wi.c revision 1.93 1 /* $NetBSD: wi.c,v 1.93 2002/10/01 03:27:03 onoe Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.93 2002/10/01 03:27:03 onoe Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static int wi_init(struct ifnet *);
108 static void wi_stop(struct ifnet *, int);
109 static void wi_start(struct ifnet *);
110 static int wi_reset(struct wi_softc *);
111 static void wi_watchdog(struct ifnet *);
112 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
113 static int wi_media_change(struct ifnet *);
114 static void wi_media_status(struct ifnet *, struct ifmediareq *);
115
116 static void wi_rx_intr(struct wi_softc *);
117 static void wi_tx_intr(struct wi_softc *);
118 static void wi_info_intr(struct wi_softc *);
119
120 static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
121 static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
122 static int wi_write_txrate(struct wi_softc *);
123 static int wi_write_wep(struct wi_softc *);
124 static int wi_write_multi(struct wi_softc *);
125 static int wi_alloc_fid(struct wi_softc *, int, int *);
126 static void wi_read_nicid(struct wi_softc *);
127 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
128
129 static int wi_cmd(struct wi_softc *, int, int, int, int);
130 static int wi_seek_bap(struct wi_softc *, int, int);
131 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
132 static int wi_write_bap(struct wi_softc *, int, int, void *, int);
133 static int wi_read_rid(struct wi_softc *, int, void *, int *);
134 static int wi_write_rid(struct wi_softc *, int, void *, int);
135
136 static int wi_newstate(void *, enum ieee80211_state);
137
138 static int wi_scan_ap(struct wi_softc *);
139 static void wi_scan_result(struct wi_softc *, int, int);
140
141 static inline int
142 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
143 {
144
145 val = htole16(val);
146 return wi_write_rid(sc, rid, &val, sizeof(val));
147 }
148
149 #ifdef WI_DEBUG
150 int wi_debug = 0;
151
152 #define DPRINTF(X) if (wi_debug) printf X
153 #define DPRINTF2(X) if (wi_debug > 1) printf X
154 #else
155 #define DPRINTF(X)
156 #define DPRINTF2(X)
157 #endif
158
159 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
160
161 struct wi_card_ident
162 wi_card_ident[] = {
163 /* CARD_ID CARD_NAME FIRM_TYPE */
164 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
165 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
166 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
167 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
168 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
169 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
170 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
171 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
172 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
173 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
174 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
175 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
176 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
177 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
178 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
179 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
180 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
181 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
182 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
183 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
184 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
185 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
186 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
187 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
188 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
189 { 0, NULL, 0 },
190 };
191
192 int
193 wi_attach(struct wi_softc *sc)
194 {
195 struct ieee80211com *ic = &sc->sc_ic;
196 struct ifnet *ifp = &ic->ic_if;
197 int i, nrate, mword, buflen;
198 u_int8_t r;
199 u_int16_t val;
200 u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
201 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
202 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
203 };
204 int s;
205
206 s = splnet();
207
208 /* Make sure interrupts are disabled. */
209 CSR_WRITE_2(sc, WI_INT_EN, 0);
210 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
211
212 /* Reset the NIC. */
213 if (wi_reset(sc) != 0) {
214 splx(s);
215 return 1;
216 }
217
218 buflen = IEEE80211_ADDR_LEN;
219 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
220 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
221 printf(" could not get mac address, attach failed\n");
222 splx(s);
223 return 1;
224 }
225
226 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
227
228 /* Read NIC identification */
229 wi_read_nicid(sc);
230
231 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
232 ifp->if_softc = sc;
233 ifp->if_start = wi_start;
234 ifp->if_ioctl = wi_ioctl;
235 ifp->if_watchdog = wi_watchdog;
236 ifp->if_init = wi_init;
237 ifp->if_stop = wi_stop;
238 ifp->if_flags =
239 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
240 IFQ_SET_READY(&ifp->if_snd);
241
242 ic->ic_phytype = IEEE80211_T_DS;
243 ic->ic_opmode = IEEE80211_M_STA;
244 ic->ic_flags = IEEE80211_F_HASPMGT | IEEE80211_F_HASAHDEMO;
245 ic->ic_state = IEEE80211_S_INIT;
246 ic->ic_newstate = wi_newstate;
247
248 /* Find available channel */
249 buflen = sizeof(val);
250 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
251 val = htole16(0x1fff); /* assume 1-11 */
252 for (i = 0; i < 16; i++) {
253 if (isset((u_int8_t*)&val, i))
254 setbit(ic->ic_chan_avail, i + 1);
255 }
256
257 /* Find default IBSS channel */
258 buflen = sizeof(val);
259 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0)
260 ic->ic_ibss_chan = le16toh(val);
261 else {
262 /* use lowest available channel */
263 for (i = 0; i < 16; i++) {
264 if (isset(ic->ic_chan_avail, i))
265 break;
266 }
267 ic->ic_ibss_chan = i;
268 }
269
270 /*
271 * Set flags based on firmware version.
272 */
273 switch (sc->sc_firmware_type) {
274 case WI_LUCENT:
275 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
276 #ifdef WI_HERMES_AUTOINC_WAR
277 /* XXX: not confirmed, but never seen for recent firmware */
278 if (sc->sc_sta_firmware_ver < 40000) {
279 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
280 }
281 #endif
282 if (sc->sc_sta_firmware_ver >= 60000)
283 sc->sc_flags |= WI_FLAGS_HAS_MOR;
284 if (sc->sc_sta_firmware_ver >= 60006)
285 ic->ic_flags |= IEEE80211_F_HASIBSS;
286 sc->sc_ibss_port = 1;
287 break;
288
289 case WI_INTERSIL:
290 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
291 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
292 if (sc->sc_sta_firmware_ver >= 800) {
293 ic->ic_flags |= IEEE80211_F_HASHOSTAP;
294 ic->ic_flags |= IEEE80211_F_HASIBSS;
295 }
296 sc->sc_ibss_port = 0;
297 break;
298
299 case WI_SYMBOL:
300 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
301 if (sc->sc_sta_firmware_ver >= 25000)
302 ic->ic_flags |= IEEE80211_F_HASIBSS;
303 sc->sc_ibss_port = 4;
304 break;
305 }
306
307 /*
308 * Find out if we support WEP on this card.
309 */
310 buflen = sizeof(val);
311 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
312 val != htole16(0))
313 ic->ic_flags |= IEEE80211_F_HASWEP;
314
315 /* Find supported rates. */
316 buflen = sizeof(ratebuf);
317 if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
318 nrate = le16toh(*(u_int16_t *)ratebuf);
319 if (nrate > IEEE80211_RATE_SIZE)
320 nrate = IEEE80211_RATE_SIZE;
321 memcpy(ic->ic_sup_rates, ratebuf + 2, nrate);
322 }
323 buflen = sizeof(val);
324
325 sc->sc_max_datalen = 2304;
326 sc->sc_rts_thresh = 2347;
327 sc->sc_system_scale = 1;
328 sc->sc_cnfauthmode = 1;
329 sc->sc_roaming_mode = 1;
330
331 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
332 printf("%s: supported rates: ", sc->sc_dev.dv_xname);
333 #define ADD(s, o) ifmedia_add(&sc->sc_media, \
334 IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL)
335 ADD(IFM_AUTO, 0);
336 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
337 ADD(IFM_AUTO, IFM_IEEE80211_HOSTAP);
338 if (ic->ic_flags & IEEE80211_F_HASIBSS)
339 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC);
340 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC | IFM_FLAG0);
341 for (i = 0; i < nrate; i++) {
342 r = ic->ic_sup_rates[i];
343 mword = ieee80211_rate2media(r, IEEE80211_T_DS);
344 if (mword == 0)
345 continue;
346 printf("%s%d%sMbps", (i != 0 ? " " : ""),
347 (r & IEEE80211_RATE_VAL) / 2, ((r & 0x1) != 0 ? ".5" : ""));
348 ADD(mword, 0);
349 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
350 ADD(mword, IFM_IEEE80211_HOSTAP);
351 if (ic->ic_flags & IEEE80211_F_HASIBSS)
352 ADD(mword, IFM_IEEE80211_ADHOC);
353 ADD(mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
354 }
355 printf("\n");
356 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
357 #undef ADD
358
359 /*
360 * Call MI attach routines.
