z8530tty.c revision 1.31 1 1.31 mycroft /* $NetBSD: z8530tty.c,v 1.31 1997/11/02 08:50:31 mycroft Exp $ */
2 1.21 mycroft
3 1.21 mycroft /*-
4 1.21 mycroft * Copyright (c) 1993, 1994, 1995, 1996, 1997
5 1.21 mycroft * Charles M. Hannum. All rights reserved.
6 1.21 mycroft *
7 1.21 mycroft * Redistribution and use in source and binary forms, with or without
8 1.21 mycroft * modification, are permitted provided that the following conditions
9 1.21 mycroft * are met:
10 1.21 mycroft * 1. Redistributions of source code must retain the above copyright
11 1.21 mycroft * notice, this list of conditions and the following disclaimer.
12 1.21 mycroft * 2. Redistributions in binary form must reproduce the above copyright
13 1.21 mycroft * notice, this list of conditions and the following disclaimer in the
14 1.21 mycroft * documentation and/or other materials provided with the distribution.
15 1.21 mycroft * 3. All advertising materials mentioning features or use of this software
16 1.21 mycroft * must display the following acknowledgement:
17 1.21 mycroft * This product includes software developed by Charles M. Hannum.
18 1.21 mycroft * 4. The name of the author may not be used to endorse or promote products
19 1.21 mycroft * derived from this software without specific prior written permission.
20 1.21 mycroft *
21 1.21 mycroft * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 1.21 mycroft * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 1.21 mycroft * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 1.21 mycroft * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 1.21 mycroft * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 1.21 mycroft * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 1.21 mycroft * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 1.21 mycroft * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 1.21 mycroft * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 1.21 mycroft * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 1.21 mycroft */
32 1.1 gwr
33 1.1 gwr /*
34 1.1 gwr * Copyright (c) 1994 Gordon W. Ross
35 1.1 gwr * Copyright (c) 1992, 1993
36 1.1 gwr * The Regents of the University of California. All rights reserved.
37 1.1 gwr *
38 1.1 gwr * This software was developed by the Computer Systems Engineering group
39 1.1 gwr * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
40 1.1 gwr * contributed to Berkeley.
41 1.1 gwr *
42 1.1 gwr * All advertising materials mentioning features or use of this software
43 1.1 gwr * must display the following acknowledgement:
44 1.1 gwr * This product includes software developed by the University of
45 1.1 gwr * California, Lawrence Berkeley Laboratory.
46 1.1 gwr *
47 1.1 gwr * Redistribution and use in source and binary forms, with or without
48 1.1 gwr * modification, are permitted provided that the following conditions
49 1.1 gwr * are met:
50 1.1 gwr * 1. Redistributions of source code must retain the above copyright
51 1.1 gwr * notice, this list of conditions and the following disclaimer.
52 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
53 1.1 gwr * notice, this list of conditions and the following disclaimer in the
54 1.1 gwr * documentation and/or other materials provided with the distribution.
55 1.1 gwr * 3. All advertising materials mentioning features or use of this software
56 1.1 gwr * must display the following acknowledgement:
57 1.1 gwr * This product includes software developed by the University of
58 1.1 gwr * California, Berkeley and its contributors.
59 1.1 gwr * 4. Neither the name of the University nor the names of its contributors
60 1.1 gwr * may be used to endorse or promote products derived from this software
61 1.1 gwr * without specific prior written permission.
62 1.1 gwr *
63 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 1.1 gwr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 1.1 gwr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 1.1 gwr * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 1.1 gwr * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 1.1 gwr * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 1.1 gwr * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 1.1 gwr * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 1.1 gwr * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 1.1 gwr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 1.1 gwr * SUCH DAMAGE.
74 1.1 gwr *
75 1.1 gwr * @(#)zs.c 8.1 (Berkeley) 7/19/93
76 1.1 gwr */
77 1.1 gwr
78 1.1 gwr /*
79 1.1 gwr * Zilog Z8530 Dual UART driver (tty interface)
80 1.1 gwr *
81 1.1 gwr * This is the "slave" driver that will be attached to
82 1.1 gwr * the "zsc" driver for plain "tty" async. serial lines.
83 1.8 gwr *
84 1.8 gwr * Credits, history:
85 1.8 gwr *
86 1.8 gwr * The original version of this code was the sparc/dev/zs.c driver
87 1.8 gwr * as distributed with the Berkeley 4.4 Lite release. Since then,
88 1.8 gwr * Gordon Ross reorganized the code into the current parent/child
89 1.8 gwr * driver scheme, separating the Sun keyboard and mouse support
90 1.8 gwr * into independent child drivers.
91 1.8 gwr *
92 1.8 gwr * RTS/CTS flow-control support was a collaboration of:
93 1.8 gwr * Gordon Ross <gwr (at) netbsd.org>,
94 1.8 gwr * Bill Studenmund <wrstuden (at) loki.stanford.edu>
95 1.8 gwr * Ian Dall <Ian.Dall (at) dsto.defence.gov.au>
96 1.1 gwr */
97 1.1 gwr
98 1.1 gwr #include <sys/param.h>
99 1.1 gwr #include <sys/systm.h>
100 1.1 gwr #include <sys/proc.h>
101 1.1 gwr #include <sys/device.h>
102 1.1 gwr #include <sys/conf.h>
103 1.1 gwr #include <sys/file.h>
104 1.1 gwr #include <sys/ioctl.h>
105 1.6 gwr #include <sys/malloc.h>
106 1.1 gwr #include <sys/tty.h>
107 1.1 gwr #include <sys/time.h>
108 1.1 gwr #include <sys/kernel.h>
109 1.1 gwr #include <sys/syslog.h>
110 1.1 gwr
111 1.1 gwr #include <dev/ic/z8530reg.h>
112 1.1 gwr #include <machine/z8530var.h>
113 1.1 gwr
114 1.17 jtk #include "locators.h"
115 1.17 jtk
116 1.1 gwr /*
117 1.1 gwr * How many input characters we can buffer.
118 1.1 gwr * The port-specific var.h may override this.
119 1.1 gwr * Note: must be a power of two!
120 1.1 gwr */
121 1.1 gwr #ifndef ZSTTY_RING_SIZE
122 1.6 gwr #define ZSTTY_RING_SIZE 2048
123 1.1 gwr #endif
124 1.6 gwr
125 1.6 gwr /*
126 1.6 gwr * Make this an option variable one can patch.
127 1.6 gwr * But be warned: this must be a power of 2!
128 1.6 gwr */
129 1.6 gwr int zstty_rbuf_size = ZSTTY_RING_SIZE;
130 1.1 gwr
131 1.8 gwr /* This should usually be 3/4 of ZSTTY_RING_SIZE */
132 1.8 gwr int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE - (ZSTTY_RING_SIZE >> 2));
133 1.8 gwr
134 1.1 gwr struct zstty_softc {
135 1.1 gwr struct device zst_dev; /* required first: base device */
136 1.1 gwr struct tty *zst_tty;
137 1.1 gwr struct zs_chanstate *zst_cs;
138 1.1 gwr
139 1.1 gwr int zst_hwflags; /* see z8530var.h */
140 1.1 gwr int zst_swflags; /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
141 1.1 gwr
142 1.8 gwr /*
143 1.8 gwr * Printing an overrun error message often takes long enough to
144 1.8 gwr * cause another overrun, so we only print one per second.
145 1.8 gwr */
146 1.8 gwr long zst_rotime; /* time of last ring overrun */
147 1.8 gwr long zst_fotime; /* time of last fifo overrun */
148 1.8 gwr
149 1.8 gwr /*
150 1.8 gwr * The receive ring buffer.
