Home | History | Annotate | Line # | Download | only in ic
wireg.h revision 1.17
      1 /*	$NetBSD: wireg.h,v 1.17 2002/01/21 11:28:18 ichiro Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998, 1999
      5  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
     37  * Oslo IETF plenary meeting.
     38  */
     39 
     40 #define WI_TIMEOUT	65536
     41 
     42 #define WI_PORT0	0
     43 #define WI_PORT1	1
     44 #define WI_PORT2	2
     45 #define WI_PORT3	3
     46 #define WI_PORT4	4
     47 #define WI_PORT5	5
     48 
     49 /* Default port: 0 (only 0 exists on stations) */
     50 #define WI_DEFAULT_PORT	(WI_PORT0 << 8)
     51 
     52 /* Default TX rate: 2Mbps, auto fallback */
     53 #define WI_DEFAULT_TX_RATE	3
     54 
     55 /* Default network name: ANY */
     56 /*
     57  * [sommerfeld 1999/07/15] Changed from "ANY" to ""; according to Bill Fenner,
     58  * ANY is used in MS driver user interfaces, while "" is used over the
     59  * wire..
     60  */
     61 #define WI_DEFAULT_NETNAME	""
     62 
     63 #define WI_DEFAULT_AP_DENSITY	1
     64 
     65 #define WI_DEFAULT_RTS_THRESH	2347
     66 
     67 #define WI_DEFAULT_DATALEN	2304
     68 
     69 #define WI_DEFAULT_CREATE_IBSS	0
     70 
     71 #define WI_DEFAULT_PM_ENABLED	0
     72 
     73 #define WI_DEFAULT_MAX_SLEEP	100
     74 
     75 #define WI_DEFAULT_ROAMING	1
     76 
     77 #define WI_DEFAULT_AUTHTYPE	1
     78 
     79 #ifdef __NetBSD__
     80 #define OS_STRING_NAME	"NetBSD"
     81 #endif
     82 #ifdef __FreeBSD__
     83 #define OS_STRING_NAME	"FreeBSD"
     84 #endif
     85 #ifdef __OpenBSD__
     86 #define OS_STRING_NAME	"OpenBSD"
     87 #endif
     88 
     89 #define WI_DEFAULT_NODENAME	OS_STRING_NAME " WaveLAN/IEEE node"
     90 
     91 #define WI_DEFAULT_IBSS		OS_STRING_NAME " IBSS"
     92 
     93 #define WI_DEFAULT_CHAN		3
     94 
     95 /*
     96  * register space access macros
     97  */
     98 #define CSR_WRITE_4(sc, reg, val)	\
     99 	bus_space_write_4(sc->sc_iot, sc->sc_ioh,	\
    100 			(sc->sc_pci? reg * 2: reg) , val)
    101 #define CSR_WRITE_2(sc, reg, val)	\
    102 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,	\
    103 			(sc->sc_pci? reg * 2: reg), val)
    104 #define CSR_WRITE_1(sc, reg, val)	\
    105 	bus_space_write_1(sc->sc_iot, sc->sc_ioh,	\
    106 			(sc->sc_pci? reg * 2: reg), val)
    107 
    108 #define CSR_READ_4(sc, reg)		\
    109 	bus_space_read_4(sc->sc_iot, sc->sc_ioh,	\
    110 			(sc->sc_pci? reg * 2: reg))
    111 #define CSR_READ_2(sc, reg)		\
    112 	bus_space_read_2(sc->sc_iot, sc->sc_ioh,	\
    113 			(sc->sc_pci? reg * 2: reg))
    114 #define CSR_READ_1(sc, reg)		\
    115 	bus_space_read_1(sc->sc_iot, sc->sc_ioh,	\
    116 			(sc->sc_pci? reg * 2: reg))
    117 
    118 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
    119 #define bus_space_write_stream_2	bus_space_write_2
    120 #define bus_space_write_multi_stream_2	bus_space_write_multi_2
    121 #define bus_space_read_stream_2		bus_space_read_2
    122 #define bus_space_read_multi_stream_2		bus_space_read_multi_2
    123 #endif
    124 
    125 #define CSR_WRITE_STREAM_2(sc, reg, val)	\
    126 	bus_space_write_stream_2(sc->sc_iot, sc->sc_ioh,	\
    127 			(sc->sc_pci? reg * 2: reg), val)
    128 #define CSR_WRITE_MULTI_STREAM_2(sc, reg, val, count)	\
    129 	bus_space_write_multi_stream_2(sc->sc_iot, sc->sc_ioh,	\
    130 			(sc->sc_pci? reg * 2: reg), val, count)
    131 #define CSR_READ_STREAM_2(sc, reg)		\
    132 	bus_space_read_stream_2(sc->sc_iot, sc->sc_ioh,	\
    133 			(sc->sc_pci? reg * 2: reg))
    134 #define CSR_READ_MULTI_STREAM_2(sc, reg, buf, count)		\
    135 	bus_space_read_multi_stream_2(sc->sc_iot, sc->sc_ioh,	\