361 */
362
363 if_attach(ifp);
364 ieee80211_ifattach(ifp);
365
366 /* Attach is successful. */
367 sc->sc_attached = 1;
368
369 splx(s);
370 return 0;
371 }
372
373 int
374 wi_detach(struct wi_softc *sc)
375 {
376 struct ifnet *ifp = &sc->sc_ic.ic_if;
377 int s;
378
379 if (!sc->sc_attached)
380 return 0;
381
382 s = splnet();
383
384 /* Delete all remaining media. */
385 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
386
387 ieee80211_ifdetach(ifp);
388 if_detach(ifp);
389 if (sc->sc_enabled) {
390 if (sc->sc_disable)
391 (*sc->sc_disable)(sc);
392 sc->sc_enabled = 0;
393 }
394 splx(s);
395 return 0;
396 }
397
398 int
399 wi_activate(struct device *self, enum devact act)
400 {
401 struct wi_softc *sc = (struct wi_softc *)self;
402 int rv = 0, s;
403
404 s = splnet();
405 switch (act) {
406 case DVACT_ACTIVATE:
407 rv = EOPNOTSUPP;
408 break;
409
410 case DVACT_DEACTIVATE:
411 if_deactivate(&sc->sc_ic.ic_if);
412 break;
413 }
414 splx(s);
415 return rv;
416 }
417
418 void
419 wi_power(struct wi_softc *sc, int why)
420 {
421 struct ifnet *ifp = &sc->sc_ic.ic_if;
422 int s;
423
424 s = splnet();
425 switch (why) {
426 case PWR_SUSPEND:
427 case PWR_STANDBY:
428 wi_stop(ifp, 1);
429 break;
430 case PWR_RESUME:
431 if (ifp->if_flags & IFF_UP) {
432 wi_init(ifp);
433 (void)wi_intr(sc);
434 }
435 break;
436 case PWR_SOFTSUSPEND:
437 case PWR_SOFTSTANDBY:
438 case PWR_SOFTRESUME:
439 break;
440 }
441 splx(s);
442 }
443
444 void
445 wi_shutdown(struct wi_softc *sc)
446 {
447 struct ifnet *ifp = &sc->sc_ic.ic_if;
448
449 if (sc->sc_attached)
450 wi_stop(ifp, 1);
451 }
452
453 int
454 wi_intr(void *arg)
455 {
456 int i;
457 struct wi_softc *sc = arg;
458 struct ifnet *ifp = &sc->sc_ic.ic_if;
459 u_int16_t status, raw_status, last_status;
460
461 if (sc->sc_enabled == 0 ||
462 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
463 (ifp->if_flags & IFF_RUNNING) == 0)
464 return 0;
465
466 if ((ifp->if_flags & IFF_UP) == 0) {
467 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
468 CSR_WRITE_2(sc, WI_INT_EN, 0);
469 return 1;
470 }
471
472 /* maximum 10 loops per interrupt */
473 last_status = 0;
474 for (i = 0; i < 10; i++) {
475 /*
476 * Only believe a status bit when we enter wi_intr, or when
477 * the bit was "off" the last time through the loop. This is
478 * my strategy to avoid racing the hardware/firmware if I
479 * can re-read the event status register more quickly than
480 * it is updated.
481 */
482 raw_status = CSR_READ_2(sc, WI_EVENT_STAT);
483 status = raw_status & ~last_status;
484 if ((status & WI_INTRS) == 0)
485 break;
486 last_status = raw_status;
487
488 if (status & WI_EV_RX)
489 wi_rx_intr(sc);
490
491 if (status & WI_EV_ALLOC)
492 wi_tx_intr(sc);
493
494 if (status & WI_EV_INFO)
495 wi_info_intr(sc);
496
497 if (!(ifp->if_flags & IFF_OACTIVE) &&
498 !IFQ_IS_EMPTY(&ifp->if_snd))
499 wi_start(ifp);
500 }
501
502 return 1;
503 }
504
505 static int
506 wi_init(struct ifnet *ifp)
507 {
508 struct wi_softc *sc = ifp->if_softc;
509 struct ieee80211com *ic = &sc->sc_ic;
510 struct wi_joinreq join;
511 int i;
512 int error = 0, wasenabled;
513
514 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
515 wasenabled = sc->sc_enabled;
516 if (!sc->sc_enabled) {
517 if ((error = (*sc->sc_enable)(sc)) != 0)
518 goto out;
519 sc->sc_enabled = 1;
520 } else
521 wi_stop(ifp, 0);
522
523 /* Symbol firmware cannot be initialized more than once */
524 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
525 if ((error = wi_reset(sc)) != 0)
526 goto out;
527 }
528
529 /* common 802.11 configuration */
530 switch (ic->ic_opmode) {
531 case IEEE80211_M_STA:
532 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
533 break;
534 case IEEE80211_M_IBSS:
535 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
536 break;
537 case IEEE80211_M_AHDEMO:
538 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
539 break;
540 case IEEE80211_M_HOSTAP:
541 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
542 break;
543 }
544
545 /* Intersil interprets this RID as joining ESS even in IBSS mode */
546 if (sc->sc_firmware_type == WI_LUCENT &&
547 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
548 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
549 else
550 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
551 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
552 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
553 ic->ic_des_esslen);
554 wi_write_val(sc, WI_RID_OWN_CHNL, ic->ic_ibss_chan);
555 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
556 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
557 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
558 wi_write_val(sc, WI_RID_PM_ENABLED,
559 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
560
561 /* not yet common 802.11 configuration */
562 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
563 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
564
565 /* driver specific 802.11 configuration */
566 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
567 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
568 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
569 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
570 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
571 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
572 wi_write_txrate(sc);
573 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
574
575 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
576 /* XXX: these configurations may be intersil only */
577 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
578 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
579 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
580 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
581 }
582
583 /*
584 * Initialize promisc mode.
585 * Being in the Host-AP mode causes a great
586 * deal of pain if primisc mode is set.
587 * Therefore we avoid confusing the firmware
588 * and always reset promisc mode in Host-AP
589 * mode. Host-AP sees all the packets anyway.
