wi.c revision 1.95 1 /* $NetBSD: wi.c,v 1.95 2002/10/01 16:11:19 onoe Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.95 2002/10/01 16:11:19 onoe Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static int wi_init(struct ifnet *);
108 static void wi_stop(struct ifnet *, int);
109 static void wi_start(struct ifnet *);
110 static int wi_reset(struct wi_softc *);
111 static void wi_watchdog(struct ifnet *);
112 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
113 static int wi_media_change(struct ifnet *);
114 static void wi_media_status(struct ifnet *, struct ifmediareq *);
115
116 static void wi_rx_intr(struct wi_softc *);
117 static void wi_tx_intr(struct wi_softc *);
118 static void wi_info_intr(struct wi_softc *);
119
120 static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
121 static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
122 static int wi_write_txrate(struct wi_softc *);
123 static int wi_write_wep(struct wi_softc *);
124 static int wi_write_multi(struct wi_softc *);
125 static int wi_alloc_fid(struct wi_softc *, int, int *);
126 static void wi_read_nicid(struct wi_softc *);
127 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
128
129 static int wi_cmd(struct wi_softc *, int, int, int, int);
130 static int wi_seek_bap(struct wi_softc *, int, int);
131 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
132 static int wi_write_bap(struct wi_softc *, int, int, void *, int);
133 static int wi_read_rid(struct wi_softc *, int, void *, int *);
134 static int wi_write_rid(struct wi_softc *, int, void *, int);
135
136 static int wi_newstate(void *, enum ieee80211_state);
137
138 static int wi_scan_ap(struct wi_softc *);
139 static void wi_scan_result(struct wi_softc *, int, int);
140
141 static inline int
142 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
143 {
144
145 val = htole16(val);
146 return wi_write_rid(sc, rid, &val, sizeof(val));
147 }
148
149 #ifdef WI_DEBUG
150 int wi_debug = 0;
151
152 #define DPRINTF(X) if (wi_debug) printf X
153 #define DPRINTF2(X) if (wi_debug > 1) printf X
154 #else
155 #define DPRINTF(X)
156 #define DPRINTF2(X)
157 #endif
158
159 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
160
161 struct wi_card_ident
162 wi_card_ident[] = {
163 /* CARD_ID CARD_NAME FIRM_TYPE */
164 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
165 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
166 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
167 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
168 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
169 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
170 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
171 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
172 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
173 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
174 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
175 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
176 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
177 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
178 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
179 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
180 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
181 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
182 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
183 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
184 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
185 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
186 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
187 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
188 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
189 { 0, NULL, 0 },
190 };
191
192 int
193 wi_attach(struct wi_softc *sc)
194 {
195 struct ieee80211com *ic = &sc->sc_ic;
196 struct ifnet *ifp = &ic->ic_if;
197 int i, nrate, mword, buflen;
198 u_int8_t r;
199 u_int16_t val;
200 u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
201 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
202 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
203 };
204 int s;
205
206 s = splnet();
207
208 /* Make sure interrupts are disabled. */
209 CSR_WRITE_2(sc, WI_INT_EN, 0);
210 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
211
212 /* Reset the NIC. */
213 if (wi_reset(sc) != 0) {
214 splx(s);
215 return 1;
216 }
217
218 buflen = IEEE80211_ADDR_LEN;
219 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
220 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
221 printf(" could not get mac address, attach failed\n");
222 splx(s);
223 return 1;
224 }
225
226 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
227
228 /* Read NIC identification */
229 wi_read_nicid(sc);
230
231 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
232 ifp->if_softc = sc;
233 ifp->if_start = wi_start;
234 ifp->if_ioctl = wi_ioctl;
235 ifp->if_watchdog = wi_watchdog;
236 ifp->if_init = wi_init;
237 ifp->if_stop = wi_stop;
238 ifp->if_flags =
239 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
240 IFQ_SET_READY(&ifp->if_snd);
241
242 ic->ic_phytype = IEEE80211_T_DS;
243 ic->ic_opmode = IEEE80211_M_STA;
244 ic->ic_flags = IEEE80211_F_HASPMGT | IEEE80211_F_HASAHDEMO;
245 ic->ic_state = IEEE80211_S_INIT;
246 ic->ic_newstate = wi_newstate;
247
248 /* Find available channel */
249 buflen = sizeof(val);
250 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
251 val = htole16(0x1fff); /* assume 1-11 */
252 for (i = 0; i < 16; i++) {
253 if (isset((u_int8_t*)&val, i))
254 setbit(ic->ic_chan_avail, i + 1);
255 }
256
257 /* Find default IBSS channel */
258 buflen = sizeof(val);
259 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0)
260 ic->ic_ibss_chan = le16toh(val);
261 else {
262 /* use lowest available channel */
263 for (i = 0; i < 16; i++) {
264 if (isset(ic->ic_chan_avail, i))
265 break;
266 }
267 ic->ic_ibss_chan = i;
268 }
269
270 /*
271 * Set flags based on firmware version.
272 */
273 switch (sc->sc_firmware_type) {
274 case WI_LUCENT:
275 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
276 #ifdef WI_HERMES_AUTOINC_WAR
277 /* XXX: not confirmed, but never seen for recent firmware */
278 if (sc->sc_sta_firmware_ver < 40000) {
279 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
280 }
281 #endif
282 if (sc->sc_sta_firmware_ver >= 60000)
283 sc->sc_flags |= WI_FLAGS_HAS_MOR;
284 if (sc->sc_sta_firmware_ver >= 60006)
285 ic->ic_flags |= IEEE80211_F_HASIBSS;
286 sc->sc_ibss_port = 1;
287 break;
288
289 case WI_INTERSIL:
290 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
291 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
292 if (sc->sc_sta_firmware_ver >= 800) {
293 ic->ic_flags |= IEEE80211_F_HASHOSTAP;
294 ic->ic_flags |= IEEE80211_F_HASIBSS;
295 }
296 sc->sc_ibss_port = 0;
297 break;
298
299 case WI_SYMBOL:
300 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
301 if (sc->sc_sta_firmware_ver >= 25000)
302 ic->ic_flags |= IEEE80211_F_HASIBSS;
303 sc->sc_ibss_port = 4;
304 break;
305 }
306
307 /*
308 * Find out if we support WEP on this card.
309 */
310 buflen = sizeof(val);
311 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
312 val != htole16(0))
313 ic->ic_flags |= IEEE80211_F_HASWEP;
314
315 /* Find supported rates. */
316 buflen = sizeof(ratebuf);
317 if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
318 nrate = le16toh(*(u_int16_t *)ratebuf);
319 if (nrate > IEEE80211_RATE_SIZE)
320 nrate = IEEE80211_RATE_SIZE;
321 memcpy(ic->ic_sup_rates, ratebuf + 2, nrate);
322 }
323 buflen = sizeof(val);
324
325 sc->sc_max_datalen = 2304;
326 sc->sc_rts_thresh = 2347;
327 sc->sc_system_scale = 1;
328 sc->sc_cnfauthmode = 1;
329 sc->sc_roaming_mode = 1;
330
331 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
332 printf("%s: supported rates: ", sc->sc_dev.dv_xname);
333 #define ADD(s, o) ifmedia_add(&sc->sc_media, \
334 IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL)
335 ADD(IFM_AUTO, 0);
336 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
337 ADD(IFM_AUTO, IFM_IEEE80211_HOSTAP);
338 if (ic->ic_flags & IEEE80211_F_HASIBSS)
339 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC);
340 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC | IFM_FLAG0);
341 for (i = 0; i < nrate; i++) {
342 r = ic->ic_sup_rates[i];
343 mword = ieee80211_rate2media(r, IEEE80211_T_DS);
344 if (mword == 0)
345 continue;
346 printf("%s%d%sMbps", (i != 0 ? " " : ""),
347 (r & IEEE80211_RATE_VAL) / 2, ((r & 0x1) != 0 ? ".5" : ""));
348 ADD(mword, 0);
349 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
350 ADD(mword, IFM_IEEE80211_HOSTAP);
351 if (ic->ic_flags & IEEE80211_F_HASIBSS)
352 ADD(mword, IFM_IEEE80211_ADHOC);
353 ADD(mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
354 }
355 printf("\n");
356 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
357 #undef ADD
358
359 /*
360 * Call MI attach routines.
