z8530tty.c revision 1.104 1 /* $NetBSD: z8530tty.c,v 1.104 2006/03/28 17:38:30 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999
5 * Charles M. Hannum. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Charles M. Hannum.
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This software was developed by the Computer Systems Engineering group
38 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
39 * contributed to Berkeley.
40 *
41 * All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Lawrence Berkeley Laboratory.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)zs.c 8.1 (Berkeley) 7/19/93
71 */
72
73 /*
74 * Copyright (c) 1994 Gordon W. Ross
75 *
76 * This software was developed by the Computer Systems Engineering group
77 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
78 * contributed to Berkeley.
79 *
80 * All advertising materials mentioning features or use of this software
81 * must display the following acknowledgement:
82 * This product includes software developed by the University of
83 * California, Lawrence Berkeley Laboratory.
84 *
85 * Redistribution and use in source and binary forms, with or without
86 * modification, are permitted provided that the following conditions
87 * are met:
88 * 1. Redistributions of source code must retain the above copyright
89 * notice, this list of conditions and the following disclaimer.
90 * 2. Redistributions in binary form must reproduce the above copyright
91 * notice, this list of conditions and the following disclaimer in the
92 * documentation and/or other materials provided with the distribution.
93 * 3. All advertising materials mentioning features or use of this software
94 * must display the following acknowledgement:
95 * This product includes software developed by the University of
96 * California, Berkeley and its contributors.
97 * 4. Neither the name of the University nor the names of its contributors
98 * may be used to endorse or promote products derived from this software
99 * without specific prior written permission.
100 *
101 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
102 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
103 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
104 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
105 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
106 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
107 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
108 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
109 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
110 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
111 * SUCH DAMAGE.
112 *
113 * @(#)zs.c 8.1 (Berkeley) 7/19/93
114 */
115
116 /*
117 * Zilog Z8530 Dual UART driver (tty interface)
118 *
119 * This is the "slave" driver that will be attached to
120 * the "zsc" driver for plain "tty" async. serial lines.
121 *
122 * Credits, history:
123 *
124 * The original version of this code was the sparc/dev/zs.c driver
125 * as distributed with the Berkeley 4.4 Lite release. Since then,
126 * Gordon Ross reorganized the code into the current parent/child
127 * driver scheme, separating the Sun keyboard and mouse support
128 * into independent child drivers.
129 *
130 * RTS/CTS flow-control support was a collaboration of:
131 * Gordon Ross <gwr (at) NetBSD.org>,
132 * Bill Studenmund <wrstuden (at) loki.stanford.edu>
133 * Ian Dall <Ian.Dall (at) dsto.defence.gov.au>
134 *
135 * The driver was massively overhauled in November 1997 by Charles Hannum,
136 * fixing *many* bugs, and substantially improving performance.
137 */
138
139 #include <sys/cdefs.h>
140 __KERNEL_RCSID(0, "$NetBSD: z8530tty.c,v 1.104 2006/03/28 17:38:30 thorpej Exp $");
141
142 #include "opt_kgdb.h"
143 #include "opt_ntp.h"
144
145 #include <sys/param.h>
146 #include <sys/systm.h>
147 #include <sys/proc.h>
148 #include <sys/device.h>
149 #include <sys/conf.h>
150 #include <sys/file.h>
151 #include <sys/ioctl.h>
152 #include <sys/malloc.h>
153 #include <sys/timepps.h>
154 #include <sys/tty.h>
155 #include <sys/time.h>
156 #include <sys/kernel.h>
157 #include <sys/syslog.h>
158
159 #include <dev/ic/z8530reg.h>
160 #include <machine/z8530var.h>
161
162 #include <dev/cons.h>
163
164 #include "locators.h"
165
166 /*
167 * How many input characters we can buffer.
168 * The port-specific var.h may override this.
169 * Note: must be a power of two!
170 */
171 #ifndef ZSTTY_RING_SIZE
172 #define ZSTTY_RING_SIZE 2048
173 #endif
174
175 static struct cnm_state zstty_cnm_state;
176 /*
177 * Make this an option variable one can patch.
178 * But be warned: this must be a power of 2!
179 */
180 u_int zstty_rbuf_size = ZSTTY_RING_SIZE;
181
182 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
183 u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
184 u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;
185
186 static int zsppscap =
187 PPS_TSFMT_TSPEC |
188 PPS_CAPTUREASSERT |
189 PPS_CAPTURECLEAR |
190 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
191
192 struct zstty_softc {
193 struct device zst_dev; /* required first: base device */
194 struct tty *zst_tty;
195 struct zs_chanstate *zst_cs;
196
197 struct callout zst_diag_ch;
198
199 u_int zst_overflows,
200 zst_floods,
201 zst_errors;
202
203 int zst_hwflags, /* see z8530var.h */
204 zst_swflags; /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
205
206 u_int zst_r_hiwat,
207 zst_r_lowat;
208 u_char *volatile zst_rbget,
209 *volatile zst_rbput;
210 volatile u_int zst_rbavail;
211 u_char *zst_rbuf,
212 *zst_ebuf;
213
214 /*
215 * The transmit byte count and address are used for pseudo-DMA
216 * output in the hardware interrupt code. PDMA can be suspended
217 * to get pending changes done; heldtbc is used for this. It can
218 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
219 */
220 u_char *zst_tba; /* transmit buffer address */
221 u_int zst_tbc, /* transmit byte count */
222 zst_heldtbc; /* held tbc while xmission stopped */
223
224 /* Flags to communicate with zstty_softint() */
225 volatile u_char zst_rx_flags, /* receiver blocked */
226 #define RX_TTY_BLOCKED 0x01
227 #define RX_TTY_OVERFLOWED 0x02
228 #define RX_IBUF_BLOCKED 0x04
229 #define RX_IBUF_OVERFLOWED 0x08