590 */
591 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
592 (ifp->if_flags & IFF_PROMISC) != 0) {
593 wi_write_val(sc, WI_RID_PROMISC, 1);
594 } else {
595 wi_write_val(sc, WI_RID_PROMISC, 0);
596 }
597
598 /* Configure WEP. */
599 if (ic->ic_flags & IEEE80211_F_HASWEP)
600 wi_write_wep(sc);
601
602 /* Set multicast filter. */
603 wi_write_multi(sc);
604
605 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
606 if (sc->sc_firmware_type == WI_SYMBOL)
607 sc->sc_buflen = 1585; /* XXX */
608 for (i = 0; i < WI_NTXBUF; i++) {
609 error = wi_alloc_fid(sc, sc->sc_buflen,
610 &sc->sc_txd[i].d_fid);
611 if (error) {
612 printf("%s: tx buffer allocation failed\n",
613 sc->sc_dev.dv_xname);
614 goto out;
615 }
616 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
617 sc->sc_txd[i].d_fid));
618 sc->sc_txd[i].d_len = 0;
619 }
620 sc->sc_txcur = sc->sc_txnext = 0;
621 if (ic->ic_opmode == IEEE80211_M_IBSS)
622 ic->ic_flags |= IEEE80211_F_IBSSON;
623 else
624 ic->ic_flags &= ~IEEE80211_F_IBSSON;
625
626 /* Enable port 0 */
627 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
628 ifp->if_flags |= IFF_RUNNING;
629 ifp->if_flags &= ~IFF_OACTIVE;
630 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
631 ic->ic_opmode == IEEE80211_M_HOSTAP)
632 wi_newstate(sc, IEEE80211_S_RUN);
633
634 /* Enable interrupts */
635 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
636
637 if (!wasenabled && ic->ic_opmode == IEEE80211_M_HOSTAP) {
638 /* XXX: some card need to be re-enabled for hostap */
639 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
640 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
641 }
642
643 if (ic->ic_opmode == IEEE80211_M_STA &&
644 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
645 ic->ic_des_chan != IEEE80211_CHAN_ANY)) {
646 memset(&join, 0, sizeof(join));
647 if (ic->ic_flags & IEEE80211_F_DESBSSID)
648 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
649 if (ic->ic_des_chan != IEEE80211_CHAN_ANY)
650 join.wi_chan = htole16(ic->ic_des_chan);
651 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
652 }
653
654 out:
655 if (error) {
656 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
657 wi_stop(ifp, 1);
658 }
659 DPRINTF(("wi_init: return %d\n", error));
660 return error;
661 }
662
663 static void
664 wi_stop(struct ifnet *ifp, int disable)
665 {
666 struct wi_softc *sc = ifp->if_softc;
667
668 DPRINTF(("wi_stop: disable %d\n", disable));
669 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
670 if (sc->sc_enabled) {
671 CSR_WRITE_2(sc, WI_INT_EN, 0);
672 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
673 if (disable) {
674 if (sc->sc_disable)
675 (*sc->sc_disable)(sc);
676 sc->sc_enabled = 0;
677 }
678 }
679
680 sc->sc_tx_timer = 0;
681 sc->sc_scan_timer = 0;
682 sc->sc_naps = 0;
683 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
684 ifp->if_timer = 0;
685 }
686
687 static void
688 wi_start(struct ifnet *ifp)
689 {
690 struct wi_softc *sc = ifp->if_softc;
691 struct ieee80211com *ic = &sc->sc_ic;
692 struct ieee80211_frame *wh;
693 struct mbuf *m0, *m;
694 struct wi_frame frmhdr;
695 int cur, fid, off;
696
697 if (ifp->if_flags & IFF_OACTIVE)
698 return;
699
700 memset(&frmhdr, 0, sizeof(frmhdr));
701 cur = sc->sc_txnext;
702 for (;;) {
703 IF_POLL(&ic->ic_mgtq, m0);
704 if (m0 != NULL) {
705 if (sc->sc_txd[cur].d_len != 0) {
706 ifp->if_flags |= IFF_OACTIVE;
707 break;
708 }
709 IF_DEQUEUE(&ic->ic_mgtq, m0);
710 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
711 (caddr_t)&frmhdr.wi_ehdr);
712 frmhdr.wi_ehdr.ether_type = 0;
713 wh = mtod(m0, struct ieee80211_frame *);
714 } else {
715 if (ic->ic_state != IEEE80211_S_RUN)
716 break;
717 IFQ_POLL(&ifp->if_snd, m0);
718 if (m0 == NULL)
719 break;
720 if (sc->sc_txd[cur].d_len != 0) {
721 ifp->if_flags |= IFF_OACTIVE;
722 break;
723 }
724 IFQ_DEQUEUE(&ifp->if_snd, m0);
725 ifp->if_opackets++;
726 m_copydata(m0, 0, ETHER_HDR_LEN,
727 (caddr_t)&frmhdr.wi_ehdr);
728 #if NBPFILTER > 0
729 if (ifp->if_bpf)
730 bpf_mtap(ifp->if_bpf, m0);
731 #endif
732
733 if ((m0 = ieee80211_encap(ifp, m0)) == NULL) {
734 ifp->if_oerrors++;
735 continue;
736 }
737 wh = mtod(m0, struct ieee80211_frame *);
738 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
739 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
740 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
741 IEEE80211_FC0_TYPE_DATA &&
742 ieee80211_find_node(ic, wh->i_addr1) == NULL) {
743 m_freem(m0);
744 ifp->if_oerrors++;
745 continue;
746 }
747 if (ic->ic_flags & IEEE80211_F_WEPON)
748 wh->i_fc[1] |= IEEE80211_FC1_WEP;
749
750 }
751 #if NBPFILTER > 0
752 if (ic->ic_rawbpf)
753 bpf_mtap(ic->ic_rawbpf, m0);
754 #endif
755 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11);
756 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
757 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
758 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
759 ifp->if_oerrors++;
760 continue;
761 }
762 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
763 }
764 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
765 (caddr_t)&frmhdr.wi_whdr);
766 m_adj(m0, sizeof(struct ieee80211_frame));
767 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
768 #if NBPFILTER > 0
769 if (sc->sc_drvbpf) {
770 struct mbuf mb;
771
772 M_COPY_PKTHDR(&mb, m0);
773 mb.m_data = (caddr_t)&frmhdr;
774 mb.m_len = sizeof(frmhdr);
775 mb.m_next = m0;
776 mb.m_pkthdr.len += mb.m_len;
777 bpf_mtap(sc->sc_drvbpf, &mb);
778 }
779 #endif
780 fid = sc->sc_txd[cur].d_fid;
781 wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr));
782 off = sizeof(frmhdr);
783 for (m = m0; m != NULL; m = m->m_next) {
784 if (m->m_len == 0)
785 continue;
786 wi_write_bap(sc, fid, off, m->m_data, m->m_len);
787 off += m->m_len;
788 }
789 m_freem(m0);
790 sc->sc_txd[cur].d_len = off;
791 if (sc->sc_txcur == cur) {
792 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
793 printf("%s: xmit failed\n",
794 sc->sc_dev.dv_xname);
795 sc->sc_txd[cur].d_len = 0;
796 continue;
797 }
798 sc->sc_tx_timer = 5;
799 ifp->if_timer = 1;
800 }
801 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF;
802 }
803 }
804
805
806 static int
807 wi_reset(struct wi_softc *sc)
808 {
809 int i, error;
810
811 DPRINTF(("wi_reset\n"));
812 error = 0;
813 for (i = 0; i < 5; i++) {
814 DELAY(20*1000); /* XXX: way too long! */
815 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
816 break;
817 }
818 if (error) {
819 printf("%s: init failed\n", sc->sc_dev.dv_xname);
820 return error;
821 }
822 CSR_WRITE_2(sc, WI_INT_EN, 0);
823 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
824
825 /* Calibrate timer. */
826 wi_write_val(sc, WI_RID_TICK_TIME, 0);
827 return 0;
828 }
829
830 static void
831 wi_watchdog(struct ifnet *ifp)
832 {
833 struct wi_softc *sc = ifp->if_softc;
834
835 ifp->if_timer = 0;
836 if (!sc->sc_enabled)
837 return;
838
839 if (sc->sc_tx_timer) {
840 if (--sc->sc_tx_timer == 0) {
841 printf("%s: device timeout\n", ifp->if_xname);
842 ifp->if_oerrors++;
843 wi_init(ifp);
844 return;
845 }
846 ifp->if_timer = 1;
847 }
848
849 if (sc->sc_scan_timer) {
850 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
851 sc->sc_firmware_type == WI_INTERSIL) {
852 DPRINTF(("wi_watchdog: inquire scan\n"));
853 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
854 }
855 if (sc->sc_scan_timer)
856 ifp->if_timer = 1;
857 }
858
859 /* TODO: rate control */
860 ieee80211_watchdog(ifp);
861 }
862
863 static int
864 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
865 {
866 struct wi_softc *sc = ifp->if_softc;
867 struct ieee80211com *ic = &sc->sc_ic;
868 struct ifreq *ifr = (struct ifreq *)data;
869 int s, error = 0;
870
871 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
872 return ENXIO;
873
874 s = splnet();
875
876 switch (cmd) {
877 case SIOCSIFFLAGS:
878 if (ifp->if_flags & IFF_UP) {
879 if (sc->sc_enabled) {
880 /*
881 * To avoid rescanning another access point,
882 * do not call wi_init() here. Instead,
883 * only reflect promisc mode settings.