    136 			(sc->sc_pci? reg * 2: reg), buf, count)
    137 
    138 /*
    139  * The WaveLAN/IEEE cards contain an 802.11 MAC controller which Lucent
    140  * calls 'Hermes.' In typical fashion, getting documentation about this
    141  * controller is about as easy as squeezing blood from a stone. Here
    142  * is more or less what I know:
    143  *
    144  * - The Hermes controller is firmware driven, and the host interacts
    145  *   with the Hermes via a firmware interface, which can change.
    146  *
    147  * - The Hermes is described in a document called: "Hermes Firmware
    148  *   WaveLAN/IEEE Station Functions," document #010245, which of course
    149  *   Lucent will not release without an NDA.
    150  *
    151  * - Lucent has created a library called HCF (Hardware Control Functions)
    152  *   though which it wants developers to interact with the card. The HCF
    153  *   is needlessly complex, ill conceived and badly documented. Actually,
    154  *   the comments in the HCP code itself aren't bad, but the publically
    155  *   available manual that comes with it is awful, probably due largely to
    156  *   the fact that it has been emasculated in order to hide information
    157  *   that Lucent wants to keep proprietary. The purpose of the HCF seems
    158  *   to be to insulate the driver programmer from the Hermes itself so that
    159  *   Lucent has an excuse not to release programming in for it.
    160  *
    161  * - Lucent only makes available documentation and code for 'HCF Light'
    162  *   which is a stripped down version of HCF with certain features not
    163  *   implemented, most notably support for 802.11 frames.
    164  *
    165  * - The HCF code which I have seen blows goats. Whoever decided to
    166  *   use a 132 column format should be shot.
    167  *
    168  * Rather than actually use the Lucent HCF library, I have stripped all
    169  * the useful information from it and used it to create a driver in the
    170  * usual BSD form. Note: I don't want to hear anybody whining about the
    171  * fact that the Lucent code is GPLed and mine isn't. I did not actually
    172  * put any of Lucent's code in this driver: I only used it as a reference
    173  * to obtain information about the underlying hardware. The Hermes
    174  * programming interface is not GPLed, so bite me.
    175  */
    176 
    177 /*
    178  * Size of Hermes & Prism2 I/O space.
    179  */
    180 #define WI_IOSIZE		0x40
    181 #define WI_PCI_CBMA		0x10	/* Configuration Base Memory Address */
    182 
    183 /*
    184  * Hermes & Prism2 register definitions
    185  */
    186 
    187 /* Hermes command/status registers. */
    188 #define WI_COMMAND		0x00
    189 #define WI_PARAM0		0x02
    190 #define WI_PARAM1		0x04
    191 #define WI_PARAM2		0x06
    192 #define WI_STATUS		0x08
    193 #define WI_RESP0		0x0A
    194 #define WI_RESP1		0x0C
    195 #define WI_RESP2		0x0E
    196 
    197 /* Command register values. */
    198 #define WI_CMD_BUSY		0x8000 /* busy bit */
    199 #define WI_CMD_INI		0x0000 /* initialize */
    200 #define WI_CMD_ENABLE		0x0001 /* enable */
    201 #define WI_CMD_DISABLE		0x0002 /* disable */
    202 #define WI_CMD_DIAG		0x0003
    203 #define WI_CMD_ALLOC_MEM	0x000A /* allocate NIC memory */
    204 #define WI_CMD_TX		0x000B /* transmit */
    205 #define WI_CMD_NOTIFY		0x0010
    206 #define WI_CMD_INQUIRE		0x0011
    207 #define WI_CMD_ACCESS		0x0021
    208 #define WI_CMD_PROGRAM		0x0022
    209 
    210 #define WI_CMD_CODE_MASK	0x003F
    211 
    212 /*
    213  * Reclaim qualifier bit, applicable to the
    214  * TX and INQUIRE commands.
