next = m0;
775 mb.m_pkthdr.len += mb.m_len;
776 bpf_mtap(sc->sc_drvbpf, &mb);
777 }
778 #endif
779 fid = sc->sc_txd[cur].d_fid;
780 wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr));
781 off = sizeof(frmhdr);
782 for (m = m0; m != NULL; m = m->m_next) {
783 if (m->m_len == 0)
784 continue;
785 wi_write_bap(sc, fid, off, m->m_data, m->m_len);
786 off += m->m_len;
787 }
788 m_freem(m0);
789 sc->sc_txd[cur].d_len = off;
790 if (sc->sc_txcur == cur) {
791 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
792 printf("%s: xmit failed\n",
793 sc->sc_dev.dv_xname);
794 sc->sc_txd[cur].d_len = 0;
795 continue;
796 }
797 sc->sc_tx_timer = 5;
798 ifp->if_timer = 1;
799 }
800 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF;
801 }
802 }
803
804
805 static int
806 wi_reset(struct wi_softc *sc)
807 {
808 int i, error;
809
810 DPRINTF(("wi_reset\n"));
811 error = 0;
812 for (i = 0; i < 5; i++) {
813 DELAY(20*1000); /* XXX: way too long! */
814 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
815 break;
816 }
817 if (error) {
818 printf("%s: init failed\n", sc->sc_dev.dv_xname);
819 return error;
820 }
821 CSR_WRITE_2(sc, WI_INT_EN, 0);
822 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
823
824 /* Calibrate timer. */
825 wi_write_val(sc, WI_RID_TICK_TIME, 0);
826 return 0;
827 }
828
829 static void
830 wi_watchdog(struct ifnet *ifp)
831 {
832 struct wi_softc *sc = ifp->if_softc;
833
834 ifp->if_timer = 0;
835 if (!sc->sc_enabled)
836 return;
837
838 if (sc->sc_tx_timer) {
839 if (--sc->sc_tx_timer == 0) {
840 printf("%s: device timeout\n", ifp->if_xname);
841 ifp->if_oerrors++;
842 wi_init(ifp);
843 return;
844 }
845 ifp->if_timer = 1;
846 }
847
848 if (sc->sc_scan_timer) {
849 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
850 sc->sc_firmware_type == WI_INTERSIL) {
851 DPRINTF(("wi_watchdog: inquire scan\n"));
852 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
853 }
854 if (sc->sc_scan_timer)
855 ifp->if_timer = 1;
856 }
857
858 /* TODO: rate control */
859 ieee80211_watchdog(ifp);
860 }
861
862 static int
863 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
864 {
865 struct wi_softc *sc = ifp->if_softc;
866 struct ieee80211com *ic = &sc->sc_ic;
867 struct ifreq *ifr = (struct ifreq *)data;
868 int s, error = 0;
869
870 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
871 return ENXIO;
872
873 s = splnet();
874
875 switch (cmd) {
876 case SIOCSIFFLAGS:
877 if (ifp->if_flags & IFF_UP) {
878 if (sc->sc_enabled) {
879 /*
880 * To avoid rescanning another access point,
881 * do not call wi_init() here. Instead,
882 * only reflect promisc mode settings.
883 */
884 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
885 (ifp->if_flags & IFF_PROMISC) != 0)
886 wi_write_val(sc, WI_RID_PROMISC, 1);
887 else
888 wi_write_val(sc, WI_RID_PROMISC, 0);
889 } else
890 error = wi_init(ifp);
891 } else if (sc->sc_enabled)
892 wi_stop(ifp, 1);
893 break;
894 case SIOCSIFMEDIA:
895 case SIOCGIFMEDIA:
896 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
897 break;
898 case SIOCADDMULTI:
899 case SIOCDELMULTI:
900 error = (cmd == SIOCADDMULTI) ?