884 */
885 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
886 (ifp->if_flags & IFF_PROMISC) != 0)
887 wi_write_val(sc, WI_RID_PROMISC, 1);
888 else
889 wi_write_val(sc, WI_RID_PROMISC, 0);
890 } else
891 error = wi_init(ifp);
892 } else if (sc->sc_enabled)
893 wi_stop(ifp, 1);
894 break;
895 case SIOCSIFMEDIA:
896 case SIOCGIFMEDIA:
897 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
898 break;
899 case SIOCADDMULTI:
900 case SIOCDELMULTI:
901 error = (cmd == SIOCADDMULTI) ?
902 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
903 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
904 if (error == ENETRESET) {
905 if (sc->sc_enabled) {
906 /* do not rescan */
907 error = wi_write_multi(sc);
908 } else
909 error = 0;
910 }
911 break;
912 case SIOCGIFGENERIC:
913 error = wi_get_cfg(ifp, cmd, data);
914 break;
915 case SIOCSIFGENERIC:
916 error = suser(curproc->p_ucred, &curproc->p_acflag);
917 if (error)
918 break;
919 error = wi_set_cfg(ifp, cmd, data);
920 if (error == ENETRESET) {
921 if (sc->sc_enabled)
922 error = wi_init(ifp);
923 else
924 error = 0;
925 }
926 break;
927 default:
928 error = ieee80211_ioctl(ifp, cmd, data);
929 if (error == ENETRESET) {
930 if (sc->sc_enabled)
931 error = wi_init(ifp);
932 else
933 error = 0;
934 }
935 break;
936 }
937 splx(s);
938 return error;
939 }
940
941 static int
942 wi_media_change(struct ifnet *ifp)
943 {
944 struct wi_softc *sc = ifp->if_softc;
945 struct ieee80211com *ic = &sc->sc_ic;
946 struct ifmedia_entry *ime;
947 enum ieee80211_opmode newmode;
948 int i, rate, error = 0;
949
950 ime = sc->sc_media.ifm_cur;
951 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
952 i = -1;
953 } else {
954 rate = ieee80211_media2rate(ime->ifm_media, IEEE80211_T_DS);
955 if (rate == 0)
956 return EINVAL;
957 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
958 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL) == rate)
959 break;
960 }
961 if (i == IEEE80211_RATE_SIZE)
962 return EINVAL;
963 }
964 if (ic->ic_fixed_rate != i) {
965 ic->ic_fixed_rate = i;
966 error = ENETRESET;
967 }
968
969 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
970 (ime->ifm_media & IFM_FLAG0))
971 newmode = IEEE80211_M_AHDEMO;
972 else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
973 newmode = IEEE80211_M_IBSS;
974 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
975 newmode = IEEE80211_M_HOSTAP;
976 else
977 newmode = IEEE80211_M_STA;
978 if (ic->ic_opmode != newmode) {
979 ic->ic_opmode = newmode;
980 error = ENETRESET;
981 }
982 if (error == ENETRESET) {
983 if (sc->sc_enabled)
984 error = wi_init(ifp);
985 else
986 error = 0;
987 }
988 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
989
990 return error;
991 }
992
993 static void
994 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
995 {
996 struct wi_softc *sc = ifp->if_softc;
997 struct ieee80211com *ic = &sc->sc_ic;
998 u_int16_t val;
999 int rate, len;
1000
1001 if (sc->sc_enabled == 0) {
1002 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1003 imr->ifm_status = 0;
1004 return;
1005 }
1006
1007 imr->ifm_status = IFM_AVALID;
1008 imr->ifm_active = IFM_IEEE80211;
1009 if (ic->ic_state == IEEE80211_S_RUN)
1010 imr->ifm_status |= IFM_ACTIVE;
1011 if (ic->ic_fixed_rate != -1)
1012 rate = ic->ic_sup_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1013 else {
1014 len = sizeof(val);
1015 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1016 rate = 0;
1017 else {
1018 /* convert to 802.11 rate */
1019 rate = val * 2;
1020 if (rate == 12)
1021 rate = 11; /* 5.5Mbps */
1022 }
1023 }
1024 imr->ifm_active |= ieee80211_rate2media(rate, IEEE80211_T_DS);
1025 switch (ic->ic_opmode) {
1026 case IEEE80211_M_STA:
1027 break;
1028 case IEEE80211_M_IBSS:
1029 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1030 break;
1031 case IEEE80211_M_AHDEMO:
1032 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1033 break;
1034 case IEEE80211_M_HOSTAP:
1035 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1036 break;
1037 }
1038 }
1039
1040 static void
1041 wi_rx_intr(struct wi_softc *sc)
1042 {
1043 struct ieee80211com *ic = &sc->sc_ic;
1044 struct ifnet *ifp = &ic->ic_if;
1045 struct wi_frame frmhdr;
1046 struct mbuf *m;
1047 struct ieee80211_frame *wh;
1048 u_int16_t status;
1049 int fid, len, off;
1050
1051 fid = CSR_READ_2(sc, WI_RX_FID);
1052
1053 /* First read in the frame header */
1054 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1055 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1056 ifp->if_ierrors++;
1057 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1058 return;
1059 }
1060
1061 /*
1062 * Drop undecryptable or packets with receive errors here
1063 */
1064 status = le16toh(frmhdr.wi_status);
1065 if (status & WI_STAT_ERRSTAT) {
1066 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1067 ifp->if_ierrors++;
1068 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1069 return;
1070 }
1071
1072 len = le16toh(frmhdr.wi_dat_len);
1073 off = ALIGN(sizeof(struct ieee80211_frame));
1074
1075 MGETHDR(m, M_DONTWAIT, MT_DATA);
1076 if (m == NULL) {
1077 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1078 ifp->if_ierrors++;
1079 DPRINTF(("wi_rx_intr: MGET failed\n"));
1080 return;
1081 }
1082 if (off + len > MHLEN) {
1083 MCLGET(m, M_DONTWAIT);
1084 if ((m->m_flags & M_EXT) == 0) {
1085 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1086 m_freem(m);
1087 ifp->if_ierrors++;
1088 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1089 return;
1090 }
1091 }
1092
1093 m->m_data += off - sizeof(struct ieee80211_frame);
1094 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1095 wi_read_bap(sc, fid, sizeof(frmhdr),
1096 m->m_data + sizeof(struct ieee80211_frame), len);
1097 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1098 m->m_pkthdr.rcvif = ifp;
1099
1100 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1101
1102 #if NBPFILTER > 0
1103 if (sc->sc_drvbpf) {
1104 struct mbuf mb;
1105
1106 M_COPY_PKTHDR(&mb, m);
1107 mb.m_data = (caddr_t)&frmhdr;
1108 mb.m_len = sizeof(frmhdr);
1109 mb.m_next = m;
1110 mb.m_pkthdr.len += mb.m_len;
1111 bpf_mtap(sc->sc_drvbpf, &mb);
1112 }
1113 #endif
1114 wh = mtod(m, struct ieee80211_frame *);
1115 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1116 /*
1117 * WEP is decrypted by hardware. Clear WEP bit
1118 * header for ieee80211_input().
