wi.c revision 1.97 1 /* $NetBSD: wi.c,v 1.97 2002/10/03 22:32:37 onoe Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
37 *
38 * Original FreeBSD driver written by Bill Paul <wpaul (at) ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43 /*
44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
45 * from Lucent. Unlike the older cards, the new ones are programmed
46 * entirely via a firmware-driven controller called the Hermes.
47 * Unfortunately, Lucent will not release the Hermes programming manual
48 * without an NDA (if at all). What they do release is an API library
49 * called the HCF (Hardware Control Functions) which is supposed to
50 * do the device-specific operations of a device driver for you. The
51 * publically available version of the HCF library (the 'HCF Light') is
52 * a) extremely gross, b) lacks certain features, particularly support
53 * for 802.11 frames, and c) is contaminated by the GNU Public License.
54 *
55 * This driver does not use the HCF or HCF Light at all. Instead, it
56 * programs the Hermes controller directly, using information gleaned
57 * from the HCF Light code and corresponding documentation.
58 *
59 * This driver supports both the PCMCIA and ISA versions of the
60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
61 * anything of the sort: it's actually a PCMCIA bridge adapter
62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
63 * inserted. Consequently, you need to use the pccard support for
64 * both the ISA and PCMCIA adapters.
65 */
66
67 /*
68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
69 * Oslo IETF plenary meeting.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.97 2002/10/03 22:32:37 onoe Exp $");
74
75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
77
78 #include "bpfilter.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/device.h>
84 #include <sys/socket.h>
85 #include <sys/mbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/kernel.h> /* for hz */
88 #include <sys/proc.h>
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/if_ieee80211.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/bus.h>
102
103 #include <dev/ic/wi_ieee.h>
104 #include <dev/ic/wireg.h>
105 #include <dev/ic/wivar.h>
106
107 static int wi_init(struct ifnet *);
108 static void wi_stop(struct ifnet *, int);
109 static void wi_start(struct ifnet *);
110 static int wi_reset(struct wi_softc *);
111 static void wi_watchdog(struct ifnet *);
112 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
113 static int wi_media_change(struct ifnet *);
114 static void wi_media_status(struct ifnet *, struct ifmediareq *);
115
116 static void wi_rx_intr(struct wi_softc *);
117 static void wi_tx_intr(struct wi_softc *);
118 static void wi_info_intr(struct wi_softc *);
119
120 static int wi_get_cfg(struct ifnet *, u_long, caddr_t);
121 static int wi_set_cfg(struct ifnet *, u_long, caddr_t);
122 static int wi_write_txrate(struct wi_softc *);
123 static int wi_write_wep(struct wi_softc *);
124 static int wi_write_multi(struct wi_softc *);
125 static int wi_alloc_fid(struct wi_softc *, int, int *);
126 static void wi_read_nicid(struct wi_softc *);
127 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
128
129 static int wi_cmd(struct wi_softc *, int, int, int, int);
130 static int wi_seek_bap(struct wi_softc *, int, int);
131 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
132 static int wi_write_bap(struct wi_softc *, int, int, void *, int);
133 static int wi_read_rid(struct wi_softc *, int, void *, int *);
134 static int wi_write_rid(struct wi_softc *, int, void *, int);
135
136 static int wi_newstate(void *, enum ieee80211_state);
137
138 static int wi_scan_ap(struct wi_softc *);
139 static void wi_scan_result(struct wi_softc *, int, int);
140
141 static inline int
142 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
143 {
144
145 val = htole16(val);
146 return wi_write_rid(sc, rid, &val, sizeof(val));
147 }
148
149 #ifdef WI_DEBUG
150 int wi_debug = 0;
151
152 #define DPRINTF(X) if (wi_debug) printf X
153 #define DPRINTF2(X) if (wi_debug > 1) printf X
154 #else
155 #define DPRINTF(X)
156 #define DPRINTF2(X)
157 #endif
158
159 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
160
161 struct wi_card_ident
162 wi_card_ident[] = {
163 /* CARD_ID CARD_NAME FIRM_TYPE */
164 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
165 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
166 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
167 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
168 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
169 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
170 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
171 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
172 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
173 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
174 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
175 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
176 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
177 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
178 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
179 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
180 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
181 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
182 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
183 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
184 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
185 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
186 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
187 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
188 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
189 { 0, NULL, 0 },
190 };
191
192 int
193 wi_attach(struct wi_softc *sc)
194 {
195 struct ieee80211com *ic = &sc->sc_ic;
196 struct ifnet *ifp = &ic->ic_if;
197 int i, nrate, mword, buflen;
198 u_int8_t r;
199 u_int16_t val;
200 u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
201 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
202 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
203 };
204 int s;
205
206 s = splnet();
207
208 /* Make sure interrupts are disabled. */
209 CSR_WRITE_2(sc, WI_INT_EN, 0);
210 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
211
212 /* Reset the NIC. */
213 if (wi_reset(sc) != 0) {
214 splx(s);
215 return 1;
216 }
217
218 buflen = IEEE80211_ADDR_LEN;
219 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 ||
220 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
221 printf(" could not get mac address, attach failed\n");
222 splx(s);
223 return 1;
224 }
225
226 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
227
228 /* Read NIC identification */
229 wi_read_nicid(sc);
230
231 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
232 ifp->if_softc = sc;
233 ifp->if_start = wi_start;
234 ifp->if_ioctl = wi_ioctl;
235 ifp->if_watchdog = wi_watchdog;
236 ifp->if_init = wi_init;
237 ifp->if_stop = wi_stop;
238 ifp->if_flags =
239 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
240 IFQ_SET_READY(&ifp->if_snd);
241
242 ic->ic_phytype = IEEE80211_T_DS;
243 ic->ic_opmode = IEEE80211_M_STA;
244 ic->ic_flags = IEEE80211_F_HASPMGT | IEEE80211_F_HASAHDEMO;
245 ic->ic_state = IEEE80211_S_INIT;
246 ic->ic_newstate = wi_newstate;
247
248 /* Find available channel */
249 buflen = sizeof(val);
250 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
251 val = htole16(0x1fff); /* assume 1-11 */
252 for (i = 0; i < 16; i++) {
253 if (isset((u_int8_t*)&val, i))
254 setbit(ic->ic_chan_avail, i + 1);
255 }
256
257 /* Find default IBSS channel */
258 buflen = sizeof(val);
259 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0)
260 ic->ic_ibss_chan = le16toh(val);
261 else {
262 /* use lowest available channel */
263 for (i = 0; i < 16; i++) {
264 if (isset(ic->ic_chan_avail, i))
265 break;
266 }
267 ic->ic_ibss_chan = i;
268 }
269
270 /*
271 * Set flags based on firmware version.
272 */
273 switch (sc->sc_firmware_type) {
274 case WI_LUCENT:
275 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
276 #ifdef WI_HERMES_AUTOINC_WAR
277 /* XXX: not confirmed, but never seen for recent firmware */
278 if (sc->sc_sta_firmware_ver < 40000) {
279 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
280 }
281 #endif
282 if (sc->sc_sta_firmware_ver >= 60000)
283 sc->sc_flags |= WI_FLAGS_HAS_MOR;
284 if (sc->sc_sta_firmware_ver >= 60006)
285 ic->ic_flags |= IEEE80211_F_HASIBSS;
286 sc->sc_ibss_port = 1;
287 break;
288
289 case WI_INTERSIL:
290 sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
291 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
292 if (sc->sc_sta_firmware_ver >= 800) {
293 ic->ic_flags |= IEEE80211_F_HASHOSTAP;
294 ic->ic_flags |= IEEE80211_F_HASIBSS;
295 }
296 sc->sc_ibss_port = 0;
297 break;
298
299 case WI_SYMBOL:
300 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
301 if (sc->sc_sta_firmware_ver >= 25000)
302 ic->ic_flags |= IEEE80211_F_HASIBSS;
303 sc->sc_ibss_port = 4;
304 break;
305 }
306
307 /*
308 * Find out if we support WEP on this card.