901 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
902 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
903 if (error == ENETRESET) {
904 if (sc->sc_enabled) {
905 /* do not rescan */
906 error = wi_write_multi(sc);
907 } else
908 error = 0;
909 }
910 break;
911 case SIOCGIFGENERIC:
912 error = wi_get_cfg(ifp, cmd, data);
913 break;
914 case SIOCSIFGENERIC:
915 error = suser(curproc->p_ucred, &curproc->p_acflag);
916 if (error)
917 break;
918 error = wi_set_cfg(ifp, cmd, data);
919 if (error == ENETRESET) {
920 if (sc->sc_enabled)
921 error = wi_init(ifp);
922 else
923 error = 0;
924 }
925 break;
926 default:
927 error = ieee80211_ioctl(ifp, cmd, data);
928 if (error == ENETRESET) {
929 if (sc->sc_enabled)
930 error = wi_init(ifp);
931 else
932 error = 0;
933 }
934 break;
935 }
936 splx(s);
937 return error;
938 }
939
940 static int
941 wi_media_change(struct ifnet *ifp)
942 {
943 struct wi_softc *sc = ifp->if_softc;
944 struct ieee80211com *ic = &sc->sc_ic;
945 struct ifmedia_entry *ime;
946 enum ieee80211_opmode newmode;
947 int i, rate, error = 0;
948
949 ime = sc->sc_media.ifm_cur;
950 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
951 i = -1;
952 } else {
953 rate = ieee80211_media2rate(ime->ifm_media, IEEE80211_T_DS);
954 if (rate == 0)
955 return EINVAL;
956 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
957 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL) == rate)
958 break;
959 }
960 if (i == IEEE80211_RATE_SIZE)
961 return EINVAL;
962 }
963 if (ic->ic_fixed_rate != i) {
964 ic->ic_fixed_rate = i;
965 error = ENETRESET;
966 }
967
968 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
969 (ime->ifm_media & IFM_FLAG0))
970 newmode = IEEE80211_M_AHDEMO;
971 else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
972 newmode = IEEE80211_M_IBSS;
973 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
974 newmode = IEEE80211_M_HOSTAP;
975 else
976 newmode = IEEE80211_M_STA;
977 if (ic->ic_opmode != newmode) {
978 ic->ic_opmode = newmode;
979 error = ENETRESET;
980 }
981 if (error == ENETRESET) {
982 if (sc->sc_enabled)
983 error = wi_init(ifp);
984 else
985 error = 0;
986 }
987 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
988
989 return error;
990 }
991
992 static void
993 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
994 {
995 struct wi_softc *sc = ifp->if_softc;
996 struct ieee80211com *ic = &sc->sc_ic;
997 u_int16_t val;
998 int rate, len;
999
1000 if (sc->sc_enabled == 0) {
1001 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1002 imr->ifm_status = 0;
1003 return;
1004 }
1005
1006 imr->ifm_status = IFM_AVALID;
1007 imr->ifm_active = IFM_IEEE80211;
1008 if (ic->ic_state == IEEE80211_S_RUN)
1009 imr->ifm_status |= IFM_ACTIVE;
1010 if (ic->ic_fixed_rate != -1)
1011 rate = ic->ic_sup_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1012 else {
1013 len = sizeof(val);
1014 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1015 rate = 0;
1016 else {
1017 /* convert to 802.11 rate */
1018 rate = val * 2;
1019 if (rate == 12)
1020 rate = 11; /* 5.5Mbps */
1021 }
1022 }
1023 imr->ifm_active |= ieee80211_rate2media(rate, IEEE80211_T_DS);
1024 switch (ic->ic_opmode) {
1025 case IEEE80211_M_STA:
1026 break;
1027 case IEEE80211_M_IBSS:
1028 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1029 break;
1030 case IEEE80211_M_AHDEMO:
1031 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1032 break;
1033 case IEEE80211_M_HOSTAP:
1034 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1035 break;
1036 }
1037 }
1038
1039 static void
1040 wi_rx_intr(struct wi_softc *sc)
1041 {
1042 struct ieee80211com *ic = &sc->sc_ic;
1043 struct ifnet *ifp = &ic->ic_if;
1044 struct wi_frame frmhdr;
1045 struct mbuf *m;
1046 struct ieee80211_frame *wh;
1047 u_int16_t status;
1048 int fid, len, off;
1049
1050 fid = CSR_READ_2(sc, WI_RX_FID);
1051
1052 /* First read in the frame header */
1053 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1054 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1055 ifp->if_ierrors++;
1056 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1057 return;
1058 }
1059
1060 /*
1061 * Drop undecryptable or packets with receive errors here
1062 */
1063 status = le16toh(frmhdr.wi_status);
1064 if (status & WI_STAT_ERRSTAT) {
1065 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1066 ifp->if_ierrors++;
1067 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1068 return;
1069 }
1070
1071 len = le16toh(frmhdr.wi_dat_len);
1072 off = ALIGN(sizeof(struct ieee80211_frame));
1073
1074 MGETHDR(m, M_DONTWAIT, MT_DATA);
1075 if (m == NULL) {
1076 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1077 ifp->if_ierrors++;
1078 DPRINTF(("wi_rx_intr: MGET failed\n"));
1079 return;
1080 }
1081 if (off + len > MHLEN) {
1082 MCLGET(m, M_DONTWAIT);
1083 if ((m->m_flags & M_EXT) == 0) {
1084 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1085 m_freem(m);
1086 ifp->if_ierrors++;
1087 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1088 return;
1089 }
1090 }
1091
1092 m->m_data += off - sizeof(struct ieee80211_frame);
1093 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1094 wi_read_bap(sc, fid, sizeof(frmhdr),
1095 m->m_data + sizeof(struct ieee80211_frame), len);
1096 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1097 m->m_pkthdr.rcvif = ifp;
1098
1099 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1100
1101 #if NBPFILTER > 0
1102 if (sc->sc_drvbpf) {
1103 struct mbuf mb;
1104
1105 M_COPY_PKTHDR(&mb, m);
1106 mb.m_data = (caddr_t)&frmhdr;
1107 mb.m_len = sizeof(frmhdr);
1108 mb.m_next = m;
1109 mb.m_pkthdr.len += mb.m_len;
1110 bpf_mtap(sc->sc_drvbpf, &mb);
1111 }
1112 #endif
1113 wh = mtod(m, struct ieee80211_frame *);
1114 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1115 /*
1116 * WEP is decrypted by hardware. Clear WEP bit
1117 * header for ieee80211_input().