1119 */
1120 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1121 }
1122 ieee80211_input(ifp, m, 0 /*rssi*/, 0 /*rstamp*/);
1123 }
1124
1125 static void
1126 wi_tx_intr(struct wi_softc *sc)
1127 {
1128 struct ieee80211com *ic = &sc->sc_ic;
1129 struct ifnet *ifp = &ic->ic_if;
1130 int fid, cur;
1131
1132 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1133 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1134
1135 cur = sc->sc_txcur;
1136 if (sc->sc_txd[cur].d_fid != fid) {
1137 printf("%s: bad alloc %x != %x\n",
1138 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid);
1139 return;
1140 }
1141 sc->sc_tx_timer = 0;
1142 sc->sc_txd[cur].d_len = 0;
1143 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF;
1144 if (sc->sc_txd[cur].d_len == 0)
1145 ifp->if_flags &= ~IFF_OACTIVE;
1146 else {
1147 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1148 0, 0)) {
1149 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1150 sc->sc_txd[cur].d_len = 0;
1151 } else {
1152 sc->sc_tx_timer = 5;
1153 ifp->if_timer = 1;
1154 }
1155 }
1156 }
1157
1158 static void
1159 wi_info_intr(struct wi_softc *sc)
1160 {
1161 struct ieee80211com *ic = &sc->sc_ic;
1162 struct ifnet *ifp = &ic->ic_if;
1163 int i, fid, len, off;
1164 u_int16_t ltbuf[2];
1165 u_int16_t stat;
1166 u_int32_t *ptr;
1167
1168 fid = CSR_READ_2(sc, WI_INFO_FID);
1169 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1170
1171 switch (le16toh(ltbuf[1])) {
1172
1173 case WI_INFO_LINK_STAT:
1174 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1175 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1176 switch (le16toh(stat)) {
1177 case CONNECTED:
1178 if (ic->ic_state == IEEE80211_S_RUN)
1179 break;
1180 /* FALLTHROUGH */
1181 case AP_CHANGE:
1182 case AP_IN_RANGE:
1183 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
1184 break;
1185 case AP_OUT_OF_RANGE:
1186 if (sc->sc_firmware_type == WI_SYMBOL &&
1187 sc->sc_scan_timer > 0) {
1188 if (wi_cmd(sc, WI_CMD_INQUIRE,
1189 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1190 sc->sc_scan_timer = 0;
1191 break;
1192 }
1193 /* FALLTHROUGH */
1194 case DISCONNECTED:
1195 case ASSOC_FAILED:
1196 if (ic->ic_opmode == IEEE80211_M_STA)
1197 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
1198 break;
1199 }
1200 break;
1201
1202 case WI_INFO_COUNTERS:
1203 /* some card versions have a larger stats structure */
1204 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1205 ptr = (u_int32_t *)&sc->sc_stats;
1206 off = sizeof(ltbuf);
1207 for (i = 0; i < len; i++, off += 2, ptr++) {
1208 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1209 #ifdef WI_HERMES_STATS_WAR
1210 if (stat & 0xf000)
1211 stat = ~stat;
1212 #endif
1213 *ptr += stat;
1214 }
1215 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1216 sc->sc_stats.wi_tx_multi_retries +
1217 sc->sc_stats.wi_tx_retry_limit;
1218 break;
1219
1220 case WI_INFO_SCAN_RESULTS:
1221 case WI_INFO_HOST_SCAN_RESULTS:
1222 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1223 break;
1224
1225 default:
1226 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1227 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1228 break;
1229 }
1230 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1231 }
1232
1233 /*
1234 * Allocate a region of memory inside the NIC and zero
1235 * it out.
1236 */
1237 static int
1238 wi_write_multi(struct wi_softc *sc)
1239 {
1240 struct ifnet *ifp = &sc->sc_ic.ic_if;
1241 int n = 0;
1242 struct wi_mcast mlist;
1243 struct ether_multi *enm;
1244 struct ether_multistep estep;
1245
1246 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1247 allmulti:
1248 ifp->if_flags |= IFF_ALLMULTI;
1249 memset(&mlist, 0, sizeof(mlist));
1250 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1251 sizeof(mlist));
1252 }
1253
1254 n = 0;
1255 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1256 while (enm != NULL) {
1257 /* Punt on ranges or too many multicast addresses. */
1258 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1259 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1260 goto allmulti;
1261
1262 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1263 n++;
1264 ETHER_NEXT_MULTI(estep, enm);
1265 }
1266 ifp->if_flags &= ~IFF_ALLMULTI;
1267 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1268 IEEE80211_ADDR_LEN * n);
1269 }
1270
1271
1272 static void
1273 wi_read_nicid(sc)
1274 struct wi_softc *sc;
1275 {
1276 struct wi_card_ident *id;
1277 char *p;
1278 int len;
1279 u_int16_t ver[4];
1280
1281 /* getting chip identity */
1282 memset(ver, 0, sizeof(ver));
1283 len = sizeof(ver);
1284 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1285 printf("%s: using ", sc->sc_dev.dv_xname);
1286 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1287
1288 sc->sc_firmware_type = WI_NOTYPE;
1289 for (id = wi_card_ident; id->card_name != NULL; id++) {
1290 if (le16toh(ver[0]) == id->card_id) {
1291 printf("%s", id->card_name);
1292 sc->sc_firmware_type = id->firm_type;
1293 break;
1294 }
1295 }
1296 if (sc->sc_firmware_type == WI_NOTYPE) {
1297 if (le16toh(ver[0]) & 0x8000) {
1298 printf("Unknown PRISM2 chip");
1299 sc->sc_firmware_type = WI_INTERSIL;
1300 } else {
1301 printf("Unknown Lucent chip");
1302 sc->sc_firmware_type = WI_LUCENT;
1303 }
1304 }
1305
1306 /* get primary firmware version (Only Prism chips) */
1307 if (sc->sc_firmware_type != WI_LUCENT) {
1308 memset(ver, 0, sizeof(ver));
1309 len = sizeof(ver);
1310 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1311 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1312 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1313 DPRINTF2(("wi_read_nicid: PRI_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1314 }
1315
1316 /* get station firmware version */
1317 memset(ver, 0, sizeof(ver));
1318 len = sizeof(ver);
1319 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1320 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1321 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1322 DPRINTF2(("wi_read_nicid: STA_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1323 if (sc->sc_firmware_type == WI_INTERSIL &&
1324 (sc->sc_sta_firmware_ver == 10102 ||
1325 sc->sc_sta_firmware_ver == 20102)) {
1326 char ident[12];
1327 memset(ident, 0, sizeof(ident));
1328 len = sizeof(ident);
1329 /* value should be the format like "V2.00-11" */
1330 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1331 *(p = (char *)ident) >= 'A' &&
1332 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1333 sc->sc_firmware_type = WI_SYMBOL;
1334 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1335 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1336 (p[6] - '0') * 10 + (p[7] - '0');
1337 }
1338 DPRINTF2(("wi_read_nicid: SYMBOL_ID: %x %x %x %x\n", le16toh(ident[0]), le16toh(ident[1]), le16toh(ident[2]), le16toh(ident[3])));
1339 }
1340
1341 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1342 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1343 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1344 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1345 printf("Primary (%u.%u.%u), ",
1346 sc->sc_pri_firmware_ver / 10000,
1347 (sc->sc_pri_firmware_ver % 10000) / 100,
1348 sc->sc_pri_firmware_ver % 100);
1349 printf("Station (%u.%u.%u)\n",
1350 sc->sc_sta_firmware_ver / 10000,