230 #define RX_ANY_BLOCK 0x0f
231 zst_tx_busy, /* working on an output chunk */
232 zst_tx_done, /* done with one output chunk */
233 zst_tx_stopped, /* H/W level stop (lost CTS) */
234 zst_st_check, /* got a status interrupt */
235 zst_rx_ready;
236
237 /* PPS signal on DCD, with or without inkernel clock disciplining */
238 u_char zst_ppsmask; /* pps signal mask */
239 u_char zst_ppsassert; /* pps leading edge */
240 u_char zst_ppsclear; /* pps trailing edge */
241 pps_info_t ppsinfo;
242 pps_params_t ppsparam;
243 };
244
245 /* Definition of the driver for autoconfig. */
246 static int zstty_match(struct device *, struct cfdata *, void *);
247 static void zstty_attach(struct device *, struct device *, void *);
248
249 CFATTACH_DECL(zstty, sizeof(struct zstty_softc),
250 zstty_match, zstty_attach, NULL, NULL);
251
252 extern struct cfdriver zstty_cd;
253
254 dev_type_open(zsopen);
255 dev_type_close(zsclose);
256 dev_type_read(zsread);
257 dev_type_write(zswrite);
258 dev_type_ioctl(zsioctl);
259 dev_type_stop(zsstop);
260 dev_type_tty(zstty);
261 dev_type_poll(zspoll);
262
263 const struct cdevsw zstty_cdevsw = {
264 zsopen, zsclose, zsread, zswrite, zsioctl,
265 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
266 };
267
268 struct zsops zsops_tty;
269
270 static void zs_shutdown(struct zstty_softc *);
271 static void zsstart(struct tty *);
272 static int zsparam(struct tty *, struct termios *);
273 static void zs_modem(struct zstty_softc *, int);
274 static void tiocm_to_zs(struct zstty_softc *, u_long, int);
275 static int zs_to_tiocm(struct zstty_softc *);
276 static int zshwiflow(struct tty *, int);
277 static void zs_hwiflow(struct zstty_softc *);
278 static void zs_maskintr(struct zstty_softc *);
279
280 /* Low-level routines. */
281 static void zstty_rxint (struct zs_chanstate *);
282 static void zstty_stint (struct zs_chanstate *, int);
283 static void zstty_txint (struct zs_chanstate *);
284 static void zstty_softint(struct zs_chanstate *);
285
286 #define ZSUNIT(x) (minor(x) & 0x7ffff)
287 #define ZSDIALOUT(x) (minor(x) & 0x80000)
288
289 struct tty *zstty_get_tty_from_dev(struct device *);
290
291 /*
292 * XXX get the (struct tty *) out of a (struct device *) we trust to be a
293 * (struct zstty_softc *) - needed by sparc/dev/zs.c, sparc64/dev/zs.c,
294 * sun3/dev/zs.c and sun2/dev/zs.c will probably need it at some point
295 */
296
297 struct tty *
298 zstty_get_tty_from_dev(struct device *dev)
299 {
300 struct zstty_softc *sc = (struct zstty_softc *)dev;
301
302 return sc->zst_tty;
303 }
304
305 /*
306 * zstty_match: how is this zs channel configured?
307 */
308 int
309 zstty_match(parent, cf, aux)
310 struct device *parent;
311 struct cfdata *cf;
312 void *aux;
313 {
314 struct zsc_attach_args *args = aux;
315
316 /* Exact match is better than wildcard. */
317 if (cf->zsccf_channel == args->channel)
318 return 2;
319
320 /* This driver accepts wildcard. */
321 if (cf->zsccf_channel == ZSCCF_CHANNEL_DEFAULT)
322 return 1;
323
324 return 0;
325 }
326
327 void
328 zstty_attach(parent, self, aux)
329 struct device *parent, *self;
330 void *aux;
331
332 {
333 struct zsc_softc *zsc = (void *) parent;
334 struct zstty_softc *zst = (void *) self;
335 struct cfdata *cf = self->dv_cfdata;
336 struct zsc_attach_args *args = aux;
337 struct zs_chanstate *cs;
338 struct tty *tp;
339 int channel, s, tty_unit;
340 dev_t dev;
341 const char *i, *o;
342 int dtr_on;
343 int resetbit;
344
345 callout_init(&zst->zst_diag_ch);
346 cn_init_magic(&zstty_cnm_state);
347
348 tty_unit = device_unit(&zst->zst_dev);
349 channel = args->channel;
350 cs = zsc->zsc_cs[channel];
351 cs->cs_private = zst;
352 cs->cs_ops = &zsops_tty;
353
354 zst->zst_cs = cs;
355 zst->zst_swflags = cf->cf_flags; /* softcar, etc. */
356 zst->zst_hwflags = args->hwflags;
357 dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), tty_unit);
358
359 if (zst->zst_swflags)
360 printf(" flags 0x%x", zst->zst_swflags);
361
362 /*
363 * Check whether we serve as a console device.
364 * XXX - split console input/output channels aren't
365 * supported yet on /dev/console
366 */
367 i = o = NULL;
368 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
369 i = "input";
370 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
371 args->consdev->cn_dev = dev;
372 cn_tab->cn_pollc = args->consdev->cn_pollc;
373 cn_tab->cn_getc = args->consdev->cn_getc;
374 }
375 cn_tab->cn_dev = dev;
376 /* Set console magic to BREAK */
377 cn_set_magic("\047\001");
378 }
379 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
380 o = "output";
381 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
382 cn_tab->cn_putc = args->consdev->cn_putc;
383 }
384 cn_tab->cn_dev = dev;
385 }
386 if (i != NULL || o != NULL)
387 printf(" (console %s)", i ? (o ? "i/o" : i) : o);
388
389 #ifdef KGDB
390 if (zs_check_kgdb(cs, dev)) {
391 /*
392 * Allow kgdb to "take over" this port. Returns true
393 * if this serial port is in-use by kgdb.
394 */
395 printf(" (kgdb)\n");
396 /*
397 * This is the kgdb port (exclusive use)
398 * so skip the normal attach code.
399 */
400 return;
401 }
402 #endif
403 printf("\n");
404
405 tp = ttymalloc();
406 tp->t_dev = dev;
407 tp->t_oproc = zsstart;
408 tp->t_param = zsparam;
409 tp->t_hwiflow = zshwiflow;
410 tty_attach(tp);
411
412 zst->zst_tty = tp;
413 zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK);
414 zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
415 /* Disable the high water mark. */
416 zst->zst_r_hiwat = 0;
417 zst->zst_r_lowat = 0;
418 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
419 zst->zst_rbavail = zstty_rbuf_size;
420
421 /* if there are no enable/disable functions, assume the device
422 is always enabled */
423 if (!cs->enable)
424 cs->enabled = 1;
425
426 /*
427 * Hardware init
428 */
429 dtr_on = 0;
430 resetbit = 0;
431 if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
432 /* Call zsparam similar to open. */
433 struct termios t;
434
435 /* Wait a while for previous console output to complete */
436 DELAY(10000);
437
438 /* Setup the "new" parameters in t. */
439 t.c_ispeed = 0;
440 t.c_ospeed = cs->cs_defspeed;
441 t.c_cflag = cs->cs_defcflag;
442
443 /*
444 * Turn on receiver and status interrupts.