309 */
310 buflen = sizeof(val);
311 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
312 val != htole16(0))
313 ic->ic_flags |= IEEE80211_F_HASWEP;
314
315 /* Find supported rates. */
316 buflen = sizeof(ratebuf);
317 if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
318 nrate = le16toh(*(u_int16_t *)ratebuf);
319 if (nrate > IEEE80211_RATE_SIZE)
320 nrate = IEEE80211_RATE_SIZE;
321 memcpy(ic->ic_sup_rates, ratebuf + 2, nrate);
322 }
323 buflen = sizeof(val);
324
325 sc->sc_max_datalen = 2304;
326 sc->sc_rts_thresh = 2347;
327 sc->sc_system_scale = 1;
328 sc->sc_cnfauthmode = 1;
329 sc->sc_roaming_mode = 1;
330
331 ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
332 printf("%s: supported rates: ", sc->sc_dev.dv_xname);
333 #define ADD(s, o) ifmedia_add(&sc->sc_media, \
334 IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL)
335 ADD(IFM_AUTO, 0);
336 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
337 ADD(IFM_AUTO, IFM_IEEE80211_HOSTAP);
338 if (ic->ic_flags & IEEE80211_F_HASIBSS)
339 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC);
340 ADD(IFM_AUTO, IFM_IEEE80211_ADHOC | IFM_FLAG0);
341 for (i = 0; i < nrate; i++) {
342 r = ic->ic_sup_rates[i];
343 mword = ieee80211_rate2media(r, IEEE80211_T_DS);
344 if (mword == 0)
345 continue;
346 printf("%s%d%sMbps", (i != 0 ? " " : ""),
347 (r & IEEE80211_RATE_VAL) / 2, ((r & 0x1) != 0 ? ".5" : ""));
348 ADD(mword, 0);
349 if (ic->ic_flags & IEEE80211_F_HASHOSTAP)
350 ADD(mword, IFM_IEEE80211_HOSTAP);
351 if (ic->ic_flags & IEEE80211_F_HASIBSS)
352 ADD(mword, IFM_IEEE80211_ADHOC);
353 ADD(mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
354 }
355 printf("\n");
356 ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
357 #undef ADD
358
359 /*
360 * Call MI attach routines.
361 */
362
363 if_attach(ifp);
364 ieee80211_ifattach(ifp);
365
366 /* Attach is successful. */
367 sc->sc_attached = 1;
368
369 splx(s);
370 return 0;
371 }
372
373 int
374 wi_detach(struct wi_softc *sc)
375 {
376 struct ifnet *ifp = &sc->sc_ic.ic_if;
377 int s;
378
379 if (!sc->sc_attached)
380 return 0;
381
382 s = splnet();
383
384 /* Delete all remaining media. */
385 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
386
387 ieee80211_ifdetach(ifp);
388 if_detach(ifp);
389 if (sc->sc_enabled) {
390 if (sc->sc_disable)
391 (*sc->sc_disable)(sc);
392 sc->sc_enabled = 0;
393 }
394 splx(s);
395 return 0;
396 }
397
398 int
399 wi_activate(struct device *self, enum devact act)
400 {
401 struct wi_softc *sc = (struct wi_softc *)self;
402 int rv = 0, s;
403
404 s = splnet();
405 switch (act) {
406 case DVACT_ACTIVATE:
407 rv = EOPNOTSUPP;
408 break;
409
410 case DVACT_DEACTIVATE:
411 if_deactivate(&sc->sc_ic.ic_if);
412 break;
413 }
414 splx(s);
415 return rv;
416 }
417
418 void
419 wi_power(struct wi_softc *sc, int why)
420 {
421 struct ifnet *ifp = &sc->sc_ic.ic_if;
422 int s;
423
424 s = splnet();
425 switch (why) {
426 case PWR_SUSPEND:
427 case PWR_STANDBY:
428 wi_stop(ifp, 1);
429 break;
430 case PWR_RESUME:
431 if (ifp->if_flags & IFF_UP) {
432 wi_init(ifp);
433 (void)wi_intr(sc);
434 }
435 break;
436 case PWR_SOFTSUSPEND:
437 case PWR_SOFTSTANDBY:
438 case PWR_SOFTRESUME:
439 break;
440 }
441 splx(s);
442 }
443
444 void
445 wi_shutdown(struct wi_softc *sc)
446 {
447 struct ifnet *ifp = &sc->sc_ic.ic_if;
448
449 if (sc->sc_attached)
450 wi_stop(ifp, 1);
451 }
452
453 int
454 wi_intr(void *arg)
455 {
456 int i;
457 struct wi_softc *sc = arg;
458 struct ifnet *ifp = &sc->sc_ic.ic_if;
459 u_int16_t status, raw_status, last_status;
460
461 if (sc->sc_enabled == 0 ||
462 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
463 (ifp->if_flags & IFF_RUNNING) == 0)
464 return 0;
465
466 if ((ifp->if_flags & IFF_UP) == 0) {
467 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
468 CSR_WRITE_2(sc, WI_INT_EN, 0);
469 return 1;
470 }
471
472 /* maximum 10 loops per interrupt */
473 last_status = 0;
474 for (i = 0; i < 10; i++) {
475 /*
476 * Only believe a status bit when we enter wi_intr, or when
477 * the bit was "off" the last time through the loop. This is
478 * my strategy to avoid racing the hardware/firmware if I
479 * can re-read the event status register more quickly than
480 * it is updated.
481 */
482 raw_status = CSR_READ_2(sc, WI_EVENT_STAT);
483 status = raw_status & ~last_status;
484 if ((status & WI_INTRS) == 0)
485 break;
486 last_status = raw_status;
487
488 if (status & WI_EV_RX)
489 wi_rx_intr(sc);
490
491 if (status & WI_EV_ALLOC)
492 wi_tx_intr(sc);
493
494 if (status & WI_EV_INFO)
495 wi_info_intr(sc);
496
497 if (!(ifp->if_flags & IFF_OACTIVE) &&
498 !IFQ_IS_EMPTY(&ifp->if_snd))
499 wi_start(ifp);
500 }
501
502 return 1;
503 }
504
505 static int
506 wi_init(struct ifnet *ifp)
507 {
508 struct wi_softc *sc = ifp->if_softc;
509 struct ieee80211com *ic = &sc->sc_ic;
510 struct wi_joinreq join;
511 int i;
512 int error = 0, wasenabled;
513
514 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
515 wasenabled = sc->sc_enabled;
516 if (!sc->sc_enabled) {
517 if ((error = (*sc->sc_enable)(sc)) != 0)
518 goto out;
519 sc->sc_enabled = 1;
520 } else
521 wi_stop(ifp, 0);
522
523 /* Symbol firmware cannot be initialized more than once */
524 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
525 if ((error = wi_reset(sc)) != 0)
526 goto out;
527 }
528
529 /* common 802.11 configuration */
530 ic->ic_flags &= ~IEEE80211_F_IBSSON;
531 switch (ic->ic_opmode) {
532 case IEEE80211_M_STA:
533 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
534 break;
535 case IEEE80211_M_IBSS:
536 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
537 ic->ic_flags |= IEEE80211_F_IBSSON;
538 break;
539 case IEEE80211_M_AHDEMO:
540 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
541 break;
542 case IEEE80211_M_HOSTAP:
543 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
544 break;
545 }
546
547 /* Intersil interprets this RID as joining ESS even in IBSS mode */
548 if (sc->sc_firmware_type == WI_LUCENT &&
549 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
550 wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
551 else
552 wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
553 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
554 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
555 ic->ic_des_esslen);
556 wi_write_val(sc, WI_RID_OWN_CHNL, ic->ic_ibss_chan);
557 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
558 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
559 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
560 wi_write_val(sc, WI_RID_PM_ENABLED,
561 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
562
563 /* not yet common 802.11 configuration */
564 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
565 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
566
567 /* driver specific 802.11 configuration */
568 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
569 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
570 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
571 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
572 if (sc->sc_flags & WI_FLAGS_HAS_MOR)
573 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
574 wi_write_txrate(sc);
575 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
576
577 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
578 sc->sc_firmware_type == WI_INTERSIL) {
579 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
580 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */
581 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
582 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
583 }
584
585 /*
586 * Initialize promisc mode.