361 */
362
363 if_attach(ifp);
364 ieee80211_ifattach(ifp);
365
366 /* Attach is successful. */
367 sc->sc_attached = 1;
368
369 splx(s);
370 return 0;
371 }
372
373 int
374 wi_detach(struct wi_softc *sc)
375 {
376 struct ifnet *ifp = &sc->sc_ic.ic_if;
377 int s;
378
379 if (!sc->sc_attached)
380 return 0;
381
382 s = splnet();
383
384 /* Delete all remaining media. */
385 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
386
387 ieee80211_ifdetach(ifp);
388 if_detach(ifp);
389 if (sc->sc_enabled) {
390 if (sc->sc_disable)
391 (*sc->sc_disable)(sc);
392 sc->sc_enabled = 0;
393 }
394 splx(s);
395 return 0;
396 }
397
398 int
399 wi_activate(struct device *self, enum devact act)
400 {
401 struct wi_softc *sc = (struct wi_softc *)self;
402 int rv = 0, s;
403
404 s = splnet();
405 switch (act) {
406 case DVACT_ACTIVATE:
407 rv = EOPNOTSUPP;
408 break;
409
410 case DVACT_DEACTIVATE:
411 if_deactivate(&sc->sc_ic.ic_if);
412 break;
413 }
414 splx(s);
415 return rv;
416 }
417
418 void
419 wi_power(struct wi_softc *sc, int why)
420 {
421 struct ifnet *ifp = &sc->sc_ic.ic_if;
422 int s;
423
424 s = splnet();
425 switch (why) {
426 case PWR_SUSPEND:
427 case PWR_STANDBY:
428 wi_stop(ifp, 1);
429 break;
430 case PWR_RESUME:
431 if (ifp->if_flags & IFF_UP) {
432 wi_init(ifp);
433 (void)wi_intr(sc);
434 }
435 break;
436 case PWR_SOFTSUSPEND:
437 case PWR_SOFTSTANDBY:
438 case PWR_SOFTRESUME:
439 break;
440 }
441 splx(s);
442 }
443
444 void
445 wi_shutdown(struct wi_softc *sc)
446 {
447 struct ifnet *ifp = &sc->sc_ic.ic_if;
448
449 if (sc->sc_attached)
450 wi_stop(ifp, 1);
451 }
452
453 int
454 wi_intr(void *arg)
455 {
456 int i;
457 struct wi_softc *sc = arg;
458 struct ifnet *ifp = &sc->sc_ic.ic_if;
459 u_int16_t status, raw_status, last_status;
460
461 if (sc->sc_enabled == 0 ||
462 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
463 (ifp->if_flags & IFF_RUNNING) == 0)
464 return 0;
465
466 if ((ifp->if_flags & IFF_UP) == 0) {
467 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
468 CSR_WRITE_2(sc, WI_INT_EN, 0);
469 return 1;
470 }
471
472 /* maximum 10 loops per interrupt */
473 last_status = 0;
474 for (i = 0; i < 10; i++) {
475 /*
476 * Only believe a status bit when we enter wi_intr, or when
477 * the bit was "off" the last time through the loop. This is
478 * my strategy to avoid racing the hardware/firmware if I
479 * can re-read the event status register more quickly than
480 * it is updated.
481 */
482 raw_status = CSR_READ_2(sc, WI_EVENT_STAT);
483 status = raw_status & ~last_status;
484 if ((status & WI_INTRS) == 0)
485 break;
486 last_status = raw_status;
487
488 if (status & WI_EV_RX)
489 wi_rx_intr(sc);
490
491 if (status & WI_EV_ALLOC)
492 wi_tx_intr(sc);
493
494 if (status & WI_EV_INFO)
495 wi_info_intr(sc);
496
497 if (!(ifp->if_flags & IFF_OACTIVE) &&
498 !IFQ_IS_EMPTY(&ifp->if_snd))
499 wi_start(ifp);
500 }
501
502 return 1;
503 }
504
505 static int
506 wi_init(struct ifnet *ifp)
507 {
508 struct wi_softc *sc = ifp->if_softc;
509 struct ieee80211com *ic = &sc->sc_ic;
510 struct wi_joinreq join;
511 int i;
512 int error = 0, wasenabled;
513
514 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
515 wasenabled = sc->sc_enabled;
516 if (!sc->sc_enabled) {
517 if ((error = (*sc->sc_enable)(sc)) != 0)
518 goto out;
519 sc->sc_enabled = 1;
520 } else
521 wi_stop(ifp, 0);
522
523 /* Symbol firmware cannot be initialized more than once */
524 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
525 if ((error = wi_reset(sc)) != 0)
526 goto out;
527 }
528
529 /* common 802.11 configuration */
530 switch (ic->ic_opmode) {
531 case IEEE80211_M_STA:
532 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
533 break;
534 case IEEE80211_M_IBSS:
535 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
536 break;
537 case IEEE80211_M_AHDEMO:
538 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
539 break;
540 case IEEE80211_M_HOSTAP:
541 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
542 break;
543 }
544
545 /* Intersil interprets this RID as joining ESS even in IBSS mode */
546 if (sc->sc_firmware_type == WI_LUCENT &&
547 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
548 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
549 else
550 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
551 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
552 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
553 ic->ic_des_esslen);
554 wi_write_val(sc, WI_RID_OWN_CHNL, ic->ic_ibss_chan);
555 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
556 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
557 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
558 wi_write_val(sc, WI_RID_PM_ENABLED,
559 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
560
561 /* not yet common 802.11 configuration */
562 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
563 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
564
565 /* driver specific 802.11 configuration */
566 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
567 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
568 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
569 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
570 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
571 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
572 wi_write_txrate(sc);
573 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
574
575 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
576 sc->sc_firmware_type == WI_INTERSIL) {
577 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
578 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
579 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
580 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
581 }
582
583 /*
584 * Initialize promisc mode.
585 * Being in the Host-AP mode causes a great
586 * deal of pain if primisc mode is set.
587 * Therefore we avoid confusing the firmware
588 * and always reset promisc mode in Host-AP
589 * mode. Host-AP sees all the packets anyway.