    215  */
    216 #define WI_RECLAIM		0x0100 /* reclaim NIC memory */
    217 
    218 /*
    219  * ACCESS command qualifier bits.
    220  */
    221 #define WI_ACCESS_READ		0x0000
    222 #define WI_ACCESS_WRITE		0x0100
    223 
    224 /*
    225  * PROGRAM command qualifier bits.
    226  */
    227 #define WI_PROGRAM_DISABLE	0x0000
    228 #define WI_PROGRAM_ENABLE_RAM	0x0100
    229 #define WI_PROGRAM_ENABLE_NVRAM	0x0200
    230 #define WI_PROGRAM_NVRAM	0x0300
    231 
    232 /* Status register values */
    233 #define WI_STAT_CMD_CODE	0x003F
    234 #define WI_STAT_DIAG_ERR	0x0100
    235 #define WI_STAT_INQ_ERR		0x0500
    236 #define WI_STAT_CMD_RESULT	0x7F00
    237 
    238 /* memory handle management registers */
    239 #define WI_INFO_FID		0x10
    240 #define WI_RX_FID		0x20
    241 #define WI_ALLOC_FID		0x22
    242 #define WI_TX_CMP_FID		0x24
    243 
    244 /*
    245  * Buffer Access Path (BAP) registers.
    246  * These are I/O channels. I believe you can use each one for
    247  * any desired purpose independently of the other. In general
    248  * though, we use BAP1 for reading and writing LTV records and
    249  * reading received data frames, and BAP0 for writing transmit
    250  * frames. This is a convention though, not a rule.
    251  */
    252 #define WI_SEL0			0x18
    253 #define WI_SEL1			0x1A
    254 #define WI_OFF0			0x1C
    255 #define WI_OFF1			0x1E
    256 #define WI_DATA0		0x36
    257 #define WI_DATA1		0x38
    258 #define WI_BAP0			WI_DATA0
    259 #define WI_BAP1			WI_DATA1
    260 
    261 #define WI_OFF_BUSY		0x8000
    262 #define WI_OFF_ERR		0x4000
    263 #define WI_OFF_DATAOFF		0x0FFF
    264 
    265 /* Event registers */
    266 #define WI_EVENT_STAT		0x30	/* Event status */
    267 #define WI_INT_EN		0x32	/* Interrupt enable/disable */
    268 #define WI_EVENT_ACK		0x34	/* Ack event */
    269 
    270 /* Events */
    271 #define WI_EV_TICK		0x8000	/* aux timer tick */
    272 #define WI_EV_RES		0x4000	/* controller h/w error (time out) */
    273 #define WI_EV_INFO_DROP		0x2000	/* no RAM to build unsolicited frame */
    274 #define WI_EV_NO_CARD		0x0800	/* card removed (hunh?) */
    275 #define WI_EV_DUIF_RX		0x0400	/* wavelan management packet received */
    276 #define WI_EV_INFO		0x0080	/* async info frame */
    277 #define WI_EV_CMD		0x0010	/* command completed */
    278 #define WI_EV_ALLOC		0x0008	/* async alloc/reclaim completed */
    279 #define WI_EV_TX_EXC		0x0004	/* async xmit completed with failure */
    280 #define WI_EV_TX		0x0002	/* async xmit completed succesfully */
    281 #define WI_EV_RX		0x0001	/* async rx completed */
    282 
    283 #define WI_INTRS	\
    284 	(WI_EV_RX|WI_EV_TX|WI_EV_TX_EXC|WI_EV_ALLOC|WI_EV_INFO|WI_EV_INFO_DROP)
    285 