587 * Being in the Host-AP mode causes a great
588 * deal of pain if primisc mode is set.
589 * Therefore we avoid confusing the firmware
590 * and always reset promisc mode in Host-AP
591 * mode. Host-AP sees all the packets anyway.
592 */
593 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
594 (ifp->if_flags & IFF_PROMISC) != 0) {
595 wi_write_val(sc, WI_RID_PROMISC, 1);
596 } else {
597 wi_write_val(sc, WI_RID_PROMISC, 0);
598 }
599
600 /* Configure WEP. */
601 if (ic->ic_flags & IEEE80211_F_HASWEP)
602 wi_write_wep(sc);
603
604 /* Set multicast filter. */
605 wi_write_multi(sc);
606
607 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
608 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
609 if (sc->sc_firmware_type == WI_SYMBOL)
610 sc->sc_buflen = 1585; /* XXX */
611 for (i = 0; i < WI_NTXBUF; i++) {
612 error = wi_alloc_fid(sc, sc->sc_buflen,
613 &sc->sc_txd[i].d_fid);
614 if (error) {
615 printf("%s: tx buffer allocation failed\n",
616 sc->sc_dev.dv_xname);
617 goto out;
618 }
619 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
620 sc->sc_txd[i].d_fid));
621 sc->sc_txd[i].d_len = 0;
622 }
623 }
624 sc->sc_txcur = sc->sc_txnext = 0;
625
626 /* Enable port 0 */
627 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
628 ifp->if_flags |= IFF_RUNNING;
629 ifp->if_flags &= ~IFF_OACTIVE;
630 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
631 ic->ic_opmode == IEEE80211_M_HOSTAP)
632 wi_newstate(sc, IEEE80211_S_RUN);
633
634 /* Enable interrupts */
635 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
636
637 if (!wasenabled &&
638 ic->ic_opmode == IEEE80211_M_HOSTAP &&
639 sc->sc_firmware_type == WI_INTERSIL) {
640 /* XXX: some card need to be re-enabled for hostap */
641 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
642 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
643 }
644
645 if (ic->ic_opmode == IEEE80211_M_STA &&
646 ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
647 ic->ic_des_chan != IEEE80211_CHAN_ANY)) {
648 memset(&join, 0, sizeof(join));
649 if (ic->ic_flags & IEEE80211_F_DESBSSID)
650 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
651 if (ic->ic_des_chan != IEEE80211_CHAN_ANY)
652 join.wi_chan = htole16(ic->ic_des_chan);
653 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
654 }
655
656 out:
657 if (error) {
658 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
659 wi_stop(ifp, 0);
660 }
661 DPRINTF(("wi_init: return %d\n", error));
662 return error;
663 }
664
665 static void
666 wi_stop(struct ifnet *ifp, int disable)
667 {
668 struct wi_softc *sc = ifp->if_softc;
669
670 DPRINTF(("wi_stop: disable %d\n", disable));
671 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
672 if (sc->sc_enabled) {
673 CSR_WRITE_2(sc, WI_INT_EN, 0);
674 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
675 if (disable) {
676 if (sc->sc_disable)
677 (*sc->sc_disable)(sc);
678 sc->sc_enabled = 0;
679 }
680 }
681
682 sc->sc_tx_timer = 0;
683 sc->sc_scan_timer = 0;
684 sc->sc_naps = 0;
685 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
686 ifp->if_timer = 0;
687 }
688
689 static void
690 wi_start(struct ifnet *ifp)
691 {
692 struct wi_softc *sc = ifp->if_softc;
693 struct ieee80211com *ic = &sc->sc_ic;
694 struct ieee80211_frame *wh;
695 struct mbuf *m0, *m;
696 struct wi_frame frmhdr;
697 int cur, fid, off;
698
699 if (ifp->if_flags & IFF_OACTIVE)
700 return;
701
702 memset(&frmhdr, 0, sizeof(frmhdr));
703 cur = sc->sc_txnext;
704 for (;;) {
705 IF_POLL(&ic->ic_mgtq, m0);
706 if (m0 != NULL) {
707 if (sc->sc_txd[cur].d_len != 0) {
708 ifp->if_flags |= IFF_OACTIVE;
709 break;
710 }
711 IF_DEQUEUE(&ic->ic_mgtq, m0);
712 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
713 (caddr_t)&frmhdr.wi_ehdr);
714 frmhdr.wi_ehdr.ether_type = 0;
715 wh = mtod(m0, struct ieee80211_frame *);
716 } else {
717 if (ic->ic_state != IEEE80211_S_RUN)
718 break;
719 IFQ_POLL(&ifp->if_snd, m0);
720 if (m0 == NULL)
721 break;
722 if (sc->sc_txd[cur].d_len != 0) {
723 ifp->if_flags |= IFF_OACTIVE;
724 break;
725 }
726 IFQ_DEQUEUE(&ifp->if_snd, m0);
727 ifp->if_opackets++;
728 m_copydata(m0, 0, ETHER_HDR_LEN,
729 (caddr_t)&frmhdr.wi_ehdr);
730 #if NBPFILTER > 0
731 if (ifp->if_bpf)
732 bpf_mtap(ifp->if_bpf, m0);
733 #endif
734
735 if ((m0 = ieee80211_encap(ifp, m0)) == NULL) {
736 ifp->if_oerrors++;
737 continue;
738 }
739 wh = mtod(m0, struct ieee80211_frame *);
740 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
741 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
742 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
743 IEEE80211_FC0_TYPE_DATA &&
744 ieee80211_find_node(ic, wh->i_addr1) == NULL) {
745 m_freem(m0);
746 ifp->if_oerrors++;
747 continue;
748 }
749 if (ic->ic_flags & IEEE80211_F_WEPON)
750 wh->i_fc[1] |= IEEE80211_FC1_WEP;
751
752 }
753 #if NBPFILTER > 0
754 if (ic->ic_rawbpf)
755 bpf_mtap(ic->ic_rawbpf, m0);
756 #endif
757 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11);
758 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
759 (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
760 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
761 ifp->if_oerrors++;
762 continue;
763 }
764 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
765 }
766 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
767 (caddr_t)&frmhdr.wi_whdr);
768 m_adj(m0, sizeof(struct ieee80211_frame));
769 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
770 #if NBPFILTER > 0
771 if (sc->sc_drvbpf) {
772 struct mbuf mb;
773
774 M_COPY_PKTHDR(&mb, m0);
775 mb.m_data = (caddr_t)&frmhdr;
776 mb.m_len = sizeof(frmhdr);
777 mb.m_next = m0;
778 mb.m_pkthdr.len += mb.m_len;
779 bpf_mtap(sc->sc_drvbpf, &mb);
780 }
781 #endif
782 fid = sc->sc_txd[cur].d_fid;
783 wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr));
784 off = sizeof(frmhdr);
785 for (m = m0; m != NULL; m = m->m_next) {
786 if (m->m_len == 0)
787 continue;
788 wi_write_bap(sc, fid, off, m->m_data, m->m_len);
789 off += m->m_len;
790 }
791 m_freem(m0);
792 sc->sc_txd[cur].d_len = off;
793 if (sc->sc_txcur == cur) {
794 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
795 printf("%s: xmit failed\n",
796 sc->sc_dev.dv_xname);
797 sc->sc_txd[cur].d_len = 0;
798 continue;
799 }
800 sc->sc_tx_timer = 5;
801 ifp->if_timer = 1;
802 }
803 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF;
804 }
805 }
806
807
808 static int
809 wi_reset(struct wi_softc *sc)
810 {
811 int i, error;
812
813 DPRINTF(("wi_reset\n"));
814 error = 0;
815 for (i = 0; i < 5; i++) {
816 DELAY(20*1000); /* XXX: way too long! */
817 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
818 break;
819 }
820 if (error) {
821 printf("%s: init failed\n", sc->sc_dev.dv_xname);
822 return error;
823 }
824 CSR_WRITE_2(sc, WI_INT_EN, 0);
825 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
826
827 /* Calibrate timer. */
828 wi_write_val(sc, WI_RID_TICK_TIME, 0);
829 return 0;
830 }
831
832 static void
833 wi_watchdog(struct ifnet *ifp)
834 {
835 struct wi_softc *sc = ifp->if_softc;
836
837 ifp->if_timer = 0;
838 if (!sc->sc_enabled)
839 return;
840
841 if (sc->sc_tx_timer) {
842 if (--sc->sc_tx_timer == 0) {
843 printf("%s: device timeout\n", ifp->if_xname);
844 ifp->if_oerrors++;
845 wi_init(ifp);
846 return;
847 }
848 ifp->if_timer = 1;
849 }
850
851 if (sc->sc_scan_timer) {
852 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
853 sc->sc_firmware_type == WI_INTERSIL) {
854 DPRINTF(("wi_watchdog: inquire scan\n"));
855 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
856 }
857 if (sc->sc_scan_timer)
858 ifp->if_timer = 1;
859 }
860
861 /* TODO: rate control */
862 ieee80211_watchdog(ifp);
863 }
864
865 static int
866 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
867 {
868 struct wi_softc *sc = ifp->if_softc;
869 struct ieee80211com *ic = &sc->sc_ic;
870 struct ifreq *ifr = (struct ifreq *)data;
871 int s, error = 0;
872
873 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
874 return ENXIO;
875
876 s = splnet();
877
878 switch (cmd) {
879 case SIOCSIFFLAGS:
880 if (ifp->if_flags & IFF_UP) {
881 if (sc->sc_enabled) {
882 /*
883 * To avoid rescanning another access point,
884 * do not call wi_init() here. Instead,
885 * only reflect promisc mode settings.