590 */
591 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
592 (ifp->if_flags & IFF_PROMISC) != 0) {
593 wi_write_val(sc, WI_RID_PROMISC, 1);
594 } else {
595 wi_write_val(sc, WI_RID_PROMISC, 0);
596 }
597
598 /* Configure WEP. */
599 if (ic->ic_flags & IEEE80211_F_HASWEP)
600 wi_write_wep(sc);
601
602 /* Set multicast filter. */
603 wi_write_multi(sc);
604
605 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
606 if (sc->sc_firmware_type == WI_SYMBOL)
607 sc->sc_buflen = 1585; /* XXX */
608 for (i = 0; i < WI_NTXBUF; i++) {
609 error = wi_alloc_fid(sc, sc->sc_buflen,
610 &sc->sc_txd[i].d_fid);
611 if (error) {
612 printf("%s: tx buffer allocation failed\n",
613 sc->sc_dev.dv_xname);
614 goto out;
615 }
616 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
617 sc->sc_txd[i].d_fid));
618 sc->sc_txd[i].d_len = 0;
619 }
620 sc->sc_txcur = sc->sc_txnext = 0;
621 if (ic->ic_opmode == IEEE80211_M_IBSS)
622 ic->ic_flags |= IEEE80211_F_IBSSON;
623 else
624 ic->ic_flags &= ~IEEE80211_F_IBSSON;
625
626 /* Enable port 0 */
627 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
628 ifp->if_flags |= IFF_RUNNING;
629 ifp->if_flags &= ~IFF_OACTIVE;
630 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
631 ic->ic_opmode == IEEE80211_M_HOSTAP)
632 wi_newstate(sc, IEEE80211_S_RUN);
633
634 /* Enable interrupts */
635 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
636
637 if (!wasenabled && ic->ic_opmode == IEEE80211_M_HOSTAP) {
638 /* XXX: some card need to be re-enabled for hostap */
639 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
640 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
641 }
642
643 if (ic->ic_opmode == IEEE80211_M_STA &&
644 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
645 ic->ic_des_chan != IEEE80211_CHAN_ANY)) {
646 memset(&join, 0, sizeof(join));
647 if (ic->ic_flags & IEEE80211_F_DESBSSID)
648 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
649 if (ic->ic_des_chan != IEEE80211_CHAN_ANY)
650 join.wi_chan = htole16(ic->ic_des_chan);
651 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
652 }
653
654 out:
655 if (error) {
656 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
657 wi_stop(ifp, 0);
658 }
659 DPRINTF(("wi_init: return %d\n", error));
660 return error;
661 }
662
663 static void
664 wi_stop(struct ifnet *ifp, int disable)
665 {
666 struct wi_softc *sc = ifp->if_softc;
667
668 DPRINTF(("wi_stop: disable %d\n", disable));
669 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
670 if (sc->sc_enabled) {
671 CSR_WRITE_2(sc, WI_INT_EN, 0);
672 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
673 if (disable) {
674 if (sc->sc_disable)
675 (*sc->sc_disable)(sc);
676 sc->sc_enabled = 0;
677 }
678 }
679
680 sc->sc_tx_timer = 0;
681 sc->sc_scan_timer = 0;
682 sc->sc_naps = 0;
683 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
684 ifp->if_timer = 0;
685 }
686
687 static void
688 wi_start(struct ifnet *ifp)
689 {
690 struct wi_softc *sc = ifp->if_softc;
691 struct ieee80211com *ic = &sc->sc_ic;
692 struct ieee80211_frame *wh;
693 struct mbuf *m0, *m;
694 struct wi_frame frmhdr;
695 int cur, fid, off;
696
697 if (ifp->if_flags & IFF_OACTIVE)
698 return;
699
700 memset(&frmhdr, 0, sizeof(frmhdr));
701 cur = sc->sc_txnext;
702 for (;;) {
703 IF_POLL(&ic->ic_mgtq, m0);
704 if (m0 != NULL) {
705 if (sc->sc_txd[cur].d_len != 0) {
706 ifp->if_flags |= IFF_OACTIVE;
707 break;
708 }
709 IF_DEQUEUE(&ic->ic_mgtq, m0);
710 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
711 (caddr_t)&frmhdr.wi_ehdr);
712 frmhdr.wi_ehdr.ether_type = 0;
713 wh = mtod(m0, struct ieee80211_frame *);
714 } else {
715 if (ic->ic_state != IEEE80211_S_RUN)
716 break;
717 IFQ_POLL(&ifp->if_snd, m0);
718 if (m0 == NULL)
719 break;
720 if (sc->sc_txd[cur].d_len != 0) {
721 ifp->if_flags |= IFF_OACTIVE;
722 break;
723 }
724 IFQ_DEQUEUE(&ifp->if_snd, m0);
725 ifp->if_opackets++;
726 m_copydata(m0, 0, ETHER_HDR_LEN,
727 (caddr_t)&frmhdr.wi_ehdr);
728 #if NBPFILTER > 0
729 if (ifp->if_bpf)
730 bpf_mtap(ifp->if_bpf, m0);
731 #endif
732
733 if ((m0 = ieee80211_encap(ifp, m0)) == NULL) {
734 ifp->if_oerrors++;
735 continue;
736 }
737 wh = mtod(m0, struct ieee80211_frame *);
738 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
739 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
740 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
741 IEEE80211_FC0_TYPE_DATA &&
742 ieee80211_find_node(ic, wh->i_addr1) == NULL) {
743 m_freem(m0);
744 ifp->if_oerrors++;
745 continue;
746 }
747 if (ic->ic_flags & IEEE80211_F_WEPON)
748 wh->i_fc[1] |= IEEE80211_FC1_WEP;
749
750 }
751 #if NBPFILTER > 0
752 if (ic->ic_rawbpf)
753 bpf_mtap(ic->ic_rawbpf, m0);
754 #endif
755 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11);
756 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
757 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
758 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
759 ifp->if_oerrors++;
760 continue;
761 }
762 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
763 }
764 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
765 (caddr_t)&frmhdr.wi_whdr);
766 m_adj(m0, sizeof(struct ieee80211_frame));
767 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
768 #if NBPFILTER > 0
769 if (sc->sc_drvbpf) {
770 struct mbuf mb;
771
772 M_COPY_PKTHDR(&mb, m0);
773 mb.m_data = (caddr_t)&frmhdr;
774 mb.m_len = sizeof(frmhdr);
775 mb.m_next = m0;
776 mb.m_pkthdr.len += mb.m_len;
777 bpf_mtap(sc->sc_drvbpf, &mb);
778 }
779 #endif
780 fid = sc->sc_txd[cur].d_fid;
781 wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr));
782 off = sizeof(frmhdr);
783 for (m = m0; m != NULL; m = m->m_next) {
784 if (m->m_len == 0)
785 continue;
786 wi_write_bap(sc, fid, off, m->m_data, m->m_len);
787 off += m->m_len;
788 }
789 m_freem(m0);
790 sc->sc_txd[cur].d_len = off;
791 if (sc->sc_txcur == cur) {
792 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
793 printf("%s: xmit failed\n",
794 sc->sc_dev.dv_xname);
795 sc->sc_txd[cur].d_len = 0;
796 continue;
797 }
798 sc->sc_tx_timer = 5;
799 ifp->if_timer = 1;
800 }
801 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF;
802 }
803 }
804
805
806 static int
807 wi_reset(struct wi_softc *sc)
808 {
809 int i, error;
810
811 DPRINTF(("wi_reset\n"));
812 error = 0;
813 for (i = 0; i < 5; i++) {
814 DELAY(20*1000); /* XXX: way too long! */
815 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
816 break;
817 }
818 if (error) {
819 printf("%s: init failed\n", sc->sc_dev.dv_xname);
820 return error;
821 }
822 CSR_WRITE_2(sc, WI_INT_EN, 0);
823 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
824
825 /* Calibrate timer. */
826 wi_write_val(sc, WI_RID_TICK_TIME, 0);
827 return 0;
828 }
829
830 static void
831 wi_watchdog(struct ifnet *ifp)
832 {
833 struct wi_softc *sc = ifp->if_softc;
834
835 ifp->if_timer = 0;
836 if (!sc->sc_enabled)
837 return;
838
839 if (sc->sc_tx_timer) {
840 if (--sc->sc_tx_timer == 0) {
841 printf("%s: device timeout\n", ifp->if_xname);
842 ifp->if_oerrors++;
843 wi_init(ifp);
844 return;
845 }
846 ifp->if_timer = 1;
847 }
848
849 if (sc->sc_scan_timer) {
850 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
851 sc->sc_firmware_type == WI_INTERSIL) {
852 DPRINTF(("wi_watchdog: inquire scan\n"));
853 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
854 }
855 if (sc->sc_scan_timer)
856 ifp->if_timer = 1;
857 }
858
859 /* TODO: rate control */
860 ieee80211_watchdog(ifp);
861 }
862
863 static int
864 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
865 {
866 struct wi_softc *sc = ifp->if_softc;
867 struct ieee80211com *ic = &sc->sc_ic;
868 struct ifreq *ifr = (struct ifreq *)data;
869 int s, error = 0;
870
871 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
872 return ENXIO;
873
874 s = splnet();
875
876 switch (cmd) {
877 case SIOCSIFFLAGS:
878 if (ifp->if_flags & IFF_UP) {
879 if (sc->sc_enabled) {
880 /*
881 * To avoid rescanning another access point,
882 * do not call wi_init() here. Instead,
883 * only reflect promisc mode settings.
