z8530tty.c revision 1.101 1 /* $NetBSD: z8530tty.c,v 1.101 2005/12/11 12:21:29 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999
5 * Charles M. Hannum. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Charles M. Hannum.
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This software was developed by the Computer Systems Engineering group
38 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
39 * contributed to Berkeley.
40 *
41 * All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Lawrence Berkeley Laboratory.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)zs.c 8.1 (Berkeley) 7/19/93
71 */
72
73 /*
74 * Copyright (c) 1994 Gordon W. Ross
75 *
76 * This software was developed by the Computer Systems Engineering group
77 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
78 * contributed to Berkeley.
79 *
80 * All advertising materials mentioning features or use of this software
81 * must display the following acknowledgement:
82 * This product includes software developed by the University of
83 * California, Lawrence Berkeley Laboratory.
84 *
85 * Redistribution and use in source and binary forms, with or without
86 * modification, are permitted provided that the following conditions
87 * are met:
88 * 1. Redistributions of source code must retain the above copyright
89 * notice, this list of conditions and the following disclaimer.
90 * 2. Redistributions in binary form must reproduce the above copyright
91 * notice, this list of conditions and the following disclaimer in the
92 * documentation and/or other materials provided with the distribution.
93 * 3. All advertising materials mentioning features or use of this software
94 * must display the following acknowledgement:
95 * This product includes software developed by the University of
96 * California, Berkeley and its contributors.
97 * 4. Neither the name of the University nor the names of its contributors
98 * may be used to endorse or promote products derived from this software
99 * without specific prior written permission.
100 *
101 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
102 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
103 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
104 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
105 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
106 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
107 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
108 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
109 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
110 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
111 * SUCH DAMAGE.
112 *
113 * @(#)zs.c 8.1 (Berkeley) 7/19/93
114 */
115
116 /*
117 * Zilog Z8530 Dual UART driver (tty interface)
118 *
119 * This is the "slave" driver that will be attached to
120 * the "zsc" driver for plain "tty" async. serial lines.
121 *
122 * Credits, history:
123 *
124 * The original version of this code was the sparc/dev/zs.c driver
125 * as distributed with the Berkeley 4.4 Lite release. Since then,
126 * Gordon Ross reorganized the code into the current parent/child
127 * driver scheme, separating the Sun keyboard and mouse support
128 * into independent child drivers.
129 *
130 * RTS/CTS flow-control support was a collaboration of:
131 * Gordon Ross <gwr (at) NetBSD.org>,
132 * Bill Studenmund <wrstuden (at) loki.stanford.edu>
133 * Ian Dall <Ian.Dall (at) dsto.defence.gov.au>
134 *
135 * The driver was massively overhauled in November 1997 by Charles Hannum,
136 * fixing *many* bugs, and substantially improving performance.
137 */
138
139 #include <sys/cdefs.h>
140 __KERNEL_RCSID(0, "$NetBSD: z8530tty.c,v 1.101 2005/12/11 12:21:29 christos Exp $");
141
142 #include "opt_kgdb.h"
143 #include "opt_ntp.h"
144
145 #include <sys/param.h>
146 #include <sys/systm.h>
147 #include <sys/proc.h>
148 #include <sys/device.h>
149 #include <sys/conf.h>
150 #include <sys/file.h>
151 #include <sys/ioctl.h>
152 #include <sys/malloc.h>
153 #include <sys/timepps.h>
154 #include <sys/tty.h>
155 #include <sys/time.h>
156 #include <sys/kernel.h>
157 #include <sys/syslog.h>
158
159 #include <dev/ic/z8530reg.h>
160 #include <machine/z8530var.h>
161
162 #include <dev/cons.h>
163
164 #include "locators.h"
165
166 /*
167 * How many input characters we can buffer.
168 * The port-specific var.h may override this.
169 * Note: must be a power of two!
170 */
171 #ifndef ZSTTY_RING_SIZE
172 #define ZSTTY_RING_SIZE 2048
173 #endif
174
175 static struct cnm_state zstty_cnm_state;
176 /*
177 * Make this an option variable one can patch.
178 * But be warned: this must be a power of 2!
179 */
180 u_int zstty_rbuf_size = ZSTTY_RING_SIZE;
181
182 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
183 u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
184 u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;
185
186 static int zsppscap =
187 PPS_TSFMT_TSPEC |
188 PPS_CAPTUREASSERT |
189 PPS_CAPTURECLEAR |
190 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
191
192 struct zstty_softc {
193 struct device zst_dev; /* required first: base device */
194 struct tty *zst_tty;
195 struct zs_chanstate *zst_cs;
196
197 struct callout zst_diag_ch;
198
199 u_int zst_overflows,
200 zst_floods,
201 zst_errors;
202
203 int zst_hwflags, /* see z8530var.h */
204 zst_swflags; /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
205
206 u_int zst_r_hiwat,
207 zst_r_lowat;
208 u_char *volatile zst_rbget,
209 *volatile zst_rbput;
210 volatile u_int zst_rbavail;
211 u_char *zst_rbuf,
212 *zst_ebuf;
213
214 /*
215 * The transmit byte count and address are used for pseudo-DMA
216 * output in the hardware interrupt code. PDMA can be suspended
217 * to get pending changes done; heldtbc is used for this. It can
218 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
219 */
220 u_char *zst_tba; /* transmit buffer address */
221 u_int zst_tbc, /* transmit byte count */
222 zst_heldtbc; /* held tbc while xmission stopped */
223
224 /* Flags to communicate with zstty_softint() */
225 volatile u_char zst_rx_flags, /* receiver blocked */
226 #define RX_TTY_BLOCKED 0x01
227 #define RX_TTY_OVERFLOWED 0x02
228 #define RX_IBUF_BLOCKED 0x04
229 #define RX_IBUF_OVERFLOWED 0x08
230 #define RX_ANY_BLOCK 0x0f
231 zst_tx_busy, /* working on an output chunk */
232 zst_tx_done, /* done with one output chunk */
233 zst_tx_stopped, /* H/W level stop (lost CTS) */
234 zst_st_check, /* got a status interrupt */
235 zst_rx_ready;
236
237 /* PPS signal on DCD, with or without inkernel clock disciplining */
238 u_char zst_ppsmask; /* pps signal mask */
239 u_char zst_ppsassert; /* pps leading edge */
240 u_char zst_ppsclear; /* pps trailing edge */
241 pps_info_t ppsinfo;
242 pps_params_t ppsparam;
243 };
244
245 /* Macros to clear/set/test flags. */
246 #define SET(t, f) (t) |= (f)
247 #define CLR(t, f) (t) &= ~(f)
248 #define ISSET(t, f) ((t) & (f))
249
250 /* Definition of the driver for autoconfig. */
251 static int zstty_match(struct device *, struct cfdata *, void *);
252 static void zstty_attach(struct device *, struct device *, void *);
253
254 CFATTACH_DECL(zstty, sizeof(struct zstty_softc),
255 zstty_match, zstty_attach, NULL, NULL);
256
257 extern struct cfdriver zstty_cd;
258
259 dev_type_open(zsopen);
260 dev_type_close(zsclose);
261 dev_type_read(zsread);
262 dev_type_write(zswrite);
263 dev_type_ioctl(zsioctl);
264 dev_type_stop(zsstop);
265 dev_type_tty(zstty);
266 dev_type_poll(zspoll);
267
268 const struct cdevsw zstty_cdevsw = {
269 zsopen, zsclose, zsread, zswrite, zsioctl,
270 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
271 };
272
273 struct zsops zsops_tty;
274
275 static void zs_shutdown(struct zstty_softc *);
276 static void zsstart(struct tty *);
277 static int zsparam(struct tty *, struct termios *);
278 static void zs_modem(struct zstty_softc *, int);
279 static void tiocm_to_zs(struct zstty_softc *, u_long, int);
280 static int zs_to_tiocm(struct zstty_softc *);
281 static int zshwiflow(struct tty *, int);
282 static void zs_hwiflow(struct zstty_softc *);
283 static void zs_maskintr(struct zstty_softc *);
284
285 /* Low-level routines. */
286 static void zstty_rxint (struct zs_chanstate *);
287 static void zstty_stint (struct zs_chanstate *, int);
288 static void zstty_txint (struct zs_chanstate *);
289 static void zstty_softint(struct zs_chanstate *);
290
291 #define ZSUNIT(x) (minor(x) & 0x7ffff)
292 #define ZSDIALOUT(x) (minor(x) & 0x80000)
293
294 struct tty *zstty_get_tty_from_dev(struct device *);
295
296 /*
297 * XXX get the (struct tty *) out of a (struct device *) we trust to be a
298 * (struct zstty_softc *) - needed by sparc/dev/zs.c, sparc64/dev/zs.c,
299 * sun3/dev/zs.c and sun2/dev/zs.c will probably need it at some point
300 */
301
302 struct tty *
303 zstty_get_tty_from_dev(struct device *dev)
304 {
305 struct zstty_softc *sc = (struct zstty_softc *)dev;
306
307 return sc->zst_tty;
308 }
309
310 /*
311 * zstty_match: how is this zs channel configured?