886 */
887 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
888 (ifp->if_flags & IFF_PROMISC) != 0)
889 wi_write_val(sc, WI_RID_PROMISC, 1);
890 else
891 wi_write_val(sc, WI_RID_PROMISC, 0);
892 } else
893 error = wi_init(ifp);
894 } else if (sc->sc_enabled)
895 wi_stop(ifp, 1);
896 break;
897 case SIOCSIFMEDIA:
898 case SIOCGIFMEDIA:
899 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
900 break;
901 case SIOCADDMULTI:
902 case SIOCDELMULTI:
903 error = (cmd == SIOCADDMULTI) ?
904 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
905 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
906 if (error == ENETRESET) {
907 if (sc->sc_enabled) {
908 /* do not rescan */
909 error = wi_write_multi(sc);
910 } else
911 error = 0;
912 }
913 break;
914 case SIOCGIFGENERIC:
915 error = wi_get_cfg(ifp, cmd, data);
916 break;
917 case SIOCSIFGENERIC:
918 error = suser(curproc->p_ucred, &curproc->p_acflag);
919 if (error)
920 break;
921 error = wi_set_cfg(ifp, cmd, data);
922 if (error == ENETRESET) {
923 if (sc->sc_enabled)
924 error = wi_init(ifp);
925 else
926 error = 0;
927 }
928 break;
929 default:
930 error = ieee80211_ioctl(ifp, cmd, data);
931 if (error == ENETRESET) {
932 if (sc->sc_enabled)
933 error = wi_init(ifp);
934 else
935 error = 0;
936 }
937 break;
938 }
939 splx(s);
940 return error;
941 }
942
943 static int
944 wi_media_change(struct ifnet *ifp)
945 {
946 struct wi_softc *sc = ifp->if_softc;
947 struct ieee80211com *ic = &sc->sc_ic;
948 struct ifmedia_entry *ime;
949 enum ieee80211_opmode newmode;
950 int i, rate, error = 0;
951
952 ime = sc->sc_media.ifm_cur;
953 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
954 i = -1;
955 } else {
956 rate = ieee80211_media2rate(ime->ifm_media, IEEE80211_T_DS);
957 if (rate == 0)
958 return EINVAL;
959 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
960 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL) == rate)
961 break;
962 }
963 if (i == IEEE80211_RATE_SIZE)
964 return EINVAL;
965 }
966 if (ic->ic_fixed_rate != i) {
967 ic->ic_fixed_rate = i;
968 error = ENETRESET;
969 }
970
971 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) &&
972 (ime->ifm_media & IFM_FLAG0))
973 newmode = IEEE80211_M_AHDEMO;
974 else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
975 newmode = IEEE80211_M_IBSS;
976 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
977 newmode = IEEE80211_M_HOSTAP;
978 else
979 newmode = IEEE80211_M_STA;
980 if (ic->ic_opmode != newmode) {
981 ic->ic_opmode = newmode;
982 error = ENETRESET;
983 }
984 if (error == ENETRESET) {
985 if (sc->sc_enabled)
986 error = wi_init(ifp);
987 else
988 error = 0;
989 }
990 ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
991
992 return error;
993 }
994
995 static void
996 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
997 {
998 struct wi_softc *sc = ifp->if_softc;
999 struct ieee80211com *ic = &sc->sc_ic;
1000 u_int16_t val;
1001 int rate, len;
1002
1003 if (sc->sc_enabled == 0) {
1004 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1005 imr->ifm_status = 0;
1006 return;
1007 }
1008
1009 imr->ifm_status = IFM_AVALID;
1010 imr->ifm_active = IFM_IEEE80211;
1011 if (ic->ic_state == IEEE80211_S_RUN)
1012 imr->ifm_status |= IFM_ACTIVE;
1013 if (ic->ic_fixed_rate != -1)
1014 rate = ic->ic_sup_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1015 else {
1016 len = sizeof(val);
1017 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1018 rate = 0;
1019 else {
1020 /* convert to 802.11 rate */
1021 rate = val * 2;
1022 if (sc->sc_firmware_type == WI_LUCENT) {
1023 if (rate == 10)
1024 rate = 11; /* 5.5Mbps */
1025 } else {
1026 if (rate == 4*2)
1027 rate = 11; /* 5.5Mbps */
1028 else if (rate == 8*2)
1029 rate = 22; /* 11Mbps */
1030 }
1031 }
1032 }
1033 imr->ifm_active |= ieee80211_rate2media(rate, IEEE80211_T_DS);
1034 switch (ic->ic_opmode) {
1035 case IEEE80211_M_STA:
1036 break;
1037 case IEEE80211_M_IBSS:
1038 imr->ifm_active |= IFM_IEEE80211_ADHOC;
1039 break;
1040 case IEEE80211_M_AHDEMO:
1041 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1042 break;
1043 case IEEE80211_M_HOSTAP:
1044 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1045 break;
1046 }
1047 }
1048
1049 static void
1050 wi_rx_intr(struct wi_softc *sc)
1051 {
1052 struct ieee80211com *ic = &sc->sc_ic;
1053 struct ifnet *ifp = &ic->ic_if;
1054 struct wi_frame frmhdr;
1055 struct mbuf *m;
1056 struct ieee80211_frame *wh;
1057 int fid, len, off, rssi;
1058 u_int16_t status;
1059 u_int32_t rstamp;
1060
1061 fid = CSR_READ_2(sc, WI_RX_FID);
1062
1063 /* First read in the frame header */
1064 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1065 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1066 ifp->if_ierrors++;
1067 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1068 return;
1069 }
1070
1071 /*
1072 * Drop undecryptable or packets with receive errors here
1073 */
1074 status = le16toh(frmhdr.wi_status);
1075 if (status & WI_STAT_ERRSTAT) {
1076 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1077 ifp->if_ierrors++;
1078 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1079 return;
1080 }
1081 rssi = frmhdr.wi_rx_signal;
1082 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1083 le16toh(frmhdr.wi_rx_tstamp1);
1084
1085 len = le16toh(frmhdr.wi_dat_len);
1086 off = ALIGN(sizeof(struct ieee80211_frame));
1087
1088 MGETHDR(m, M_DONTWAIT, MT_DATA);
1089 if (m == NULL) {
1090 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1091 ifp->if_ierrors++;
1092 DPRINTF(("wi_rx_intr: MGET failed\n"));
1093 return;
1094 }
1095 if (off + len > MHLEN) {
1096 MCLGET(m, M_DONTWAIT);
1097 if ((m->m_flags & M_EXT) == 0) {
1098 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1099 m_freem(m);
1100 ifp->if_ierrors++;
1101 DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1102 return;
1103 }
1104 }
1105
1106 m->m_data += off - sizeof(struct ieee80211_frame);
1107 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1108 wi_read_bap(sc, fid, sizeof(frmhdr),
1109 m->m_data + sizeof(struct ieee80211_frame), len);
1110 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1111 m->m_pkthdr.rcvif = ifp;
1112
1113 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1114
1115 #if NBPFILTER > 0
1116 if (sc->sc_drvbpf) {
1117 struct mbuf mb;
1118
1119 M_COPY_PKTHDR(&mb, m);
1120 mb.m_data = (caddr_t)&frmhdr;
1121 mb.m_len = sizeof(frmhdr);
1122 mb.m_next = m;
1123 mb.m_pkthdr.len += mb.m_len;
1124 bpf_mtap(sc->sc_drvbpf, &mb);
1125 }
1126 #endif
1127 wh = mtod(m, struct ieee80211_frame *);
1128 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1129 /*
1130 * WEP is decrypted by hardware. Clear WEP bit
1131 * header for ieee80211_input().