151 1.8 gwr */
152 1.8 gwr int zst_rbget; /* ring buffer `get' index */
153 1.8 gwr volatile int zst_rbput; /* ring buffer `put' index */
154 1.8 gwr int zst_ringmask;
155 1.8 gwr int zst_rbhiwat;
156 1.8 gwr
157 1.8 gwr u_short *zst_rbuf; /* rr1, data pairs */
158 1.1 gwr
159 1.1 gwr /*
160 1.1 gwr * The transmit byte count and address are used for pseudo-DMA
161 1.1 gwr * output in the hardware interrupt code. PDMA can be suspended
162 1.1 gwr * to get pending changes done; heldtbc is used for this. It can
163 1.1 gwr * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
164 1.1 gwr */
165 1.1 gwr int zst_tbc; /* transmit byte count */
166 1.23 mycroft u_char *zst_tba; /* transmit buffer address */
167 1.1 gwr int zst_heldtbc; /* held tbc while xmission stopped */
168 1.1 gwr
169 1.8 gwr /* Flags to communicate with zstty_softint() */
170 1.8 gwr volatile char zst_rx_blocked; /* input block at ring */
171 1.8 gwr volatile char zst_rx_overrun; /* ring overrun */
172 1.8 gwr volatile char zst_tx_busy; /* working on an output chunk */
173 1.8 gwr volatile char zst_tx_done; /* done with one output chunk */
174 1.8 gwr volatile char zst_tx_stopped; /* H/W level stop (lost CTS) */
175 1.8 gwr volatile char zst_st_check; /* got a status interrupt */
176 1.8 gwr char pad[2];
177 1.1 gwr };
178 1.1 gwr
179 1.1 gwr
180 1.1 gwr /* Definition of the driver for autoconfig. */
181 1.14 gwr #ifdef __BROKEN_INDIRECT_CONFIG
182 1.1 gwr static int zstty_match(struct device *, void *, void *);
183 1.14 gwr #else
184 1.14 gwr static int zstty_match(struct device *, struct cfdata *, void *);
185 1.14 gwr #endif
186 1.1 gwr static void zstty_attach(struct device *, struct device *, void *);
187 1.1 gwr
188 1.4 thorpej struct cfattach zstty_ca = {
189 1.4 thorpej sizeof(struct zstty_softc), zstty_match, zstty_attach
190 1.4 thorpej };
191 1.4 thorpej
192 1.4 thorpej struct cfdriver zstty_cd = {
193 1.4 thorpej NULL, "zstty", DV_TTY
194 1.1 gwr };
195 1.1 gwr
196 1.1 gwr struct zsops zsops_tty;
197 1.1 gwr
198 1.1 gwr /* Routines called from other code. */
199 1.1 gwr cdev_decl(zs); /* open, close, read, write, ioctl, stop, ... */
200 1.1 gwr
201 1.14 gwr static void zsstart __P((struct tty *));
202 1.14 gwr static int zsparam __P((struct tty *, struct termios *));
203 1.14 gwr static void zs_modem __P((struct zstty_softc *zst, int onoff));
204 1.14 gwr static int zshwiflow __P((struct tty *, int));
205 1.24 mycroft static void zs_hwiflow __P((struct zstty_softc *));
206 1.1 gwr
207 1.1 gwr /*
208 1.1 gwr * zstty_match: how is this zs channel configured?
209 1.1 gwr */
210 1.14 gwr #ifdef __BROKEN_INDIRECT_CONFIG
211 1.14 gwr int
212 1.14 gwr zstty_match(parent, vcf, aux)
213 1.14 gwr struct device *parent;
214 1.14 gwr void *vcf, *aux;
215 1.14 gwr {
216 1.14 gwr struct cfdata *cf = vcf;
217 1.14 gwr struct zsc_attach_args *args = aux;
218 1.14 gwr
219 1.14 gwr /* Exact match is better than wildcard. */
220 1.17 jtk if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel)
221 1.14 gwr return 2;
222 1.14 gwr
223 1.14 gwr /* This driver accepts wildcard. */
224 1.17 jtk if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT)
225 1.14 gwr return 1;
226 1.14 gwr
227 1.14 gwr return 0;
228 1.14 gwr }
229 1.14 gwr #else /* __BROKEN_INDIRECT_CONFIG */
230 1.1 gwr int
231 1.14 gwr zstty_match(parent, cf, aux)
232 1.1 gwr struct device *parent;
233 1.14 gwr struct cfdata *cf;
234 1.14 gwr void *aux;
235 1.1 gwr {
236 1.1 gwr struct zsc_attach_args *args = aux;
237 1.1 gwr
238 1.1 gwr /* Exact match is better than wildcard. */
239 1.17 jtk if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel)
240 1.1 gwr return 2;
241 1.1 gwr
242 1.1 gwr /* This driver accepts wildcard. */
243 1.17 jtk if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT)
244 1.1 gwr return 1;
245 1.1 gwr
246 1.1 gwr return 0;
247 1.1 gwr }
248 1.14 gwr #endif /* __BROKEN_INDIRECT_CONFIG */
249 1.1 gwr
250 1.1 gwr void
251 1.1 gwr zstty_attach(parent, self, aux)
252 1.1 gwr struct device *parent, *self;
253 1.1 gwr void *aux;
254 1.1 gwr
255 1.1 gwr {
256 1.1 gwr struct zsc_softc *zsc = (void *) parent;
257 1.1 gwr struct zstty_softc *zst = (void *) self;
258 1.14 gwr struct cfdata *cf = self->dv_cfdata;
259 1.1 gwr struct zsc_attach_args *args = aux;
260 1.1 gwr struct zs_chanstate *cs;
261 1.1 gwr struct tty *tp;
262 1.1 gwr int channel, tty_unit;
263 1.1 gwr dev_t dev;
264 1.1 gwr
265 1.3 gwr tty_unit = zst->zst_dev.dv_unit;
266 1.1 gwr channel = args->channel;
267 1.14 gwr cs = zsc->zsc_cs[channel];
268 1.1 gwr cs->cs_private = zst;
269 1.1 gwr cs->cs_ops = &zsops_tty;
270 1.1 gwr
271 1.1 gwr zst->zst_cs = cs;
272 1.1 gwr zst->zst_swflags = cf->cf_flags; /* softcar, etc. */
273 1.1 gwr zst->zst_hwflags = args->hwflags;
274 1.14 gwr dev = makedev(zs_major, tty_unit);
275 1.1 gwr
276 1.1 gwr if (zst->zst_swflags)
277 1.12 christos printf(" flags 0x%x", zst->zst_swflags);
278 1.1 gwr
279 1.1 gwr if (zst->zst_hwflags & ZS_HWFLAG_CONSOLE)
280 1.12 christos printf(" (console)");
281 1.1 gwr else {
282 1.1 gwr #ifdef KGDB
283 1.1 gwr /*
284 1.15 gwr * Allow kgdb to "take over" this port. Returns true
285 1.15 gwr * if this serial port is in-use by kgdb.
286 1.1 gwr */
287 1.1 gwr if (zs_check_kgdb(cs, dev)) {
288 1.15 gwr printf(" (kgdb)\n");
289 1.1 gwr /*
290 1.1 gwr * This is the kgdb port (exclusive use)
291 1.1 gwr * so skip the normal attach code.
292 1.1 gwr */
293 1.1 gwr return;
294 1.1 gwr }
295 1.1 gwr #endif
296 1.1 gwr }
297 1.12 christos printf("\n");
298 1.1 gwr
299 1.6 gwr tp = ttymalloc();
300 1.1 gwr tp->t_dev = dev;
301 1.1 gwr tp->t_oproc = zsstart;
302 1.1 gwr tp->t_param = zsparam;
303 1.8 gwr tp->t_hwiflow = zshwiflow;
304 1.9 gwr tty_attach(tp);
305 1.1 gwr
306 1.6 gwr zst->zst_tty = tp;
307 1.8 gwr zst->zst_rbhiwat = zstty_rbuf_size; /* impossible value */
308 1.6 gwr zst->zst_ringmask = zstty_rbuf_size - 1;
309 1.6 gwr zst->zst_rbuf = malloc(zstty_rbuf_size * sizeof(zst->zst_rbuf[0]),
310 1.6 gwr M_DEVBUF, M_WAITOK);
311 1.6 gwr
312 1.14 gwr /* XXX - Do we need an MD hook here? */
313 1.14 gwr
314 1.1 gwr /*
315 1.1 gwr * Hardware init
316 1.1 gwr */
317 1.1 gwr if (zst->zst_hwflags & ZS_HWFLAG_CONSOLE) {
318 1.14 gwr /* Call zsparam similar to open. */
319 1.14 gwr struct termios t;
320 1.14 gwr
321 1.14 gwr /* Make console output work while closed. */
322 1.1 gwr zst->zst_swflags |= TIOCFLAG_SOFTCAR;
323 1.14 gwr /* Setup the "new" parameters in t. */
324 1.14 gwr bzero((void*)&t, sizeof(t));
325 1.14 gwr t.c_cflag = cs->cs_defcflag;
326 1.14 gwr t.c_ospeed = cs->cs_defspeed;
327 1.14 gwr /* Enable interrupts. */
328 1.14 gwr cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_SIE;
329 1.14 gwr /* Make sure zsparam will see changes. */
330 1.14 gwr tp->t_ospeed = 0;
331 1.16 mrg (void)zsparam(tp, &t);
332 1.1 gwr } else {
333 1.1 gwr /* Not the console; may need reset. */
334 1.1 gwr int reset, s;
335 1.1 gwr reset = (channel == 0) ?