1118 */
1119 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1120 }
1121 ieee80211_input(ifp, m, 0 /*rssi*/, 0 /*rstamp*/);
1122 }
1123
1124 static void
1125 wi_tx_intr(struct wi_softc *sc)
1126 {
1127 struct ieee80211com *ic = &sc->sc_ic;
1128 struct ifnet *ifp = &ic->ic_if;
1129 int fid, cur;
1130
1131 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1132 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1133
1134 cur = sc->sc_txcur;
1135 if (sc->sc_txd[cur].d_fid != fid) {
1136 printf("%s: bad alloc %x != %x\n",
1137 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid);
1138 return;
1139 }
1140 sc->sc_tx_timer = 0;
1141 sc->sc_txd[cur].d_len = 0;
1142 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF;
1143 if (sc->sc_txd[cur].d_len == 0)
1144 ifp->if_flags &= ~IFF_OACTIVE;
1145 else {
1146 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1147 0, 0)) {
1148 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1149 sc->sc_txd[cur].d_len = 0;
1150 } else {
1151 sc->sc_tx_timer = 5;
1152 ifp->if_timer = 1;
1153 }
1154 }
1155 }
1156
1157 static void
1158 wi_info_intr(struct wi_softc *sc)
1159 {
1160 struct ieee80211com *ic = &sc->sc_ic;
1161 struct ifnet *ifp = &ic->ic_if;
1162 int i, fid, len, off;
1163 u_int16_t ltbuf[2];
1164 u_int16_t stat;
1165 u_int32_t *ptr;
1166
1167 fid = CSR_READ_2(sc, WI_INFO_FID);
1168 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1169
1170 switch (le16toh(ltbuf[1])) {
1171
1172 case WI_INFO_LINK_STAT:
1173 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1174 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1175 switch (le16toh(stat)) {
1176 case CONNECTED:
1177 if (ic->ic_state == IEEE80211_S_RUN)
1178 break;
1179 /* FALLTHROUGH */
1180 case AP_CHANGE:
1181 case AP_IN_RANGE:
1182 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
1183 break;
1184 case AP_OUT_OF_RANGE:
1185 if (sc->sc_firmware_type == WI_SYMBOL &&
1186 sc->sc_scan_timer > 0) {
1187 if (wi_cmd(sc, WI_CMD_INQUIRE,
1188 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1189 sc->sc_scan_timer = 0;
1190 break;
1191 }
1192 /* FALLTHROUGH */
1193 case DISCONNECTED:
1194 case ASSOC_FAILED:
1195 if (ic->ic_opmode == IEEE80211_M_STA)
1196 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
1197 break;
1198 }
1199 break;
1200
1201 case WI_INFO_COUNTERS:
1202 /* some card versions have a larger stats structure */
1203 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1204 ptr = (u_int32_t *)&sc->sc_stats;
1205 off = sizeof(ltbuf);
1206 for (i = 0; i < len; i++, off += 2, ptr++) {
1207 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1208 #ifdef WI_HERMES_STATS_WAR
1209 if (stat & 0xf000)
1210 stat = ~stat;
1211 #endif
1212 *ptr += stat;
1213 }
1214 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1215 sc->sc_stats.wi_tx_multi_retries +
1216 sc->sc_stats.wi_tx_retry_limit;
1217 break;
1218
1219 case WI_INFO_SCAN_RESULTS:
1220 case WI_INFO_HOST_SCAN_RESULTS:
1221 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1222 break;
1223
1224 default:
1225 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1226 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1227 break;
1228 }
1229 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1230 }
1231
1232 /*
1233 * Allocate a region of memory inside the NIC and zero
1234 * it out.