312 */
313 int
314 zstty_match(parent, cf, aux)
315 struct device *parent;
316 struct cfdata *cf;
317 void *aux;
318 {
319 struct zsc_attach_args *args = aux;
320
321 /* Exact match is better than wildcard. */
322 if (cf->zsccf_channel == args->channel)
323 return 2;
324
325 /* This driver accepts wildcard. */
326 if (cf->zsccf_channel == ZSCCF_CHANNEL_DEFAULT)
327 return 1;
328
329 return 0;
330 }
331
332 void
333 zstty_attach(parent, self, aux)
334 struct device *parent, *self;
335 void *aux;
336
337 {
338 struct zsc_softc *zsc = (void *) parent;
339 struct zstty_softc *zst = (void *) self;
340 struct cfdata *cf = self->dv_cfdata;
341 struct zsc_attach_args *args = aux;
342 struct zs_chanstate *cs;
343 struct tty *tp;
344 int channel, s, tty_unit;
345 dev_t dev;
346 const char *i, *o;
347 int dtr_on;
348 int resetbit;
349
350 callout_init(&zst->zst_diag_ch);
351 cn_init_magic(&zstty_cnm_state);
352
353 tty_unit = zst->zst_dev.dv_unit;
354 channel = args->channel;
355 cs = zsc->zsc_cs[channel];
356 cs->cs_private = zst;
357 cs->cs_ops = &zsops_tty;
358
359 zst->zst_cs = cs;
360 zst->zst_swflags = cf->cf_flags; /* softcar, etc. */
361 zst->zst_hwflags = args->hwflags;
362 dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), tty_unit);
363
364 if (zst->zst_swflags)
365 printf(" flags 0x%x", zst->zst_swflags);
366
367 /*
368 * Check whether we serve as a console device.
369 * XXX - split console input/output channels aren't
370 * supported yet on /dev/console
371 */
372 i = o = NULL;
373 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
374 i = "input";
375 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
376 args->consdev->cn_dev = dev;
377 cn_tab->cn_pollc = args->consdev->cn_pollc;
378 cn_tab->cn_getc = args->consdev->cn_getc;
379 }
380 cn_tab->cn_dev = dev;
381 /* Set console magic to BREAK */
382 cn_set_magic("\047\001");
383 }
384 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
385 o = "output";
386 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
387 cn_tab->cn_putc = args->consdev->cn_putc;
388 }
389 cn_tab->cn_dev = dev;
390 }
391 if (i != NULL || o != NULL)
392 printf(" (console %s)", i ? (o ? "i/o" : i) : o);
393
394 #ifdef KGDB
395 if (zs_check_kgdb(cs, dev)) {
396 /*
397 * Allow kgdb to "take over" this port. Returns true
398 * if this serial port is in-use by kgdb.
399 */
400 printf(" (kgdb)\n");
401 /*
402 * This is the kgdb port (exclusive use)
403 * so skip the normal attach code.
404 */
405 return;
406 }
407 #endif
408 printf("\n");
409
410 tp = ttymalloc();
411 tp->t_dev = dev;
412 tp->t_oproc = zsstart;
413 tp->t_param = zsparam;
414 tp->t_hwiflow = zshwiflow;
415 tty_attach(tp);
416
417 zst->zst_tty = tp;
418 zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK);
419 zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
420 /* Disable the high water mark. */
421 zst->zst_r_hiwat = 0;
422 zst->zst_r_lowat = 0;
423 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
424 zst->zst_rbavail = zstty_rbuf_size;
425
426 /* if there are no enable/disable functions, assume the device
427 is always enabled */
428 if (!cs->enable)
429 cs->enabled = 1;
430
431 /*
432 * Hardware init
433 */
434 dtr_on = 0;
435 resetbit = 0;
436 if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
437 /* Call zsparam similar to open. */
438 struct termios t;
439
440 /* Wait a while for previous console output to complete */
441 DELAY(10000);
442
443 /* Setup the "new" parameters in t. */
444 t.c_ispeed = 0;
445 t.c_ospeed = cs->cs_defspeed;
446 t.c_cflag = cs->cs_defcflag;
447
448 /*
449 * Turn on receiver and status interrupts.
450 * We defer the actual write of the register to zsparam(),
451 * but we must make sure status interrupts are turned on by
452 * the time zsparam() reads the initial rr0 state.
453 */
454 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
455
456 /* Make sure zsparam will see changes. */
457 tp->t_ospeed = 0;
458 (void) zsparam(tp, &t);
459
460 /* Make sure DTR is on now. */
461 dtr_on = 1;
462
463 } else if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_NORESET)) {
464 /* Not the console; may need reset. */
465 resetbit = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
466 }
467
468 s = splzs();
469 simple_lock(&cs->cs_lock);
470 if (resetbit)
471 zs_write_reg(cs, 9, resetbit);
472 zs_modem(zst, dtr_on);
473 simple_unlock(&cs->cs_lock);
474 splx(s);
475 }
476
477
478 /*
479 * Return pointer to our tty.
480 */
481 struct tty *
482 zstty(dev)
483 dev_t dev;
484 {
485 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
486
487 return (zst->zst_tty);
488 }
489
490
491 void
492 zs_shutdown(zst)
493 struct zstty_softc *zst;
494 {
495 struct zs_chanstate *cs = zst->zst_cs;
496 struct tty *tp = zst->zst_tty;
497 int s;
498
499 s = splzs();
500 simple_lock(&cs->cs_lock);
501
502 /* If we were asserting flow control, then deassert it. */
503 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
504 zs_hwiflow(zst);
505
506 /* Clear any break condition set with TIOCSBRK. */
507 zs_break(cs, 0);
508
509 /* Turn off PPS capture on last close. */
510 zst->zst_ppsmask = 0;
511 zst->ppsparam.mode = 0;
512
513 /*
514 * Hang up if necessary. Wait a bit, so the other side has time to
515 * notice even if we immediately open the port again.