336 1.1 gwr ZSWR9_A_RESET : ZSWR9_B_RESET;
337 1.1 gwr s = splzs();
338 1.2 gwr zs_write_reg(cs, 9, reset);
339 1.1 gwr splx(s);
340 1.1 gwr }
341 1.1 gwr
342 1.1 gwr /*
343 1.1 gwr * Initialize state of modem control lines (DTR).
344 1.1 gwr * If softcar is set, turn on DTR now and leave it.
345 1.1 gwr * otherwise, turn off DTR now, and raise in open.
346 1.1 gwr * (Keeps modem from answering too early.)
347 1.1 gwr */
348 1.1 gwr zs_modem(zst, (zst->zst_swflags & TIOCFLAG_SOFTCAR) ? 1 : 0);
349 1.1 gwr }
350 1.1 gwr
351 1.1 gwr
352 1.1 gwr /*
353 1.1 gwr * Return pointer to our tty.
354 1.1 gwr */
355 1.1 gwr struct tty *
356 1.1 gwr zstty(dev)
357 1.1 gwr dev_t dev;
358 1.1 gwr {
359 1.1 gwr struct zstty_softc *zst;
360 1.1 gwr int unit = minor(dev);
361 1.1 gwr
362 1.1 gwr #ifdef DIAGNOSTIC
363 1.4 thorpej if (unit >= zstty_cd.cd_ndevs)
364 1.1 gwr panic("zstty");
365 1.1 gwr #endif
366 1.4 thorpej zst = zstty_cd.cd_devs[unit];
367 1.1 gwr return (zst->zst_tty);
368 1.1 gwr }
369 1.1 gwr
370 1.1 gwr
371 1.1 gwr /*
372 1.1 gwr * Open a zs serial (tty) port.
373 1.1 gwr */
374 1.1 gwr int
375 1.1 gwr zsopen(dev, flags, mode, p)
376 1.1 gwr dev_t dev;
377 1.1 gwr int flags;
378 1.1 gwr int mode;
379 1.1 gwr struct proc *p;
380 1.1 gwr {
381 1.1 gwr register struct tty *tp;
382 1.1 gwr register struct zs_chanstate *cs;
383 1.1 gwr struct zstty_softc *zst;
384 1.26 mycroft int error, s, s2, unit;
385 1.1 gwr
386 1.1 gwr unit = minor(dev);
387 1.4 thorpej if (unit >= zstty_cd.cd_ndevs)
388 1.1 gwr return (ENXIO);
389 1.4 thorpej zst = zstty_cd.cd_devs[unit];
390 1.1 gwr if (zst == NULL)
391 1.1 gwr return (ENXIO);
392 1.1 gwr tp = zst->zst_tty;
393 1.1 gwr cs = zst->zst_cs;
394 1.1 gwr
395 1.1 gwr /* If KGDB took the line, then tp==NULL */
396 1.1 gwr if (tp == NULL)
397 1.1 gwr return (EBUSY);
398 1.1 gwr
399 1.20 mycroft if ((tp->t_state & TS_ISOPEN) != 0 &&
400 1.20 mycroft (tp->t_state & TS_XCLUDE) != 0 &&
401 1.20 mycroft p->p_ucred->cr_uid != 0)
402 1.1 gwr return (EBUSY);
403 1.1 gwr
404 1.1 gwr s = spltty();
405 1.1 gwr
406 1.1 gwr if ((tp->t_state & TS_ISOPEN) == 0) {
407 1.1 gwr /* First open. */
408 1.14 gwr struct termios t;
409 1.14 gwr
410 1.26 mycroft s2 = splzs();
411 1.26 mycroft
412 1.20 mycroft /* Turn on interrupts. */
413 1.27 mycroft cs->cs_creg[1] = cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_SIE;
414 1.27 mycroft zs_write_reg(cs, 1, cs->cs_creg[1]);
415 1.20 mycroft
416 1.20 mycroft /* Fetch the current modem control status, needed later. */
417 1.20 mycroft cs->cs_rr0 = zs_read_csr(cs);
418 1.20 mycroft
419 1.26 mycroft splx(s2);
420 1.26 mycroft
421 1.14 gwr /*
422 1.14 gwr * Setup the "new" parameters in t.
423 1.14 gwr * Can not use tp->t because zsparam
424 1.14 gwr * deals only with what has changed.
425 1.14 gwr */
426 1.20 mycroft t.c_ispeed = 0;
427 1.20 mycroft t.c_ospeed = cs->cs_defspeed;
428 1.20 mycroft t.c_cflag = cs->cs_defcflag;
429 1.1 gwr if (zst->zst_swflags & TIOCFLAG_CLOCAL)
430 1.14 gwr t.c_cflag |= CLOCAL;
431 1.1 gwr if (zst->zst_swflags & TIOCFLAG_CRTSCTS)
432 1.14 gwr t.c_cflag |= CRTSCTS;
433 1.1 gwr if (zst->zst_swflags & TIOCFLAG_MDMBUF)
434 1.14 gwr t.c_cflag |= MDMBUF;
435 1.14 gwr /* Make sure zsparam will see changes. */
436 1.14 gwr tp->t_ospeed = 0;
437 1.14 gwr (void) zsparam(tp, &t);
438 1.14 gwr /*
439 1.14 gwr * Note: zsparam has done: cflag, ispeed, ospeed
440 1.14 gwr * so we just need to do: iflag, oflag, lflag, cc
441 1.14 gwr * For "raw" mode, just leave all zeros.
442 1.14 gwr */
443 1.14 gwr if ((zst->zst_hwflags & ZS_HWFLAG_RAW) == 0) {
444 1.14 gwr tp->t_iflag = TTYDEF_IFLAG;
445 1.14 gwr tp->t_oflag = TTYDEF_OFLAG;
446 1.14 gwr tp->t_lflag = TTYDEF_LFLAG;
447 1.14 gwr }
448 1.19 gwr ttychars(tp);
449 1.1 gwr ttsetwater(tp);
450 1.20 mycroft
451 1.20 mycroft /*
452 1.20 mycroft * Turn on DTR. We must always do this, even if carrier is not
453 1.20 mycroft * present, because otherwise we'd have to use TIOCSDTR
454 1.28 mycroft * immediately after setting CLOCAL, which applications do not
455 1.28 mycroft * expect. We always assert DTR while the device is open
456 1.28 mycroft * unless explicitly requested to deassert it.
457 1.20 mycroft */
458 1.20 mycroft zs_modem(zst, 1);
459 1.20 mycroft
460 1.31 mycroft s2 = splzs();
461 1.31 mycroft
462 1.20 mycroft /* Clear the input ring, and unblock. */
463 1.1 gwr zst->zst_rbget = zst->zst_rbput;
464 1.20 mycroft zs_iflush(cs);
465 1.24 mycroft zst->zst_rx_blocked = 0;
466 1.24 mycroft zs_hwiflow(zst);
467 1.26 mycroft
468 1.26 mycroft splx(s2);
469 1.1 gwr }
470 1.1 gwr error = 0;
471 1.14 gwr
472 1.20 mycroft /* If we're doing a blocking open... */
473 1.20 mycroft if ((flags & O_NONBLOCK) == 0)
474 1.20 mycroft /* ...then wait for carrier. */
475 1.20 mycroft while ((tp->t_state & TS_CARR_ON) == 0 &&
476 1.20 mycroft (tp->t_cflag & (CLOCAL | MDMBUF)) == 0) {
477 1.20 mycroft error = ttysleep(tp, &tp->t_rawq, TTIPRI | PCATCH,
478 1.20 mycroft ttopen, 0);
479 1.20 mycroft if (error) {
480 1.20 mycroft /*
481 1.20 mycroft * If the open was interrupted and nobody
482 1.20 mycroft * else has the device open, then hang up.
483 1.20 mycroft */
484 1.20 mycroft if ((tp->t_state & TS_ISOPEN) == 0) {
485 1.20 mycroft zs_modem(zst, 0);
486 1.20 mycroft tp->t_state &= ~TS_WOPEN;
487 1.20 mycroft ttwakeup(tp);
488 1.20 mycroft }
489 1.20 mycroft break;
490 1.1 gwr }
491 1.20 mycroft tp->t_state |= TS_WOPEN;
492 1.1 gwr }
493 1.1 gwr
494 1.1 gwr splx(s);
495 1.1 gwr if (error == 0)
496 1.20 mycroft error = (*linesw[tp->t_line].l_open)(dev, tp);
497 1.1 gwr return (error);
498 1.1 gwr }
499 1.1 gwr
500 1.1 gwr /*
501 1.1 gwr * Close a zs serial port.