1351 (sc->sc_sta_firmware_ver % 10000) / 100,
1352 sc->sc_sta_firmware_ver % 100);
1353 }
1354
1355 static int
1356 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1357 {
1358 struct wi_ssid ssid;
1359
1360 if (buflen > IEEE80211_NWID_LEN)
1361 return ENOBUFS;
1362 ssid.wi_len = htole16(buflen);
1363 memcpy(ssid.wi_ssid, buf, buflen);
1364 return wi_write_rid(sc, rid, &ssid, sizeof(ssid.wi_len) + buflen);
1365 }
1366
1367 static int
1368 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1369 {
1370 struct wi_softc *sc = ifp->if_softc;
1371 struct ieee80211com *ic = &sc->sc_ic;
1372 struct ifreq *ifr = (struct ifreq *)data;
1373 struct wi_req wreq;
1374 int len, n, error;
1375
1376 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1377 if (error)
1378 return error;
1379 len = (wreq.wi_len - 1) * 2;
1380 if (len < sizeof(u_int16_t))
1381 return ENOSPC;
1382 if (len > sizeof(wreq.wi_val))
1383 len = sizeof(wreq.wi_val);
1384
1385 switch (wreq.wi_type) {
1386
1387 case WI_RID_IFACE_STATS:
1388 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1389 if (len < sizeof(sc->sc_stats))
1390 error = ENOSPC;
1391 else
1392 len = sizeof(sc->sc_stats);
1393 break;
1394
1395 case WI_RID_ENCRYPTION:
1396 case WI_RID_TX_CRYPT_KEY:
1397 case WI_RID_DEFLT_CRYPT_KEYS:
1398 return ieee80211_cfgget(ifp, cmd, data);
1399
1400 case WI_RID_TX_RATE:
1401 if (ic->ic_fixed_rate < 0)
1402 wreq.wi_val[0] = htole16(3); /*XXX*/
1403 else
1404 wreq.wi_val[0] = htole16(
1405 (ic->ic_sup_rates[ic->ic_fixed_rate] &
1406 IEEE80211_RATE_VAL) / 2);
1407 len = sizeof(u_int16_t);
1408 break;
1409
1410 case WI_RID_MICROWAVE_OVEN:
1411 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1412 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1413 &len);
1414 break;
1415 }
1416 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1417 len = sizeof(u_int16_t);
1418 break;
1419
1420 case WI_RID_ROAMING_MODE:
1421 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
1422 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1423 &len);
1424 break;
1425 }
1426 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
1427 len = sizeof(u_int16_t);
1428 break;
1429
1430 case WI_RID_SYSTEM_SCALE:
1431 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
1432 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1433 &len);
1434 break;
1435 }
1436 wreq.wi_val[0] = htole16(sc->sc_system_scale);
1437 len = sizeof(u_int16_t);
1438 break;
1439
1440 case WI_RID_READ_APS:
1441 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1442 return ieee80211_cfgget(ifp, cmd, data);
1443 if (sc->sc_scan_timer > 0) {
1444 error = EINPROGRESS;
1445 break;
1446 }
1447 n = sc->sc_naps;
1448 if (len < sizeof(n)) {
1449 error = ENOSPC;
1450 break;
1451 }
1452 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
1453 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
1454 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
1455 memcpy(wreq.wi_val, &n, sizeof(n));
1456 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
1457 sizeof(struct wi_apinfo) * n);
1458 break;
1459
1460 default:
1461 if (sc->sc_enabled) {
1462 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1463 &len);
1464 break;
1465 }
1466 switch (wreq.wi_type) {
1467 case WI_RID_MAX_DATALEN:
1468 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
1469 len = sizeof(u_int16_t);
1470 break;
1471 case WI_RID_RTS_THRESH:
1472 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
1473 len = sizeof(u_int16_t);
1474 break;
1475 case WI_RID_CNFAUTHMODE:
1476 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
1477 len = sizeof(u_int16_t);
1478 break;
1479 case WI_RID_NODENAME:
1480 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
1481 error = ENOSPC;
1482 break;
1483 }
1484 len = sc->sc_nodelen + sizeof(u_int16_t);
1485 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
1486 memcpy(&wreq.wi_val[1], sc->sc_nodename,
1487 sc->sc_nodelen);
1488 break;
1489 default:
1490 return ieee80211_cfgget(ifp, cmd, data);
1491 }
1492 break;
1493 }
1494 if (error)
1495 return error;
1496 wreq.wi_len = (len + 1) / 2 + 1;
1497 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
1498 }
1499
1500 static int
1501 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1502 {
1503 struct wi_softc *sc = ifp->if_softc;
1504 struct ieee80211com *ic = &sc->sc_ic;
1505 struct ifreq *ifr = (struct ifreq *)data;
1506 struct wi_req wreq;
1507 struct mbuf *m;
1508 int i, len, error;
1509
1510 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1511 if (error)
1512 return error;
1513 len = (wreq.wi_len - 1) * 2;
1514 switch (wreq.wi_type) {
1515 case WI_RID_NODENAME:
1516 if (le16toh(wreq.wi_val[0]) * 2 > len ||
1517 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
1518 error = ENOSPC;
1519 break;
1520 }
1521 if (sc->sc_enabled) {
1522 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1523 len);
1524 if (error)
1525 break;
1526 }
1527 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
1528 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
1529 break;
1530
1531 case WI_RID_MICROWAVE_OVEN:
1532 case WI_RID_ROAMING_MODE:
1533 case WI_RID_SYSTEM_SCALE:
1534 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
1535 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
1536 break;
1537 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
1538 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
1539 break;
1540 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
1541 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
1542 break;
1543 /* FALLTHROUGH */
1544 case WI_RID_RTS_THRESH:
1545 case WI_RID_CNFAUTHMODE:
1546 case WI_RID_MAX_DATALEN:
1547 if (sc->sc_enabled) {
1548 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1549 sizeof(u_int16_t));
1550 if (error)
1551 break;
1552 }
1553 switch (wreq.wi_type) {
1554 case WI_RID_RTS_THRESH:
1555 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
1556 break;
1557 case WI_RID_MICROWAVE_OVEN:
1558 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
1559 break;
1560 case WI_RID_ROAMING_MODE:
1561 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
1562 break;
1563 case WI_RID_SYSTEM_SCALE:
1564 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
1565 break;
1566 case WI_RID_CNFAUTHMODE:
1567 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
1568 break;
1569 case WI_RID_MAX_DATALEN:
1570 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
1571 break;
1572 }
1573 break;
1574
1575 case WI_RID_TX_RATE:
1576 switch (le16toh(wreq.wi_val[0])) {
1577 case 3:
1578 ic->ic_fixed_rate = -1;
1579 break;
1580 default:
1581 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1582 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL)
1583 / 2 == le16toh(wreq.wi_val[0]))
1584 break;
1585 }
1586 if (i == IEEE80211_RATE_SIZE)
1587 return EINVAL;
1588 ic->ic_fixed_rate = i;
1589 }
1590 if (sc->sc_enabled)
1591 error = wi_write_txrate(sc);
1592 break;
1593
1594 case WI_RID_SCAN_APS:
1595 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
1596 error = wi_scan_ap(sc);
1597 break;
1598
1599 case WI_RID_MGMT_XMIT:
1600 if (!sc->sc_enabled) {
1601 error = ENETDOWN;
1602 break;
1603 }
1604 if (ic->ic_mgtq.ifq_len > 5) {
1605 error = EAGAIN;
1606 break;
1607 }
1608 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