    286 /* Host software registers */
    287 #define WI_SW0			0x28
    288 #define WI_SW1			0x2A
    289 #define WI_SW2			0x2C
    290 #define WI_SW3			0x2E 	/* does not appear in Prism2 */
    291 
    292 #define WI_CNTL			0x14
    293 
    294 #define WI_CNTL_AUX_ENA		0xC000
    295 #define WI_CNTL_AUX_ENA_STAT	0xC000
    296 #define WI_CNTL_AUX_DIS_STAT	0x0000
    297 #define WI_CNTL_AUX_ENA_CNTL	0x8000
    298 #define WI_CNTL_AUX_DIS_CNTL	0x4000
    299 
    300 #define WI_AUX_PAGE		0x3A
    301 #define WI_AUX_OFFSET		0x3C
    302 #define WI_AUX_DATA		0x3E
    303 
    304 /*
    305  * PCI Host Interface Registers (HFA3842 Specific)
    306  * The value of all Register's Offset, such as WI_INFO_FID and WI_PARAM0,
    307  * has doubled.
    308  * About WI_PCI_COR: In this Register, only soft-reset bit implement; Bit(7).
    309  */
    310 #define WI_PCI_COR		0x4C
    311 #define WI_PCI_HCR		0x5C
    312 #define WI_PCI_MASTER0_ADDRH	0x80
    313 #define WI_PCI_MASTER0_ADDRL	0x84
    314 #define WI_PCI_MASTER0_LEN	0x88
    315 #define WI_PCI_MASTER0_CON	0x8C
    316 
    317 #define WI_PCI_STATUS		0x98
    318 
    319 #define WI_PCI_MASTER1_ADDRH	0xA0
    320 #define WI_PCI_MASTER1_ADDRL	0xA4
    321 #define WI_PCI_MASTER1_LEN	0xA8
    322 #define WI_PCI_MASTER1_CON	0xAC
    323 
    324 #define WI_PCI_SOFT_RESET	(1 << 7)
    325 
    326 /*
    327  * One form of communication with the Hermes is with what Lucent calls
    328  * LTV records, where LTV stands for Length, Type and Value. The length
    329  * and type are 16 bits and are in native byte order. The value is in
    330  * multiples of 16 bits and is in little endian byte order.
    331  */
    332 struct wi_ltv_gen {
    333 	u_int16_t		wi_len;
    334 	u_int16_t		wi_type;
    335 	u_int16_t		wi_val;
    336 };
    337 
    338 struct wi_ltv_str {
    339 	u_int16_t		wi_len;
    340 	u_int16_t		wi_type;
    341 	u_int16_t		wi_str[17];
    342 };
    343 
    344 #define WI_SETVAL(recno, val)			\
    345 	do {					\
    346 		struct wi_ltv_gen	g;	\
    347 						\
    348 		g.wi_len = 2;			\
    349 		g.wi_type = recno;		\
    350 		g.wi_val = htole16(val);	\
    351 		wi_write_record(sc, &g);	\
    352 	} while (0)
    353 
    354 #define WI_SETSTR(recno, str)					\
    355 	do {							\
    356 		struct wi_ltv_str	s;			\
    357 		int			l;			\
    358 								\
    359 		l = (strlen(str) + 1) & ~0x1;			\
    360 		memset((char *)&s, 0, sizeof(s));		\
    361 		s.wi_len = (l / 2) + 2;				\
    362 		s.wi_type = recno;				\
    363 		s.wi_str[0] = htole16(strlen(str));		\
    364 		memcpy((char *)&s.wi_str[1], str, strlen(str));	\
    365 		wi_write_record(sc, (struct wi_ltv_gen *)&s);	\
    366 	} while (0)
    367 
    368 /*
    369  * Download buffer location and length (0xFD01).