502 1.1 gwr */
503 1.1 gwr int
504 1.1 gwr zsclose(dev, flags, mode, p)
505 1.1 gwr dev_t dev;
506 1.1 gwr int flags;
507 1.1 gwr int mode;
508 1.1 gwr struct proc *p;
509 1.1 gwr {
510 1.1 gwr struct zstty_softc *zst;
511 1.1 gwr register struct zs_chanstate *cs;
512 1.1 gwr register struct tty *tp;
513 1.20 mycroft int s;
514 1.1 gwr
515 1.4 thorpej zst = zstty_cd.cd_devs[minor(dev)];
516 1.1 gwr cs = zst->zst_cs;
517 1.1 gwr tp = zst->zst_tty;
518 1.1 gwr
519 1.1 gwr /* XXX This is for cons.c. */
520 1.1 gwr if ((tp->t_state & TS_ISOPEN) == 0)
521 1.1 gwr return 0;
522 1.1 gwr
523 1.1 gwr (*linesw[tp->t_line].l_close)(tp, flags);
524 1.20 mycroft ttyclose(tp);
525 1.20 mycroft
526 1.27 mycroft s = splzs();
527 1.27 mycroft
528 1.20 mycroft /* If we were asserting flow control, then deassert it. */
529 1.24 mycroft zst->zst_rx_blocked = 1;
530 1.24 mycroft zs_hwiflow(zst);
531 1.31 mycroft
532 1.31 mycroft splx(s);
533 1.31 mycroft
534 1.20 mycroft /* Clear any break condition set with TIOCSBRK. */
535 1.20 mycroft zs_break(cs, 0);
536 1.27 mycroft
537 1.20 mycroft /*
538 1.20 mycroft * Hang up if necessary. Wait a bit, so the other side has time to
539 1.20 mycroft * notice even if we immediately open the port again.
540 1.20 mycroft */
541 1.20 mycroft if ((tp->t_cflag & HUPCL) != 0) {
542 1.20 mycroft zs_modem(zst, 0);
543 1.20 mycroft (void) tsleep(cs, TTIPRI, ttclos, hz);
544 1.20 mycroft }
545 1.14 gwr
546 1.14 gwr s = splzs();
547 1.27 mycroft
548 1.20 mycroft /* Turn off interrupts. */
549 1.14 gwr cs->cs_creg[1] = cs->cs_preg[1] = 0;
550 1.14 gwr zs_write_reg(cs, 1, cs->cs_creg[1]);
551 1.27 mycroft
552 1.14 gwr splx(s);
553 1.14 gwr
554 1.1 gwr return (0);
555 1.1 gwr }
556 1.1 gwr
557 1.1 gwr /*
558 1.1 gwr * Read/write zs serial port.
559 1.1 gwr */
560 1.1 gwr int
561 1.1 gwr zsread(dev, uio, flags)
562 1.1 gwr dev_t dev;
563 1.1 gwr struct uio *uio;
564 1.1 gwr int flags;
565 1.1 gwr {
566 1.1 gwr register struct zstty_softc *zst;
567 1.1 gwr register struct tty *tp;
568 1.1 gwr
569 1.4 thorpej zst = zstty_cd.cd_devs[minor(dev)];
570 1.1 gwr tp = zst->zst_tty;
571 1.1 gwr return (linesw[tp->t_line].l_read(tp, uio, flags));
572 1.1 gwr }
573 1.1 gwr
574 1.1 gwr int
575 1.1 gwr zswrite(dev, uio, flags)
576 1.1 gwr dev_t dev;
577 1.1 gwr struct uio *uio;
578 1.1 gwr int flags;
579 1.1 gwr {
580 1.1 gwr register struct zstty_softc *zst;
581 1.1 gwr register struct tty *tp;
582 1.1 gwr
583 1.4 thorpej zst = zstty_cd.cd_devs[minor(dev)];
584 1.1 gwr tp = zst->zst_tty;
585 1.1 gwr return (linesw[tp->t_line].l_write(tp, uio, flags));
586 1.1 gwr }
587 1.1 gwr
588 1.1 gwr int
589 1.1 gwr zsioctl(dev, cmd, data, flag, p)
590 1.1 gwr dev_t dev;
591 1.1 gwr u_long cmd;
592 1.1 gwr caddr_t data;
593 1.1 gwr int flag;
594 1.1 gwr struct proc *p;
595 1.1 gwr {
596 1.1 gwr register struct zstty_softc *zst;
597 1.1 gwr register struct zs_chanstate *cs;
598 1.1 gwr register struct tty *tp;
599 1.22 mycroft register struct linesw *line;
600 1.20 mycroft register int error;
601 1.1 gwr
602 1.4 thorpej zst = zstty_cd.cd_devs[minor(dev)];
603 1.1 gwr cs = zst->zst_cs;
604 1.1 gwr tp = zst->zst_tty;
605 1.22 mycroft line = &linesw[tp->t_line];
606 1.1 gwr
607 1.22 mycroft error = (*line->l_ioctl)(tp, cmd, data, flag, p);
608 1.1 gwr if (error >= 0)
609 1.1 gwr return (error);
610 1.14 gwr
611 1.1 gwr error = ttioctl(tp, cmd, data, flag, p);
612 1.1 gwr if (error >= 0)
613 1.1 gwr return (error);
614 1.1 gwr
615 1.14 gwr #ifdef ZS_MD_IOCTL
616 1.14 gwr error = ZS_MD_IOCTL;
617 1.14 gwr if (error >= 0)
618 1.14 gwr return (error);
619 1.14 gwr #endif /* ZS_MD_IOCTL */
620 1.14 gwr
621 1.1 gwr switch (cmd) {
622 1.1 gwr case TIOCSBRK:
623 1.1 gwr zs_break(cs, 1);
624 1.1 gwr break;
625 1.1 gwr
626 1.1 gwr case TIOCCBRK:
627 1.1 gwr zs_break(cs, 0);
628 1.1 gwr break;
629 1.1 gwr
630 1.1 gwr case TIOCGFLAGS:
631 1.1 gwr *(int *)data = zst->zst_swflags;
632 1.1 gwr break;
633 1.1 gwr
634 1.1 gwr case TIOCSFLAGS:
635 1.1 gwr error = suser(p->p_ucred, &p->p_acflag);
636 1.20 mycroft if (error)
637 1.20 mycroft return (error);
638 1.20 mycroft zst->zst_swflags = *(int *)data;
639 1.1 gwr break;
640 1.1 gwr
641 1.1 gwr case TIOCSDTR:
642 1.1 gwr zs_modem(zst, 1);
643 1.1 gwr break;
644 1.1 gwr
645 1.1 gwr case TIOCCDTR:
646 1.1 gwr zs_modem(zst, 0);
647 1.1 gwr break;
648 1.1 gwr
649 1.1 gwr case TIOCMSET:
650 1.1 gwr case TIOCMBIS:
651 1.1 gwr case TIOCMBIC:
652 1.1 gwr case TIOCMGET:
653 1.1 gwr default:
654 1.1 gwr return (ENOTTY);
655 1.1 gwr }
656 1.1 gwr return (0);
657 1.1 gwr }
658 1.1 gwr
659 1.1 gwr /*
660 1.1 gwr * Start or restart transmission.