445 * We defer the actual write of the register to zsparam(),
446 * but we must make sure status interrupts are turned on by
447 * the time zsparam() reads the initial rr0 state.
448 */
449 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
450
451 /* Make sure zsparam will see changes. */
452 tp->t_ospeed = 0;
453 (void) zsparam(tp, &t);
454
455 /* Make sure DTR is on now. */
456 dtr_on = 1;
457
458 } else if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_NORESET)) {
459 /* Not the console; may need reset. */
460 resetbit = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
461 }
462
463 s = splzs();
464 simple_lock(&cs->cs_lock);
465 if (resetbit)
466 zs_write_reg(cs, 9, resetbit);
467 zs_modem(zst, dtr_on);
468 simple_unlock(&cs->cs_lock);
469 splx(s);
470 }
471
472
473 /*
474 * Return pointer to our tty.
475 */
476 struct tty *
477 zstty(dev)
478 dev_t dev;
479 {
480 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
481
482 return (zst->zst_tty);
483 }
484
485
486 void
487 zs_shutdown(zst)
488 struct zstty_softc *zst;
489 {
490 struct zs_chanstate *cs = zst->zst_cs;
491 struct tty *tp = zst->zst_tty;
492 int s;
493
494 s = splzs();
495 simple_lock(&cs->cs_lock);
496
497 /* If we were asserting flow control, then deassert it. */
498 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
499 zs_hwiflow(zst);
500
501 /* Clear any break condition set with TIOCSBRK. */
502 zs_break(cs, 0);
503
504 /* Turn off PPS capture on last close. */
505 zst->zst_ppsmask = 0;
506 zst->ppsparam.mode = 0;
507
508 /*
509 * Hang up if necessary. Wait a bit, so the other side has time to
510 * notice even if we immediately open the port again.
511 */
512 if (ISSET(tp->t_cflag, HUPCL)) {
513 zs_modem(zst, 0);
514 simple_unlock(&cs->cs_lock);
515 splx(s);
516 /*
517 * XXX - another process is not prevented from opening
518 * the device during our sleep.
519 */
520 (void) tsleep(cs, TTIPRI, ttclos, hz);
521 /* Re-check state in case we were opened during our sleep */
522 if (ISSET(tp->t_state, TS_ISOPEN) || tp->t_wopen != 0)
523 return;
524
525 s = splzs();
526 simple_lock(&cs->cs_lock);
527 }
528
529 /* Turn off interrupts if not the console. */
530 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
531 CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
532 cs->cs_creg[1] = cs->cs_preg[1];
533 zs_write_reg(cs, 1, cs->cs_creg[1]);
534 }
535
536 /* Call the power management hook. */
537 if (cs->disable) {
538 #ifdef DIAGNOSTIC
539 if (!cs->enabled)
540 panic("zs_shutdown: not enabled?");
541 #endif
542 (*cs->disable)(zst->zst_cs);
543 }
544
545 simple_unlock(&cs->cs_lock);
546 splx(s);
547 }
548
549 /*
550 * Open a zs serial (tty) port.
551 */
552 int
553 zsopen(dev, flags, mode, l)
554 dev_t dev;
555 int flags;
556 int mode;
557 struct lwp *l;
558 {
559 struct zstty_softc *zst;
560 struct zs_chanstate *cs;
561 struct tty *tp;
562 struct proc *p;
563 int s, s2;
564 int error;
565
566 zst = device_lookup(&zstty_cd, ZSUNIT(dev));
567 if (zst == NULL)
568 return (ENXIO);
569
570 tp = zst->zst_tty;
571 cs = zst->zst_cs;
572 p = l->l_proc;
573
574 /* If KGDB took the line, then tp==NULL */
575 if (tp == NULL)
576 return (EBUSY);
577
578 if (ISSET(tp->t_state, TS_ISOPEN) &&
579 ISSET(tp->t_state, TS_XCLUDE) &&
580 suser(p->p_ucred, &p->p_acflag) != 0)
581 return (EBUSY);
582
583 s = spltty();
584
585 /*
586 * Do the following iff this is a first open.
587 */
588 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
589 struct termios t;
590
591 tp->t_dev = dev;
592
593 /* Call the power management hook. */
594 if (cs->enable) {
595 if ((*cs->enable)(cs)) {
596 splx(s);
597 printf("%s: device enable failed\n",
598 zst->zst_dev.dv_xname);
599 return (EIO);
600 }
601 }
602
603 /*
604 * Initialize the termios status to the defaults. Add in the
605 * sticky bits from TIOCSFLAGS.
606 */
607 t.c_ispeed = 0;
608 t.c_ospeed = cs->cs_defspeed;
609 t.c_cflag = cs->cs_defcflag;
610 if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
611 SET(t.c_cflag, CLOCAL);
612 if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
613 SET(t.c_cflag, CRTSCTS);
614 if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
615 SET(t.c_cflag, CDTRCTS);
616 if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
617 SET(t.c_cflag, MDMBUF);
618
619 s2 = splzs();
620 simple_lock(&cs->cs_lock);
621
622 /*
623 * Turn on receiver and status interrupts.
624 * We defer the actual write of the register to zsparam(),
625 * but we must make sure status interrupts are turned on by
626 * the time zsparam() reads the initial rr0 state.
627 */
628 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
629
630 /* Clear PPS capture state on first open. */
631 zst->zst_ppsmask = 0;
632 zst->ppsparam.mode = 0;
633
634 simple_unlock(&cs->cs_lock);
635 splx(s2);
636
637 /* Make sure zsparam will see changes. */
638 tp->t_ospeed = 0;
639 (void) zsparam(tp, &t);
640
641 /*
642 * Note: zsparam has done: cflag, ispeed, ospeed
643 * so we just need to do: iflag, oflag, lflag, cc
644 * For "raw" mode, just leave all zeros.