884 */
885 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
886 (ifp->if_flags & IFF_PROMISC) != 0)
887 wi_write_val(sc, WI_RID_PROMISC, 1);
888 else
889 wi_write_val(sc, WI_RID_PROMISC, 0);
890 } else
891 error = wi_init(ifp);
892 } else if (sc->sc_enabled)
893 wi_stop(ifp, 1);
894 break;
895 case SIOCSIFMEDIA:
896 case SIOCGIFMEDIA:
897 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
898 break;
899 case SIOCADDMULTI:
900 case SIOCDELMULTI:
901 error = (cmd == SIOCADDMULTI) ?
902 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
903 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
904 if (error == ENETRESET) {
905 if (sc->sc_enabled) {
906 /* do not rescan */
907 error = wi_write_multi(sc);
908 } else
909 error = 0;
910 }
911 break;
912 case SIOCGIFGENERIC:
913 error = wi_get_cfg(ifp, cmd, data);
914 break;
915 case SIOCSIFGENERIC:
916 error = suser(curproc->p_ucred, &curproc->p_acflag);
917 if (error)
918 break;
919 error = wi_set_cfg(ifp, cmd, data);
920 if (error == ENETRESET) {
921 if (sc->sc_enabled)
922 error = wi_init(ifp);
923 else
924 error = 0;
925 }
926 break;
927 default:
928 error = ieee80211_ioctl(ifp, cmd, data);
929 if (error == ENETRESET) {
930 if (sc->sc_enabled)
931 error = wi_init(ifp);
932 else
933 error = 0;
934 }
935 break;
936 }
937 splx(s);
938 return error;
939 }
940
941 static int
942 wi_media_change(struct ifnet *ifp)
943 {
944 struct wi_softc *sc = ifp->if_softc;
945 struct ieee80211com *ic = &sc->sc_ic;
946 struct ifmedia_entry *ime;
947 enum ieee80211_opmode newmode;
948 int i, rate, error = 0;
949
950 ime = sc->sc_media.ifm_cur;
951 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
952 i = -1;
953 } else {
954 rate = ieee80211_media2rate(ime->ifm_media, IEEE80211_T_DS);
955 if (rate == 0)
956 return EINVAL;
957 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
958 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL) == rate)
959 break;
960 }
961 if (i == IEEE80211_RATE_SIZE)
962 return EINVAL;
963 }
964 if (ic->ic_fixed_rate != i) {
965 ic->ic_fixed_rate = i;
966 error = ENETRESET;
967 }
968
969 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
970 (ime->ifm_media & IFM_FLAG0))
971 newmode = IEEE80211_M_AHDEMO;
972 else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
973 newmode = IEEE80211_M_IBSS;
974 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
975 newmode = IEEE80211_M_HOSTAP;
976 else
977 newmode = IEEE80211_M_STA;
978 if (ic->ic_opmode != newmode) {
979 ic->ic_opmode = newmode;
980 error = ENETRESET;
981 }
982 if (error == ENETRESET) {
983 if (sc->sc_enabled)
984 error = wi_init(ifp);
985 else
986 error = 0;
987 }
988 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
989
990 return error;
991 }
992
993 static void
994 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
995 {
996 struct wi_softc *sc = ifp->if_softc;
997 struct ieee80211com *ic = &sc->sc_ic;
998 u_int16_t val;
999 int rate, len;
1000
1001 if (sc->sc_enabled == 0) {
1002 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1003 imr->ifm_status = 0;
1004 return;
1005 }
1006
1007 imr->ifm_status = IFM_AVALID;
1008 imr->ifm_active = IFM_IEEE80211;
1009 if (ic->ic_state == IEEE80211_S_RUN)
1010 imr->ifm_status |= IFM_ACTIVE;
1011 if (ic->ic_fixed_rate != -1)
1012 rate = ic->ic_sup_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1013 else {
1014 len = sizeof(val);
1015 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1016 rate = 0;
1017 else {
1018 /* convert to 802.11 rate */
1019 rate = val * 2;
1020 if (sc->sc_firmware_type == WI_LUCENT) {
1021 if (rate == 10)
1022 rate = 11; /* 5.5Mbps */
1023 } else {
1024 if (rate == 4*2)
1025 rate = 11; /* 5.5Mbps */
1026 else if (rate == 8*2)
1027 rate = 22; /* 11Mbps */
1028 }
1029 }
1030 }
1031 imr->ifm_active |= ieee80211_rate2media(rate, IEEE80211_T_DS);
1032 switch (ic->ic_opmode) {
1033 case IEEE80211_M_STA:
1034 break;
1035 case IEEE80211_M_IBSS:
1036 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1037 break;
1038 case IEEE80211_M_AHDEMO:
1039 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1040 break;
1041 case IEEE80211_M_HOSTAP:
1042 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1043 break;
1044 }
1045 }
1046
1047 static void
1048 wi_rx_intr(struct wi_softc *sc)
1049 {
1050 struct ieee80211com *ic = &sc->sc_ic;
1051 struct ifnet *ifp = &ic->ic_if;
1052 struct wi_frame frmhdr;
1053 struct mbuf *m;
1054 struct ieee80211_frame *wh;
1055 u_int16_t status;
1056 int fid, len, off;
1057
1058 fid = CSR_READ_2(sc, WI_RX_FID);
1059
1060 /* First read in the frame header */
1061 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1062 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1063 ifp->if_ierrors++;
1064 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1065 return;
1066 }
1067
1068 /*
1069 * Drop undecryptable or packets with receive errors here
1070 */
1071 status = le16toh(frmhdr.wi_status);
1072 if (status & WI_STAT_ERRSTAT) {
1073 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1074 ifp->if_ierrors++;
1075 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1076 return;
1077 }
1078
1079 len = le16toh(frmhdr.wi_dat_len);
1080 off = ALIGN(sizeof(struct ieee80211_frame));
1081
1082 MGETHDR(m, M_DONTWAIT, MT_DATA);
1083 if (m == NULL) {
1084 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1085 ifp->if_ierrors++;
1086 DPRINTF(("wi_rx_intr: MGET failed\n"));
1087 return;
1088 }
1089 if (off + len > MHLEN) {
1090 MCLGET(m, M_DONTWAIT);
1091 if ((m->m_flags & M_EXT) == 0) {
1092 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1093 m_freem(m);
1094 ifp->if_ierrors++;
1095 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1096 return;
1097 }
1098 }
1099
1100 m->m_data += off - sizeof(struct ieee80211_frame);
1101 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1102 wi_read_bap(sc, fid, sizeof(frmhdr),
1103 m->m_data + sizeof(struct ieee80211_frame), len);
1104 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1105 m->m_pkthdr.rcvif = ifp;
1106
1107 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1108
1109 #if NBPFILTER > 0
1110 if (sc->sc_drvbpf) {
1111 struct mbuf mb;
1112
1113 M_COPY_PKTHDR(&mb, m);
1114 mb.m_data = (caddr_t)&frmhdr;
1115 mb.m_len = sizeof(frmhdr);
1116 mb.m_next = m;
1117 mb.m_pkthdr.len += mb.m_len;
1118 bpf_mtap(sc->sc_drvbpf, &mb);
1119 }
1120 #endif
1121 wh = mtod(m, struct ieee80211_frame *);
1122 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1123 /*
1124 * WEP is decrypted by hardware. Clear WEP bit
1125 * header for ieee80211_input().