661 1.1 gwr */
662 1.1 gwr static void
663 1.1 gwr zsstart(tp)
664 1.1 gwr register struct tty *tp;
665 1.1 gwr {
666 1.1 gwr register struct zstty_softc *zst;
667 1.1 gwr register struct zs_chanstate *cs;
668 1.20 mycroft register int s;
669 1.1 gwr
670 1.4 thorpej zst = zstty_cd.cd_devs[minor(tp->t_dev)];
671 1.1 gwr cs = zst->zst_cs;
672 1.1 gwr
673 1.1 gwr s = spltty();
674 1.20 mycroft if ((tp->t_state & TS_BUSY) != 0)
675 1.1 gwr goto out;
676 1.20 mycroft if ((tp->t_state & (TS_TIMEOUT | TS_TTSTOP)) != 0)
677 1.20 mycroft goto stopped;
678 1.1 gwr
679 1.14 gwr if (zst->zst_tx_stopped)
680 1.20 mycroft goto stopped;
681 1.8 gwr
682 1.1 gwr if (tp->t_outq.c_cc <= tp->t_lowat) {
683 1.20 mycroft if ((tp->t_state & TS_ASLEEP) != 0) {
684 1.1 gwr tp->t_state &= ~TS_ASLEEP;
685 1.1 gwr wakeup((caddr_t)&tp->t_outq);
686 1.1 gwr }
687 1.1 gwr selwakeup(&tp->t_wsel);
688 1.20 mycroft if (tp->t_outq.c_cc == 0)
689 1.20 mycroft goto stopped;
690 1.1 gwr }
691 1.1 gwr
692 1.20 mycroft /* Grab the first contiguous region of buffer space. */
693 1.20 mycroft {
694 1.20 mycroft u_char *tba;
695 1.20 mycroft int tbc;
696 1.20 mycroft
697 1.20 mycroft tba = tp->t_outq.c_cf;
698 1.20 mycroft tbc = ndqb(&tp->t_outq, 0);
699 1.20 mycroft
700 1.20 mycroft (void) splzs();
701 1.20 mycroft
702 1.20 mycroft zst->zst_tba = tba;
703 1.20 mycroft zst->zst_tbc = tbc;
704 1.20 mycroft }
705 1.8 gwr
706 1.20 mycroft tp->t_state |= TS_BUSY;
707 1.20 mycroft zst->zst_tx_busy = 1;
708 1.1 gwr
709 1.20 mycroft /* Enable transmit completion interrupts if necessary. */
710 1.20 mycroft if ((cs->cs_preg[1] & ZSWR1_TIE) == 0) {
711 1.1 gwr cs->cs_preg[1] |= ZSWR1_TIE;
712 1.8 gwr cs->cs_creg[1] = cs->cs_preg[1];
713 1.2 gwr zs_write_reg(cs, 1, cs->cs_creg[1]);
714 1.20 mycroft }
715 1.20 mycroft
716 1.20 mycroft /* Output the first character of the contiguous buffer. */
717 1.20 mycroft zs_write_data(cs, *zst->zst_tba);
718 1.20 mycroft zst->zst_tbc--;
719 1.20 mycroft zst->zst_tba++;
720 1.20 mycroft splx(s);
721 1.20 mycroft return;
722 1.20 mycroft
723 1.20 mycroft stopped:
724 1.20 mycroft /* Disable transmit completion interrupts if necessary. */
725 1.20 mycroft if ((cs->cs_preg[1] & ZSWR1_TIE) != 0) {
726 1.1 gwr cs->cs_preg[1] &= ~ZSWR1_TIE;
727 1.8 gwr cs->cs_creg[1] = cs->cs_preg[1];
728 1.2 gwr zs_write_reg(cs, 1, cs->cs_creg[1]);
729 1.1 gwr }
730 1.1 gwr out:
731 1.1 gwr splx(s);
732 1.20 mycroft return;
733 1.1 gwr }
734 1.1 gwr
735 1.1 gwr /*
736 1.1 gwr * Stop output, e.g., for ^S or output flush.
737 1.1 gwr */
738 1.10 mycroft void
739 1.1 gwr zsstop(tp, flag)
740 1.1 gwr struct tty *tp;
741 1.1 gwr int flag;
742 1.1 gwr {
743 1.1 gwr register struct zstty_softc *zst;
744 1.1 gwr register struct zs_chanstate *cs;
745 1.1 gwr register int s;
746 1.1 gwr
747 1.4 thorpej zst = zstty_cd.cd_devs[minor(tp->t_dev)];
748 1.1 gwr cs = zst->zst_cs;
749 1.1 gwr
750 1.1 gwr s = splzs();
751 1.1 gwr if (tp->t_state & TS_BUSY) {
752 1.1 gwr /*
753 1.1 gwr * Device is transmitting; must stop it.
754 1.8 gwr * Also clear _heldtbc to prevent any
755 1.8 gwr * flow-control event from resuming.
756 1.1 gwr */
757 1.1 gwr zst->zst_tbc = 0;
758 1.8 gwr zst->zst_heldtbc = 0;
759 1.1 gwr if ((tp->t_state & TS_TTSTOP) == 0)
760 1.1 gwr tp->t_state |= TS_FLUSH;
761 1.1 gwr }
762 1.1 gwr splx(s);
763 1.1 gwr }
764 1.1 gwr
765 1.1 gwr /*
766 1.1 gwr * Set ZS tty parameters from termios.
767 1.1 gwr * XXX - Should just copy the whole termios after
768 1.1 gwr * making sure all the changes could be done.
769 1.1 gwr */
770 1.1 gwr static int
771 1.1 gwr zsparam(tp, t)
772 1.1 gwr register struct tty *tp;
773 1.1 gwr register struct termios *t;
774 1.1 gwr {
775 1.14 gwr struct zstty_softc *zst;
776 1.14 gwr struct zs_chanstate *cs;
777 1.22 mycroft register struct linesw *line;
778 1.14 gwr int s, bps, cflag, error;
779 1.14 gwr u_char tmp3, tmp4, tmp5;
780 1.1 gwr
781 1.4 thorpej zst = zstty_cd.cd_devs[minor(tp->t_dev)];
782 1.1 gwr cs = zst->zst_cs;
783 1.22 mycroft line = &linesw[tp->t_line];
784 1.14 gwr bps = t->c_ospeed;
785 1.14 gwr cflag = t->c_cflag;
786 1.1 gwr
787 1.1 gwr if (bps < 0 || (t->c_ispeed && t->c_ispeed != bps))
788 1.1 gwr return (EINVAL);
789 1.14 gwr
790 1.14 gwr /*
791 1.20 mycroft * For the console, always force CLOCAL and !HUPCL, so that the port
792 1.20 mycroft * is always active.
793 1.20 mycroft */
794 1.20 mycroft if ((zst->zst_swflags & TIOCFLAG_SOFTCAR) != 0 ||
795 1.20 mycroft (zst->zst_hwflags & (ZS_HWFLAG_NO_DCD | ZS_HWFLAG_CONSOLE)) != 0) {
796 1.20 mycroft t->c_cflag |= CLOCAL;
797 1.20 mycroft t->c_cflag &= ~HUPCL;
798 1.20 mycroft }
799 1.20 mycroft
800 1.20 mycroft /*
801 1.14 gwr * Only whack the UART when params change.
802 1.14 gwr * Some callers need to clear tp->t_ospeed
803 1.14 gwr * to make sure initialization gets done.
804 1.14 gwr */
805 1.20 mycroft if (tp->t_ospeed == bps &&
806 1.20 mycroft tp->t_cflag == cflag)
807 1.1 gwr return (0);
808 1.1 gwr
809 1.14 gwr /*
810 1.14 gwr * Call MD functions to deal with changed
811 1.14 gwr * clock modes or H/W flow control modes.
812 1.14 gwr * The BRG divisor is set now. (reg 12,13)
813 1.14 gwr */
814 1.14 gwr error = zs_set_speed(cs, bps);
815 1.14 gwr if (error)
816 1.14 gwr return (error);
817 1.14 gwr error = zs_set_modes(cs, cflag);
818 1.14 gwr if (error)
819 1.14 gwr return (error);
820 1.1 gwr
821 1.14 gwr /* OK, we are now committed to do it. */
822 1.1 gwr tp->t_cflag = cflag;
823 1.14 gwr tp->t_ospeed = bps;
824 1.14 gwr tp->t_ispeed = bps;
825 1.1 gwr
826 1.1 gwr /*
827 1.1 gwr * Block interrupts so that state will not
828 1.1 gwr * be altered until we are done setting it up.
829 1.14 gwr *
830 1.1 gwr * Initial values in cs_preg are set before
831 1.1 gwr * our attach routine is called. The master
832 1.1 gwr * interrupt enable is handled by zsc.c
833 1.14 gwr *
834 1.1 gwr */
835 1.14 gwr s = splzs();
836 1.29 mycroft
837 1.29 mycroft cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
838 1.29 mycroft if ((cs->cs_rr0_mask & ZSRR0_DCD) != 0)
839 1.29 mycroft cs->cs_preg[15] |= ZSWR15_DCD_IE;
840 1.29 mycroft else
841 1.29 mycroft cs->cs_preg[15] &= ~ZSWR15_DCD_IE;
842 1.29 mycroft if ((cs->cs_rr0_mask & ZSRR0_CTS) != 0)
843 1.29 mycroft cs->cs_preg[15] |= ZSWR15_CTS_IE;
844 1.29 mycroft else
845 1.29 mycroft cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
846 1.1 gwr
847 1.14 gwr /* Recompute character size bits. */
848 1.14 gwr tmp3 = cs->cs_preg[3] & ~ZSWR3_RXSIZE;
849 1.14 gwr tmp5 = cs->cs_preg[5] & ~ZSWR5_TXSIZE;
850 1.1 gwr switch (cflag & CSIZE) {
851 1.1 gwr case CS5:
852 1.14 gwr /* These are |= 0 but let the optimizer deal with it. */
853 1.14 gwr tmp3 |= ZSWR3_RX_5;
854 1.14 gwr tmp5 |= ZSWR5_TX_5;
855 1.1 gwr break;
856 1.1 gwr case CS6:
857 1.14 gwr tmp3 |= ZSWR3_RX_6;
858 1.14 gwr tmp5 |= ZSWR5_TX_6;
859 1.1 gwr break;
860 1.1 gwr case CS7:
861 1.14 gwr tmp3 |= ZSWR3_RX_7;
862 1.14 gwr tmp5 |= ZSWR5_TX_7;
863 1.1 gwr break;
864 1.1 gwr case CS8:
865 1.1 gwr default:
866 1.14 gwr tmp3 |= ZSWR3_RX_8;
867 1.14 gwr tmp5 |= ZSWR5_TX_8;
868 1.1 gwr break;
869 1.1 gwr }
870 1.20 mycroft
871 1.20 mycroft #if 0
872 1.14 gwr /* Raise or lower DTR and RTS as appropriate. */
873 1.14 gwr if (bps) {
874 1.14 gwr /* Raise DTR and RTS */
875 1.14 gwr tmp5 |= cs->cs_wr5_dtr;
876 1.14 gwr } else {
877 1.14 gwr /* Drop DTR and RTS */
878 1.14 gwr /* XXX: Should SOFTCAR prevent this? */
879 1.22 mycroft tmp5 &= ~cs->cs_wr5_dtr;
880 1.14 gwr }
881 1.20 mycroft #endif
882 1.20 mycroft
883 1.14 gwr cs->cs_preg[3] = tmp3;
884 1.14 gwr cs->cs_preg[5] = tmp5;
885 1.14 gwr
886 1.14 gwr /*
887 1.14 gwr * Recompute the stop bits and parity bits. Note that
888 1.14 gwr * zs_set_speed() may have set clock selection bits etc.