1609 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
1610 if (m == NULL) {
1611 error = ENOMEM;
1612 break;
1613 }
1614 IF_ENQUEUE(&ic->ic_mgtq, m);
1615 break;
1616
1617 default:
1618 if (sc->sc_enabled) {
1619 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1620 len);
1621 if (error)
1622 break;
1623 }
1624 error = ieee80211_cfgset(ifp, cmd, data);
1625 break;
1626 }
1627 return error;
1628 }
1629
1630 static int
1631 wi_write_txrate(struct wi_softc *sc)
1632 {
1633 struct ieee80211com *ic = &sc->sc_ic;
1634 int i;
1635 u_int16_t rate;
1636
1637 if (ic->ic_fixed_rate < 0)
1638 rate = 0; /* auto */
1639 else
1640 rate = (ic->ic_sup_rates[ic->ic_fixed_rate] &
1641 IEEE80211_RATE_VAL) / 2;
1642
1643 /* rate: 0, 1, 2, 5, 11 */
1644
1645 switch (sc->sc_firmware_type) {
1646 case WI_LUCENT:
1647 if (rate == 0)
1648 rate = 3; /* auto */
1649 break;
1650 default:
1651 for (i = 8; i > 0; i >>= 1) {
1652 if (rate >= i)
1653 break;
1654 }
1655 if (i == 0)
1656 rate = 0xf; /* auto */
1657 else
1658 rate = i;
1659 break;
1660 }
1661 return wi_write_val(sc, WI_RID_TX_RATE, rate);
1662 }
1663
1664 static int
1665 wi_write_wep(struct wi_softc *sc)
1666 {
1667 struct ieee80211com *ic = &sc->sc_ic;
1668 int error = 0;
1669 int i, keylen;
1670 u_int16_t val;
1671 struct wi_key wkey[IEEE80211_WEP_NKID];
1672
1673 switch (sc->sc_firmware_type) {
1674 case WI_LUCENT:
1675 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
1676 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
1677 if (error)
1678 break;
1679 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
1680 if (error)
1681 break;
1682 memset(wkey, 0, sizeof(wkey));
1683 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1684 keylen = ic->ic_nw_keys[i].wk_len;
1685 wkey[i].wi_keylen = htole16(keylen);
1686 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
1687 keylen);
1688 }
1689 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
1690 wkey, sizeof(wkey));
1691 break;
1692
1693 case WI_INTERSIL:
1694 case WI_SYMBOL:
1695 if (ic->ic_flags & IEEE80211_F_WEPON) {
1696 /*
1697 * ONLY HWB3163 EVAL-CARD Firmware version
1698 * less than 0.8 variant2
1699 *
1700 * If promiscuous mode disable, Prism2 chip
1701 * does not work with WEP .
1702 * It is under investigation for details.
1703 * (ichiro (at) netbsd.org)
1704 */
1705 if (sc->sc_firmware_type == WI_INTERSIL &&
1706 sc->sc_sta_firmware_ver < 802 ) {
1707 /* firm ver < 0.8 variant 2 */
1708 wi_write_val(sc, WI_RID_PROMISC, 1);
1709 }
1710 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1711 sc->sc_cnfauthmode);
1712 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
1713 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1714 val |= HOST_ENCRYPT;
1715 } else {
1716 wi_write_val(sc, WI_RID_CNFAUTHMODE, 1); /* open */
1717 val = HOST_ENCRYPT | HOST_DECRYPT;
1718 }
1719 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
1720 if (error)
1721 break;
1722 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
1723 ic->ic_wep_txkey);
1724 if (error)
1725 break;
1726 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1727 keylen = ic->ic_nw_keys[i].wk_len;
1728 if (keylen > IEEE80211_WEP_KEYLEN)
1729 keylen = 13; /* 104bit keys */
1730 else
1731 keylen = IEEE80211_WEP_KEYLEN;
1732 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
1733 ic->ic_nw_keys[i].wk_key, keylen);
1734 if (error)
1735 break;
1736 }
1737 break;
1738 }
1739 return error;
1740 }
1741
1742 /* Must be called at proper protection level! */
1743 static int
1744 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
1745 {
1746 int i, status;
1747
1748 /* wait for the busy bit to clear */
1749 for (i = 0; ; i++) {
1750 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
1751 break;
1752 if (i == WI_TIMEOUT) {
1753 printf("%s: wi_cmd: BUSY did not clear, "
1754 "cmd=0x%x, prev=0x%x\n", sc->sc_dev.dv_xname,
1755 cmd, CSR_READ_2(sc, WI_COMMAND));
1756 return EIO;
1757 }
1758 DELAY(1);
1759 }
1760
1761 CSR_WRITE_2(sc, WI_PARAM0, val0);
1762 CSR_WRITE_2(sc, WI_PARAM1, val1);
1763 CSR_WRITE_2(sc, WI_PARAM2, val2);
1764 CSR_WRITE_2(sc, WI_COMMAND, cmd);
1765
1766 if (cmd == WI_CMD_INI) {
1767 /* XXX: should sleep here. */
1768 DELAY(100*1000);
1769 }
1770 /* wait for the cmd completed bit */
1771 for (i = 0; i < WI_TIMEOUT; i++) {
1772 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
1773 break;
1774 DELAY(1);
1775 }
1776
1777 status = CSR_READ_2(sc, WI_STATUS);
1778
1779 /* Ack the command */
1780 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1781
1782 if (i == WI_TIMEOUT) {
1783 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
1784 sc->sc_dev.dv_xname, cmd, val0);
1785 return ETIMEDOUT;
1786 }
1787
1788 if (status & WI_STAT_CMD_RESULT) {
1789 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
1790 sc->sc_dev.dv_xname, cmd, val0);
1791 return EIO;
1792 }
1793 return 0;
1794 }
1795
1796 static int
1797 wi_seek_bap(struct wi_softc *sc, int id, int off)
1798 {
1799 int i, status;
1800
1801 CSR_WRITE_2(sc, WI_SEL0, id);
1802 CSR_WRITE_2(sc, WI_OFF0, off);
1803
1804 for (i = 0; ; i++) {
1805 status = CSR_READ_2(sc, WI_OFF0);
1806 if ((status & WI_OFF_BUSY) == 0)
1807 break;
1808 if (i == WI_TIMEOUT) {
1809 printf("%s: timeout in wi_seek to %x/%x\n",
1810 sc->sc_dev.dv_xname, id, off);
1811 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1812 return ETIMEDOUT;
1813 }
1814 DELAY(1);
1815 }
1816 if (status & WI_OFF_ERR) {
1817 printf("%s: failed in wi_seek to %x/%x\n",
1818 sc->sc_dev.dv_xname, id, off);
1819 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1820 return EIO;
1821 }
1822 sc->sc_bap_id = id;
1823 sc->sc_bap_off = off;
1824 return 0;
1825 }
1826
1827 static int
1828 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1829 {
1830 int error, cnt;
1831
1832 if (buflen == 0)
1833 return 0;
1834 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1835 if ((error = wi_seek_bap(sc, id, off)) != 0)
1836 return error;
1837 }
1838 cnt = (buflen + 1) / 2;
1839 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1840 sc->sc_bap_off += cnt * 2;
1841 return 0;
1842 }
1843
1844 static int
1845 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1846 {
1847 int error, cnt;
1848
1849 if (buflen == 0)
1850 return 0;
1851
1852 #ifdef WI_HERMES_AUTOINC_WAR
1853 again:
1854 #endif
1855 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1856 if ((error = wi_seek_bap(sc, id, off)) != 0)
1857 return error;
1858 }
1859 cnt = (buflen + 1) / 2;
1860 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1861 sc->sc_bap_off += cnt * 2;
1862
1863 #ifdef WI_HERMES_AUTOINC_WAR
1864 /*
1865 * According to the comments in the HCF Light code, there is a bug
1866 * in the Hermes (or possibly in certain Hermes firmware revisions)
1867 * where the chip's internal autoincrement counter gets thrown off
1868 * during data writes: the autoincrement is missed, causing one
1869 * data word to be overwritten and subsequent words to be written to
1870 * the wrong memory locations. The end result is that we could end
1871 * up transmitting bogus frames without realizing it. The workaround
1872 * for this is to write a couple of extra guard words after the end
1873 * of the transfer, then attempt to read then back. If we fail to
1874 * locate the guard words where we expect them, we preform the
1875 * transfer over again.