1235 */
1236 static int
1237 wi_write_multi(struct wi_softc *sc)
1238 {
1239 struct ifnet *ifp = &sc->sc_ic.ic_if;
1240 int n = 0;
1241 struct wi_mcast mlist;
1242 struct ether_multi *enm;
1243 struct ether_multistep estep;
1244
1245 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1246 allmulti:
1247 ifp->if_flags |= IFF_ALLMULTI;
1248 memset(&mlist, 0, sizeof(mlist));
1249 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1250 sizeof(mlist));
1251 }
1252
1253 n = 0;
1254 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1255 while (enm != NULL) {
1256 /* Punt on ranges or too many multicast addresses. */
1257 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1258 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1259 goto allmulti;
1260
1261 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1262 n++;
1263 ETHER_NEXT_MULTI(estep, enm);
1264 }
1265 ifp->if_flags &= ~IFF_ALLMULTI;
1266 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1267 IEEE80211_ADDR_LEN * n);
1268 }
1269
1270
1271 static void
1272 wi_read_nicid(sc)
1273 struct wi_softc *sc;
1274 {
1275 struct wi_card_ident *id;
1276 char *p;
1277 int len;
1278 u_int16_t ver[4];
1279
1280 /* getting chip identity */
1281 memset(ver, 0, sizeof(ver));
1282 len = sizeof(ver);
1283 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1284 printf("%s: using ", sc->sc_dev.dv_xname);
1285 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1286
1287 sc->sc_firmware_type = WI_NOTYPE;
1288 for (id = wi_card_ident; id->card_name != NULL; id++) {
1289 if (le16toh(ver[0]) == id->card_id) {
1290 printf("%s", id->card_name);
1291 sc->sc_firmware_type = id->firm_type;
1292 break;
1293 }
1294 }
1295 if (sc->sc_firmware_type == WI_NOTYPE) {
1296 if (le16toh(ver[0]) & 0x8000) {
1297 printf("Unknown PRISM2 chip");
1298 sc->sc_firmware_type = WI_INTERSIL;
1299 } else {
1300 printf("Unknown Lucent chip");
1301 sc->sc_firmware_type = WI_LUCENT;
1302 }
1303 }
1304
1305 /* get primary firmware version (Only Prism chips) */
1306 if (sc->sc_firmware_type != WI_LUCENT) {
1307 memset(ver, 0, sizeof(ver));
1308 len = sizeof(ver);
1309 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1310 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1311 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1312 DPRINTF2(("wi_read_nicid: PRI_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1313 }
1314
1315 /* get station firmware version */
1316 memset(ver, 0, sizeof(ver));
1317 len = sizeof(ver);
1318 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1319 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1320 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1321 DPRINTF2(("wi_read_nicid: STA_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1322 if (sc->sc_firmware_type == WI_INTERSIL &&
1323 (sc->sc_sta_firmware_ver == 10102 ||
1324 sc->sc_sta_firmware_ver == 20102)) {
1325 char ident[12];
1326 memset(ident, 0, sizeof(ident));
1327 len = sizeof(ident);
1328 /* value should be the format like "V2.00-11" */
1329 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1330 *(p = (char *)ident) >= 'A' &&
1331 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1332 sc->sc_firmware_type = WI_SYMBOL;
1333 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1334 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1335 (p[6] - '0') * 10 + (p[7] - '0');
1336 }
1337 DPRINTF2(("wi_read_nicid: SYMBOL_ID: %x %x %x %x\n", le16toh(ident[0]), le16toh(ident[1]), le16toh(ident[2]), le16toh(ident[3])));
1338 }
1339
1340 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1341 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1342 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1343 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1344 printf("Primary (%u.%u.%u), ",
1345 sc->sc_pri_firmware_ver / 10000,
1346 (sc->sc_pri_firmware_ver % 10000) / 100,
1347 sc->sc_pri_firmware_ver % 100);
1348 printf("Station (%u.%u.%u)\n",
1349 sc->sc_sta_firmware_ver / 10000,
1350 (sc->sc_sta_firmware_ver % 10000) / 100,
1351 sc->sc_sta_firmware_ver % 100);
1352 }
1353
1354 static int
1355 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1356 {
1357 struct wi_ssid ssid;
1358
1359 if (buflen > IEEE80211_NWID_LEN)
1360 return ENOBUFS;
1361 ssid.wi_len = htole16(buflen);
1362 memcpy(ssid.wi_ssid, buf, buflen);
1363 return wi_write_rid(sc, rid, &ssid, sizeof(ssid.wi_len) + buflen);
1364 }
1365
1366 static int
1367 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1368 {
1369 struct wi_softc *sc = ifp->if_softc;
1370 struct ieee80211com *ic = &sc->sc_ic;
1371 struct ifreq *ifr = (struct ifreq *)data;
1372 struct wi_req wreq;
1373 int len, n, error;
1374
1375 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1376 if (error)
1377 return error;
1378 len = (wreq.wi_len - 1) * 2;
1379 if (len < sizeof(u_int16_t))
1380 return ENOSPC;
1381 if (len > sizeof(wreq.wi_val))
1382 len = sizeof(wreq.wi_val);
1383
1384 switch (wreq.wi_type) {
1385
1386 case WI_RID_IFACE_STATS:
1387 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1388 if (len < sizeof(sc->sc_stats))