    370  */
    371 struct wi_ltv_dnld_buf {
    372 	u_int16_t		wi_len;
    373 	u_int16_t		wi_type;
    374 	u_int16_t		wi_buf_pg; /* page addr of intermediate dl buf*/
    375 	u_int16_t		wi_buf_off; /* offset of idb */
    376 	u_int16_t		wi_buf_len; /* len of idb */
    377 };
    378 
    379 /*
    380  * Mem sizes (0xFD02).
    381  */
    382 struct wi_ltv_memsz {
    383 	u_int16_t		wi_len;
    384 	u_int16_t		wi_type;
    385 	u_int16_t		wi_mem_ram;
    386 	u_int16_t		wi_mem_nvram;
    387 };
    388 
    389 /*
    390  * NIC Identification (0xFD0B, 0xFD20)
    391  */
    392 struct wi_ltv_ver {
    393 	u_int16_t		wi_len;
    394 	u_int16_t		wi_type;
    395 	u_int16_t		wi_ver[4];
    396 #define WI_NIC_EVB2	0x8000
    397 #define WI_NIC_HWB3763	0x8001
    398 #define WI_NIC_HWB3163	0x8002
    399 #define WI_NIC_HWB3163B	0x8003
    400 #define WI_NIC_EVB3	0x8004
    401 #define WI_NIC_HWB1153	0x8007
    402 #define WI_NIC_P2_SST	0x8008	/* Prism2 with SST flush */
    403 #define WI_NIC_PRISM2_5	0x800C
    404 #define WI_NIC_3874A	0x8013	/* Prism2.5 Mini-PCI */
    405 };
    406 
    407 /*
    408  * List of intended regulatory domains (0xFD11).
    409  */
    410 struct wi_ltv_domains {
    411 	u_int16_t		wi_len;
    412 	u_int16_t		wi_type;
    413 	u_int16_t		wi_domains[6];
    414 };
    415 
    416 /*
    417  * CIS struct (0xFD13).
    418  */
    419 struct wi_ltv_cis {
    420 	u_int16_t		wi_len;
    421 	u_int16_t		wi_type;
    422 	u_int16_t		wi_cis[240];
    423 };
    424 
    425 /*
    426  * Communications quality (0xFD43).
    427  */
    428 struct wi_ltv_commqual {
    429 	u_int16_t		wi_len;
    430 	u_int16_t		wi_type;
    431 	u_int16_t		wi_coms_qual;
    432 	u_int16_t		wi_sig_lvl;
    433 	u_int16_t		wi_noise_lvl;
    434 };
    435 
    436 /*
    437  * Actual system scale thresholds (0xFC06, 0xFD46).
    438  */
    439 struct wi_ltv_scalethresh {
    440 	u_int16_t		wi_len;
    441 	u_int16_t		wi_type;
    442 	u_int16_t		wi_energy_detect;
    443 	u_int16_t		wi_carrier_detect;
    444 	u_int16_t		wi_defer;
    445 	u_int16_t		wi_cell_search;
    446 	u_int16_t		wi_out_of_range;
    447 	u_int16_t		wi_delta_snr;
    448 };
    449 
    450 /*
    451  * PCF info struct (0xFD87).