1132 */
1133 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1134 }
1135 ieee80211_input(ifp, m, rssi, rstamp);
1136 }
1137
1138 static void
1139 wi_tx_intr(struct wi_softc *sc)
1140 {
1141 struct ieee80211com *ic = &sc->sc_ic;
1142 struct ifnet *ifp = &ic->ic_if;
1143 int fid, cur;
1144
1145 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1146 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1147
1148 cur = sc->sc_txcur;
1149 if (sc->sc_txd[cur].d_fid != fid) {
1150 printf("%s: bad alloc %x != %x, cur %d nxt %d\n",
1151 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1152 sc->sc_txnext);
1153 return;
1154 }
1155 sc->sc_tx_timer = 0;
1156 sc->sc_txd[cur].d_len = 0;
1157 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF;
1158 if (sc->sc_txd[cur].d_len == 0)
1159 ifp->if_flags &= ~IFF_OACTIVE;
1160 else {
1161 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1162 0, 0)) {
1163 printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1164 sc->sc_txd[cur].d_len = 0;
1165 } else {
1166 sc->sc_tx_timer = 5;
1167 ifp->if_timer = 1;
1168 }
1169 }
1170 }
1171
1172 static void
1173 wi_info_intr(struct wi_softc *sc)
1174 {
1175 struct ieee80211com *ic = &sc->sc_ic;
1176 struct ifnet *ifp = &ic->ic_if;
1177 int i, fid, len, off;
1178 u_int16_t ltbuf[2];
1179 u_int16_t stat;
1180 u_int32_t *ptr;
1181
1182 fid = CSR_READ_2(sc, WI_INFO_FID);
1183 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1184
1185 switch (le16toh(ltbuf[1])) {
1186
1187 case WI_INFO_LINK_STAT:
1188 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1189 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1190 switch (le16toh(stat)) {
1191 case CONNECTED:
1192 if (ic->ic_state == IEEE80211_S_RUN)
1193 break;
1194 /* FALLTHROUGH */
1195 case AP_CHANGE:
1196 ieee80211_new_state(ifp, IEEE80211_S_RUN, -1);
1197 break;
1198 case AP_IN_RANGE:
1199 break;
1200 case AP_OUT_OF_RANGE:
1201 if (sc->sc_firmware_type == WI_SYMBOL &&
1202 sc->sc_scan_timer > 0) {
1203 if (wi_cmd(sc, WI_CMD_INQUIRE,
1204 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1205 sc->sc_scan_timer = 0;
1206 break;
1207 }
1208 /* FALLTHROUGH */
1209 case DISCONNECTED:
1210 case ASSOC_FAILED:
1211 if (ic->ic_opmode == IEEE80211_M_STA)
1212 ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
1213 break;
1214 }
1215 break;
1216
1217 case WI_INFO_COUNTERS:
1218 /* some card versions have a larger stats structure */
1219 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1220 ptr = (u_int32_t *)&sc->sc_stats;
1221 off = sizeof(ltbuf);
1222 for (i = 0; i < len; i++, off += 2, ptr++) {
1223 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1224 #ifdef WI_HERMES_STATS_WAR
1225 if (stat & 0xf000)
1226 stat = ~stat;
1227 #endif
1228 *ptr += stat;
1229 }
1230 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1231 sc->sc_stats.wi_tx_multi_retries +
1232 sc->sc_stats.wi_tx_retry_limit;
1233 break;
1234
1235 case WI_INFO_SCAN_RESULTS:
1236 case WI_INFO_HOST_SCAN_RESULTS:
1237 wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1238 break;
1239
1240 default:
1241 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1242 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1243 break;
1244 }
1245 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1246 }
1247
1248 /*
1249 * Allocate a region of memory inside the NIC and zero
1250 * it out.
1251 */
1252 static int
1253 wi_write_multi(struct wi_softc *sc)
1254 {
1255 struct ifnet *ifp = &sc->sc_ic.ic_if;
1256 int n = 0;
1257 struct wi_mcast mlist;
1258 struct ether_multi *enm;
1259 struct ether_multistep estep;
1260
1261 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1262 allmulti:
1263 ifp->if_flags |= IFF_ALLMULTI;
1264 memset(&mlist, 0, sizeof(mlist));
1265 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1266 sizeof(mlist));
1267 }
1268
1269 n = 0;
1270 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1271 while (enm != NULL) {
1272 /* Punt on ranges or too many multicast addresses. */
1273 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1274 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1275 goto allmulti;
1276
1277 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
1278 n++;
1279 ETHER_NEXT_MULTI(estep, enm);
1280 }
1281 ifp->if_flags &= ~IFF_ALLMULTI;
1282 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1283 IEEE80211_ADDR_LEN * n);
1284 }
1285
1286
1287 static void
1288 wi_read_nicid(sc)
1289 struct wi_softc *sc;
1290 {
1291 struct wi_card_ident *id;
1292 char *p;
1293 int len;
1294 u_int16_t ver[4];
1295
1296 /* getting chip identity */
1297 memset(ver, 0, sizeof(ver));
1298 len = sizeof(ver);
1299 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1300 printf("%s: using ", sc->sc_dev.dv_xname);
1301 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1302
1303 sc->sc_firmware_type = WI_NOTYPE;
1304 for (id = wi_card_ident; id->card_name != NULL; id++) {
1305 if (le16toh(ver[0]) == id->card_id) {
1306 printf("%s", id->card_name);
1307 sc->sc_firmware_type = id->firm_type;
1308 break;
1309 }
1310 }
1311 if (sc->sc_firmware_type == WI_NOTYPE) {
1312 if (le16toh(ver[0]) & 0x8000) {
1313 printf("Unknown PRISM2 chip");
1314 sc->sc_firmware_type = WI_INTERSIL;
1315 } else {
1316 printf("Unknown Lucent chip");
1317 sc->sc_firmware_type = WI_LUCENT;
1318 }
1319 }
1320
1321 /* get primary firmware version (Only Prism chips) */
1322 if (sc->sc_firmware_type != WI_LUCENT) {
1323 memset(ver, 0, sizeof(ver));
1324 len = sizeof(ver);
1325 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1326 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1327 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1328 DPRINTF2(("wi_read_nicid: PRI_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1329 }
1330
1331 /* get station firmware version */
1332 memset(ver, 0, sizeof(ver));
1333 len = sizeof(ver);
1334 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1335 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1336 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1337 DPRINTF2(("wi_read_nicid: STA_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
1338 if (sc->sc_firmware_type == WI_INTERSIL &&
1339 (sc->sc_sta_firmware_ver == 10102 ||
1340 sc->sc_sta_firmware_ver == 20102)) {
1341 char ident[12];
1342 memset(ident, 0, sizeof(ident));
1343 len = sizeof(ident);
1344 /* value should be the format like "V2.00-11" */
1345 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1346 *(p = (char *)ident) >= 'A' &&
1347 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1348 sc->sc_firmware_type = WI_SYMBOL;
1349 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1350 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1351 (p[6] - '0') * 10 + (p[7] - '0');
1352 }
1353 DPRINTF2(("wi_read_nicid: SYMBOL_ID: %x %x %x %x\n", le16toh(ident[0]), le16toh(ident[1]), le16toh(ident[2]), le16toh(ident[3])));
1354 }
1355
1356 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
1357 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1358 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1359 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1360 printf("Primary (%u.%u.%u), ",
1361 sc->sc_pri_firmware_ver / 10000,
1362 (sc->sc_pri_firmware_ver % 10000) / 100,
1363 sc->sc_pri_firmware_ver % 100);
1364 printf("Station (%u.%u.%u)\n",