1126 */
1127 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1128 }
1129 ieee80211_input(ifp, m, 0 /*rssi*/, 0 /*rstamp*/);
1130 }
1131
1132 static void
1133 wi_tx_intr(struct wi_softc *sc)
1134 {
1135 struct ieee80211com *ic = &sc->sc_ic;
1136 struct ifnet *ifp = &ic->ic_if;
1137 int fid, cur;
1138
1139 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1140 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1141
1142 cur = sc->sc_txcur;
1143 if (sc->sc_txd[cur].d_fid != fid) {
1144 printf("%s: bad alloc %x != %x\n",
1145 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid);
1146 return;
1147 }
1148 sc->sc_tx_timer = 0;
1149 sc->sc_txd[cur].d_len = 0;
1150 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF;
1151 if (sc->sc_txd[cur].d_len == 0)
1152 ifp->if_flags &= ~IFF_OACTIVE;
1153 else {
1154 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1155 0, 0)) {
1156 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1157 sc->sc_txd[cur].d_len = 0;
1158 } else {
1159 sc->sc_tx_timer = 5;
1160 ifp->if_timer = 1;
1161 }
1162 }
1163 }
1164
1165 static void
1166 wi_info_intr(struct wi_softc *sc)
1167 {
1168 struct ieee80211com *ic = &sc->sc_ic;
1169 struct ifnet *ifp = &ic->ic_if;
1170 int i, fid, len, off;
1171 u_int16_t ltbuf[2];
1172 u_int16_t stat;
1173 u_int32_t *ptr;
1174
1175 fid = CSR_READ_2(sc, WI_INFO_FID);
1176 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1177
1178 switch (le16toh(ltbuf[1])) {
1179
1180 case WI_INFO_LINK_STAT:
1181 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1182 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1183 switch (le16toh(stat)) {
1184 case CONNECTED:
1185 if (ic->ic_state == IEEE80211_S_RUN)
1186 break;
1187 /* FALLTHROUGH */
1188 case AP_CHANGE:
1189 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
1190 break;
1191 case AP_IN_RANGE:
1192 break;
1193 case AP_OUT_OF_RANGE:
1194 if (sc->sc_firmware_type == WI_SYMBOL &&
1195 sc->sc_scan_timer > 0) {
1196 if (wi_cmd(sc, WI_CMD_INQUIRE,
1197 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1198 sc->sc_scan_timer = 0;
1199 break;
1200 }
1201 /* FALLTHROUGH */
1202 case DISCONNECTED:
1203 case ASSOC_FAILED:
1204 if (ic->ic_opmode == IEEE80211_M_STA)
1205 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
1206 break;
1207 }
1208 break;
1209
1210 case WI_INFO_COUNTERS:
1211 /* some card versions have a larger stats structure */
1212 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1213 ptr = (u_int32_t *)&sc->sc_stats;
1214 off = sizeof(ltbuf);
1215 for (i = 0; i < len; i++, off += 2, ptr++) {
1216 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1217 #ifdef WI_HERMES_STATS_WAR
1218 if (stat & 0xf000)
1219 stat = ~stat;
1220 #endif
1221 *ptr += stat;
1222 }
1223 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1224 sc->sc_stats.wi_tx_multi_retries +
1225 sc->sc_stats.wi_tx_retry_limit;
1226 break;
1227
1228 case WI_INFO_SCAN_RESULTS:
1229 case WI_INFO_HOST_SCAN_RESULTS:
1230 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1231 break;
1232
1233 default:
1234 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1235 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1236 break;
1237 }
1238 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1239 }
1240
1241 /*
1242 * Allocate a region of memory inside the NIC and zero
1243 * it out.
1244 */
1245 static int
1246 wi_write_multi(struct wi_softc *sc)
1247 {
1248 struct ifnet *ifp = &sc->sc_ic.ic_if;
1249 int n = 0;
1250 struct wi_mcast mlist;
1251 struct ether_multi *enm;
1252 struct ether_multistep estep;
1253
1254 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1255 allmulti:
1256 ifp->if_flags |= IFF_ALLMULTI;
1257 memset(&mlist, 0, sizeof(mlist));
1258 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1259 sizeof(mlist));
1260 }
1261
1262 n = 0;
1263 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1264 while (enm != NULL) {
1265 /* Punt on ranges or too many multicast addresses. */
1266 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1267 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1268 goto allmulti;
1269
1270 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1271 n++;
1272 ETHER_NEXT_MULTI(estep, enm);
1273 }
1274 ifp->if_flags &= ~IFF_ALLMULTI;
1275 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1276 IEEE80211_ADDR_LEN * n);
1277 }
1278
1279
1280 static void
1281 wi_read_nicid(sc)
1282 struct wi_softc *sc;
1283 {
1284 struct wi_card_ident *id;
1285 char *p;
1286 int len;
1287 u_int16_t ver[4];
1288
1289 /* getting chip identity */
1290 memset(ver, 0, sizeof(ver));
1291 len = sizeof(ver);
1292 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1293 printf("%s: using ", sc->sc_dev.dv_xname);
1294 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1295
1296 sc->sc_firmware_type = WI_NOTYPE;
1297 for (id = wi_card_ident; id->card_name != NULL; id++) {
1298 if (le16toh(ver[0]) == id->card_id) {
1299 printf("%s", id->card_name);
1300 sc->sc_firmware_type = id->firm_type;
1301 break;
1302 }
1303 }
1304 if (sc->sc_firmware_type == WI_NOTYPE) {
1305 if (le16toh(ver[0]) & 0x8000) {
1306 printf("Unknown PRISM2 chip");
1307 sc->sc_firmware_type = WI_INTERSIL;
1308 } else {
1309 printf("Unknown Lucent chip");
1310 sc->sc_firmware_type = WI_LUCENT;
1311 }
1312 }
1313
1314 /* get primary firmware version (Only Prism chips) */
1315 if (sc->sc_firmware_type != WI_LUCENT) {
1316 memset(ver, 0, sizeof(ver));
1317 len = sizeof(ver);
1318 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1319 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1320 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1321 DPRINTF2(("wi_read_nicid: PRI_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1322 }
1323
1324 /* get station firmware version */
1325 memset(ver, 0, sizeof(ver));
1326 len = sizeof(ver);
1327 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1328 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1329 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1330 DPRINTF2(("wi_read_nicid: STA_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1331 if (sc->sc_firmware_type == WI_INTERSIL &&
1332 (sc->sc_sta_firmware_ver == 10102 ||
1333 sc->sc_sta_firmware_ver == 20102)) {
1334 char ident[12];
1335 memset(ident, 0, sizeof(ident));
1336 len = sizeof(ident);
1337 /* value should be the format like "V2.00-11" */
1338 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1339 *(p = (char *)ident) >= 'A' &&
1340 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1341 sc->sc_firmware_type = WI_SYMBOL;
1342 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1343 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1344 (p[6] - '0') * 10 + (p[7] - '0');
1345 }
1346 DPRINTF2(("wi_read_nicid: SYMBOL_ID: %x %x %x %x\n", le16toh(ident[0]), le16toh(ident[1]), le16toh(ident[2]), le16toh(ident[3])));
1347 }
1348
1349 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1350 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1351 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1352 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1353 printf("Primary (%u.%u.%u), ",
1354 sc->sc_pri_firmware_ver / 10000,
1355 (sc->sc_pri_firmware_ver % 10000) / 100,
1356 sc->sc_pri_firmware_ver % 100);
1357 printf("Station (%u.%u.%u)\n",
1358 sc->sc_sta_firmware_ver / 10000,