889 1.14 gwr * in wr4, so those must preserved.
890 1.14 gwr */
891 1.14 gwr tmp4 = cs->cs_preg[4];
892 1.14 gwr /* Recompute stop bits. */
893 1.14 gwr tmp4 &= ~ZSWR4_SBMASK;
894 1.14 gwr tmp4 |= (cflag & CSTOPB) ?
895 1.14 gwr ZSWR4_TWOSB : ZSWR4_ONESB;
896 1.14 gwr /* Recompute parity bits. */
897 1.14 gwr tmp4 &= ~ZSWR4_PARMASK;
898 1.1 gwr if ((cflag & PARODD) == 0)
899 1.1 gwr tmp4 |= ZSWR4_EVENP;
900 1.1 gwr if (cflag & PARENB)
901 1.1 gwr tmp4 |= ZSWR4_PARENB;
902 1.1 gwr cs->cs_preg[4] = tmp4;
903 1.1 gwr
904 1.14 gwr /* The MD function zs_set_modes handled CRTSCTS, etc. */
905 1.8 gwr
906 1.8 gwr /*
907 1.1 gwr * If nothing is being transmitted, set up new current values,
908 1.1 gwr * else mark them as pending.
909 1.1 gwr */
910 1.25 mycroft if (!cs->cs_heldchange) {
911 1.8 gwr if (zst->zst_tx_busy) {
912 1.1 gwr zst->zst_heldtbc = zst->zst_tbc;
913 1.1 gwr zst->zst_tbc = 0;
914 1.25 mycroft cs->cs_heldchange = 1;
915 1.25 mycroft } else
916 1.1 gwr zs_loadchannelregs(cs);
917 1.1 gwr }
918 1.20 mycroft
919 1.1 gwr splx(s);
920 1.15 gwr
921 1.20 mycroft /*
922 1.20 mycroft * Update the tty layer's idea of the carrier bit, in case we changed
923 1.20 mycroft * CLOCAL or MDMBUF. We don't hang up here; we only do that if we
924 1.20 mycroft * lose carrier while carrier detection is on.
925 1.20 mycroft */
926 1.22 mycroft (void) (*line->l_modem)(tp, (cs->cs_rr0 & cs->cs_rr0_dcd) != 0);
927 1.14 gwr
928 1.14 gwr /* If we can throttle input, enable "high water" detection. */
929 1.14 gwr if (cflag & CHWFLOW) {
930 1.14 gwr zst->zst_rbhiwat = zstty_rbuf_hiwat;
931 1.14 gwr } else {
932 1.14 gwr /* This impossible value prevents a "high water" trigger. */
933 1.14 gwr zst->zst_rbhiwat = zstty_rbuf_size;
934 1.30 mycroft if (zst->zst_rx_blocked) {
935 1.30 mycroft zst->zst_rx_blocked = 0;
936 1.30 mycroft zs_hwiflow(zst);
937 1.30 mycroft }
938 1.14 gwr if (zst->zst_tx_stopped) {
939 1.14 gwr zst->zst_tx_stopped = 0;
940 1.14 gwr zsstart(tp);
941 1.14 gwr }
942 1.14 gwr }
943 1.14 gwr
944 1.1 gwr return (0);
945 1.1 gwr }
946 1.1 gwr
947 1.1 gwr /*
948 1.1 gwr * Raise or lower modem control (DTR/RTS) signals. If a character is
949 1.1 gwr * in transmission, the change is deferred.
950 1.1 gwr */
951 1.1 gwr static void
952 1.1 gwr zs_modem(zst, onoff)
953 1.1 gwr struct zstty_softc *zst;
954 1.1 gwr int onoff;
955 1.1 gwr {
956 1.1 gwr struct zs_chanstate *cs;
957 1.24 mycroft int s;
958 1.1 gwr
959 1.1 gwr cs = zst->zst_cs;
960 1.14 gwr if (cs->cs_wr5_dtr == 0)
961 1.14 gwr return;
962 1.1 gwr
963 1.24 mycroft s = splzs();
964 1.24 mycroft if (onoff)
965 1.24 mycroft cs->cs_preg[5] |= cs->cs_wr5_dtr;
966 1.24 mycroft else
967 1.24 mycroft cs->cs_preg[5] &= ~cs->cs_wr5_dtr;
968 1.14 gwr
969 1.25 mycroft if (!cs->cs_heldchange) {
970 1.8 gwr if (zst->zst_tx_busy) {
971 1.1 gwr zst->zst_heldtbc = zst->zst_tbc;
972 1.1 gwr zst->zst_tbc = 0;
973 1.25 mycroft cs->cs_heldchange = 1;
974 1.25 mycroft } else
975 1.25 mycroft zs_loadchannelregs(cs);
976 1.1 gwr }
977 1.1 gwr splx(s);
978 1.1 gwr }
979 1.1 gwr
980 1.8 gwr /*
981 1.8 gwr * Try to block or unblock input using hardware flow-control.
982 1.8 gwr * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
983 1.8 gwr * if this function returns non-zero, the TS_TBLOCK flag will
984 1.24 mycroft * be set or cleared according to the "block" arg passed.
985 1.8 gwr */
986 1.8 gwr int
987 1.24 mycroft zshwiflow(tp, block)
988 1.8 gwr struct tty *tp;
989 1.24 mycroft int block;
990 1.8 gwr {
991 1.8 gwr register struct zstty_softc *zst;
992 1.14 gwr register struct zs_chanstate *cs;
993 1.8 gwr int s;
994 1.8 gwr
995 1.8 gwr zst = zstty_cd.cd_devs[minor(tp->t_dev)];
996 1.14 gwr cs = zst->zst_cs;
997 1.14 gwr if (cs->cs_wr5_rts == 0)
998 1.14 gwr return (0);
999 1.8 gwr
1000 1.8 gwr s = splzs();
1001 1.24 mycroft if (block) {
1002 1.24 mycroft if (!zst->zst_rx_blocked) {
1003 1.24 mycroft zst->zst_rx_blocked = 1;
1004 1.24 mycroft zs_hwiflow(zst);
1005 1.24 mycroft }
1006 1.8 gwr } else {
1007 1.24 mycroft if (zst->zst_rx_blocked) {
1008 1.24 mycroft zst->zst_rx_blocked = 0;
1009 1.24 mycroft zs_hwiflow(zst);
1010 1.24 mycroft }
1011 1.8 gwr }
1012 1.8 gwr splx(s);
1013 1.8 gwr return 1;
1014 1.8 gwr }
1015 1.8 gwr
1016 1.8 gwr /*
1017 1.8 gwr * Internal version of zshwiflow
1018 1.8 gwr * called at splzs
1019 1.8 gwr */
1020 1.8 gwr static void
1021 1.24 mycroft zs_hwiflow(zst)
1022 1.8 gwr register struct zstty_softc *zst;
1023 1.8 gwr {
1024 1.8 gwr register struct zs_chanstate *cs;
1025 1.8 gwr
1026 1.8 gwr cs = zst->zst_cs;
1027 1.14 gwr if (cs->cs_wr5_rts == 0)
1028 1.14 gwr return;
1029 1.8 gwr
1030 1.24 mycroft if (zst->zst_rx_blocked) {
1031 1.24 mycroft cs->cs_preg[5] &= ~cs->cs_wr5_rts;
1032 1.24 mycroft cs->cs_creg[5] &= ~cs->cs_wr5_rts;
1033 1.8 gwr } else {
1034 1.24 mycroft cs->cs_preg[5] |= cs->cs_wr5_rts;
1035 1.24 mycroft cs->cs_creg[5] |= cs->cs_wr5_rts;
1036 1.8 gwr }
1037 1.24 mycroft zs_write_reg(cs, 5, cs->cs_creg[5]);
1038 1.8 gwr }
1039 1.8 gwr
1040 1.1 gwr
1041 1.1 gwr /****************************************************************
1042 1.1 gwr * Interface to the lower layer (zscc)
1043 1.1 gwr ****************************************************************/
1044 1.3 gwr
1045 1.14 gwr static void zstty_rxint __P((struct zs_chanstate *));
1046 1.14 gwr static void zstty_txint __P((struct zs_chanstate *));
1047 1.14 gwr static void zstty_stint __P((struct zs_chanstate *));
1048 1.14 gwr static void zstty_softint __P((struct zs_chanstate *));
1049 1.14 gwr
1050 1.14 gwr static void zsoverrun __P((struct zstty_softc *, long *, char *));
1051 1.1 gwr
1052 1.6 gwr /*
1053 1.8 gwr * receiver ready interrupt.