1389 error = ENOSPC;
1390 else
1391 len = sizeof(sc->sc_stats);
1392 break;
1393
1394 case WI_RID_ENCRYPTION:
1395 case WI_RID_TX_CRYPT_KEY:
1396 case WI_RID_DEFLT_CRYPT_KEYS:
1397 return ieee80211_cfgget(ifp, cmd, data);
1398
1399 case WI_RID_TX_RATE:
1400 if (ic->ic_fixed_rate < 0)
1401 wreq.wi_val[0] = htole16(3); /*XXX*/
1402 else
1403 wreq.wi_val[0] = htole16(
1404 (ic->ic_sup_rates[ic->ic_fixed_rate] &
1405 IEEE80211_RATE_VAL) / 2);
1406 len = sizeof(u_int16_t);
1407 break;
1408
1409 case WI_RID_MICROWAVE_OVEN:
1410 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1411 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1412 &len);
1413 break;
1414 }
1415 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1416 len = sizeof(u_int16_t);
1417 break;
1418
1419 case WI_RID_ROAMING_MODE:
1420 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
1421 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1422 &len);
1423 break;
1424 }
1425 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
1426 len = sizeof(u_int16_t);
1427 break;
1428
1429 case WI_RID_SYSTEM_SCALE:
1430 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
1431 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1432 &len);
1433 break;
1434 }
1435 wreq.wi_val[0] = htole16(sc->sc_system_scale);
1436 len = sizeof(u_int16_t);
1437 break;
1438
1439 case WI_RID_READ_APS:
1440 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1441 return ieee80211_cfgget(ifp, cmd, data);
1442 if (sc->sc_scan_timer > 0) {
1443 error = EINPROGRESS;
1444 break;
1445 }
1446 n = sc->sc_naps;
1447 if (len < sizeof(n)) {
1448 error = ENOSPC;
1449 break;
1450 }
1451 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
1452 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
1453 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
1454 memcpy(wreq.wi_val, &n, sizeof(n));
1455 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
1456 sizeof(struct wi_apinfo) * n);
1457 break;
1458
1459 default:
1460 if (sc->sc_enabled) {
1461 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1462 &len);
1463 break;
1464 }
1465 switch (wreq.wi_type) {
1466 case WI_RID_MAX_DATALEN:
1467 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
1468 len = sizeof(u_int16_t);
1469 break;
1470 case WI_RID_RTS_THRESH:
1471 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
1472 len = sizeof(u_int16_t);
1473 break;
1474 case WI_RID_CNFAUTHMODE:
1475 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
1476 len = sizeof(u_int16_t);
1477 break;
1478 case WI_RID_NODENAME:
1479 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
1480 error = ENOSPC;
1481 break;
1482 }
1483 len = sc->sc_nodelen + sizeof(u_int16_t);
1484 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
1485 memcpy(&wreq.wi_val[1], sc->sc_nodename,
1486 sc->sc_nodelen);
1487 break;
1488 default:
1489 return ieee80211_cfgget(ifp, cmd, data);
1490 }
1491 break;
1492 }
1493 if (error)
1494 return error;
1495 wreq.wi_len = (len + 1) / 2 + 1;
1496 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
1497 }
1498
1499 static int
1500 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1501 {
1502 struct wi_softc *sc = ifp->if_softc;
1503 struct ieee80211com *ic = &sc->sc_ic;
1504 struct ifreq *ifr = (struct ifreq *)data;
1505 struct wi_req wreq;
1506 struct mbuf *m;
1507 int i, len, error;
1508
1509 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1510 if (error)
1511 return error;
1512 len = (wreq.wi_len - 1) * 2;
1513 switch (wreq.wi_type) {
1514 case WI_RID_NODENAME:
1515 if (le16toh(wreq.wi_val[0]) * 2 > len ||
1516 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
1517 error = ENOSPC;
1518 break;
1519 }
1520 if (sc->sc_enabled) {
1521 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1522 len);
1523 if (error)
1524 break;
1525 }
1526 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
1527 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
1528 break;
1529
1530 case WI_RID_MICROWAVE_OVEN:
1531 case WI_RID_ROAMING_MODE:
1532 case WI_RID_SYSTEM_SCALE:
1533 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
1534 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
1535 break;
1536 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
1537 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
1538 break;
1539 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
1540 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
1541 break;
1542 /* FALLTHROUGH */
1543 case WI_RID_RTS_THRESH:
1544 case WI_RID_CNFAUTHMODE:
1545 case WI_RID_MAX_DATALEN:
1546 if (sc->sc_enabled) {
1547 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1548 sizeof(u_int16_t));
1549 if (error)
1550 break;
1551 }
1552 switch (wreq.wi_type) {
1553 case WI_RID_RTS_THRESH:
1554 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
1555 break;
1556 case WI_RID_MICROWAVE_OVEN:
1557 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
1558 break;
1559 case WI_RID_ROAMING_MODE:
1560 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
1561 break;
1562 case WI_RID_SYSTEM_SCALE:
1563 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