645 */
646 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
647 tp->t_iflag = TTYDEF_IFLAG;
648 tp->t_oflag = TTYDEF_OFLAG;
649 tp->t_lflag = TTYDEF_LFLAG;
650 } else {
651 tp->t_iflag = 0;
652 tp->t_oflag = 0;
653 tp->t_lflag = 0;
654 }
655 ttychars(tp);
656 ttsetwater(tp);
657
658 s2 = splzs();
659 simple_lock(&cs->cs_lock);
660
661 /*
662 * Turn on DTR. We must always do this, even if carrier is not
663 * present, because otherwise we'd have to use TIOCSDTR
664 * immediately after setting CLOCAL, which applications do not
665 * expect. We always assert DTR while the device is open
666 * unless explicitly requested to deassert it.
667 */
668 zs_modem(zst, 1);
669
670 /* Clear the input ring, and unblock. */
671 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
672 zst->zst_rbavail = zstty_rbuf_size;
673 zs_iflush(cs);
674 CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
675 zs_hwiflow(zst);
676
677 simple_unlock(&cs->cs_lock);
678 splx(s2);
679 }
680
681 splx(s);
682
683 error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
684 if (error)
685 goto bad;
686
687 error = (*tp->t_linesw->l_open)(dev, tp);
688 if (error)
689 goto bad;
690
691 return (0);
692
693 bad:
694 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
695 /*
696 * We failed to open the device, and nobody else had it opened.
697 * Clean up the state as appropriate.
698 */
699 zs_shutdown(zst);
700 }
701
702 return (error);
703 }
704
705 /*
706 * Close a zs serial port.
707 */
708 int
709 zsclose(dev, flags, mode, l)
710 dev_t dev;
711 int flags;
712 int mode;
713 struct lwp *l;
714 {
715 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
716 struct tty *tp = zst->zst_tty;
717
718 /* XXX This is for cons.c. */
719 if (!ISSET(tp->t_state, TS_ISOPEN))
720 return 0;
721
722 (*tp->t_linesw->l_close)(tp, flags);
723 ttyclose(tp);
724
725 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
726 /*
727 * Although we got a last close, the device may still be in
728 * use; e.g. if this was the dialout node, and there are still
729 * processes waiting for carrier on the non-dialout node.
730 */
731 zs_shutdown(zst);
732 }
733
734 return (0);
735 }
736
737 /*
738 * Read/write zs serial port.
739 */
740 int
741 zsread(dev, uio, flags)
742 dev_t dev;
743 struct uio *uio;
744 int flags;
745 {
746 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
747 struct tty *tp = zst->zst_tty;
748
749 return ((*tp->t_linesw->l_read)(tp, uio, flags));
750 }
751
752 int
753 zswrite(dev, uio, flags)
754 dev_t dev;
755 struct uio *uio;
756 int flags;
757 {
758 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
759 struct tty *tp = zst->zst_tty;
760
761 return ((*tp->t_linesw->l_write)(tp, uio, flags));
762 }
763
764 int
765 zspoll(dev, events, l)
766 dev_t dev;
767 int events;
768 struct lwp *l;
769 {
770 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
771 struct tty *tp = zst->zst_tty;
772
773 return ((*tp->t_linesw->l_poll)(tp, events, l));
774 }
775
776 int
777 zsioctl(dev, cmd, data, flag, l)
778 dev_t dev;
779 u_long cmd;
780 caddr_t data;
781 int flag;
782 struct lwp *l;
783 {
784 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
785 struct zs_chanstate *cs = zst->zst_cs;
786 struct tty *tp = zst->zst_tty;
787 struct proc *p = l->l_proc;
788 int error;
789 int s;
790
791 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
792 if (error != EPASSTHROUGH)
793 return (error);
794
795 error = ttioctl(tp, cmd, data, flag, l);
796 if (error != EPASSTHROUGH)
797 return (error);
798
799 #ifdef ZS_MD_IOCTL
800 error = ZS_MD_IOCTL(cs, cmd, data);
801 if (error != EPASSTHROUGH)
802 return (error);
803 #endif /* ZS_MD_IOCTL */
804
805 error = 0;
806
807 s = splzs();
808 simple_lock(&cs->cs_lock);
809
810 switch (cmd) {
811 case TIOCSBRK:
812 zs_break(cs, 1);
813 break;
814
815 case TIOCCBRK:
816 zs_break(cs, 0);
817 break;
818
819 case TIOCGFLAGS:
820 *(int *)data = zst->zst_swflags;
821 break;
822
823 case TIOCSFLAGS:
824 error = suser(p->p_ucred, &p->p_acflag);
825 if (error)
826 break;
827 zst->zst_swflags = *(int *)data;
828 break;
829
830 case TIOCSDTR:
831 zs_modem(zst, 1);
832 break;
833
834 case TIOCCDTR:
835 zs_modem(zst, 0);
836 break;
837
838 case TIOCMSET:
839 case TIOCMBIS:
840 case TIOCMBIC:
841 tiocm_to_zs(zst, cmd, *(int *)data);
842 break;
843
844 case TIOCMGET:
845 *(int *)data = zs_to_tiocm(zst);
846 break;
847
848 case PPS_IOC_CREATE:
849 break;
850
851 case PPS_IOC_DESTROY:
852 break;
853
854 case PPS_IOC_GETPARAMS: {
855 pps_params_t *pp;
856 pp = (pps_params_t *)data;
857 *pp = zst->ppsparam;
858 break;
859 }
860
861 case PPS_IOC_SETPARAMS: {
862 pps_params_t *pp;
863 int mode;
864 if (cs->cs_rr0_pps == 0) {
865 error = EINVAL;
866 break;
867 }
868 pp = (pps_params_t *)data;
869 if (pp->mode & ~zsppscap) {
870 error = EINVAL;
871 break;
872 }
873 zst->ppsparam = *pp;
874 /*
875 * compute masks from user-specified timestamp state.