1359 (sc->sc_sta_firmware_ver % 10000) / 100,
1360 sc->sc_sta_firmware_ver % 100);
1361 }
1362
1363 static int
1364 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1365 {
1366 struct wi_ssid ssid;
1367
1368 if (buflen > IEEE80211_NWID_LEN)
1369 return ENOBUFS;
1370 memset(&ssid, 0, sizeof(ssid));
1371 ssid.wi_len = htole16(buflen);
1372 memcpy(ssid.wi_ssid, buf, buflen);
1373 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
1374 }
1375
1376 static int
1377 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1378 {
1379 struct wi_softc *sc = ifp->if_softc;
1380 struct ieee80211com *ic = &sc->sc_ic;
1381 struct ifreq *ifr = (struct ifreq *)data;
1382 struct wi_req wreq;
1383 int len, n, error;
1384
1385 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1386 if (error)
1387 return error;
1388 len = (wreq.wi_len - 1) * 2;
1389 if (len < sizeof(u_int16_t))
1390 return ENOSPC;
1391 if (len > sizeof(wreq.wi_val))
1392 len = sizeof(wreq.wi_val);
1393
1394 switch (wreq.wi_type) {
1395
1396 case WI_RID_IFACE_STATS:
1397 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1398 if (len < sizeof(sc->sc_stats))
1399 error = ENOSPC;
1400 else
1401 len = sizeof(sc->sc_stats);
1402 break;
1403
1404 case WI_RID_ENCRYPTION:
1405 case WI_RID_TX_CRYPT_KEY:
1406 case WI_RID_DEFLT_CRYPT_KEYS:
1407 return ieee80211_cfgget(ifp, cmd, data);
1408
1409 case WI_RID_TX_RATE:
1410 if (ic->ic_fixed_rate < 0)
1411 wreq.wi_val[0] = htole16(3); /*XXX*/
1412 else
1413 wreq.wi_val[0] = htole16(
1414 (ic->ic_sup_rates[ic->ic_fixed_rate] &
1415 IEEE80211_RATE_VAL) / 2);
1416 len = sizeof(u_int16_t);
1417 break;
1418
1419 case WI_RID_MICROWAVE_OVEN:
1420 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1421 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1422 &len);
1423 break;
1424 }
1425 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1426 len = sizeof(u_int16_t);
1427 break;
1428
1429 case WI_RID_ROAMING_MODE:
1430 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
1431 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1432 &len);
1433 break;
1434 }
1435 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
1436 len = sizeof(u_int16_t);
1437 break;
1438
1439 case WI_RID_SYSTEM_SCALE:
1440 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
1441 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1442 &len);
1443 break;
1444 }
1445 wreq.wi_val[0] = htole16(sc->sc_system_scale);
1446 len = sizeof(u_int16_t);
1447 break;
1448
1449 case WI_RID_READ_APS:
1450 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1451 return ieee80211_cfgget(ifp, cmd, data);
1452 if (sc->sc_scan_timer > 0) {
1453 error = EINPROGRESS;
1454 break;
1455 }
1456 n = sc->sc_naps;
1457 if (len < sizeof(n)) {
1458 error = ENOSPC;
1459 break;
1460 }
1461 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
1462 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
1463 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
1464 memcpy(wreq.wi_val, &n, sizeof(n));
1465 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
1466 sizeof(struct wi_apinfo) * n);
1467 break;
1468
1469 default:
1470 if (sc->sc_enabled) {
1471 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1472 &len);
1473 break;
1474 }
1475 switch (wreq.wi_type) {
1476 case WI_RID_MAX_DATALEN:
1477 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
1478 len = sizeof(u_int16_t);
1479 break;
1480 case WI_RID_RTS_THRESH:
1481 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
1482 len = sizeof(u_int16_t);
1483 break;
1484 case WI_RID_CNFAUTHMODE:
1485 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
1486 len = sizeof(u_int16_t);
1487 break;
1488 case WI_RID_NODENAME:
1489 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
1490 error = ENOSPC;
1491 break;
1492 }
1493 len = sc->sc_nodelen + sizeof(u_int16_t);
1494 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
1495 memcpy(&wreq.wi_val[1], sc->sc_nodename,
1496 sc->sc_nodelen);
1497 break;
1498 default:
1499 return ieee80211_cfgget(ifp, cmd, data);
1500 }
1501 break;
1502 }
1503 if (error)
1504 return error;
1505 wreq.wi_len = (len + 1) / 2 + 1;
1506 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
1507 }
1508
1509 static int
1510 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1511 {
1512 struct wi_softc *sc = ifp->if_softc;
1513 struct ieee80211com *ic = &sc->sc_ic;
1514 struct ifreq *ifr = (struct ifreq *)data;
1515 struct wi_req wreq;
1516 struct mbuf *m;
1517 int i, len, error;
1518
1519 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1520 if (error)
1521 return error;
1522 len = (wreq.wi_len - 1) * 2;
1523 switch (wreq.wi_type) {
1524 case WI_RID_NODENAME:
1525 if (le16toh(wreq.wi_val[0]) * 2 > len ||
1526 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
1527 error = ENOSPC;
1528 break;
1529 }
1530 if (sc->sc_enabled) {
1531 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1532 len);
1533 if (error)
1534 break;
1535 }
1536 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
1537 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
1538 break;
1539
1540 case WI_RID_MICROWAVE_OVEN:
1541 case WI_RID_ROAMING_MODE:
1542 case WI_RID_SYSTEM_SCALE:
1543 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
1544 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
1545 break;
1546 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
1547 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
1548 break;
1549 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
1550 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
1551 break;
1552 /* FALLTHROUGH */
1553 case WI_RID_RTS_THRESH:
1554 case WI_RID_CNFAUTHMODE:
1555 case WI_RID_MAX_DATALEN:
1556 if (sc->sc_enabled) {
1557 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1558 sizeof(u_int16_t));
1559 if (error)
1560 break;
1561 }
1562 switch (wreq.wi_type) {
1563 case WI_RID_RTS_THRESH:
1564 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
1565 break;
1566 case WI_RID_MICROWAVE_OVEN:
1567 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
1568 break;
1569 case WI_RID_ROAMING_MODE:
1570 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
1571 break;
1572 case WI_RID_SYSTEM_SCALE:
1573 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
1574 break;
1575 case WI_RID_CNFAUTHMODE:
1576 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
1577 break;
1578 case WI_RID_MAX_DATALEN:
1579 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
1580 break;
1581 }
1582 break;
1583
1584 case WI_RID_TX_RATE:
1585 switch (le16toh(wreq.wi_val[0])) {
1586 case 3:
1587 ic->ic_fixed_rate = -1;
1588 break;
1589 default:
1590 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1591 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL)
1592 / 2 == le16toh(wreq.wi_val[0]))
1593 break;
1594 }
1595 if (i == IEEE80211_RATE_SIZE)
1596 return EINVAL;
1597 ic->ic_fixed_rate = i;
1598 }
1599 if (sc->sc_enabled)
1600 error = wi_write_txrate(sc);
1601 break;
1602
1603 case WI_RID_SCAN_APS:
1604 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
1605 error = wi_scan_ap(sc);
1606 break;
1607
1608 case WI_RID_MGMT_XMIT:
1609 if (!sc->sc_enabled) {
1610 error = ENETDOWN;
1611 break;
1612 }
1613 if (ic->ic_mgtq.ifq_len > 5) {
1614 error = EAGAIN;
1615 break;
1616 }
1617 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