1564 break;
1565 case WI_RID_CNFAUTHMODE:
1566 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
1567 break;
1568 case WI_RID_MAX_DATALEN:
1569 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
1570 break;
1571 }
1572 break;
1573
1574 case WI_RID_TX_RATE:
1575 switch (le16toh(wreq.wi_val[0])) {
1576 case 3:
1577 ic->ic_fixed_rate = -1;
1578 break;
1579 default:
1580 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1581 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL)
1582 / 2 == le16toh(wreq.wi_val[0]))
1583 break;
1584 }
1585 if (i == IEEE80211_RATE_SIZE)
1586 return EINVAL;
1587 ic->ic_fixed_rate = i;
1588 }
1589 if (sc->sc_enabled)
1590 error = wi_write_txrate(sc);
1591 break;
1592
1593 case WI_RID_SCAN_APS:
1594 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
1595 error = wi_scan_ap(sc);
1596 break;
1597
1598 case WI_RID_MGMT_XMIT:
1599 if (!sc->sc_enabled) {
1600 error = ENETDOWN;
1601 break;
1602 }
1603 if (ic->ic_mgtq.ifq_len > 5) {
1604 error = EAGAIN;
1605 break;
1606 }
1607 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
1608 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
1609 if (m == NULL) {
1610 error = ENOMEM;
1611 break;
1612 }
1613 IF_ENQUEUE(&ic->ic_mgtq, m);
1614 break;
1615
1616 default:
1617 if (sc->sc_enabled) {
1618 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1619 len);
1620 if (error)
1621 break;
1622 }
1623 error = ieee80211_cfgset(ifp, cmd, data);
1624 break;
1625 }
1626 return error;
1627 }
1628
1629 static int
1630 wi_write_txrate(struct wi_softc *sc)
1631 {
1632 struct ieee80211com *ic = &sc->sc_ic;
1633 int i;
1634 u_int16_t rate;
1635
1636 if (ic->ic_fixed_rate < 0)
1637 rate = 0; /* auto */
1638 else
1639 rate = (ic->ic_sup_rates[ic->ic_fixed_rate] &
1640 IEEE80211_RATE_VAL) / 2;
1641
1642 /* rate: 0, 1, 2, 5, 11 */
1643
1644 switch (sc->sc_firmware_type) {
1645 case WI_LUCENT:
1646 if (rate == 0)
1647 rate = 3; /* auto */
1648 break;
1649 default:
1650 for (i = 8; i > 0; i >>= 1) {
1651 if (rate >= i)
1652 break;
1653 }
1654 if (i == 0)
1655 rate = 0xf; /* auto */
1656 else
1657 rate = i;
1658 break;
1659 }
1660 return wi_write_val(sc, WI_RID_TX_RATE, rate);
1661 }
1662
1663 static int
1664 wi_write_wep(struct wi_softc *sc)
1665 {
1666 struct ieee80211com *ic = &sc->sc_ic;
1667 int error = 0;
1668 int i, keylen;
1669 u_int16_t val;
1670 struct wi_key wkey[IEEE80211_WEP_NKID];
1671
1672 switch (sc->sc_firmware_type) {
1673 case WI_LUCENT:
1674 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
1675 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
1676 if (error)
1677 break;
1678 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
1679 if (error)
1680 break;
1681 memset(wkey, 0, sizeof(wkey));
1682 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1683 keylen = ic->ic_nw_keys[i].wk_len;
1684 wkey[i].wi_keylen = htole16(keylen);
1685 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
1686 keylen);
1687 }
1688 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
1689 wkey, sizeof(wkey));
1690 break;
1691
1692 case WI_INTERSIL:
1693 case WI_SYMBOL:
1694 if (ic->ic_flags & IEEE80211_F_WEPON) {
1695 /*
1696 * ONLY HWB3163 EVAL-CARD Firmware version
1697 * less than 0.8 variant2
1698 *
1699 * If promiscuous mode disable, Prism2 chip
1700 * does not work with WEP .
1701 * It is under investigation for details.
1702 * (ichiro (at) netbsd.org)
1703 */
1704 if (sc->sc_firmware_type == WI_INTERSIL &&
1705 sc->sc_sta_firmware_ver < 802 ) {
1706 /* firm ver < 0.8 variant 2 */
1707 wi_write_val(sc, WI_RID_PROMISC, 1);
1708 }
1709 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1710 sc->sc_cnfauthmode);
1711 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
1712 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1713 val |= HOST_ENCRYPT;
1714 } else {
1715 wi_write_val(sc, WI_RID_CNFAUTHMODE, 1); /* open */
1716 val = HOST_ENCRYPT | HOST_DECRYPT;
1717 }
1718 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
1719 if (error)
1720 break;
1721 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
1722 ic->ic_wep_txkey);
1723 if (error)
1724 break;
1725 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1726 keylen = ic->ic_nw_keys[i].wk_len;
1727 if (keylen > IEEE80211_WEP_KEYLEN)
1728 keylen = 13; /* 104bit keys */
1729 else
1730 keylen = IEEE80211_WEP_KEYLEN;
1731 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
1732 ic->ic_nw_keys[i].wk_key, keylen);
1733 if (error)
1734 break;
1735 }
1736 break;
1737 }
1738 return error;
1739 }
1740
1741 /* Must be called at proper protection level! */
1742 static int
1743 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
1744 {
1745 int i, status;
1746
1747 /* wait for the busy bit to clear */
1748 for (i = 0; ; i++) {
1749 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
1750 break;
1751 if (i == WI_TIMEOUT) {
1752 printf("%s: wi_cmd: BUSY did not clear, "
1753 "cmd=0x%x, prev=0x%x\n", sc->sc_dev.dv_xname,
1754 cmd, CSR_READ_2(sc, WI_COMMAND));
1755 return EIO;
1756 }
1757 DELAY(1);
1758 }
1759
1760 CSR_WRITE_2(sc, WI_PARAM0, val0);