1054 1.8 gwr * called at splzs
1055 1.6 gwr */
1056 1.6 gwr static void
1057 1.1 gwr zstty_rxint(cs)
1058 1.1 gwr register struct zs_chanstate *cs;
1059 1.1 gwr {
1060 1.1 gwr register struct zstty_softc *zst;
1061 1.8 gwr register int cc, put, put_next, ringmask;
1062 1.1 gwr register u_char c, rr0, rr1;
1063 1.8 gwr register u_short ch_rr1;
1064 1.1 gwr
1065 1.1 gwr zst = cs->cs_private;
1066 1.1 gwr put = zst->zst_rbput;
1067 1.6 gwr ringmask = zst->zst_ringmask;
1068 1.1 gwr
1069 1.1 gwr nextchar:
1070 1.1 gwr
1071 1.5 gwr /*
1072 1.5 gwr * First read the status, because reading the received char
1073 1.5 gwr * destroys the status of this char.
1074 1.5 gwr */
1075 1.2 gwr rr1 = zs_read_reg(cs, 1);
1076 1.5 gwr c = zs_read_data(cs);
1077 1.8 gwr ch_rr1 = (c << 8) | rr1;
1078 1.1 gwr
1079 1.8 gwr if (ch_rr1 & (ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
1080 1.1 gwr /* Clear the receive error. */
1081 1.2 gwr zs_write_csr(cs, ZSWR0_RESET_ERRORS);
1082 1.1 gwr }
1083 1.1 gwr
1084 1.8 gwr /* XXX: Check for the stop character? */
1085 1.8 gwr
1086 1.8 gwr zst->zst_rbuf[put] = ch_rr1;
1087 1.6 gwr put_next = (put + 1) & ringmask;
1088 1.1 gwr
1089 1.1 gwr /* Would overrun if increment makes (put==get). */
1090 1.1 gwr if (put_next == zst->zst_rbget) {
1091 1.8 gwr zst->zst_rx_overrun = 1;
1092 1.1 gwr } else {
1093 1.1 gwr /* OK, really increment. */
1094 1.1 gwr put = put_next;
1095 1.1 gwr }
1096 1.1 gwr
1097 1.1 gwr /* Keep reading until the FIFO is empty. */
1098 1.2 gwr rr0 = zs_read_csr(cs);
1099 1.1 gwr if (rr0 & ZSRR0_RX_READY)
1100 1.1 gwr goto nextchar;
1101 1.1 gwr
1102 1.1 gwr /* Done reading. */
1103 1.1 gwr zst->zst_rbput = put;
1104 1.1 gwr
1105 1.8 gwr /*
1106 1.8 gwr * If ring is getting too full, try to block input.
1107 1.8 gwr */
1108 1.8 gwr cc = put - zst->zst_rbget;
1109 1.8 gwr if (cc < 0)
1110 1.8 gwr cc += zstty_rbuf_size;
1111 1.8 gwr if ((cc > zst->zst_rbhiwat) && (zst->zst_rx_blocked == 0)) {
1112 1.8 gwr zst->zst_rx_blocked = 1;
1113 1.24 mycroft zs_hwiflow(zst);
1114 1.8 gwr }
1115 1.8 gwr
1116 1.1 gwr /* Ask for softint() call. */
1117 1.1 gwr cs->cs_softreq = 1;
1118 1.1 gwr }
1119 1.1 gwr
1120 1.6 gwr /*
1121 1.6 gwr * transmitter ready interrupt. (splzs)
1122 1.6 gwr */
1123 1.6 gwr static void
1124 1.1 gwr zstty_txint(cs)
1125 1.1 gwr register struct zs_chanstate *cs;
1126 1.1 gwr {
1127 1.1 gwr register struct zstty_softc *zst;
1128 1.6 gwr register int count;
1129 1.1 gwr
1130 1.1 gwr zst = cs->cs_private;
1131 1.8 gwr
1132 1.8 gwr /*
1133 1.8 gwr * If we suspended output for a "held" change,
1134 1.8 gwr * then handle that now and resume.
1135 1.8 gwr * Do flow-control changes ASAP.
1136 1.8 gwr * When the only change is for flow control,
1137 1.8 gwr * avoid hitting other registers, because that
1138 1.8 gwr * often makes the stupid zs drop input...
1139 1.8 gwr */
1140 1.8 gwr if (cs->cs_heldchange) {
1141 1.25 mycroft zs_loadchannelregs(cs);
1142 1.8 gwr cs->cs_heldchange = 0;
1143 1.8 gwr count = zst->zst_heldtbc;
1144 1.8 gwr } else
1145 1.8 gwr count = zst->zst_tbc;
1146 1.1 gwr
1147 1.6 gwr /*
1148 1.6 gwr * If our transmit buffer still has data,
1149 1.6 gwr * just send the next character.
1150 1.6 gwr */
1151 1.1 gwr if (count > 0) {
1152 1.1 gwr /* Send the next char. */
1153 1.6 gwr zst->zst_tbc = --count;
1154 1.2 gwr zs_write_data(cs, *zst->zst_tba);
1155 1.2 gwr zst->zst_tba++;
1156 1.6 gwr return;
1157 1.1 gwr }
1158 1.1 gwr
1159 1.6 gwr zs_write_csr(cs, ZSWR0_RESET_TXINT);
1160 1.6 gwr
1161 1.6 gwr /* Ask the softint routine for more output. */
1162 1.8 gwr zst->zst_tx_busy = 0;
1163 1.8 gwr zst->zst_tx_done = 1;
1164 1.6 gwr cs->cs_softreq = 1;
1165 1.1 gwr }
1166 1.1 gwr
1167 1.6 gwr /*
1168 1.6 gwr * status change interrupt. (splzs)
1169 1.6 gwr */
1170 1.6 gwr static void
1171 1.1 gwr zstty_stint(cs)
1172 1.1 gwr register struct zs_chanstate *cs;
1173 1.1 gwr {
1174 1.1 gwr register struct zstty_softc *zst;
1175 1.14 gwr register u_char rr0, delta;
1176 1.1 gwr
1177 1.1 gwr zst = cs->cs_private;
1178 1.1 gwr
1179 1.2 gwr rr0 = zs_read_csr(cs);
1180 1.2 gwr zs_write_csr(cs, ZSWR0_RESET_STATUS);
1181 1.1 gwr
1182 1.6 gwr /*
1183 1.6 gwr * Check here for console break, so that we can abort
1184 1.6 gwr * even when interrupts are locking up the machine.
1185 1.6 gwr */
1186 1.6 gwr if ((rr0 & ZSRR0_BREAK) &&
1187 1.1 gwr (zst->zst_hwflags & ZS_HWFLAG_CONSOLE))
1188 1.1 gwr {
1189 1.14 gwr zs_abort(cs);
1190 1.6 gwr return;
1191 1.1 gwr }
1192 1.1 gwr
1193 1.22 mycroft delta = rr0 ^ cs->cs_rr0;
1194 1.14 gwr cs->cs_rr0 = rr0;
1195 1.22 mycroft if ((delta & cs->cs_rr0_mask) != 0) {
1196 1.22 mycroft cs->cs_rr0_delta |= delta;
1197 1.14 gwr
1198 1.22 mycroft /*
1199 1.22 mycroft * Stop output immediately if we lose the output
1200 1.22 mycroft * flow control signal or carrier detect.