1365 sc->sc_sta_firmware_ver / 10000,
1366 (sc->sc_sta_firmware_ver % 10000) / 100,
1367 sc->sc_sta_firmware_ver % 100);
1368 }
1369
1370 static int
1371 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1372 {
1373 struct wi_ssid ssid;
1374
1375 if (buflen > IEEE80211_NWID_LEN)
1376 return ENOBUFS;
1377 memset(&ssid, 0, sizeof(ssid));
1378 ssid.wi_len = htole16(buflen);
1379 memcpy(ssid.wi_ssid, buf, buflen);
1380 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
1381 }
1382
1383 static int
1384 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1385 {
1386 struct wi_softc *sc = ifp->if_softc;
1387 struct ieee80211com *ic = &sc->sc_ic;
1388 struct ifreq *ifr = (struct ifreq *)data;
1389 struct wi_req wreq;
1390 int len, n, error;
1391
1392 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1393 if (error)
1394 return error;
1395 len = (wreq.wi_len - 1) * 2;
1396 if (len < sizeof(u_int16_t))
1397 return ENOSPC;
1398 if (len > sizeof(wreq.wi_val))
1399 len = sizeof(wreq.wi_val);
1400
1401 switch (wreq.wi_type) {
1402
1403 case WI_RID_IFACE_STATS:
1404 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1405 if (len < sizeof(sc->sc_stats))
1406 error = ENOSPC;
1407 else
1408 len = sizeof(sc->sc_stats);
1409 break;
1410
1411 case WI_RID_ENCRYPTION:
1412 case WI_RID_TX_CRYPT_KEY:
1413 case WI_RID_DEFLT_CRYPT_KEYS:
1414 return ieee80211_cfgget(ifp, cmd, data);
1415
1416 case WI_RID_TX_RATE:
1417 if (ic->ic_fixed_rate < 0)
1418 wreq.wi_val[0] = htole16(3); /*XXX*/
1419 else
1420 wreq.wi_val[0] = htole16(
1421 (ic->ic_sup_rates[ic->ic_fixed_rate] &
1422 IEEE80211_RATE_VAL) / 2);
1423 len = sizeof(u_int16_t);
1424 break;
1425
1426 case WI_RID_MICROWAVE_OVEN:
1427 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1428 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1429 &len);
1430 break;
1431 }
1432 wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1433 len = sizeof(u_int16_t);
1434 break;
1435
1436 case WI_RID_ROAMING_MODE:
1437 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
1438 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1439 &len);
1440 break;
1441 }
1442 wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
1443 len = sizeof(u_int16_t);
1444 break;
1445
1446 case WI_RID_SYSTEM_SCALE:
1447 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
1448 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1449 &len);
1450 break;
1451 }
1452 wreq.wi_val[0] = htole16(sc->sc_system_scale);
1453 len = sizeof(u_int16_t);
1454 break;
1455
1456 case WI_RID_READ_APS:
1457 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1458 return ieee80211_cfgget(ifp, cmd, data);
1459 if (sc->sc_scan_timer > 0) {
1460 error = EINPROGRESS;
1461 break;
1462 }
1463 n = sc->sc_naps;
1464 if (len < sizeof(n)) {
1465 error = ENOSPC;
1466 break;
1467 }
1468 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
1469 n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
1470 len = sizeof(n) + sizeof(struct wi_apinfo) * n;
1471 memcpy(wreq.wi_val, &n, sizeof(n));
1472 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
1473 sizeof(struct wi_apinfo) * n);
1474 break;
1475
1476 default:
1477 if (sc->sc_enabled) {
1478 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1479 &len);
1480 break;
1481 }
1482 switch (wreq.wi_type) {
1483 case WI_RID_MAX_DATALEN:
1484 wreq.wi_val[0] = htole16(sc->sc_max_datalen);
1485 len = sizeof(u_int16_t);
1486 break;
1487 case WI_RID_RTS_THRESH:
1488 wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
1489 len = sizeof(u_int16_t);
1490 break;
1491 case WI_RID_CNFAUTHMODE:
1492 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
1493 len = sizeof(u_int16_t);
1494 break;
1495 case WI_RID_NODENAME:
1496 if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
1497 error = ENOSPC;
1498 break;
1499 }
1500 len = sc->sc_nodelen + sizeof(u_int16_t);
1501 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
1502 memcpy(&wreq.wi_val[1], sc->sc_nodename,
1503 sc->sc_nodelen);
1504 break;
1505 default:
1506 return ieee80211_cfgget(ifp, cmd, data);
1507 }
1508 break;
1509 }
1510 if (error)
1511 return error;
1512 wreq.wi_len = (len + 1) / 2 + 1;
1513 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
1514 }
1515
1516 static int
1517 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
1518 {
1519 struct wi_softc *sc = ifp->if_softc;
1520 struct ieee80211com *ic = &sc->sc_ic;
1521 struct ifreq *ifr = (struct ifreq *)data;
1522 struct wi_req wreq;
1523 struct mbuf *m;
1524 int i, len, error;
1525
1526 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1527 if (error)
1528 return error;
1529 len = (wreq.wi_len - 1) * 2;
1530 switch (wreq.wi_type) {
1531 case WI_RID_NODENAME:
1532 if (le16toh(wreq.wi_val[0]) * 2 > len ||
1533 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
1534 error = ENOSPC;
1535 break;
1536 }
1537 if (sc->sc_enabled) {
1538 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1539 len);
1540 if (error)
1541 break;
1542 }
1543 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
1544 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
1545 break;
1546
1547 case WI_RID_MICROWAVE_OVEN:
1548 case WI_RID_ROAMING_MODE:
1549 case WI_RID_SYSTEM_SCALE:
1550 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
1551 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
1552 break;
1553 if (wreq.wi_type == WI_RID_ROAMING_MODE &&
1554 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
1555 break;
1556 if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
1557 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
1558 break;
1559 /* FALLTHROUGH */
1560 case WI_RID_RTS_THRESH:
1561 case WI_RID_CNFAUTHMODE:
1562 case WI_RID_MAX_DATALEN:
1563 if (sc->sc_enabled) {
1564 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1565 sizeof(u_int16_t));
1566 if (error)
1567 break;
1568 }
1569 switch (wreq.wi_type) {
1570 case WI_RID_RTS_THRESH:
1571 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
1572 break;
1573 case WI_RID_MICROWAVE_OVEN:
1574 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
1575 break;
1576 case WI_RID_ROAMING_MODE:
1577 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
1578 break;
1579 case WI_RID_SYSTEM_SCALE:
1580 sc->sc_system_scale = le16toh(wreq.wi_val[0]);
1581 break;
1582 case WI_RID_CNFAUTHMODE:
1583 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
1584 break;
1585 case WI_RID_MAX_DATALEN:
1586 sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
1587 break;
1588 }
1589 break;
1590
1591 case WI_RID_TX_RATE:
1592 switch (le16toh(wreq.wi_val[0])) {
1593 case 3:
1594 ic->ic_fixed_rate = -1;
1595 break;
1596 default:
1597 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
1598 if ((ic->ic_sup_rates[i] & IEEE80211_RATE_VAL)
1599 / 2 == le16toh(wreq.wi_val[0]))
1600 break;
1601 }
1602 if (i == IEEE80211_RATE_SIZE)
1603 return EINVAL;
1604 ic->ic_fixed_rate = i;
1605 }
1606 if (sc->sc_enabled)
1607 error = wi_write_txrate(sc);
1608 break;
1609
1610 case WI_RID_SCAN_APS:
1611 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
1612 error = wi_scan_ap(sc);
1613 break;
1614
1615 case WI_RID_MGMT_XMIT:
1616 if (!sc->sc_enabled) {
1617 error = ENETDOWN;
1618 break;
1619 }
1620 if (ic->ic_mgtq.ifq_len > 5) {
1621 error = EAGAIN;
1622 break;
1623 }
1624 /* XXX wi_len looks in u_int8_t, not in u_int16_t */