516 */
517 if (ISSET(tp->t_cflag, HUPCL)) {
518 zs_modem(zst, 0);
519 simple_unlock(&cs->cs_lock);
520 splx(s);
521 /*
522 * XXX - another process is not prevented from opening
523 * the device during our sleep.
524 */
525 (void) tsleep(cs, TTIPRI, ttclos, hz);
526 /* Re-check state in case we were opened during our sleep */
527 if (ISSET(tp->t_state, TS_ISOPEN) || tp->t_wopen != 0)
528 return;
529
530 s = splzs();
531 simple_lock(&cs->cs_lock);
532 }
533
534 /* Turn off interrupts if not the console. */
535 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
536 CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
537 cs->cs_creg[1] = cs->cs_preg[1];
538 zs_write_reg(cs, 1, cs->cs_creg[1]);
539 }
540
541 /* Call the power management hook. */
542 if (cs->disable) {
543 #ifdef DIAGNOSTIC
544 if (!cs->enabled)
545 panic("zs_shutdown: not enabled?");
546 #endif
547 (*cs->disable)(zst->zst_cs);
548 }
549
550 simple_unlock(&cs->cs_lock);
551 splx(s);
552 }
553
554 /*
555 * Open a zs serial (tty) port.
556 */
557 int
558 zsopen(dev, flags, mode, l)
559 dev_t dev;
560 int flags;
561 int mode;
562 struct lwp *l;
563 {
564 struct zstty_softc *zst;
565 struct zs_chanstate *cs;
566 struct tty *tp;
567 struct proc *p;
568 int s, s2;
569 int error;
570
571 zst = device_lookup(&zstty_cd, ZSUNIT(dev));
572 if (zst == NULL)
573 return (ENXIO);
574
575 tp = zst->zst_tty;
576 cs = zst->zst_cs;
577 p = l->l_proc;
578
579 /* If KGDB took the line, then tp==NULL */
580 if (tp == NULL)
581 return (EBUSY);
582
583 if (ISSET(tp->t_state, TS_ISOPEN) &&
584 ISSET(tp->t_state, TS_XCLUDE) &&
585 suser(p->p_ucred, &p->p_acflag) != 0)
586 return (EBUSY);
587
588 s = spltty();
589
590 /*
591 * Do the following iff this is a first open.
592 */
593 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
594 struct termios t;
595
596 tp->t_dev = dev;
597
598 /* Call the power management hook. */
599 if (cs->enable) {
600 if ((*cs->enable)(cs)) {
601 splx(s);
602 printf("%s: device enable failed\n",
603 zst->zst_dev.dv_xname);
604 return (EIO);
605 }
606 }
607
608 /*
609 * Initialize the termios status to the defaults. Add in the
610 * sticky bits from TIOCSFLAGS.
611 */
612 t.c_ispeed = 0;
613 t.c_ospeed = cs->cs_defspeed;
614 t.c_cflag = cs->cs_defcflag;
615 if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
616 SET(t.c_cflag, CLOCAL);
617 if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
618 SET(t.c_cflag, CRTSCTS);
619 if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
620 SET(t.c_cflag, CDTRCTS);
621 if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
622 SET(t.c_cflag, MDMBUF);
623
624 s2 = splzs();
625 simple_lock(&cs->cs_lock);
626
627 /*
628 * Turn on receiver and status interrupts.
629 * We defer the actual write of the register to zsparam(),
630 * but we must make sure status interrupts are turned on by
631 * the time zsparam() reads the initial rr0 state.
632 */
633 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
634
635 /* Clear PPS capture state on first open. */
636 zst->zst_ppsmask = 0;
637 zst->ppsparam.mode = 0;
638
639 simple_unlock(&cs->cs_lock);
640 splx(s2);
641
642 /* Make sure zsparam will see changes. */
643 tp->t_ospeed = 0;
644 (void) zsparam(tp, &t);
645
646 /*
647 * Note: zsparam has done: cflag, ispeed, ospeed
648 * so we just need to do: iflag, oflag, lflag, cc
649 * For "raw" mode, just leave all zeros.
650 */
651 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
652 tp->t_iflag = TTYDEF_IFLAG;
653 tp->t_oflag = TTYDEF_OFLAG;
654 tp->t_lflag = TTYDEF_LFLAG;
655 } else {
656 tp->t_iflag = 0;
657 tp->t_oflag = 0;
658 tp->t_lflag = 0;
659 }
660 ttychars(tp);
661 ttsetwater(tp);
662
663 s2 = splzs();
664 simple_lock(&cs->cs_lock);
665
666 /*
667 * Turn on DTR. We must always do this, even if carrier is not
668 * present, because otherwise we'd have to use TIOCSDTR
669 * immediately after setting CLOCAL, which applications do not
670 * expect. We always assert DTR while the device is open
671 * unless explicitly requested to deassert it.
672 */
673 zs_modem(zst, 1);
674
675 /* Clear the input ring, and unblock. */
676 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
677 zst->zst_rbavail = zstty_rbuf_size;
678 zs_iflush(cs);
679 CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
680 zs_hwiflow(zst);
681
682 simple_unlock(&cs->cs_lock);
683 splx(s2);
684 }
685
686 splx(s);
687
688 error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
689 if (error)
690 goto bad;
691
692 error = (*tp->t_linesw->l_open)(dev, tp);
693 if (error)
694 goto bad;
695
696 return (0);
697
698 bad:
699 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
700 /*
701 * We failed to open the device, and nobody else had it opened.
702 * Clean up the state as appropriate.
703 */
704 zs_shutdown(zst);
705 }
706
707 return (error);
708 }
709
710 /*
711 * Close a zs serial port.
712 */
713 int
714 zsclose(dev, flags, mode, l)
715 dev_t dev;
716 int flags;
717 int mode;
718 struct lwp *l;
719 {
720 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
721 struct tty *tp = zst->zst_tty;
722
723 /* XXX This is for cons.c. */
724 if (!ISSET(tp->t_state, TS_ISOPEN))
725 return 0;
726
727 (*tp->t_linesw->l_close)(tp, flags);
728 ttyclose(tp);
729
730 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
731 /*
732 * Although we got a last close, the device may still be in
733 * use; e.g. if this was the dialout node, and there are still
734 * processes waiting for carrier on the non-dialout node.
735 */
736 zs_shutdown(zst);
737 }
738
739 return (0);
740 }
741
742 /*
743 * Read/write zs serial port.