    452  */
    453 struct wi_ltv_pcf {
    454 	u_int16_t		wi_len;
    455 	u_int16_t		wi_type;
    456 	u_int16_t		wi_medium_occupancy_limit;
    457 	u_int16_t		wi_cfp_period;
    458 	u_int16_t		wi_cfp_max_duration;
    459 };
    460 
    461 /*
    462  * Connection control characteristics. (0xFC00)
    463  * 1 == Basic Service Set (BSS)
    464  * 2 == Wireless Distribudion System (WDS)
    465  * 3 == Pseudo IBSS
    466  */
    467 #define WI_PORTTYPE_BSS		0x1
    468 #define WI_PORTTYPE_WDS		0x2
    469 #define WI_PORTTYPE_ADHOC	0x3
    470 
    471 /*
    472  * Mac addresses. (0xFC01, 0xFC08)
    473  */
    474 struct wi_ltv_macaddr {
    475 	u_int16_t		wi_len;
    476 	u_int16_t		wi_type;
    477 	u_int8_t		wi_mac_addr[6];
    478 };
    479 
    480 /*
    481  * Station set identification (SSID). (0xFC02, 0xFC04)
    482  */
    483 struct wi_ltv_ssid {
    484 	u_int16_t		wi_len;
    485 	u_int16_t		wi_type;
    486 	u_int16_t		wi_id[17];
    487 };
    488 
    489 /*
    490  * Set our station name. (0xFC0E)
    491  */
    492 struct wi_ltv_nodename {
    493 	u_int16_t		wi_len;
    494 	u_int16_t		wi_type;
    495 	u_int16_t		wi_nodename[17];
    496 };
    497 
    498 /*
    499  * Multicast addresses to be put in filter. We're
    500  * allowed up to 16 addresses in the filter. (0xFC80)
    501  */
    502 struct wi_ltv_mcast {
    503 	u_int16_t		wi_len;
    504 	u_int16_t		wi_type;
    505 	struct ether_addr	wi_mcast[16];
    506 };
    507 
    508 /*
    509  * Information frame types.
    510  */
    511 #define WI_INFO_NOTIFY		0xF000	/* Handover address */
    512 #define WI_INFO_COUNTERS	0xF100	/* Statistics counters */
    513 #define WI_INFO_SCAN_RESULTS	0xF101	/* Scan results table (STA only) */
    514 #define WI_INFO_LINK_STAT	0xF200	/* Link status */
    515 #define WI_INFO_ASSOC_STAT	0xF201	/* Association status */
    516 #define	WI_INFO_AUTH_REQUEST	0xF202	/* Authentication Request (AP) */
    517 #define	WI_INFO_POWERSAVE_COUNT	0xF203	/* PowerSave User Count (AP) */
    518 
    519 /*
    520  * Scan Results Table of Prism2 chip (STA only)
    521  */
    522 
    523 #define MAXAPINFO		30
    524 struct wi_scan_header {
    525 	u_int16_t		wi_reserve;	/* future use */
    526 	u_int16_t		wi_reason;	/* The reason this scan was initiated
    527 						   1: Host initiated
    528 						   2: Firmware initiated
    529 						   3: Inquiry request from host */
    530 };
    531 struct wi_scan_data_p2 {
    532 	u_int16_t		wi_chid;	/* BSS Channel ID from Probe Res.(PR)*/
    533 	u_int16_t		wi_noise;	/* Average Noise Level of the PR */
    534 	u_int16_t		wi_signal;	/* Signal Level on the PR */
    535 	u_int8_t		wi_bssid[6];	/* MACaddress of BSS responder from PR */
    536 	u_int16_t		wi_interval;	/* BSS beacon interval */
    537 	u_int16_t		wi_capinfo;	/* BSS Capability Information
    538 						   IEEE Std 802.11(1997) ,see 7.3.1.4 */
    539 	u_int16_t		wi_namelen;	/* Length of SSID strings */
    540 	u_int8_t		wi_name[32];	/* SSID strings */
    541 	u_int16_t		wi_suprate[5];	/* Supported Rates element from the PR
    542 						   IEEE Std 802.11(1997) ,see 7.3.2.2 */
    543 	u_int16_t		wi_rate;	/* Data rate of the PR */
    544 #define	WI_APRATE_1		0x0A		/* 1 Mbps */