1761 CSR_WRITE_2(sc, WI_PARAM1, val1);
1762 CSR_WRITE_2(sc, WI_PARAM2, val2);
1763 CSR_WRITE_2(sc, WI_COMMAND, cmd);
1764
1765 if (cmd == WI_CMD_INI) {
1766 /* XXX: should sleep here. */
1767 DELAY(100*1000);
1768 }
1769 /* wait for the cmd completed bit */
1770 for (i = 0; i < WI_TIMEOUT; i++) {
1771 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
1772 break;
1773 DELAY(1);
1774 }
1775
1776 status = CSR_READ_2(sc, WI_STATUS);
1777
1778 /* Ack the command */
1779 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1780
1781 if (i == WI_TIMEOUT) {
1782 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
1783 sc->sc_dev.dv_xname, cmd, val0);
1784 return ETIMEDOUT;
1785 }
1786
1787 if (status & WI_STAT_CMD_RESULT) {
1788 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
1789 sc->sc_dev.dv_xname, cmd, val0);
1790 return EIO;
1791 }
1792 return 0;
1793 }
1794
1795 static int
1796 wi_seek_bap(struct wi_softc *sc, int id, int off)
1797 {
1798 int i, status;
1799
1800 CSR_WRITE_2(sc, WI_SEL0, id);
1801 CSR_WRITE_2(sc, WI_OFF0, off);
1802
1803 for (i = 0; ; i++) {
1804 status = CSR_READ_2(sc, WI_OFF0);
1805 if ((status & WI_OFF_BUSY) == 0)
1806 break;
1807 if (i == WI_TIMEOUT) {
1808 printf("%s: timeout in wi_seek to %x/%x\n",
1809 sc->sc_dev.dv_xname, id, off);
1810 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1811 return ETIMEDOUT;
1812 }
1813 DELAY(1);
1814 }
1815 if (status & WI_OFF_ERR) {
1816 printf("%s: failed in wi_seek to %x/%x\n",
1817 sc->sc_dev.dv_xname, id, off);
1818 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1819 return EIO;
1820 }
1821 sc->sc_bap_id = id;
1822 sc->sc_bap_off = off;
1823 return 0;
1824 }
1825
1826 static int
1827 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1828 {
1829 int error, cnt;
1830
1831 if (buflen == 0)
1832 return 0;
1833 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1834 if ((error = wi_seek_bap(sc, id, off)) != 0)
1835 return error;
1836 }
1837 cnt = (buflen + 1) / 2;
1838 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1839 sc->sc_bap_off += cnt * 2;
1840 return 0;
1841 }
1842
1843 static int
1844 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1845 {
1846 int error, cnt;
1847
1848 if (buflen == 0)
1849 return 0;
1850
1851 #ifdef WI_HERMES_AUTOINC_WAR
1852 again:
1853 #endif
1854 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1855 if ((error = wi_seek_bap(sc, id, off)) != 0)
1856 return error;
1857 }
1858 cnt = (buflen + 1) / 2;
1859 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1860 sc->sc_bap_off += cnt * 2;
1861
1862 #ifdef WI_HERMES_AUTOINC_WAR
1863 /*
1864 * According to the comments in the HCF Light code, there is a bug
1865 * in the Hermes (or possibly in certain Hermes firmware revisions)
1866 * where the chip's internal autoincrement counter gets thrown off
1867 * during data writes: the autoincrement is missed, causing one
1868 * data word to be overwritten and subsequent words to be written to
1869 * the wrong memory locations. The end result is that we could end
1870 * up transmitting bogus frames without realizing it. The workaround
1871 * for this is to write a couple of extra guard words after the end
1872 * of the transfer, then attempt to read then back. If we fail to
1873 * locate the guard words where we expect them, we preform the
1874 * transfer over again.
1875 */
1876 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
1877 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1878 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1879 wi_seek_bap(sc, id, sc->sc_bap_off);
1880 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1881 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1882 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
1883 printf("%s: detect auto increment bug, try again\n",
1884 sc->sc_dev.dv_xname);
1885 goto again;
1886 }
1887 }
1888 #endif
1889 return 0;
1890 }
1891
1892 static int
1893 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
1894 {
1895 int i;
1896
1897 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
1898 printf("%s: failed to allocate %d bytes on NIC\n",
1899 sc->sc_dev.dv_xname, len);
1900 return ENOMEM;
1901 }
1902
1903 for (i = 0; i < WI_TIMEOUT; i++) {
1904 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1905 break;
1906 if (i == WI_TIMEOUT) {
1907 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
1908 return ETIMEDOUT;
1909 }
1910 DELAY(1);
1911 }
1912 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
1913 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1914 return 0;
1915 }
1916
1917 static int
1918 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
1919 {
1920 int error, len;
1921 u_int16_t ltbuf[2];
1922
1923 /* Tell the NIC to enter record read mode. */
1924 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
1925 if (error)
1926 return error;
1927
1928 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
1929 if (error)
1930 return error;
1931
1932 if (le16toh(ltbuf[1]) != rid) {
1933 printf("%s: record read mismatch, rid=%x, got=%x\n",
1934 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