744 */
745 int
746 zsread(dev, uio, flags)
747 dev_t dev;
748 struct uio *uio;
749 int flags;
750 {
751 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
752 struct tty *tp = zst->zst_tty;
753
754 return ((*tp->t_linesw->l_read)(tp, uio, flags));
755 }
756
757 int
758 zswrite(dev, uio, flags)
759 dev_t dev;
760 struct uio *uio;
761 int flags;
762 {
763 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
764 struct tty *tp = zst->zst_tty;
765
766 return ((*tp->t_linesw->l_write)(tp, uio, flags));
767 }
768
769 int
770 zspoll(dev, events, l)
771 dev_t dev;
772 int events;
773 struct lwp *l;
774 {
775 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
776 struct tty *tp = zst->zst_tty;
777
778 return ((*tp->t_linesw->l_poll)(tp, events, l));
779 }
780
781 int
782 zsioctl(dev, cmd, data, flag, l)
783 dev_t dev;
784 u_long cmd;
785 caddr_t data;
786 int flag;
787 struct lwp *l;
788 {
789 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
790 struct zs_chanstate *cs = zst->zst_cs;
791 struct tty *tp = zst->zst_tty;
792 struct proc *p = l->l_proc;
793 int error;
794 int s;
795
796 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
797 if (error != EPASSTHROUGH)
798 return (error);
799
800 error = ttioctl(tp, cmd, data, flag, l);
801 if (error != EPASSTHROUGH)
802 return (error);
803
804 #ifdef ZS_MD_IOCTL
805 error = ZS_MD_IOCTL(cs, cmd, data);
806 if (error != EPASSTHROUGH)
807 return (error);
808 #endif /* ZS_MD_IOCTL */
809
810 error = 0;
811
812 s = splzs();
813 simple_lock(&cs->cs_lock);
814
815 switch (cmd) {
816 case TIOCSBRK:
817 zs_break(cs, 1);
818 break;
819
820 case TIOCCBRK:
821 zs_break(cs, 0);
822 break;
823
824 case TIOCGFLAGS:
825 *(int *)data = zst->zst_swflags;
826 break;
827
828 case TIOCSFLAGS:
829 error = suser(p->p_ucred, &p->p_acflag);
830 if (error)
831 break;
832 zst->zst_swflags = *(int *)data;
833 break;
834
835 case TIOCSDTR:
836 zs_modem(zst, 1);
837 break;
838
839 case TIOCCDTR:
840 zs_modem(zst, 0);
841 break;
842
843 case TIOCMSET:
844 case TIOCMBIS:
845 case TIOCMBIC:
846 tiocm_to_zs(zst, cmd, *(int *)data);
847 break;
848
849 case TIOCMGET:
850 *(int *)data = zs_to_tiocm(zst);
851 break;
852
853 case PPS_IOC_CREATE:
854 break;
855
856 case PPS_IOC_DESTROY:
857 break;
858
859 case PPS_IOC_GETPARAMS: {
860 pps_params_t *pp;
861 pp = (pps_params_t *)data;
862 *pp = zst->ppsparam;
863 break;
864 }
865
866 case PPS_IOC_SETPARAMS: {
867 pps_params_t *pp;
868 int mode;
869 if (cs->cs_rr0_pps == 0) {
870 error = EINVAL;
871 break;
872 }
873 pp = (pps_params_t *)data;
874 if (pp->mode & ~zsppscap) {
875 error = EINVAL;
876 break;
877 }
878 zst->ppsparam = *pp;
879 /*
880 * compute masks from user-specified timestamp state.
881 */
882 mode = zst->ppsparam.mode;
883 switch (mode & PPS_CAPTUREBOTH) {
884 case 0:
885 zst->zst_ppsmask = 0;
886 break;
887
888 case PPS_CAPTUREASSERT:
889 zst->zst_ppsmask = ZSRR0_DCD;
890 zst->zst_ppsassert = ZSRR0_DCD;
891 zst->zst_ppsclear = -1;
892 break;
893
894 case PPS_CAPTURECLEAR:
895 zst->zst_ppsmask = ZSRR0_DCD;
896 zst->zst_ppsassert = -1;
897 zst->zst_ppsclear = 0;
898 break;
899
900 case PPS_CAPTUREBOTH:
901 zst->zst_ppsmask = ZSRR0_DCD;
902 zst->zst_ppsassert = ZSRR0_DCD;
903 zst->zst_ppsclear = 0;
904 break;
905
906 default:
907 error = EINVAL;
908 break;
909 }
910
911 /*
912 * Now update interrupts.
913 */
914 zs_maskintr(zst);
915 /*
916 * If nothing is being transmitted, set up new current values,
917 * else mark them as pending.
918 */
919 if (!cs->cs_heldchange) {
920 if (zst->zst_tx_busy) {
921 zst->zst_heldtbc = zst->zst_tbc;
922 zst->zst_tbc = 0;
923 cs->cs_heldchange = 1;
924 } else
925 zs_loadchannelregs(cs);
926 }
927
928 break;
929 }
930
931 case PPS_IOC_GETCAP:
932 *(int *)data = zsppscap;
933 break;
934
935 case PPS_IOC_FETCH: {
936 pps_info_t *pi;
937 pi = (pps_info_t *)data;
938 *pi = zst->ppsinfo;
939 break;
940 }
941
942 #ifdef PPS_SYNC
943 case PPS_IOC_KCBIND: {
944 int edge = (*(int *)data) & PPS_CAPTUREBOTH;
945
946 if (edge == 0) {
947 /*
948 * remove binding for this source; ignore
949 * the request if this is not the current
950 * hardpps source
951 */
952 if (pps_kc_hardpps_source == zst) {
953 pps_kc_hardpps_source = NULL;
954 pps_kc_hardpps_mode = 0;
955 }
956 } else {
957 /*
958 * bind hardpps to this source, replacing any
959 * previously specified source or edges
960 */
961 pps_kc_hardpps_source = zst;
962 pps_kc_hardpps_mode = edge;
963 }
964 break;
965 }
966 #endif /* PPS_SYNC */
967
968 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
969 if (cs->cs_rr0_pps == 0) {
970 error = EINVAL;
971 break;
972 }
973 /*
974 * Some GPS clocks models use the falling rather than
975 * rising edge as the on-the-second signal.
976 * The old API has no way to specify PPS polarity.
977 */
978 zst->zst_ppsmask = ZSRR0_DCD;
979 #ifndef PPS_TRAILING_EDGE
980 zst->zst_ppsassert = ZSRR0_DCD;
981 zst->zst_ppsclear = -1;
982 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
983 &zst->ppsinfo.assert_timestamp);
984 #else
985 zst->zst_ppsassert = -1;
986 zst->zst_ppsclear = 01;
987 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
988 &zst->ppsinfo.clear_timestamp);
989 #endif
990 /*
991 * Now update interrupts.
992 */
993 zs_maskintr(zst);
994 /*
995 * If nothing is being transmitted, set up new current values,
996 * else mark them as pending.
997 */
998 if (!cs->cs_heldchange) {
999 if (zst->zst_tx_busy) {
1000 zst->zst_heldtbc = zst->zst_tbc;
1001 zst->zst_tbc = 0;
1002 cs->cs_heldchange = 1;
1003 } else
1004 zs_loadchannelregs(cs);
1005 }
1006
1007 break;
1008
1009 default:
1010 error = EPASSTHROUGH;
1011 break;
1012 }
1013
1014 simple_unlock(&cs->cs_lock);
1015 splx(s);
1016
1017 return (error);
1018 }
1019
1020 /*
1021 * Start or restart transmission.