1618 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
1619 if (m == NULL) {
1620 error = ENOMEM;
1621 break;
1622 }
1623 IF_ENQUEUE(&ic->ic_mgtq, m);
1624 break;
1625
1626 default:
1627 if (sc->sc_enabled) {
1628 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1629 len);
1630 if (error)
1631 break;
1632 }
1633 error = ieee80211_cfgset(ifp, cmd, data);
1634 break;
1635 }
1636 return error;
1637 }
1638
1639 static int
1640 wi_write_txrate(struct wi_softc *sc)
1641 {
1642 struct ieee80211com *ic = &sc->sc_ic;
1643 int i;
1644 u_int16_t rate;
1645
1646 if (ic->ic_fixed_rate < 0)
1647 rate = 0; /* auto */
1648 else
1649 rate = (ic->ic_sup_rates[ic->ic_fixed_rate] &
1650 IEEE80211_RATE_VAL) / 2;
1651
1652 /* rate: 0, 1, 2, 5, 11 */
1653
1654 switch (sc->sc_firmware_type) {
1655 case WI_LUCENT:
1656 if (rate == 0)
1657 rate = 3; /* auto */
1658 break;
1659 default:
1660 for (i = 8; i > 0; i >>= 1) {
1661 if (rate >= i)
1662 break;
1663 }
1664 if (i == 0)
1665 rate = 0xf; /* auto */
1666 else
1667 rate = i;
1668 break;
1669 }
1670 return wi_write_val(sc, WI_RID_TX_RATE, rate);
1671 }
1672
1673 static int
1674 wi_write_wep(struct wi_softc *sc)
1675 {
1676 struct ieee80211com *ic = &sc->sc_ic;
1677 int error = 0;
1678 int i, keylen;
1679 u_int16_t val;
1680 struct wi_key wkey[IEEE80211_WEP_NKID];
1681
1682 switch (sc->sc_firmware_type) {
1683 case WI_LUCENT:
1684 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
1685 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
1686 if (error)
1687 break;
1688 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
1689 if (error)
1690 break;
1691 memset(wkey, 0, sizeof(wkey));
1692 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1693 keylen = ic->ic_nw_keys[i].wk_len;
1694 wkey[i].wi_keylen = htole16(keylen);
1695 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
1696 keylen);
1697 }
1698 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
1699 wkey, sizeof(wkey));
1700 break;
1701
1702 case WI_INTERSIL:
1703 case WI_SYMBOL:
1704 if (ic->ic_flags & IEEE80211_F_WEPON) {
1705 /*
1706 * ONLY HWB3163 EVAL-CARD Firmware version
1707 * less than 0.8 variant2
1708 *
1709 * If promiscuous mode disable, Prism2 chip
1710 * does not work with WEP .
1711 * It is under investigation for details.
1712 * (ichiro (at) netbsd.org)
1713 */
1714 if (sc->sc_firmware_type == WI_INTERSIL &&
1715 sc->sc_sta_firmware_ver < 802 ) {
1716 /* firm ver < 0.8 variant 2 */
1717 wi_write_val(sc, WI_RID_PROMISC, 1);
1718 }
1719 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1720 sc->sc_cnfauthmode);
1721 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
1722 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1723 val |= HOST_ENCRYPT;
1724 } else {
1725 wi_write_val(sc, WI_RID_CNFAUTHMODE, 1); /* open */
1726 val = HOST_ENCRYPT | HOST_DECRYPT;
1727 }
1728 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
1729 if (error)
1730 break;
1731 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
1732 ic->ic_wep_txkey);
1733 if (error)
1734 break;
1735 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1736 keylen = ic->ic_nw_keys[i].wk_len;
1737 if (keylen > IEEE80211_WEP_KEYLEN)
1738 keylen = 13; /* 104bit keys */
1739 else
1740 keylen = IEEE80211_WEP_KEYLEN;
1741 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
1742 ic->ic_nw_keys[i].wk_key, keylen);
1743 if (error)
1744 break;
1745 }
1746 break;
1747 }
1748 return error;
1749 }
1750
1751 /* Must be called at proper protection level! */
1752 static int
1753 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
1754 {
1755 int i, status;
1756
1757 /* wait for the busy bit to clear */
1758 for (i = 0; ; i++) {
1759 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
1760 break;
1761 if (i == WI_TIMEOUT) {
1762 printf("%s: wi_cmd: BUSY did not clear, "
1763 "cmd=0x%x, prev=0x%x\n", sc->sc_dev.dv_xname,
1764 cmd, CSR_READ_2(sc, WI_COMMAND));
1765 return EIO;
1766 }
1767 DELAY(1);
1768 }
1769
1770 CSR_WRITE_2(sc, WI_PARAM0, val0);
1771 CSR_WRITE_2(sc, WI_PARAM1, val1);
1772 CSR_WRITE_2(sc, WI_PARAM2, val2);
1773 CSR_WRITE_2(sc, WI_COMMAND, cmd);
1774
1775 if (cmd == WI_CMD_INI) {
1776 /* XXX: should sleep here. */
1777 DELAY(100*1000);
1778 }
1779 /* wait for the cmd completed bit */
1780 for (i = 0; i < WI_TIMEOUT; i++) {
1781 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
1782 break;
1783 DELAY(1);
1784 }
1785
1786 status = CSR_READ_2(sc, WI_STATUS);
1787
1788 /* Ack the command */
1789 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1790
1791 if (i == WI_TIMEOUT) {
1792 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
1793 sc->sc_dev.dv_xname, cmd, val0);
1794 return ETIMEDOUT;
1795 }
1796
1797 if (status & WI_STAT_CMD_RESULT) {
1798 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
1799 sc->sc_dev.dv_xname, cmd, val0);
1800 return EIO;
1801 }
1802 return 0;
1803 }
1804
1805 static int
1806 wi_seek_bap(struct wi_softc *sc, int id, int off)
1807 {
1808 int i, status;
1809
1810 CSR_WRITE_2(sc, WI_SEL0, id);
1811 CSR_WRITE_2(sc, WI_OFF0, off);
1812
1813 for (i = 0; ; i++) {
1814 status = CSR_READ_2(sc, WI_OFF0);
1815 if ((status & WI_OFF_BUSY) == 0)
1816 break;
1817 if (i == WI_TIMEOUT) {
1818 printf("%s: timeout in wi_seek to %x/%x\n",
1819 sc->sc_dev.dv_xname, id, off);
1820 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1821 return ETIMEDOUT;
1822 }
1823 DELAY(1);
1824 }
1825 if (status & WI_OFF_ERR) {
1826 printf("%s: failed in wi_seek to %x/%x\n",
1827 sc->sc_dev.dv_xname, id, off);
1828 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1829 return EIO;
1830 }
1831 sc->sc_bap_id = id;
1832 sc->sc_bap_off = off;
1833 return 0;
1834 }
1835
1836 static int
1837 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1838 {
1839 int error, cnt;
1840
1841 if (buflen == 0)
1842 return 0;
1843 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1844 if ((error = wi_seek_bap(sc, id, off)) != 0)
1845 return error;
1846 }
1847 cnt = (buflen + 1) / 2;
1848 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1849 sc->sc_bap_off += cnt * 2;
1850 return 0;
1851 }
1852
1853 static int
1854 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1855 {
1856 int error, cnt;
1857
1858 if (buflen == 0)
1859 return 0;
1860
1861 #ifdef WI_HERMES_AUTOINC_WAR
1862 again:
1863 #endif
1864 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1865 if ((error = wi_seek_bap(sc, id, off)) != 0)
1866 return error;
1867 }
1868 cnt = (buflen + 1) / 2;
1869 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1870 sc->sc_bap_off += cnt * 2;
1871
1872 #ifdef WI_HERMES_AUTOINC_WAR
1873 /*
1874 * According to the comments in the HCF Light code, there is a bug
1875 * in the Hermes (or possibly in certain Hermes firmware revisions)
1876 * where the chip's internal autoincrement counter gets thrown off
1877 * during data writes: the autoincrement is missed, causing one
1878 * data word to be overwritten and subsequent words to be written to
1879 * the wrong memory locations. The end result is that we could end
1880 * up transmitting bogus frames without realizing it. The workaround
1881 * for this is to write a couple of extra guard words after the end
1882 * of the transfer, then attempt to read then back. If we fail to
1883 * locate the guard words where we expect them, we preform the
1884 * transfer over again.