1935 return EIO;
1936 }
1937 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
1938 if (*buflenp < len) {
1939 printf("%s: record buffer is too small, "
1940 "rid=%x, size=%d, len=%d\n",
1941 sc->sc_dev.dv_xname, rid, *buflenp, len);
1942 return ENOSPC;
1943 }
1944 *buflenp = len;
1945 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
1946 }
1947
1948 static int
1949 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
1950 {
1951 int error;
1952 u_int16_t ltbuf[2];
1953
1954 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
1955 ltbuf[1] = htole16(rid);
1956
1957 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
1958 if (error)
1959 return error;
1960 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
1961 if (error)
1962 return error;
1963
1964 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
1965 }
1966
1967 static int
1968 wi_newstate(void *arg, enum ieee80211_state nstate)
1969 {
1970 struct wi_softc *sc = arg;
1971 struct ieee80211com *ic = &sc->sc_ic;
1972 struct ieee80211_node *ni = &ic->ic_bss;
1973 int buflen;
1974 u_int16_t val;
1975 struct wi_ssid ssid;
1976 enum ieee80211_state ostate;
1977 #ifdef WI_DEBUG
1978 static const char *stname[] =
1979 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
1980 #endif /* WI_DEBUG */
1981
1982 ostate = ic->ic_state;
1983 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
1984
1985 ic->ic_state = nstate;
1986 switch (nstate) {
1987 case IEEE80211_S_INIT:
1988 ic->ic_flags &= ~IEEE80211_F_SIBSS;
1989 return 0;
1990
1991 case IEEE80211_S_RUN:
1992 buflen = IEEE80211_ADDR_LEN;
1993 wi_read_rid(sc, WI_RID_CURRENT_BSSID, ni->ni_bssid, &buflen);
1994 IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
1995 buflen = sizeof(val);
1996 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
1997 ni->ni_chan = le16toh(val);
1998
1999 buflen = sizeof(ssid);
2000 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2001 ni->ni_esslen = le16toh(ssid.wi_len);
2002 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2003 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2004 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2005 break;
2006
2007 case IEEE80211_S_SCAN:
2008 case IEEE80211_S_AUTH:
2009 case IEEE80211_S_ASSOC:
2010 break;
2011 }
2012
2013 /* skip standard ieee80211 handling */
2014 return EINPROGRESS;
2015 }
2016
2017 static int
2018 wi_scan_ap(struct wi_softc *sc)
2019 {
2020 int error = 0;
2021 u_int16_t val[2];
2022
2023 if (!sc->sc_enabled)
2024 return ENXIO;
2025 switch (sc->sc_firmware_type) {
2026 case WI_LUCENT:
2027 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2028 break;
2029 case WI_INTERSIL:
2030 val[0] = 0x3fff; /* channel */
2031 val[1] = 0x000f; /* tx rate */
2032 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2033 break;
2034 case WI_SYMBOL:
2035 /*
2036 * XXX only supported on 3.x ?
2037 */
2038 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2039 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2040 val, sizeof(val[0]));
2041 break;
2042 }
2043 if (error == 0) {
2044 sc->sc_scan_timer = WI_SCAN_WAIT;
2045 sc->sc_ic.ic_if.if_timer = 1;
2046 DPRINTF(("wi_scan_ap: start scanning\n"));
2047 }
2048 return error;
2049 }
2050
2051 static void
2052 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2053 {
2054 int i, naps, off, szbuf;
2055 struct wi_scan_header ws_hdr; /* Prism2 header */
2056 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2057 struct wi_apinfo *ap;
2058
2059 off = sizeof(u_int16_t) * 2;
2060 memset(&ws_hdr, 0, sizeof(ws_hdr));
2061 switch (sc->sc_firmware_type) {
2062 case WI_INTERSIL:
2063 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2064 off += sizeof(ws_hdr);
2065 szbuf = sizeof(struct wi_scan_data_p2);
2066 break;
2067 case WI_SYMBOL:
2068 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2069 break;
2070 case WI_LUCENT:
2071 szbuf = sizeof(struct wi_scan_data);
2072 break;
2073 }
2074 naps = (cnt * 2 + 2 - off) / szbuf;
2075 if (naps > MAXAPINFO)
2076 naps = MAXAPINFO;
2077 sc->sc_naps = naps;
2078 /* Read Data */
2079 ap = sc->sc_aps;
2080 memset(&ws_dat, 0, sizeof(ws_dat));
2081 for (i = 0; i < naps; i++, ap++) {
2082 wi_read_bap(sc, fid, off, &ws_dat,
2083 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2084 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
2085 ether_sprintf(ws_dat.wi_bssid)));
2086 off += szbuf;
2087 ap->scanreason = le16toh(ws_hdr.wi_reason);
2088 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2089 ap->channel = le16toh(ws_dat.wi_chid);
2090 ap->signal = le16toh(ws_dat.wi_signal);
2091 ap->noise = le16toh(ws_dat.wi_noise);
2092 ap->quality = ap->signal - ap->noise;
2093 ap->capinfo = le16toh(ws_dat.wi_capinfo);
2094 ap->interval = le16toh(ws_dat.wi_interval);
2095 ap->rate = le16toh(ws_dat.wi_rate);
2096 ap->namelen = le16toh(ws_dat.wi_namelen);
2097 if (ap->namelen > sizeof(ap->name))
2098 ap->namelen = sizeof(ap->name);
2099 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2100 }
2101 /* Done scanning */
2102 sc->sc_scan_timer = 0;
2103 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
2104 }
2105