1022 */
1023 static void
1024 zsstart(tp)
1025 struct tty *tp;
1026 {
1027 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1028 struct zs_chanstate *cs = zst->zst_cs;
1029 int s;
1030
1031 s = spltty();
1032 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1033 goto out;
1034 if (zst->zst_tx_stopped)
1035 goto out;
1036
1037 if (tp->t_outq.c_cc <= tp->t_lowat) {
1038 if (ISSET(tp->t_state, TS_ASLEEP)) {
1039 CLR(tp->t_state, TS_ASLEEP);
1040 wakeup((caddr_t)&tp->t_outq);
1041 }
1042 selwakeup(&tp->t_wsel);
1043 if (tp->t_outq.c_cc == 0)
1044 goto out;
1045 }
1046
1047 /* Grab the first contiguous region of buffer space. */
1048 {
1049 u_char *tba;
1050 int tbc;
1051
1052 tba = tp->t_outq.c_cf;
1053 tbc = ndqb(&tp->t_outq, 0);
1054
1055 (void) splzs();
1056 simple_lock(&cs->cs_lock);
1057
1058 zst->zst_tba = tba;
1059 zst->zst_tbc = tbc;
1060 }
1061
1062 SET(tp->t_state, TS_BUSY);
1063 zst->zst_tx_busy = 1;
1064
1065 /* Enable transmit completion interrupts if necessary. */
1066 if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
1067 SET(cs->cs_preg[1], ZSWR1_TIE);
1068 cs->cs_creg[1] = cs->cs_preg[1];
1069 zs_write_reg(cs, 1, cs->cs_creg[1]);
1070 }
1071
1072 /* Output the first character of the contiguous buffer. */
1073 {
1074 zs_write_data(cs, *zst->zst_tba);
1075 zst->zst_tbc--;
1076 zst->zst_tba++;
1077 }
1078 simple_unlock(&cs->cs_lock);
1079 out:
1080 splx(s);
1081 return;
1082 }
1083
1084 /*
1085 * Stop output, e.g., for ^S or output flush.
1086 */
1087 void
1088 zsstop(tp, flag)
1089 struct tty *tp;
1090 int flag;
1091 {
1092 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1093 int s;
1094
1095 s = splzs();
1096 if (ISSET(tp->t_state, TS_BUSY)) {
1097 /* Stop transmitting at the next chunk. */
1098 zst->zst_tbc = 0;
1099 zst->zst_heldtbc = 0;
1100 if (!ISSET(tp->t_state, TS_TTSTOP))
1101 SET(tp->t_state, TS_FLUSH);
1102 }
1103 splx(s);
1104 }
1105
1106 /*
1107 * Set ZS tty parameters from termios.
1108 * XXX - Should just copy the whole termios after
1109 * making sure all the changes could be done.
1110 */
1111 static int
1112 zsparam(tp, t)
1113 struct tty *tp;
1114 struct termios *t;
1115 {
1116 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1117 struct zs_chanstate *cs = zst->zst_cs;
1118 int ospeed;
1119 tcflag_t cflag;
1120 u_char tmp3, tmp4, tmp5;
1121 int s, error;
1122
1123 ospeed = t->c_ospeed;
1124 cflag = t->c_cflag;
1125
1126 /* Check requested parameters. */
1127 if (ospeed < 0)
1128 return (EINVAL);
1129 if (t->c_ispeed && t->c_ispeed != ospeed)
1130 return (EINVAL);
1131
1132 /*
1133 * For the console, always force CLOCAL and !HUPCL, so that the port
1134 * is always active.
1135 */
1136 if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
1137 ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
1138 SET(cflag, CLOCAL);
1139 CLR(cflag, HUPCL);
1140 }
1141
1142 /*
1143 * Only whack the UART when params change.
1144 * Some callers need to clear tp->t_ospeed
1145 * to make sure initialization gets done.
1146 */
1147 if (tp->t_ospeed == ospeed &&
1148 tp->t_cflag == cflag)
1149 return (0);
1150
1151 /*
1152 * Call MD functions to deal with changed
1153 * clock modes or H/W flow control modes.
1154 * The BRG divisor is set now. (reg 12,13)
1155 */
1156 error = zs_set_speed(cs, ospeed);
1157 if (error)
1158 return (error);
1159 error = zs_set_modes(cs, cflag);
1160 if (error)
1161 return (error);
1162
1163 /*
1164 * Block interrupts so that state will not
1165 * be altered until we are done setting it up.
1166 *
1167 * Initial values in cs_preg are set before
1168 * our attach routine is called. The master
1169 * interrupt enable is handled by zsc.c
1170 *
1171 */
1172 s = splzs();
1173 simple_lock(&cs->cs_lock);
1174
1175 /*
1176 * Recalculate which status ints to enable.
1177 */
1178 zs_maskintr(zst);
1179
1180 /* Recompute character size bits. */
1181 tmp3 = cs->cs_preg[3];
1182 tmp5 = cs->cs_preg[5];
1183 CLR(tmp3, ZSWR3_RXSIZE);
1184 CLR(tmp5, ZSWR5_TXSIZE);
1185 switch (ISSET(cflag, CSIZE)) {
1186 case CS5:
1187 SET(tmp3, ZSWR3_RX_5);
1188 SET(tmp5, ZSWR5_TX_5);
1189 break;
1190 case CS6:
1191 SET(tmp3, ZSWR3_RX_6);
1192 SET(tmp5, ZSWR5_TX_6);
1193 break;
1194 case CS7:
1195 SET(tmp3, ZSWR3_RX_7);
1196 SET(tmp5, ZSWR5_TX_7);
1197 break;
1198 case CS8:
1199 SET(tmp3, ZSWR3_RX_8);
1200 SET(tmp5, ZSWR5_TX_8);
1201 break;
1202 }
1203 cs->cs_preg[3] = tmp3;
1204 cs->cs_preg[5] = tmp5;
1205
1206 /*
1207 * Recompute the stop bits and parity bits. Note that
1208 * zs_set_speed() may have set clock selection bits etc.
1209 * in wr4, so those must preserved.
1210 */
1211 tmp4 = cs->cs_preg[4];
1212 CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
1213 if (ISSET(cflag, CSTOPB))
1214 SET(tmp4, ZSWR4_TWOSB);
1215 else
1216 SET(tmp4, ZSWR4_ONESB);
1217 if (!ISSET(cflag, PARODD))
1218 SET(tmp4, ZSWR4_EVENP);
1219 if (ISSET(cflag, PARENB))
1220 SET(tmp4, ZSWR4_PARENB);
1221 cs->cs_preg[4] = tmp4;
1222
1223 /* And copy to tty. */
1224 tp->t_ispeed = 0;
1225 tp->t_ospeed = ospeed;
1226 tp->t_cflag = cflag;
1227
1228 /*
1229 * If nothing is being transmitted, set up new current values,
1230 * else mark them as pending.
1231 */
1232 if (!cs->cs_heldchange) {
1233 if (zst->zst_tx_busy) {
1234 zst->zst_heldtbc = zst->zst_tbc;
1235 zst->zst_tbc = 0;
1236 cs->cs_heldchange = 1;
1237 } else
1238 zs_loadchannelregs(cs);
1239 }
1240
1241 /*
1242 * If hardware flow control is disabled, turn off the buffer water
1243 * marks and unblock any soft flow control state. Otherwise, enable
1244 * the water marks.
1245 */
1246 if (!ISSET(cflag, CHWFLOW)) {
1247 zst->zst_r_hiwat = 0;
1248 zst->zst_r_lowat = 0;
1249 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1250 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1251 zst->zst_rx_ready = 1;
1252 cs->cs_softreq = 1;
1253 }
1254 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1255 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1256 zs_hwiflow(zst);
1257 }
1258 } else {
1259 zst->zst_r_hiwat = zstty_rbuf_hiwat;
1260 zst->zst_r_lowat = zstty_rbuf_lowat;
1261 }
1262
1263 /*
1264 * Force a recheck of the hardware carrier and flow control status,
1265 * since we may have changed which bits we're looking at.