876 */
877 mode = zst->ppsparam.mode;
878 switch (mode & PPS_CAPTUREBOTH) {
879 case 0:
880 zst->zst_ppsmask = 0;
881 break;
882
883 case PPS_CAPTUREASSERT:
884 zst->zst_ppsmask = ZSRR0_DCD;
885 zst->zst_ppsassert = ZSRR0_DCD;
886 zst->zst_ppsclear = -1;
887 break;
888
889 case PPS_CAPTURECLEAR:
890 zst->zst_ppsmask = ZSRR0_DCD;
891 zst->zst_ppsassert = -1;
892 zst->zst_ppsclear = 0;
893 break;
894
895 case PPS_CAPTUREBOTH:
896 zst->zst_ppsmask = ZSRR0_DCD;
897 zst->zst_ppsassert = ZSRR0_DCD;
898 zst->zst_ppsclear = 0;
899 break;
900
901 default:
902 error = EINVAL;
903 break;
904 }
905
906 /*
907 * Now update interrupts.
908 */
909 zs_maskintr(zst);
910 /*
911 * If nothing is being transmitted, set up new current values,
912 * else mark them as pending.
913 */
914 if (!cs->cs_heldchange) {
915 if (zst->zst_tx_busy) {
916 zst->zst_heldtbc = zst->zst_tbc;
917 zst->zst_tbc = 0;
918 cs->cs_heldchange = 1;
919 } else
920 zs_loadchannelregs(cs);
921 }
922
923 break;
924 }
925
926 case PPS_IOC_GETCAP:
927 *(int *)data = zsppscap;
928 break;
929
930 case PPS_IOC_FETCH: {
931 pps_info_t *pi;
932 pi = (pps_info_t *)data;
933 *pi = zst->ppsinfo;
934 break;
935 }
936
937 #ifdef PPS_SYNC
938 case PPS_IOC_KCBIND: {
939 int edge = (*(int *)data) & PPS_CAPTUREBOTH;
940
941 if (edge == 0) {
942 /*
943 * remove binding for this source; ignore
944 * the request if this is not the current
945 * hardpps source
946 */
947 if (pps_kc_hardpps_source == zst) {
948 pps_kc_hardpps_source = NULL;
949 pps_kc_hardpps_mode = 0;
950 }
951 } else {
952 /*
953 * bind hardpps to this source, replacing any
954 * previously specified source or edges
955 */
956 pps_kc_hardpps_source = zst;
957 pps_kc_hardpps_mode = edge;
958 }
959 break;
960 }
961 #endif /* PPS_SYNC */
962
963 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
964 if (cs->cs_rr0_pps == 0) {
965 error = EINVAL;
966 break;
967 }
968 /*
969 * Some GPS clocks models use the falling rather than
970 * rising edge as the on-the-second signal.
971 * The old API has no way to specify PPS polarity.
972 */
973 zst->zst_ppsmask = ZSRR0_DCD;
974 #ifndef PPS_TRAILING_EDGE
975 zst->zst_ppsassert = ZSRR0_DCD;
976 zst->zst_ppsclear = -1;
977 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
978 &zst->ppsinfo.assert_timestamp);
979 #else
980 zst->zst_ppsassert = -1;
981 zst->zst_ppsclear = 01;
982 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
983 &zst->ppsinfo.clear_timestamp);
984 #endif
985 /*
986 * Now update interrupts.
987 */
988 zs_maskintr(zst);
989 /*
990 * If nothing is being transmitted, set up new current values,
991 * else mark them as pending.
992 */
993 if (!cs->cs_heldchange) {
994 if (zst->zst_tx_busy) {
995 zst->zst_heldtbc = zst->zst_tbc;
996 zst->zst_tbc = 0;
997 cs->cs_heldchange = 1;
998 } else
999 zs_loadchannelregs(cs);
1000 }
1001
1002 break;
1003
1004 default:
1005 error = EPASSTHROUGH;
1006 break;
1007 }
1008
1009 simple_unlock(&cs->cs_lock);
1010 splx(s);
1011
1012 return (error);
1013 }
1014
1015 /*
1016 * Start or restart transmission.
1017 */
1018 static void
1019 zsstart(tp)
1020 struct tty *tp;
1021 {
1022 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1023 struct zs_chanstate *cs = zst->zst_cs;
1024 u_char *tba;
1025 int s, tbc;
1026
1027 s = spltty();
1028 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1029 goto out;
1030 if (zst->zst_tx_stopped)
1031 goto out;
1032
1033 if (tp->t_outq.c_cc <= tp->t_lowat) {
1034 if (ISSET(tp->t_state, TS_ASLEEP)) {
1035 CLR(tp->t_state, TS_ASLEEP);
1036 wakeup((caddr_t)&tp->t_outq);
1037 }
1038 selwakeup(&tp->t_wsel);
1039 if (tp->t_outq.c_cc == 0)
1040 goto out;
1041 }
1042
1043 /* Grab the first contiguous region of buffer space. */
1044 tba = tp->t_outq.c_cf;
1045 tbc = ndqb(&tp->t_outq, 0);
1046
1047 (void) splzs();
1048 simple_lock(&cs->cs_lock);
1049
1050 zst->zst_tba = tba;
1051 zst->zst_tbc = tbc;
1052 SET(tp->t_state, TS_BUSY);
1053 zst->zst_tx_busy = 1;
1054
1055 #ifdef ZS_TXDMA
1056 if (zst->zst_tbc > 1) {
1057 zs_dma_setup(cs, zst->zst_tba, zst->zst_tbc);
1058 goto out;
1059 }
1060 #endif
1061
1062 /* Enable transmit completion interrupts if necessary. */
1063 if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
1064 SET(cs->cs_preg[1], ZSWR1_TIE);
1065 cs->cs_creg[1] = cs->cs_preg[1];
1066 zs_write_reg(cs, 1, cs->cs_creg[1]);
1067 }
1068
1069 /* Output the first character of the contiguous buffer. */
1070 zs_write_data(cs, *zst->zst_tba);
1071 zst->zst_tbc--;
1072 zst->zst_tba++;
1073
1074 simple_unlock(&cs->cs_lock);
1075 out:
1076 splx(s);
1077 return;
1078 }
1079
1080 /*
1081 * Stop output, e.g., for ^S or output flush.
1082 */
1083 void
1084 zsstop(tp, flag)
1085 struct tty *tp;
1086 int flag;
1087 {
1088 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1089 int s;
1090
1091 s = splzs();
1092 if (ISSET(tp->t_state, TS_BUSY)) {
1093 /* Stop transmitting at the next chunk. */
1094 zst->zst_tbc = 0;
1095 zst->zst_heldtbc = 0;
1096 if (!ISSET(tp->t_state, TS_TTSTOP))
1097 SET(tp->t_state, TS_FLUSH);
1098 }
1099 splx(s);
1100 }
1101
1102 /*
1103 * Set ZS tty parameters from termios.