    545 #define	WI_APRATE_2		0x14		/* 2 Mbps */
    546 #define	WI_APRATE_5		0x37		/* 5.5 Mbps */
    547 #define	WI_APRATE_11		0x6E		/* 11 Mbps */
    548 };
    549 
    550 /*
    551  * Scan Results of Lucent chip
    552  */
    553 struct wi_scan_data {
    554 	u_int16_t		wi_chid;	/* BSS Channel ID from PR */
    555 	u_int16_t		wi_noise;	/* Average Noise Level of the PR */
    556 	u_int16_t		wi_signal;	/* Signal Level on the PR */
    557 	u_int8_t		wi_bssid[6];	/* MACaddress of BSS responder from PR */
    558 	u_int16_t		wi_interval;	/* BSS beacon interval */
    559 	u_int16_t		wi_capinfo;	/* BSS Capability Information
    560 						   IEEE Std 802.11(1997) ,see 7.3.1.4 */
    561 	u_int16_t		wi_namelen;	/* Length of SSID strings */
    562 	u_int8_t		wi_name[32];	/* SSID strings */
    563 };
    564 
    565 /*
    566  * Hermes transmit/receive frame structure
    567  */
    568 struct wi_frame {
    569 	u_int16_t		wi_status;	/* 0x00 */
    570 	u_int16_t		wi_rsvd0;	/* 0x02 */
    571 	u_int16_t		wi_rsvd1;	/* 0x04 */
    572 	u_int16_t		wi_q_info;	/* 0x06 */
    573 	u_int16_t		wi_rsvd2;	/* 0x08 */
    574 	u_int16_t		wi_rsvd3;	/* 0x0A */
    575 	u_int16_t		wi_tx_ctl;	/* 0x0C */
    576 	u_int16_t		wi_frame_ctl;	/* 0x0E */
    577 	u_int16_t		wi_id;		/* 0x10 */
    578 	u_int8_t		wi_addr1[6];	/* 0x12 */
    579 	u_int8_t		wi_addr2[6];	/* 0x18 */
    580 	u_int8_t		wi_addr3[6];	/* 0x1E */
    581 	u_int16_t		wi_seq_ctl;	/* 0x24 */
    582 	u_int8_t		wi_addr4[6];	/* 0x26 */
    583 	u_int16_t		wi_dat_len;	/* 0x2C */
    584 	u_int8_t		wi_dst_addr[6];	/* 0x2E */
    585 	u_int8_t		wi_src_addr[6];	/* 0x34 */
    586 	u_int16_t		wi_len;		/* 0x3A */
    587 	u_int16_t		wi_dat[3];	/* 0x3C */ /* SNAP header */
    588 	u_int16_t		wi_type;	/* 0x42 */
    589 };
    590 
    591 #define WI_802_3_OFFSET		0x2E
    592 #define WI_802_11_OFFSET	0x44
    593 #define WI_802_11_OFFSET_RAW	0x3C
    594 
    595 #define WI_STAT_BADCRC		0x0001
    596 #define WI_STAT_UNDECRYPTABLE	0x0002
    597 #define WI_STAT_ERRSTAT		0x0003
    598 #define WI_STAT_MAC_PORT	0x0700
    599 #define WI_STAT_1042		0x2000	/* RFC1042 encoded */
    600 #define WI_STAT_TUNNEL		0x4000	/* Bridge-tunnel encoded */
    601 #define WI_STAT_WMP_MSG		0x6000	/* WaveLAN-II management protocol */
    602 #define WI_RXSTAT_MSG_TYPE	0xE000
    603 
    604 #define WI_ENC_TX_802_3		0x00
    605 #define WI_ENC_TX_802_11	0x11
    606 #define WI_ENC_TX_E_II		0x0E
    607 
    608 #define WI_ENC_TX_1042		0x00
    609 #define WI_ENC_TX_TUNNEL	0xF8
    610 
    611 #define WI_TXCNTL_MACPORT	0x00FF
    612 #define WI_TXCNTL_STRUCTTYPE	0xFF00
    613 
    614 /*
    615  * SNAP (sub-network access protocol) constants for transmission
    616  * of IP datagrams over IEEE 802 networks, taken from RFC1042.
    617  * We need these for the LLC/SNAP header fields in the TX/RX frame
    618  * structure.
    619  */
    620 #define WI_SNAP_K1		0xaa	/* assigned global SAP for SNAP */
    621 #define WI_SNAP_K2		0x00
    622 #define WI_SNAP_CONTROL		0x03	/* unnumbered information format */
    623 #define WI_SNAP_WORD0		(WI_SNAP_K1 | (WI_SNAP_K1 << 8))
    624 #define WI_SNAP_WORD1		(WI_SNAP_K2 | (WI_SNAP_CONTROL << 8))
    625 #define WI_SNAPHDR_LEN		0x6
    626