1625 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
1626 if (m == NULL) {
1627 error = ENOMEM;
1628 break;
1629 }
1630 IF_ENQUEUE(&ic->ic_mgtq, m);
1631 break;
1632
1633 default:
1634 if (sc->sc_enabled) {
1635 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
1636 len);
1637 if (error)
1638 break;
1639 }
1640 error = ieee80211_cfgset(ifp, cmd, data);
1641 break;
1642 }
1643 return error;
1644 }
1645
1646 static int
1647 wi_write_txrate(struct wi_softc *sc)
1648 {
1649 struct ieee80211com *ic = &sc->sc_ic;
1650 int i;
1651 u_int16_t rate;
1652
1653 if (ic->ic_fixed_rate < 0)
1654 rate = 0; /* auto */
1655 else
1656 rate = (ic->ic_sup_rates[ic->ic_fixed_rate] &
1657 IEEE80211_RATE_VAL) / 2;
1658
1659 /* rate: 0, 1, 2, 5, 11 */
1660
1661 switch (sc->sc_firmware_type) {
1662 case WI_LUCENT:
1663 if (rate == 0)
1664 rate = 3; /* auto */
1665 break;
1666 default:
1667 for (i = 8; i > 0; i >>= 1) {
1668 if (rate >= i)
1669 break;
1670 }
1671 if (i == 0)
1672 rate = 0xf; /* auto */
1673 else
1674 rate = i;
1675 break;
1676 }
1677 return wi_write_val(sc, WI_RID_TX_RATE, rate);
1678 }
1679
1680 static int
1681 wi_write_wep(struct wi_softc *sc)
1682 {
1683 struct ieee80211com *ic = &sc->sc_ic;
1684 int error = 0;
1685 int i, keylen;
1686 u_int16_t val;
1687 struct wi_key wkey[IEEE80211_WEP_NKID];
1688
1689 switch (sc->sc_firmware_type) {
1690 case WI_LUCENT:
1691 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
1692 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
1693 if (error)
1694 break;
1695 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
1696 if (error)
1697 break;
1698 memset(wkey, 0, sizeof(wkey));
1699 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1700 keylen = ic->ic_nw_keys[i].wk_len;
1701 wkey[i].wi_keylen = htole16(keylen);
1702 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
1703 keylen);
1704 }
1705 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
1706 wkey, sizeof(wkey));
1707 break;
1708
1709 case WI_INTERSIL:
1710 case WI_SYMBOL:
1711 if (ic->ic_flags & IEEE80211_F_WEPON) {
1712 /*
1713 * ONLY HWB3163 EVAL-CARD Firmware version
1714 * less than 0.8 variant2
1715 *
1716 * If promiscuous mode disable, Prism2 chip
1717 * does not work with WEP .
1718 * It is under investigation for details.
1719 * (ichiro (at) netbsd.org)
1720 */
1721 if (sc->sc_firmware_type == WI_INTERSIL &&
1722 sc->sc_sta_firmware_ver < 802 ) {
1723 /* firm ver < 0.8 variant 2 */
1724 wi_write_val(sc, WI_RID_PROMISC, 1);
1725 }
1726 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1727 sc->sc_cnfauthmode);
1728 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
1729 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1730 val |= HOST_ENCRYPT;
1731 } else {
1732 wi_write_val(sc, WI_RID_CNFAUTHMODE, 1); /* open */
1733 val = HOST_ENCRYPT | HOST_DECRYPT;
1734 }
1735 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
1736 if (error)
1737 break;
1738 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
1739 ic->ic_wep_txkey);
1740 if (error)
1741 break;
1742 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1743 keylen = ic->ic_nw_keys[i].wk_len;
1744 if (keylen > IEEE80211_WEP_KEYLEN)
1745 keylen = 13; /* 104bit keys */
1746 else
1747 keylen = IEEE80211_WEP_KEYLEN;
1748 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
1749 ic->ic_nw_keys[i].wk_key, keylen);
1750 if (error)
1751 break;
1752 }
1753 break;
1754 }
1755 return error;
1756 }
1757
1758 /* Must be called at proper protection level! */
1759 static int
1760 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
1761 {
1762 int i, status;
1763
1764 /* wait for the busy bit to clear */
1765 for (i = 0; ; i++) {
1766 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
1767 break;
1768 if (i == WI_TIMEOUT) {
1769 printf("%s: wi_cmd: BUSY did not clear, "
1770 "cmd=0x%x, prev=0x%x\n", sc->sc_dev.dv_xname,
1771 cmd, CSR_READ_2(sc, WI_COMMAND));
1772 return EIO;
1773 }
1774 DELAY(1);
1775 }
1776
1777 CSR_WRITE_2(sc, WI_PARAM0, val0);
1778 CSR_WRITE_2(sc, WI_PARAM1, val1);
1779 CSR_WRITE_2(sc, WI_PARAM2, val2);
1780 CSR_WRITE_2(sc, WI_COMMAND, cmd);
1781
1782 if (cmd == WI_CMD_INI) {
1783 /* XXX: should sleep here. */
1784 DELAY(100*1000);
1785 }
1786 /* wait for the cmd completed bit */
1787 for (i = 0; i < WI_TIMEOUT; i++) {
1788 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
1789 break;
1790 DELAY(1);
1791 }
1792
1793 status = CSR_READ_2(sc, WI_STATUS);
1794
1795 /* Ack the command */
1796 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1797
1798 if (i == WI_TIMEOUT) {
1799 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
1800 sc->sc_dev.dv_xname, cmd, val0);
1801 return ETIMEDOUT;
1802 }
1803
1804 if (status & WI_STAT_CMD_RESULT) {
1805 printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
1806 sc->sc_dev.dv_xname, cmd, val0);
1807 return EIO;
1808 }
1809 return 0;
1810 }
1811
1812 static int
1813 wi_seek_bap(struct wi_softc *sc, int id, int off)
1814 {
1815 int i, status;
1816
1817 CSR_WRITE_2(sc, WI_SEL0, id);
1818 CSR_WRITE_2(sc, WI_OFF0, off);
1819
1820 for (i = 0; ; i++) {
1821 status = CSR_READ_2(sc, WI_OFF0);
1822 if ((status & WI_OFF_BUSY) == 0)
1823 break;
1824 if (i == WI_TIMEOUT) {
1825 printf("%s: timeout in wi_seek to %x/%x\n",
1826 sc->sc_dev.dv_xname, id, off);
1827 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1828 return ETIMEDOUT;
1829 }
1830 DELAY(1);
1831 }
1832 if (status & WI_OFF_ERR) {
1833 printf("%s: failed in wi_seek to %x/%x\n",
1834 sc->sc_dev.dv_xname, id, off);
1835 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1836 return EIO;
1837 }
1838 sc->sc_bap_id = id;
1839 sc->sc_bap_off = off;
1840 return 0;
1841 }
1842
1843 static int
1844 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1845 {
1846 int error, cnt;
1847
1848 if (buflen == 0)
1849 return 0;
1850 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1851 if ((error = wi_seek_bap(sc, id, off)) != 0)
1852 return error;
1853 }
1854 cnt = (buflen + 1) / 2;
1855 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1856 sc->sc_bap_off += cnt * 2;
1857 return 0;
1858 }
1859
1860 static int
1861 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1862 {
1863 int error, cnt;
1864
1865 if (buflen == 0)
1866 return 0;
1867
1868 #ifdef WI_HERMES_AUTOINC_WAR
1869 again:
1870 #endif
1871 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1872 if ((error = wi_seek_bap(sc, id, off)) != 0)
1873 return error;
1874 }
1875 cnt = (buflen + 1) / 2;
1876 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1877 sc->sc_bap_off += cnt * 2;
1878
1879 #ifdef WI_HERMES_AUTOINC_WAR
1880 /*
1881 * According to the comments in the HCF Light code, there is a bug
1882 * in the Hermes (or possibly in certain Hermes firmware revisions)
1883 * where the chip's internal autoincrement counter gets thrown off
1884 * during data writes: the autoincrement is missed, causing one
1885 * data word to be overwritten and subsequent words to be written to
1886 * the wrong memory locations. The end result is that we could end
1887 * up transmitting bogus frames without realizing it. The workaround
1888 * for this is to write a couple of extra guard words after the end
1889 * of the transfer, then attempt to read then back. If we fail to
1890 * locate the guard words where we expect them, we preform the
1891 * transfer over again.