1104 * XXX - Should just copy the whole termios after
1105 * making sure all the changes could be done.
1106 */
1107 static int
1108 zsparam(tp, t)
1109 struct tty *tp;
1110 struct termios *t;
1111 {
1112 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1113 struct zs_chanstate *cs = zst->zst_cs;
1114 int ospeed;
1115 tcflag_t cflag;
1116 u_char tmp3, tmp4, tmp5;
1117 int s, error;
1118
1119 ospeed = t->c_ospeed;
1120 cflag = t->c_cflag;
1121
1122 /* Check requested parameters. */
1123 if (ospeed < 0)
1124 return (EINVAL);
1125 if (t->c_ispeed && t->c_ispeed != ospeed)
1126 return (EINVAL);
1127
1128 /*
1129 * For the console, always force CLOCAL and !HUPCL, so that the port
1130 * is always active.
1131 */
1132 if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
1133 ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
1134 SET(cflag, CLOCAL);
1135 CLR(cflag, HUPCL);
1136 }
1137
1138 /*
1139 * Only whack the UART when params change.
1140 * Some callers need to clear tp->t_ospeed
1141 * to make sure initialization gets done.
1142 */
1143 if (tp->t_ospeed == ospeed &&
1144 tp->t_cflag == cflag)
1145 return (0);
1146
1147 /*
1148 * Call MD functions to deal with changed
1149 * clock modes or H/W flow control modes.
1150 * The BRG divisor is set now. (reg 12,13)
1151 */
1152 error = zs_set_speed(cs, ospeed);
1153 if (error)
1154 return (error);
1155 error = zs_set_modes(cs, cflag);
1156 if (error)
1157 return (error);
1158
1159 /*
1160 * Block interrupts so that state will not
1161 * be altered until we are done setting it up.
1162 *
1163 * Initial values in cs_preg are set before
1164 * our attach routine is called. The master
1165 * interrupt enable is handled by zsc.c
1166 *
1167 */
1168 s = splzs();
1169 simple_lock(&cs->cs_lock);
1170
1171 /*
1172 * Recalculate which status ints to enable.
1173 */
1174 zs_maskintr(zst);
1175
1176 /* Recompute character size bits. */
1177 tmp3 = cs->cs_preg[3];
1178 tmp5 = cs->cs_preg[5];
1179 CLR(tmp3, ZSWR3_RXSIZE);
1180 CLR(tmp5, ZSWR5_TXSIZE);
1181 switch (ISSET(cflag, CSIZE)) {
1182 case CS5:
1183 SET(tmp3, ZSWR3_RX_5);
1184 SET(tmp5, ZSWR5_TX_5);
1185 break;
1186 case CS6:
1187 SET(tmp3, ZSWR3_RX_6);
1188 SET(tmp5, ZSWR5_TX_6);
1189 break;
1190 case CS7:
1191 SET(tmp3, ZSWR3_RX_7);
1192 SET(tmp5, ZSWR5_TX_7);
1193 break;
1194 case CS8:
1195 SET(tmp3, ZSWR3_RX_8);
1196 SET(tmp5, ZSWR5_TX_8);
1197 break;
1198 }
1199 cs->cs_preg[3] = tmp3;
1200 cs->cs_preg[5] = tmp5;
1201
1202 /*
1203 * Recompute the stop bits and parity bits. Note that
1204 * zs_set_speed() may have set clock selection bits etc.
1205 * in wr4, so those must preserved.
1206 */
1207 tmp4 = cs->cs_preg[4];
1208 CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
1209 if (ISSET(cflag, CSTOPB))
1210 SET(tmp4, ZSWR4_TWOSB);
1211 else
1212 SET(tmp4, ZSWR4_ONESB);
1213 if (!ISSET(cflag, PARODD))
1214 SET(tmp4, ZSWR4_EVENP);
1215 if (ISSET(cflag, PARENB))
1216 SET(tmp4, ZSWR4_PARENB);
1217 cs->cs_preg[4] = tmp4;
1218
1219 /* And copy to tty. */
1220 tp->t_ispeed = 0;
1221 tp->t_ospeed = ospeed;
1222 tp->t_cflag = cflag;
1223
1224 /*
1225 * If nothing is being transmitted, set up new current values,
1226 * else mark them as pending.
1227 */
1228 if (!cs->cs_heldchange) {
1229 if (zst->zst_tx_busy) {
1230 zst->zst_heldtbc = zst->zst_tbc;
1231 zst->zst_tbc = 0;
1232 cs->cs_heldchange = 1;
1233 } else
1234 zs_loadchannelregs(cs);
1235 }
1236
1237 /*
1238 * If hardware flow control is disabled, turn off the buffer water
1239 * marks and unblock any soft flow control state. Otherwise, enable
1240 * the water marks.
1241 */
1242 if (!ISSET(cflag, CHWFLOW)) {
1243 zst->zst_r_hiwat = 0;
1244 zst->zst_r_lowat = 0;
1245 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1246 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1247 zst->zst_rx_ready = 1;
1248 cs->cs_softreq = 1;
1249 }
1250 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1251 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1252 zs_hwiflow(zst);
1253 }
1254 } else {
1255 zst->zst_r_hiwat = zstty_rbuf_hiwat;
1256 zst->zst_r_lowat = zstty_rbuf_lowat;
1257 }
1258
1259 /*
1260 * Force a recheck of the hardware carrier and flow control status,
1261 * since we may have changed which bits we're looking at.
1262 */
1263 zstty_stint(cs, 1);
1264
1265 simple_unlock(&cs->cs_lock);
1266 splx(s);
1267
1268 /*
1269 * If hardware flow control is disabled, unblock any hard flow control
1270 * state.
1271 */
1272 if (!ISSET(cflag, CHWFLOW)) {
1273 if (zst->zst_tx_stopped) {
1274 zst->zst_tx_stopped = 0;
1275 zsstart(tp);
1276 }
1277 }
1278
1279 zstty_softint(cs);
1280
1281 return (0);
1282 }
1283
1284 /*
1285 * Compute interrupt enable bits and set in the pending bits. Called both
1286 * in zsparam() and when PPS (pulse per second timing) state changes.