1201 1.22 mycroft */
1202 1.22 mycroft if ((~rr0 & cs->cs_rr0_mask) != 0) {
1203 1.22 mycroft zst->zst_tbc = 0;
1204 1.22 mycroft zst->zst_heldtbc = 0;
1205 1.22 mycroft }
1206 1.22 mycroft
1207 1.22 mycroft zst->zst_st_check = 1;
1208 1.8 gwr }
1209 1.6 gwr
1210 1.1 gwr /* Ask for softint() call. */
1211 1.1 gwr cs->cs_softreq = 1;
1212 1.1 gwr }
1213 1.1 gwr
1214 1.1 gwr /*
1215 1.1 gwr * Print out a ring or fifo overrun error message.
1216 1.1 gwr */
1217 1.1 gwr static void
1218 1.1 gwr zsoverrun(zst, ptime, what)
1219 1.1 gwr struct zstty_softc *zst;
1220 1.1 gwr long *ptime;
1221 1.1 gwr char *what;
1222 1.1 gwr {
1223 1.1 gwr
1224 1.1 gwr if (*ptime != time.tv_sec) {
1225 1.1 gwr *ptime = time.tv_sec;
1226 1.1 gwr log(LOG_WARNING, "%s: %s overrun\n",
1227 1.1 gwr zst->zst_dev.dv_xname, what);
1228 1.1 gwr }
1229 1.1 gwr }
1230 1.1 gwr
1231 1.6 gwr /*
1232 1.6 gwr * Software interrupt. Called at zssoft
1233 1.8 gwr *
1234 1.8 gwr * The main job to be done here is to empty the input ring
1235 1.8 gwr * by passing its contents up to the tty layer. The ring is
1236 1.8 gwr * always emptied during this operation, therefore the ring
1237 1.8 gwr * must not be larger than the space after "high water" in
1238 1.8 gwr * the tty layer, or the tty layer might drop our input.
1239 1.8 gwr *
1240 1.8 gwr * Note: an "input blockage" condition is assumed to exist if
1241 1.8 gwr * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
1242 1.6 gwr */
1243 1.6 gwr static void
1244 1.1 gwr zstty_softint(cs)
1245 1.1 gwr struct zs_chanstate *cs;
1246 1.1 gwr {
1247 1.1 gwr register struct zstty_softc *zst;
1248 1.22 mycroft register struct tty *tp;
1249 1.1 gwr register struct linesw *line;
1250 1.18 scottr register int get, c, s, t;
1251 1.8 gwr int ringmask, overrun;
1252 1.1 gwr register u_short ring_data;
1253 1.14 gwr register u_char rr0, delta;
1254 1.1 gwr
1255 1.22 mycroft zst = cs->cs_private;
1256 1.22 mycroft tp = zst->zst_tty;
1257 1.1 gwr line = &linesw[tp->t_line];
1258 1.6 gwr ringmask = zst->zst_ringmask;
1259 1.8 gwr overrun = 0;
1260 1.6 gwr
1261 1.6 gwr /*
1262 1.8 gwr * Raise to tty priority while servicing the ring.
1263 1.6 gwr */
1264 1.8 gwr s = spltty();
1265 1.1 gwr
1266 1.8 gwr if (zst->zst_rx_overrun) {
1267 1.8 gwr zst->zst_rx_overrun = 0;
1268 1.6 gwr zsoverrun(zst, &zst->zst_rotime, "ring");
1269 1.1 gwr }
1270 1.1 gwr
1271 1.1 gwr /*
1272 1.1 gwr * Copy data from the receive ring into the tty layer.
1273 1.1 gwr */
1274 1.1 gwr get = zst->zst_rbget;
1275 1.1 gwr while (get != zst->zst_rbput) {
1276 1.1 gwr ring_data = zst->zst_rbuf[get];
1277 1.6 gwr get = (get + 1) & ringmask;
1278 1.1 gwr
1279 1.1 gwr if (ring_data & ZSRR1_DO)
1280 1.8 gwr overrun++;
1281 1.1 gwr /* low byte of ring_data is rr1 */
1282 1.1 gwr c = (ring_data >> 8) & 0xff;
1283 1.1 gwr if (ring_data & ZSRR1_FE)
1284 1.1 gwr c |= TTY_FE;
1285 1.1 gwr if (ring_data & ZSRR1_PE)
1286 1.1 gwr c |= TTY_PE;
1287 1.1 gwr
1288 1.22 mycroft (*line->l_rint)(c, tp);
1289 1.1 gwr }
1290 1.1 gwr zst->zst_rbget = get;
1291 1.1 gwr
1292 1.6 gwr /*
1293 1.6 gwr * If the overrun flag is set now, it was set while
1294 1.6 gwr * copying char/status pairs from the ring, which
1295 1.6 gwr * means this was a hardware (fifo) overrun.
1296 1.6 gwr */
1297 1.8 gwr if (overrun) {
1298 1.6 gwr zsoverrun(zst, &zst->zst_fotime, "fifo");
1299 1.1 gwr }
1300 1.1 gwr
1301 1.8 gwr /*
1302 1.8 gwr * We have emptied the input ring. Maybe unblock input.
1303 1.8 gwr * Note: an "input blockage" condition is assumed to exist
1304 1.8 gwr * when EITHER zst_rx_blocked or the TS_TBLOCK flag is set,
1305 1.8 gwr * so unblock here ONLY if TS_TBLOCK has not been set.
1306 1.8 gwr */
1307 1.8 gwr if (zst->zst_rx_blocked && ((tp->t_state & TS_TBLOCK) == 0)) {
1308 1.18 scottr t = splzs();
1309 1.8 gwr zst->zst_rx_blocked = 0;
1310 1.24 mycroft zs_hwiflow(zst);
1311 1.18 scottr splx(t);
1312 1.8 gwr }
1313 1.8 gwr
1314 1.8 gwr /*
1315 1.8 gwr * Do any deferred work for status interrupts.
1316 1.8 gwr * The rr0 was saved in the h/w interrupt to
1317 1.8 gwr * avoid another splzs in here.
1318 1.8 gwr */
1319 1.8 gwr if (zst->zst_st_check) {
1320 1.8 gwr zst->zst_st_check = 0;
1321 1.8 gwr
1322 1.18 scottr t = splzs();
1323 1.13 gwr rr0 = cs->cs_rr0;
1324 1.13 gwr delta = cs->cs_rr0_delta;
1325 1.13 gwr cs->cs_rr0_delta = 0;
1326 1.18 scottr splx(t);
1327 1.14 gwr
1328 1.22 mycroft if ((delta & cs->cs_rr0_dcd) != 0) {
1329 1.22 mycroft /*
1330 1.22 mycroft * Inform the tty layer that carrier detect changed.
1331 1.22 mycroft */
1332 1.22 mycroft (void) (*line->l_modem)(tp, (rr0 & cs->cs_rr0_dcd) != 0);
1333 1.8 gwr }
1334 1.14 gwr
1335 1.22 mycroft if ((delta & cs->cs_rr0_cts) != 0) {
1336 1.22 mycroft /* Block or unblock output according to flow control. */
1337 1.22 mycroft if ((rr0 & cs->cs_rr0_cts) != 0) {
1338 1.8 gwr zst->zst_tx_stopped = 0;
1339 1.8 gwr (*line->l_start)(tp);
1340 1.22 mycroft } else {
1341 1.22 mycroft zst->zst_tx_stopped = 1;
1342 1.1 gwr }
1343 1.1 gwr }
1344 1.8 gwr }
1345 1.8 gwr
1346 1.8 gwr if (zst->zst_tx_done) {
1347 1.8 gwr zst->zst_tx_done = 0;
1348 1.22 mycroft
1349 1.1 gwr tp->t_state &= ~TS_BUSY;
1350 1.1 gwr if (tp->t_state & TS_FLUSH)
1351 1.1 gwr tp->t_state &= ~TS_FLUSH;
1352 1.1 gwr else
1353 1.22 mycroft ndflush(&tp->t_outq,
1354 1.22 mycroft (int)(zst->zst_tba - tp->t_outq.c_cf));
1355 1.22 mycroft (*line->l_start)(tp);
1356 1.1 gwr }
1357 1.1 gwr
1358 1.6 gwr splx(s);
1359 1.1 gwr }
1360 1.1 gwr
1361 1.1 gwr struct zsops zsops_tty = {
1362 1.1 gwr zstty_rxint, /* receive char available */
1363 1.1 gwr zstty_stint, /* external/status */
1364 1.1 gwr zstty_txint, /* xmit buffer empty */
1365 1.1 gwr zstty_softint, /* process software interrupt */
1366 1.1 gwr };
1367 1.1 gwr
1368