1266 */
1267 zstty_stint(cs, 1);
1268
1269 simple_unlock(&cs->cs_lock);
1270 splx(s);
1271
1272 /*
1273 * If hardware flow control is disabled, unblock any hard flow control
1274 * state.
1275 */
1276 if (!ISSET(cflag, CHWFLOW)) {
1277 if (zst->zst_tx_stopped) {
1278 zst->zst_tx_stopped = 0;
1279 zsstart(tp);
1280 }
1281 }
1282
1283 zstty_softint(cs);
1284
1285 return (0);
1286 }
1287
1288 /*
1289 * Compute interrupt enable bits and set in the pending bits. Called both
1290 * in zsparam() and when PPS (pulse per second timing) state changes.
1291 * Must be called at splzs().
1292 */
1293 static void
1294 zs_maskintr(zst)
1295 struct zstty_softc *zst;
1296 {
1297 struct zs_chanstate *cs = zst->zst_cs;
1298 int tmp15;
1299
1300 cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
1301 if (zst->zst_ppsmask != 0)
1302 cs->cs_rr0_mask |= cs->cs_rr0_pps;
1303 tmp15 = cs->cs_preg[15];
1304 if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
1305 SET(tmp15, ZSWR15_DCD_IE);
1306 else
1307 CLR(tmp15, ZSWR15_DCD_IE);
1308 if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
1309 SET(tmp15, ZSWR15_CTS_IE);
1310 else
1311 CLR(tmp15, ZSWR15_CTS_IE);
1312 cs->cs_preg[15] = tmp15;
1313 }
1314
1315
1316 /*
1317 * Raise or lower modem control (DTR/RTS) signals. If a character is
1318 * in transmission, the change is deferred.
1319 * Called at splzs() and with the channel lock held.
1320 */
1321 static void
1322 zs_modem(zst, onoff)
1323 struct zstty_softc *zst;
1324 int onoff;
1325 {
1326 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1327
1328 if (cs->cs_wr5_dtr == 0)
1329 return;
1330
1331 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1332
1333 if (onoff)
1334 SET(ccs->cs_preg[5], cs->cs_wr5_dtr);
1335 else
1336 CLR(ccs->cs_preg[5], cs->cs_wr5_dtr);
1337
1338 if (!cs->cs_heldchange) {
1339 if (zst->zst_tx_busy) {
1340 zst->zst_heldtbc = zst->zst_tbc;
1341 zst->zst_tbc = 0;
1342 cs->cs_heldchange = 1;
1343 } else
1344 zs_loadchannelregs(cs);
1345 }
1346 }
1347
1348 /*
1349 * Set modem bits.
1350 * Called at splzs() and with the channel lock held.
1351 */
1352 static void
1353 tiocm_to_zs(zst, how, ttybits)
1354 struct zstty_softc *zst;
1355 u_long how;
1356 int ttybits;
1357 {
1358 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1359 u_char zsbits;
1360
1361 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1362
1363 zsbits = 0;
1364 if (ISSET(ttybits, TIOCM_DTR))
1365 SET(zsbits, ZSWR5_DTR);
1366 if (ISSET(ttybits, TIOCM_RTS))
1367 SET(zsbits, ZSWR5_RTS);
1368
1369 switch (how) {
1370 case TIOCMBIC:
1371 CLR(ccs->cs_preg[5], zsbits);
1372 break;
1373
1374 case TIOCMBIS:
1375 SET(ccs->cs_preg[5], zsbits);
1376 break;
1377
1378 case TIOCMSET:
1379 CLR(ccs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR);
1380 SET(ccs->cs_preg[5], zsbits);
1381 break;
1382 }
1383
1384 if (!cs->cs_heldchange) {
1385 if (zst->zst_tx_busy) {
1386 zst->zst_heldtbc = zst->zst_tbc;
1387 zst->zst_tbc = 0;
1388 cs->cs_heldchange = 1;
1389 } else
1390 zs_loadchannelregs(cs);
1391 }
1392 }
1393
1394 /*
1395 * Get modem bits.
1396 * Called at splzs() and with the channel lock held.
1397 */
1398 static int
1399 zs_to_tiocm(zst)
1400 struct zstty_softc *zst;
1401 {
1402 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1403 u_char zsbits;
1404 int ttybits = 0;
1405
1406 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1407
1408 zsbits = ccs->cs_preg[5];
1409 if (ISSET(zsbits, ZSWR5_DTR))
1410 SET(ttybits, TIOCM_DTR);
1411 if (ISSET(zsbits, ZSWR5_RTS))
1412 SET(ttybits, TIOCM_RTS);
1413
1414 zsbits = cs->cs_rr0;
1415 if (ISSET(zsbits, ZSRR0_DCD))
1416 SET(ttybits, TIOCM_CD);
1417 if (ISSET(zsbits, ZSRR0_CTS))
1418 SET(ttybits, TIOCM_CTS);
1419
1420 return (ttybits);
1421 }
1422
1423 /*
1424 * Try to block or unblock input using hardware flow-control.
1425 * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
1426 * if this function returns non-zero, the TS_TBLOCK flag will
1427 * be set or cleared according to the "block" arg passed.
1428 */
1429 int
1430 zshwiflow(tp, block)
1431 struct tty *tp;
1432 int block;
1433 {
1434 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1435 struct zs_chanstate *cs = zst->zst_cs;
1436 int s;
1437
1438 if (cs->cs_wr5_rts == 0)
1439 return (0);
1440
1441 s = splzs();
1442 simple_lock(&cs->cs_lock);
1443 if (block) {
1444 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1445 SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
1446 zs_hwiflow(zst);
1447 }
1448 } else {
1449 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1450 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1451 zst->zst_rx_ready = 1;
1452 cs->cs_softreq = 1;
1453 }
1454 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1455 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
1456 zs_hwiflow(zst);
1457 }
1458 }
1459 simple_unlock(&cs->cs_lock);
1460 splx(s);
1461 return (1);
1462 }
1463
1464 /*
1465 * Internal version of zshwiflow
1466 * Called at splzs() and with the channel lock held.
1467 */
1468 static void
1469 zs_hwiflow(zst)
1470 struct zstty_softc *zst;
1471 {
1472 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1473
1474 if (cs->cs_wr5_rts == 0)
1475 return;
1476
1477 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1478
1479 if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
1480 CLR(ccs->cs_preg[5], cs->cs_wr5_rts);
1481 CLR(ccs->cs_creg[5], cs->cs_wr5_rts);
1482 } else {
1483 SET(ccs->cs_preg[5], cs->cs_wr5_rts);
1484 SET(ccs->cs_creg[5], cs->cs_wr5_rts);
1485 }
1486 zs_write_reg(ccs, 5, ccs->cs_creg[5]);
1487 }
1488
1489
1490 /****************************************************************
1491 * Interface to the lower layer (zscc)
1492 ****************************************************************/
1493
1494 #define integrate static inline
1495 integrate void zstty_rxsoft(struct zstty_softc *, struct tty *);
1496 integrate void zstty_txsoft(struct zstty_softc *, struct tty *);
1497 integrate void zstty_stsoft(struct zstty_softc *, struct tty *);
1498 static void zstty_diag(void *);
1499
1500 /*
1501 * Receiver Ready interrupt.
1502 * Called at splzs() and with the channel lock held.