1287 * Must be called at splzs().
1288 */
1289 static void
1290 zs_maskintr(zst)
1291 struct zstty_softc *zst;
1292 {
1293 struct zs_chanstate *cs = zst->zst_cs;
1294 int tmp15;
1295
1296 cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
1297 if (zst->zst_ppsmask != 0)
1298 cs->cs_rr0_mask |= cs->cs_rr0_pps;
1299 tmp15 = cs->cs_preg[15];
1300 if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
1301 SET(tmp15, ZSWR15_DCD_IE);
1302 else
1303 CLR(tmp15, ZSWR15_DCD_IE);
1304 if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
1305 SET(tmp15, ZSWR15_CTS_IE);
1306 else
1307 CLR(tmp15, ZSWR15_CTS_IE);
1308 cs->cs_preg[15] = tmp15;
1309 }
1310
1311
1312 /*
1313 * Raise or lower modem control (DTR/RTS) signals. If a character is
1314 * in transmission, the change is deferred.
1315 * Called at splzs() and with the channel lock held.
1316 */
1317 static void
1318 zs_modem(zst, onoff)
1319 struct zstty_softc *zst;
1320 int onoff;
1321 {
1322 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1323
1324 if (cs->cs_wr5_dtr == 0)
1325 return;
1326
1327 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1328
1329 if (onoff)
1330 SET(ccs->cs_preg[5], cs->cs_wr5_dtr);
1331 else
1332 CLR(ccs->cs_preg[5], cs->cs_wr5_dtr);
1333
1334 if (!cs->cs_heldchange) {
1335 if (zst->zst_tx_busy) {
1336 zst->zst_heldtbc = zst->zst_tbc;
1337 zst->zst_tbc = 0;
1338 cs->cs_heldchange = 1;
1339 } else
1340 zs_loadchannelregs(cs);
1341 }
1342 }
1343
1344 /*
1345 * Set modem bits.
1346 * Called at splzs() and with the channel lock held.
1347 */
1348 static void
1349 tiocm_to_zs(zst, how, ttybits)
1350 struct zstty_softc *zst;
1351 u_long how;
1352 int ttybits;
1353 {
1354 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1355 u_char zsbits;
1356
1357 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1358
1359 zsbits = 0;
1360 if (ISSET(ttybits, TIOCM_DTR))
1361 SET(zsbits, ZSWR5_DTR);
1362 if (ISSET(ttybits, TIOCM_RTS))
1363 SET(zsbits, ZSWR5_RTS);
1364
1365 switch (how) {
1366 case TIOCMBIC:
1367 CLR(ccs->cs_preg[5], zsbits);
1368 break;
1369
1370 case TIOCMBIS:
1371 SET(ccs->cs_preg[5], zsbits);
1372 break;
1373
1374 case TIOCMSET:
1375 CLR(ccs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR);
1376 SET(ccs->cs_preg[5], zsbits);
1377 break;
1378 }
1379
1380 if (!cs->cs_heldchange) {
1381 if (zst->zst_tx_busy) {
1382 zst->zst_heldtbc = zst->zst_tbc;
1383 zst->zst_tbc = 0;
1384 cs->cs_heldchange = 1;
1385 } else
1386 zs_loadchannelregs(cs);
1387 }
1388 }
1389
1390 /*
1391 * Get modem bits.
1392 * Called at splzs() and with the channel lock held.
1393 */
1394 static int
1395 zs_to_tiocm(zst)
1396 struct zstty_softc *zst;
1397 {
1398 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1399 u_char zsbits;
1400 int ttybits = 0;
1401
1402 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1403
1404 zsbits = ccs->cs_preg[5];
1405 if (ISSET(zsbits, ZSWR5_DTR))
1406 SET(ttybits, TIOCM_DTR);
1407 if (ISSET(zsbits, ZSWR5_RTS))
1408 SET(ttybits, TIOCM_RTS);
1409
1410 zsbits = cs->cs_rr0;
1411 if (ISSET(zsbits, ZSRR0_DCD))
1412 SET(ttybits, TIOCM_CD);
1413 if (ISSET(zsbits, ZSRR0_CTS))
1414 SET(ttybits, TIOCM_CTS);
1415
1416 return (ttybits);
1417 }
1418
1419 /*
1420 * Try to block or unblock input using hardware flow-control.
1421 * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
1422 * if this function returns non-zero, the TS_TBLOCK flag will
1423 * be set or cleared according to the "block" arg passed.
1424 */
1425 int
1426 zshwiflow(tp, block)
1427 struct tty *tp;
1428 int block;
1429 {
1430 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1431 struct zs_chanstate *cs = zst->zst_cs;
1432 int s;
1433
1434 if (cs->cs_wr5_rts == 0)
1435 return (0);
1436
1437 s = splzs();
1438 simple_lock(&cs->cs_lock);
1439 if (block) {
1440 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1441 SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
1442 zs_hwiflow(zst);
1443 }
1444 } else {
1445 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1446 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1447 zst->zst_rx_ready = 1;
1448 cs->cs_softreq = 1;
1449 }
1450 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1451 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
1452 zs_hwiflow(zst);
1453 }
1454 }
1455 simple_unlock(&cs->cs_lock);
1456 splx(s);
1457 return (1);
1458 }
1459
1460 /*
1461 * Internal version of zshwiflow
1462 * Called at splzs() and with the channel lock held.
1463 */
1464 static void
1465 zs_hwiflow(zst)
1466 struct zstty_softc *zst;
1467 {
1468 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1469
1470 if (cs->cs_wr5_rts == 0)
1471 return;
1472
1473 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1474
1475 if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
1476 CLR(ccs->cs_preg[5], cs->cs_wr5_rts);
1477 CLR(ccs->cs_creg[5], cs->cs_wr5_rts);
1478 } else {
1479 SET(ccs->cs_preg[5], cs->cs_wr5_rts);
1480 SET(ccs->cs_creg[5], cs->cs_wr5_rts);
1481 }
1482 zs_write_reg(ccs, 5, ccs->cs_creg[5]);
1483 }
1484
1485
1486 /****************************************************************
1487 * Interface to the lower layer (zscc)
1488 ****************************************************************/
1489
1490 #define integrate static inline
1491 integrate void zstty_rxsoft(struct zstty_softc *, struct tty *);
1492 integrate void zstty_txsoft(struct zstty_softc *, struct tty *);
1493 integrate void zstty_stsoft(struct zstty_softc *, struct tty *);
1494 static void zstty_diag(void *);
1495
1496 /*
1497 * Receiver Ready interrupt.