1885 */
1886 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
1887 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1888 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1889 wi_seek_bap(sc, id, sc->sc_bap_off);
1890 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1891 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1892 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
1893 printf("%s: detect auto increment bug, try again\n",
1894 sc->sc_dev.dv_xname);
1895 goto again;
1896 }
1897 }
1898 #endif
1899 return 0;
1900 }
1901
1902 static int
1903 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
1904 {
1905 int i;
1906
1907 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
1908 printf("%s: failed to allocate %d bytes on NIC\n",
1909 sc->sc_dev.dv_xname, len);
1910 return ENOMEM;
1911 }
1912
1913 for (i = 0; i < WI_TIMEOUT; i++) {
1914 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1915 break;
1916 if (i == WI_TIMEOUT) {
1917 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
1918 return ETIMEDOUT;
1919 }
1920 DELAY(1);
1921 }
1922 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
1923 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1924 return 0;
1925 }
1926
1927 static int
1928 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
1929 {
1930 int error, len;
1931 u_int16_t ltbuf[2];
1932
1933 /* Tell the NIC to enter record read mode. */
1934 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
1935 if (error)
1936 return error;
1937
1938 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
1939 if (error)
1940 return error;
1941
1942 if (le16toh(ltbuf[1]) != rid) {
1943 printf("%s: record read mismatch, rid=%x, got=%x\n",
1944 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
1945 return EIO;
1946 }
1947 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
1948 if (*buflenp < len) {
1949 printf("%s: record buffer is too small, "
1950 "rid=%x, size=%d, len=%d\n",
1951 sc->sc_dev.dv_xname, rid, *buflenp, len);
1952 return ENOSPC;
1953 }
1954 *buflenp = len;
1955 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
1956 }
1957
1958 static int
1959 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
1960 {
1961 int error;
1962 u_int16_t ltbuf[2];
1963
1964 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
1965 ltbuf[1] = htole16(rid);
1966
1967 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
1968 if (error)
1969 return error;
1970 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
1971 if (error)
1972 return error;
1973
1974 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
1975 }
1976
1977 static int
1978 wi_newstate(void *arg, enum ieee80211_state nstate)
1979 {
1980 struct wi_softc *sc = arg;
1981 struct ieee80211com *ic = &sc->sc_ic;
1982 struct ieee80211_node *ni = &ic->ic_bss;
1983 int buflen;
1984 u_int16_t val;
1985 struct wi_ssid ssid;
1986 enum ieee80211_state ostate;
1987 #ifdef WI_DEBUG
1988 static const char *stname[] =
1989 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
1990 #endif /* WI_DEBUG */
1991
1992 ostate = ic->ic_state;
1993 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
1994
1995 ic->ic_state = nstate;
1996 switch (nstate) {
1997 case IEEE80211_S_INIT:
1998 ic->ic_flags &= ~IEEE80211_F_SIBSS;
1999 return 0;
2000
2001 case IEEE80211_S_RUN:
2002 buflen = IEEE80211_ADDR_LEN;
2003 wi_read_rid(sc, WI_RID_CURRENT_BSSID, ni->ni_bssid, &buflen);
2004 IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
2005 buflen = sizeof(val);
2006 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
2007 ni->ni_chan = le16toh(val);
2008
2009 buflen = sizeof(ssid);
2010 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2011 ni->ni_esslen = le16toh(ssid.wi_len);
2012 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2013 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2014 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2015 break;
2016
2017 case IEEE80211_S_SCAN:
2018 case IEEE80211_S_AUTH:
2019 case IEEE80211_S_ASSOC:
2020 break;
2021 }
2022
2023 /* skip standard ieee80211 handling */
2024 return EINPROGRESS;
2025 }
2026
2027 static int
2028 wi_scan_ap(struct wi_softc *sc)
2029 {
2030 int error = 0;
2031 u_int16_t val[2];
2032
2033 if (!sc->sc_enabled)
2034 return ENXIO;
2035 switch (sc->sc_firmware_type) {
2036 case WI_LUCENT:
2037 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2038 break;
2039 case WI_INTERSIL:
2040 val[0] = 0x3fff; /* channel */
2041 val[1] = 0x000f; /* tx rate */
2042 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2043 break;
2044 case WI_SYMBOL:
2045 /*
2046 * XXX only supported on 3.x ?
2047 */
2048 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2049 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2050 val, sizeof(val[0]));
2051 break;
2052 }
2053 if (error == 0) {
2054 sc->sc_scan_timer = WI_SCAN_WAIT;
2055 sc->sc_ic.ic_if.if_timer = 1;
2056 DPRINTF(("wi_scan_ap: start scanning\n"));
2057 }
2058 return error;
2059 }
2060
2061 static void
2062 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2063 {
2064 int i, naps, off, szbuf;
2065 struct wi_scan_header ws_hdr; /* Prism2 header */
2066 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2067 struct wi_apinfo *ap;
2068
2069 off = sizeof(u_int16_t) * 2;
2070 memset(&ws_hdr, 0, sizeof(ws_hdr));
2071 switch (sc->sc_firmware_type) {
2072 case WI_INTERSIL:
2073 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2074 off += sizeof(ws_hdr);
2075 szbuf = sizeof(struct wi_scan_data_p2);
2076 break;
2077 case WI_SYMBOL:
2078 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2079 break;
2080 case WI_LUCENT:
2081 szbuf = sizeof(struct wi_scan_data);
2082 break;
2083 }
2084 naps = (cnt * 2 + 2 - off) / szbuf;
2085 if (naps > MAXAPINFO)
2086 naps = MAXAPINFO;
2087 sc->sc_naps = naps;
2088 /* Read Data */
2089 ap = sc->sc_aps;
2090 memset(&ws_dat, 0, sizeof(ws_dat));
2091 for (i = 0; i < naps; i++, ap++) {
2092 wi_read_bap(sc, fid, off, &ws_dat,
2093 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2094 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
2095 ether_sprintf(ws_dat.wi_bssid)));
2096 off += szbuf;
2097 ap->scanreason = le16toh(ws_hdr.wi_reason);
2098 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2099 ap->channel = le16toh(ws_dat.wi_chid);
2100 ap->signal = le16toh(ws_dat.wi_signal);
2101 ap->noise = le16toh(ws_dat.wi_noise);
2102 ap->quality = ap->signal - ap->noise;
2103 ap->capinfo = le16toh(ws_dat.wi_capinfo);
2104 ap->interval = le16toh(ws_dat.wi_interval);
2105 ap->rate = le16toh(ws_dat.wi_rate);
2106 ap->namelen = le16toh(ws_dat.wi_namelen);
2107 if (ap->namelen > sizeof(ap->name))
2108 ap->namelen = sizeof(ap->name);
2109 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2110 }
2111 /* Done scanning */
2112 sc->sc_scan_timer = 0;
2113 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
2114 }
2115