1503 */
1504 static void
1505 zstty_rxint(cs)
1506 struct zs_chanstate *cs;
1507 {
1508 struct zstty_softc *zst = cs->cs_private;
1509 u_char *put, *end;
1510 u_int cc;
1511 u_char rr0, rr1, c;
1512
1513 end = zst->zst_ebuf;
1514 put = zst->zst_rbput;
1515 cc = zst->zst_rbavail;
1516
1517 while (cc > 0) {
1518 /*
1519 * First read the status, because reading the received char
1520 * destroys the status of this char.
1521 */
1522 rr1 = zs_read_reg(cs, 1);
1523 c = zs_read_data(cs);
1524
1525 if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
1526 /* Clear the receive error. */
1527 zs_write_csr(cs, ZSWR0_RESET_ERRORS);
1528 }
1529
1530 cn_check_magic(zst->zst_tty->t_dev, c, zstty_cnm_state);
1531 put[0] = c;
1532 put[1] = rr1;
1533 put += 2;
1534 if (put >= end)
1535 put = zst->zst_rbuf;
1536 cc--;
1537
1538 rr0 = zs_read_csr(cs);
1539 if (!ISSET(rr0, ZSRR0_RX_READY))
1540 break;
1541 }
1542
1543 /*
1544 * Current string of incoming characters ended because
1545 * no more data was available or we ran out of space.
1546 * Schedule a receive event if any data was received.
1547 * If we're out of space, turn off receive interrupts.
1548 */
1549 zst->zst_rbput = put;
1550 zst->zst_rbavail = cc;
1551 if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1552 zst->zst_rx_ready = 1;
1553 cs->cs_softreq = 1;
1554 }
1555
1556 /*
1557 * See if we are in danger of overflowing a buffer. If
1558 * so, use hardware flow control to ease the pressure.
1559 */
1560 if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
1561 cc < zst->zst_r_hiwat) {
1562 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1563 zs_hwiflow(zst);
1564 }
1565
1566 /*
1567 * If we're out of space, disable receive interrupts
1568 * until the queue has drained a bit.
1569 */
1570 if (!cc) {
1571 SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1572 CLR(cs->cs_preg[1], ZSWR1_RIE);
1573 cs->cs_creg[1] = cs->cs_preg[1];
1574 zs_write_reg(cs, 1, cs->cs_creg[1]);
1575 }
1576
1577 #if 0
1578 printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1579 #endif
1580 }
1581
1582 /*
1583 * Transmitter Ready interrupt.
1584 * Called at splzs() and with the channel lock held.
1585 */
1586 static void
1587 zstty_txint(cs)
1588 struct zs_chanstate *cs;
1589 {
1590 struct zstty_softc *zst = cs->cs_private;
1591
1592 /*
1593 * If we've delayed a parameter change, do it now, and restart
1594 * output.
1595 */
1596 if (cs->cs_heldchange) {
1597 zs_loadchannelregs(cs);
1598 cs->cs_heldchange = 0;
1599 zst->zst_tbc = zst->zst_heldtbc;
1600 zst->zst_heldtbc = 0;
1601 }
1602
1603 /* Output the next character in the buffer, if any. */
1604 if (zst->zst_tbc > 0) {
1605 zs_write_data(cs, *zst->zst_tba);
1606 zst->zst_tbc--;
1607 zst->zst_tba++;
1608 } else {
1609 /* Disable transmit completion interrupts if necessary. */
1610 if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
1611 CLR(cs->cs_preg[1], ZSWR1_TIE);
1612 cs->cs_creg[1] = cs->cs_preg[1];
1613 zs_write_reg(cs, 1, cs->cs_creg[1]);
1614 }
1615 if (zst->zst_tx_busy) {
1616 zst->zst_tx_busy = 0;
1617 zst->zst_tx_done = 1;
1618 cs->cs_softreq = 1;
1619 }
1620 }
1621 }
1622
1623 /*
1624 * Status Change interrupt.
1625 * Called at splzs() and with the channel lock held.
1626 */
1627 static void
1628 zstty_stint(cs, force)
1629 struct zs_chanstate *cs;
1630 int force;
1631 {
1632 struct zstty_softc *zst = cs->cs_private;
1633 u_char rr0, delta;
1634
1635 rr0 = zs_read_csr(cs);
1636 zs_write_csr(cs, ZSWR0_RESET_STATUS);
1637
1638 /*
1639 * Check here for console break, so that we can abort
1640 * even when interrupts are locking up the machine.
1641 */
1642 if (ISSET(rr0, ZSRR0_BREAK))
1643 cn_check_magic(zst->zst_tty->t_dev, CNC_BREAK, zstty_cnm_state);
1644
1645 if (!force)
1646 delta = rr0 ^ cs->cs_rr0;
1647 else
1648 delta = cs->cs_rr0_mask;
1649 cs->cs_rr0 = rr0;
1650
1651 if (ISSET(delta, cs->cs_rr0_mask)) {
1652 SET(cs->cs_rr0_delta, delta);
1653
1654 /*
1655 * Pulse-per-second clock signal on edge of DCD?
1656 */
1657 if (ISSET(delta, zst->zst_ppsmask)) {
1658 struct timeval tv;
1659 if (ISSET(rr0, zst->zst_ppsmask) == zst->zst_ppsassert) {
1660 /* XXX nanotime() */
1661 microtime(&tv);
1662 TIMEVAL_TO_TIMESPEC(&tv,
1663 &zst->ppsinfo.assert_timestamp);
1664 if (zst->ppsparam.mode & PPS_OFFSETASSERT) {
1665 timespecadd(&zst->ppsinfo.assert_timestamp,
1666 &zst->ppsparam.assert_offset,
1667 &zst->ppsinfo.assert_timestamp);
1668 }
1669
1670 #ifdef PPS_SYNC
1671 if (pps_kc_hardpps_source == zst &&
1672 pps_kc_hardpps_mode & PPS_CAPTUREASSERT) {
1673 hardpps(&tv, tv.tv_usec);
1674 }
1675 #endif
1676 zst->ppsinfo.assert_sequence++;
1677 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1678 } else if (ISSET(rr0, zst->zst_ppsmask) ==
1679 zst->zst_ppsclear) {
1680 /* XXX nanotime() */
1681 microtime(&tv);
1682 TIMEVAL_TO_TIMESPEC(&tv,
1683 &zst->ppsinfo.clear_timestamp);
1684 if (zst->ppsparam.mode & PPS_OFFSETCLEAR) {
1685 timespecadd(&zst->ppsinfo.clear_timestamp,
1686 &zst->ppsparam.clear_offset,
1687 &zst->ppsinfo.clear_timestamp);
1688 }
1689
1690 #ifdef PPS_SYNC
1691 if (pps_kc_hardpps_source == zst &&
1692 pps_kc_hardpps_mode & PPS_CAPTURECLEAR) {
1693 hardpps(&tv, tv.tv_usec);
1694 }
1695 #endif
1696 zst->ppsinfo.clear_sequence++;
1697 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1698 }
1699 }
1700
1701 /*
1702 * Stop output immediately if we lose the output
1703 * flow control signal or carrier detect.