1892 */
1893 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
1894 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1895 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1896 wi_seek_bap(sc, id, sc->sc_bap_off);
1897 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1898 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1899 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
1900 printf("%s: detect auto increment bug, try again\n",
1901 sc->sc_dev.dv_xname);
1902 goto again;
1903 }
1904 }
1905 #endif
1906 return 0;
1907 }
1908
1909 static int
1910 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
1911 {
1912 int i;
1913
1914 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
1915 printf("%s: failed to allocate %d bytes on NIC\n",
1916 sc->sc_dev.dv_xname, len);
1917 return ENOMEM;
1918 }
1919
1920 for (i = 0; i < WI_TIMEOUT; i++) {
1921 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1922 break;
1923 if (i == WI_TIMEOUT) {
1924 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
1925 return ETIMEDOUT;
1926 }
1927 DELAY(1);
1928 }
1929 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
1930 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1931 return 0;
1932 }
1933
1934 static int
1935 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
1936 {
1937 int error, len;
1938 u_int16_t ltbuf[2];
1939
1940 /* Tell the NIC to enter record read mode. */
1941 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
1942 if (error)
1943 return error;
1944
1945 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
1946 if (error)
1947 return error;
1948
1949 if (le16toh(ltbuf[1]) != rid) {
1950 printf("%s: record read mismatch, rid=%x, got=%x\n",
1951 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
1952 return EIO;
1953 }
1954 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
1955 if (*buflenp < len) {
1956 printf("%s: record buffer is too small, "
1957 "rid=%x, size=%d, len=%d\n",
1958 sc->sc_dev.dv_xname, rid, *buflenp, len);
1959 return ENOSPC;
1960 }
1961 *buflenp = len;
1962 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
1963 }
1964
1965 static int
1966 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
1967 {
1968 int error;
1969 u_int16_t ltbuf[2];
1970
1971 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
1972 ltbuf[1] = htole16(rid);
1973
1974 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
1975 if (error)
1976 return error;
1977 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
1978 if (error)
1979 return error;
1980
1981 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
1982 }
1983
1984 static int
1985 wi_newstate(void *arg, enum ieee80211_state nstate)
1986 {
1987 struct wi_softc *sc = arg;
1988 struct ieee80211com *ic = &sc->sc_ic;
1989 struct ieee80211_node *ni = &ic->ic_bss;
1990 int i, buflen;
1991 u_int16_t val;
1992 struct wi_ssid ssid;
1993 enum ieee80211_state ostate;
1994 #ifdef WI_DEBUG
1995 static const char *stname[] =
1996 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
1997 #endif /* WI_DEBUG */
1998
1999 ostate = ic->ic_state;
2000 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
2001
2002 ic->ic_state = nstate;
2003 switch (nstate) {
2004 case IEEE80211_S_INIT:
2005 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2006 return 0;
2007
2008 case IEEE80211_S_RUN:
2009 buflen = IEEE80211_ADDR_LEN;
2010 wi_read_rid(sc, WI_RID_CURRENT_BSSID, ni->ni_bssid, &buflen);
2011 IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
2012 buflen = sizeof(val);
2013 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
2014 ni->ni_chan = le16toh(val);
2015
2016 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2017 ni->ni_esslen = ic->ic_des_esslen;
2018 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2019 ni->ni_nrate = 0;
2020 for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2021 if (ic->ic_sup_rates[i])
2022 ni->ni_rates[ni->ni_nrate++] =
2023 ic->ic_sup_rates[i];
2024 }
2025 ni->ni_intval = ic->ic_lintval;
2026 ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2027 if (ic->ic_flags & IEEE80211_F_WEPON)
2028 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2029 } else {
2030 buflen = sizeof(ssid);
2031 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2032 ni->ni_esslen = le16toh(ssid.wi_len);
2033 if (ni->ni_esslen > IEEE80211_NWID_LEN)
2034 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
2035 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2036 }
2037 break;
2038
2039 case IEEE80211_S_SCAN:
2040 case IEEE80211_S_AUTH:
2041 case IEEE80211_S_ASSOC:
2042 break;
2043 }
2044
2045 /* skip standard ieee80211 handling */
2046 return EINPROGRESS;
2047 }
2048
2049 static int
2050 wi_scan_ap(struct wi_softc *sc)
2051 {
2052 int error = 0;
2053 u_int16_t val[2];
2054
2055 if (!sc->sc_enabled)
2056 return ENXIO;
2057 switch (sc->sc_firmware_type) {
2058 case WI_LUCENT:
2059 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2060 break;
2061 case WI_INTERSIL:
2062 val[0] = 0x3fff; /* channel */
2063 val[1] = 0x000f; /* tx rate */
2064 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2065 break;
2066 case WI_SYMBOL:
2067 /*
2068 * XXX only supported on 3.x ?
2069 */
2070 val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2071 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2072 val, sizeof(val[0]));
2073 break;
2074 }
2075 if (error == 0) {
2076 sc->sc_scan_timer = WI_SCAN_WAIT;
2077 sc->sc_ic.ic_if.if_timer = 1;
2078 DPRINTF(("wi_scan_ap: start scanning\n"));
2079 }
2080 return error;
2081 }
2082
2083 static void
2084 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2085 {
2086 int i, naps, off, szbuf;
2087 struct wi_scan_header ws_hdr; /* Prism2 header */
2088 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
2089 struct wi_apinfo *ap;
2090
2091 off = sizeof(u_int16_t) * 2;
2092 memset(&ws_hdr, 0, sizeof(ws_hdr));
2093 switch (sc->sc_firmware_type) {
2094 case WI_INTERSIL:
2095 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2096 off += sizeof(ws_hdr);
2097 szbuf = sizeof(struct wi_scan_data_p2);
2098 break;
2099 case WI_SYMBOL:
2100 szbuf = sizeof(struct wi_scan_data_p2) + 6;
2101 break;
2102 case WI_LUCENT:
2103 szbuf = sizeof(struct wi_scan_data);
2104 break;
2105 }
2106 naps = (cnt * 2 + 2 - off) / szbuf;
2107 if (naps > MAXAPINFO)
2108 naps = MAXAPINFO;
2109 sc->sc_naps = naps;
2110 /* Read Data */
2111 ap = sc->sc_aps;
2112 memset(&ws_dat, 0, sizeof(ws_dat));
2113 for (i = 0; i < naps; i++, ap++) {
2114 wi_read_bap(sc, fid, off, &ws_dat,
2115 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2116 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
2117 ether_sprintf(ws_dat.wi_bssid)));
2118 off += szbuf;
2119 ap->scanreason = le16toh(ws_hdr.wi_reason);
2120 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2121 ap->channel = le16toh(ws_dat.wi_chid);
2122 ap->signal = le16toh(ws_dat.wi_signal);
2123 ap->noise = le16toh(ws_dat.wi_noise);
2124 ap->quality = ap->signal - ap->noise;
2125 ap->capinfo = le16toh(ws_dat.wi_capinfo);
2126 ap->interval = le16toh(ws_dat.wi_interval);
2127 ap->rate = le16toh(ws_dat.wi_rate);
2128 ap->namelen = le16toh(ws_dat.wi_namelen);
2129 if (ap->namelen > sizeof(ap->name))
2130 ap->namelen = sizeof(ap->name);
2131 memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2132 }
2133 /* Done scanning */
2134 sc->sc_scan_timer = 0;
2135 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
2136 }
2137