1876 */
1877 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
1878 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1879 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1880 wi_seek_bap(sc, id, sc->sc_bap_off);
1881 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1882 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1883 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
1884 printf("%s: detect auto increment bug, try again\n",
1885 sc->sc_dev.dv_xname);
1886 goto again;
1887 }
1888 }
1889 #endif
1890 return 0;
1891 }
1892
1893 static int
1894 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
1895 {
1896 int i;
1897
1898 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
1899 printf("%s: failed to allocate %d bytes on NIC\n",
1900 sc->sc_dev.dv_xname, len);
1901 return ENOMEM;
1902 }
1903
1904 for (i = 0; i < WI_TIMEOUT; i++) {
1905 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1906 break;
1907 if (i == WI_TIMEOUT) {
1908 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
1909 return ETIMEDOUT;
1910 }
1911 DELAY(1);
1912 }
1913 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
1914 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1915 return 0;
1916 }
1917
1918 static int
1919 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
1920 {
1921 int error, len;
1922 u_int16_t ltbuf[2];
1923
1924 /* Tell the NIC to enter record read mode. */
1925 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
1926 if (error)
1927 return error;
1928
1929 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
1930 if (error)
1931 return error;
1932
1933 if (le16toh(ltbuf[1]) != rid) {
1934 printf("%s: record read mismatch, rid=%x, got=%x\n",
1935 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
1936 return EIO;
1937 }
1938 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
1939 if (*buflenp < len) {
1940 printf("%s: record buffer is too small, "
1941 "rid=%x, size=%d, len=%d\n",
1942 sc->sc_dev.dv_xname, rid, *buflenp, len);
1943 return ENOSPC;
1944 }
1945 *buflenp = len;
1946 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
1947 }
1948
1949 static int
1950 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
1951 {
1952 int error;
1953 u_int16_t ltbuf[2];
1954
1955 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
1956 ltbuf[1] = htole16(rid);
1957
1958 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
1959 if (error)
1960 return error;
1961 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
1962 if (error)
1963 return error;
1964
1965 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
1966 }
1967
1968 static int
1969 wi_newstate(void *arg, enum ieee80211_state nstate)
1970 {
1971 struct wi_softc *sc = arg;
1972 struct ieee80211com *ic = &sc->sc_ic;
1973 struct ieee80211_node *ni = &ic->ic_bss;
1974 int buflen;
1975 u_int16_t val;
1976 struct wi_ssid ssid;
1977 enum ieee80211_state ostate;
1978 #ifdef WI_DEBUG
1979 static const char *stname[] =
1980 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
1981 #endif /* WI_DEBUG */
1982
1983 ostate = ic->ic_state;
1984 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
1985
1986 ic->ic_state = nstate;
1987 switch (nstate) {
1988 case IEEE80211_S_INIT:
1989 ic->ic_flags &= ~IEEE80211_F_SIBSS;
1990 return 0;
1991
1992 case IEEE80211_S_RUN:
1993 buflen = IEEE80211_ADDR_LEN;
1994 wi_read_rid(sc, WI_RID_CURRENT_BSSID, ni->ni_bssid, &buflen);
1995 IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
1996 buflen = sizeof(val);
1997 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
1998 ni->ni_chan = le16toh(val);
1999
2000 buflen = sizeof(ssid);
2001 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2002 ni->ni_esslen = le16toh(ssid.wi_len);
2003 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2004 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2005 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2006 break;
2007
2008 case IEEE80211_S_SCAN:
2009 case IEEE80211_S_AUTH:
2010 case IEEE80211_S_ASSOC:
2011 break;
2012 }
2013
2014 /* skip standard ieee80211 handling */
2015 return EINPROGRESS;
2016 }
2017
2018 static int
2019 wi_scan_ap(struct wi_softc *sc)
2020 {
2021 int error = 0;
2022 u_int16_t val[2];
2023
2024 if (!sc->sc_enabled)
2025 return ENXIO;
2026 switch (sc->sc_firmware_type) {
2027 case WI_LUCENT:
2028 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2029 break;
2030 case WI_INTERSIL:
2031 val[0] = 0x3fff; /* channel */
2032 val[1] = 0x000f; /* tx rate */
2033 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2034 break;
2035 case WI_SYMBOL:
2036 /*
2037 * XXX only supported on 3.x ?
2038 */
2039 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2040 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2041 val, sizeof(val[0]));
2042 break;
2043 }
2044 if (error == 0) {
2045 sc->sc_scan_timer = WI_SCAN_WAIT;
2046 sc->sc_ic.ic_if.if_timer = 1;
2047 DPRINTF(("wi_scan_ap: start scanning\n"));
2048 }
2049 return error;
2050 }
2051
2052 static void
2053 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2054 {
2055 int i, naps, off, szbuf;
2056 struct wi_scan_header ws_hdr; /* Prism2 header */
2057 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2058 struct wi_apinfo *ap;
2059
2060 off = sizeof(u_int16_t) * 2;
2061 memset(&ws_hdr, 0, sizeof(ws_hdr));
2062 switch (sc->sc_firmware_type) {
2063 case WI_INTERSIL:
2064 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2065 off += sizeof(ws_hdr);
2066 szbuf = sizeof(struct wi_scan_data_p2);
2067 break;
2068 case WI_SYMBOL:
2069 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2070 break;
2071 case WI_LUCENT:
2072 szbuf = sizeof(struct wi_scan_data);
2073 break;
2074 }
2075 naps = (cnt * 2 + 2 - off) / szbuf;
2076 if (naps > MAXAPINFO)
2077 naps = MAXAPINFO;
2078 sc->sc_naps = naps;
2079 /* Read Data */
2080 ap = sc->sc_aps;
2081 memset(&ws_dat, 0, sizeof(ws_dat));
2082 for (i = 0; i < naps; i++, ap++) {
2083 wi_read_bap(sc, fid, off, &ws_dat,
2084 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2085 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
2086 ether_sprintf(ws_dat.wi_bssid)));
2087 off += szbuf;
2088 ap->scanreason = le16toh(ws_hdr.wi_reason);
2089 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2090 ap->channel = le16toh(ws_dat.wi_chid);
2091 ap->signal = le16toh(ws_dat.wi_signal);
2092 ap->noise = le16toh(ws_dat.wi_noise);
2093 ap->quality = ap->signal - ap->noise;
2094 ap->capinfo = le16toh(ws_dat.wi_capinfo);
2095 ap->interval = le16toh(ws_dat.wi_interval);
2096 ap->rate = le16toh(ws_dat.wi_rate);
2097 ap->namelen = le16toh(ws_dat.wi_namelen);
2098 if (ap->namelen > sizeof(ap->name))
2099 ap->namelen = sizeof(ap->name);
2100 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2101 }
2102 /* Done scanning */
2103 sc->sc_scan_timer = 0;
2104 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
2105 }
2106