1704 */
1705 if (ISSET(~rr0, cs->cs_rr0_mask)) {
1706 zst->zst_tbc = 0;
1707 zst->zst_heldtbc = 0;
1708 }
1709
1710 zst->zst_st_check = 1;
1711 cs->cs_softreq = 1;
1712 }
1713 }
1714
1715 void
1716 zstty_diag(arg)
1717 void *arg;
1718 {
1719 struct zstty_softc *zst = arg;
1720 int overflows, floods;
1721 int s;
1722
1723 s = splzs();
1724 overflows = zst->zst_overflows;
1725 zst->zst_overflows = 0;
1726 floods = zst->zst_floods;
1727 zst->zst_floods = 0;
1728 zst->zst_errors = 0;
1729 splx(s);
1730
1731 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1732 zst->zst_dev.dv_xname,
1733 overflows, overflows == 1 ? "" : "s",
1734 floods, floods == 1 ? "" : "s");
1735 }
1736
1737 integrate void
1738 zstty_rxsoft(zst, tp)
1739 struct zstty_softc *zst;
1740 struct tty *tp;
1741 {
1742 struct zs_chanstate *cs = zst->zst_cs;
1743 int (*rint)(int, struct tty *) = tp->t_linesw->l_rint;
1744 u_char *get, *end;
1745 u_int cc, scc;
1746 u_char rr1;
1747 int code;
1748 int s;
1749
1750 end = zst->zst_ebuf;
1751 get = zst->zst_rbget;
1752 scc = cc = zstty_rbuf_size - zst->zst_rbavail;
1753
1754 if (cc == zstty_rbuf_size) {
1755 zst->zst_floods++;
1756 if (zst->zst_errors++ == 0)
1757 callout_reset(&zst->zst_diag_ch, 60 * hz,
1758 zstty_diag, zst);
1759 }
1760
1761 /* If not yet open, drop the entire buffer content here */
1762 if (!ISSET(tp->t_state, TS_ISOPEN)) {
1763 get += cc << 1;
1764 if (get >= end)
1765 get -= zstty_rbuf_size << 1;
1766 cc = 0;
1767 }
1768 while (cc) {
1769 code = get[0];
1770 rr1 = get[1];
1771 if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
1772 if (ISSET(rr1, ZSRR1_DO)) {
1773 zst->zst_overflows++;
1774 if (zst->zst_errors++ == 0)
1775 callout_reset(&zst->zst_diag_ch,
1776 60 * hz, zstty_diag, zst);
1777 }
1778 if (ISSET(rr1, ZSRR1_FE))
1779 SET(code, TTY_FE);
1780 if (ISSET(rr1, ZSRR1_PE))
1781 SET(code, TTY_PE);
1782 }
1783 if ((*rint)(code, tp) == -1) {
1784 /*
1785 * The line discipline's buffer is out of space.
1786 */
1787 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1788 /*
1789 * We're either not using flow control, or the
1790 * line discipline didn't tell us to block for
1791 * some reason. Either way, we have no way to
1792 * know when there's more space available, so
1793 * just drop the rest of the data.
1794 */
1795 get += cc << 1;
1796 if (get >= end)
1797 get -= zstty_rbuf_size << 1;
1798 cc = 0;
1799 } else {
1800 /*
1801 * Don't schedule any more receive processing
1802 * until the line discipline tells us there's
1803 * space available (through comhwiflow()).
1804 * Leave the rest of the data in the input
1805 * buffer.
1806 */
1807 SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1808 }
1809 break;
1810 }
1811 get += 2;
1812 if (get >= end)
1813 get = zst->zst_rbuf;
1814 cc--;
1815 }
1816
1817 if (cc != scc) {
1818 zst->zst_rbget = get;
1819 s = splzs();
1820 simple_lock(&cs->cs_lock);
1821 cc = zst->zst_rbavail += scc - cc;
1822 /* Buffers should be ok again, release possible block. */
1823 if (cc >= zst->zst_r_lowat) {
1824 if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
1825 CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1826 SET(cs->cs_preg[1], ZSWR1_RIE);
1827 cs->cs_creg[1] = cs->cs_preg[1];
1828 zs_write_reg(cs, 1, cs->cs_creg[1]);
1829 }
1830 if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
1831 CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1832 zs_hwiflow(zst);
1833 }
1834 }
1835 simple_unlock(&cs->cs_lock);
1836 splx(s);
1837 }
1838
1839 #if 0
1840 printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1841 #endif
1842 }
1843
1844 integrate void
1845 zstty_txsoft(zst, tp)
1846 struct zstty_softc *zst;
1847 struct tty *tp;
1848 {
1849 struct zs_chanstate *cs = zst->zst_cs;
1850 int s;
1851
1852 s = splzs();
1853 simple_lock(&cs->cs_lock);
1854 CLR(tp->t_state, TS_BUSY);
1855 if (ISSET(tp->t_state, TS_FLUSH))
1856 CLR(tp->t_state, TS_FLUSH);
1857 else
1858 ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
1859 simple_unlock(&cs->cs_lock);
1860 splx(s);
1861 (*tp->t_linesw->l_start)(tp);
1862 }
1863
1864 integrate void
1865 zstty_stsoft(zst, tp)
1866 struct zstty_softc *zst;
1867 struct tty *tp;
1868 {
1869 struct zs_chanstate *cs = zst->zst_cs;
1870 u_char rr0, delta;
1871 int s;
1872
1873 s = splzs();
1874 simple_lock(&cs->cs_lock);
1875 rr0 = cs->cs_rr0;
1876 delta = cs->cs_rr0_delta;
1877 cs->cs_rr0_delta = 0;
1878 simple_unlock(&cs->cs_lock);
1879 splx(s);
1880
1881 if (ISSET(delta, cs->cs_rr0_dcd)) {
1882 /*
1883 * Inform the tty layer that carrier detect changed.
1884 */
1885 (void) (*tp->t_linesw->l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
1886 }
1887
1888 if (ISSET(delta, cs->cs_rr0_cts)) {
1889 /* Block or unblock output according to flow control. */
1890 if (ISSET(rr0, cs->cs_rr0_cts)) {
1891 zst->zst_tx_stopped = 0;
1892 (*tp->t_linesw->l_start)(tp);
1893 } else {
1894 zst->zst_tx_stopped = 1;
1895 }
1896 }
1897 }
1898
1899 /*
1900 * Software interrupt. Called at zssoft
1901 *
1902 * The main job to be done here is to empty the input ring
1903 * by passing its contents up to the tty layer. The ring is
1904 * always emptied during this operation, therefore the ring
1905 * must not be larger than the space after "high water" in
1906 * the tty layer, or the tty layer might drop our input.
1907 *
1908 * Note: an "input blockage" condition is assumed to exist if
1909 * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
1910 */
1911 static void
1912 zstty_softint(cs)
1913 struct zs_chanstate *cs;
1914 {
1915 struct zstty_softc *zst = cs->cs_private;
1916 struct tty *tp = zst->zst_tty;
1917 int s;
1918
1919 s = spltty();
1920
1921 if (zst->zst_rx_ready) {
1922 zst->zst_rx_ready = 0;
1923 zstty_rxsoft(zst, tp);
1924 }
1925
1926 if (zst->zst_st_check) {
1927 zst->zst_st_check = 0;
1928 zstty_stsoft(zst, tp);
1929 }
1930
1931 if (zst->zst_tx_done) {
1932 zst->zst_tx_done = 0;
1933 zstty_txsoft(zst, tp);
1934 }
1935
1936 splx(s);
1937 }
1938
1939 struct zsops zsops_tty = {
1940 zstty_rxint, /* receive char available */
1941 zstty_stint, /* external/status */
1942 zstty_txint, /* xmit buffer empty */
1943 zstty_softint, /* process software interrupt */
1944 };
1945