1498 * Called at splzs() and with the channel lock held.
1499 */
1500 static void
1501 zstty_rxint(cs)
1502 struct zs_chanstate *cs;
1503 {
1504 struct zstty_softc *zst = cs->cs_private;
1505 u_char *put, *end;
1506 u_int cc;
1507 u_char rr0, rr1, c;
1508
1509 end = zst->zst_ebuf;
1510 put = zst->zst_rbput;
1511 cc = zst->zst_rbavail;
1512
1513 while (cc > 0) {
1514 /*
1515 * First read the status, because reading the received char
1516 * destroys the status of this char.
1517 */
1518 rr1 = zs_read_reg(cs, 1);
1519 c = zs_read_data(cs);
1520
1521 if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
1522 /* Clear the receive error. */
1523 zs_write_csr(cs, ZSWR0_RESET_ERRORS);
1524 }
1525
1526 cn_check_magic(zst->zst_tty->t_dev, c, zstty_cnm_state);
1527 put[0] = c;
1528 put[1] = rr1;
1529 put += 2;
1530 if (put >= end)
1531 put = zst->zst_rbuf;
1532 cc--;
1533
1534 rr0 = zs_read_csr(cs);
1535 if (!ISSET(rr0, ZSRR0_RX_READY))
1536 break;
1537 }
1538
1539 /*
1540 * Current string of incoming characters ended because
1541 * no more data was available or we ran out of space.
1542 * Schedule a receive event if any data was received.
1543 * If we're out of space, turn off receive interrupts.
1544 */
1545 zst->zst_rbput = put;
1546 zst->zst_rbavail = cc;
1547 if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1548 zst->zst_rx_ready = 1;
1549 cs->cs_softreq = 1;
1550 }
1551
1552 /*
1553 * See if we are in danger of overflowing a buffer. If
1554 * so, use hardware flow control to ease the pressure.
1555 */
1556 if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
1557 cc < zst->zst_r_hiwat) {
1558 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1559 zs_hwiflow(zst);
1560 }
1561
1562 /*
1563 * If we're out of space, disable receive interrupts
1564 * until the queue has drained a bit.
1565 */
1566 if (!cc) {
1567 SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1568 CLR(cs->cs_preg[1], ZSWR1_RIE);
1569 cs->cs_creg[1] = cs->cs_preg[1];
1570 zs_write_reg(cs, 1, cs->cs_creg[1]);
1571 }
1572
1573 #if 0
1574 printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1575 #endif
1576 }
1577
1578 /*
1579 * Transmitter Ready interrupt.
1580 * Called at splzs() and with the channel lock held.
1581 */
1582 static void
1583 zstty_txint(cs)
1584 struct zs_chanstate *cs;
1585 {
1586 struct zstty_softc *zst = cs->cs_private;
1587
1588 /*
1589 * If we've delayed a parameter change, do it now, and restart
1590 * output.
1591 */
1592 if (cs->cs_heldchange) {
1593 zs_loadchannelregs(cs);
1594 cs->cs_heldchange = 0;
1595 zst->zst_tbc = zst->zst_heldtbc;
1596 zst->zst_heldtbc = 0;
1597 }
1598
1599 /* Output the next character in the buffer, if any. */
1600 if (zst->zst_tbc > 0) {
1601 zs_write_data(cs, *zst->zst_tba);
1602 zst->zst_tbc--;
1603 zst->zst_tba++;
1604 } else {
1605 /* Disable transmit completion interrupts if necessary. */
1606 if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
1607 CLR(cs->cs_preg[1], ZSWR1_TIE);
1608 cs->cs_creg[1] = cs->cs_preg[1];
1609 zs_write_reg(cs, 1, cs->cs_creg[1]);
1610 }
1611 if (zst->zst_tx_busy) {
1612 zst->zst_tx_busy = 0;
1613 zst->zst_tx_done = 1;
1614 cs->cs_softreq = 1;
1615 }
1616 }
1617 }
1618
1619 /*
1620 * Status Change interrupt.
1621 * Called at splzs() and with the channel lock held.
1622 */
1623 static void
1624 zstty_stint(cs, force)
1625 struct zs_chanstate *cs;
1626 int force;
1627 {
1628 struct zstty_softc *zst = cs->cs_private;
1629 u_char rr0, delta;
1630
1631 rr0 = zs_read_csr(cs);
1632 zs_write_csr(cs, ZSWR0_RESET_STATUS);
1633
1634 /*
1635 * Check here for console break, so that we can abort
1636 * even when interrupts are locking up the machine.
1637 */
1638 if (ISSET(rr0, ZSRR0_BREAK))
1639 cn_check_magic(zst->zst_tty->t_dev, CNC_BREAK, zstty_cnm_state);
1640
1641 if (!force)
1642 delta = rr0 ^ cs->cs_rr0;
1643 else
1644 delta = cs->cs_rr0_mask;
1645 cs->cs_rr0 = rr0;
1646
1647 if (ISSET(delta, cs->cs_rr0_mask)) {
1648 SET(cs->cs_rr0_delta, delta);
1649
1650 /*
1651 * Pulse-per-second clock signal on edge of DCD?
1652 */
1653 if (ISSET(delta, zst->zst_ppsmask)) {
1654 struct timeval tv;
1655 if (ISSET(rr0, zst->zst_ppsmask) == zst->zst_ppsassert) {
1656 /* XXX nanotime() */
1657 microtime(&tv);
1658 TIMEVAL_TO_TIMESPEC(&tv,
1659 &zst->ppsinfo.assert_timestamp);
1660 if (zst->ppsparam.mode & PPS_OFFSETASSERT) {
1661 timespecadd(&zst->ppsinfo.assert_timestamp,
1662 &zst->ppsparam.assert_offset,
1663 &zst->ppsinfo.assert_timestamp);
1664 }
1665
1666 #ifdef PPS_SYNC
1667 if (pps_kc_hardpps_source == zst &&
1668 pps_kc_hardpps_mode & PPS_CAPTUREASSERT) {
1669 hardpps(&tv, tv.tv_usec);
1670 }
1671 #endif
1672 zst->ppsinfo.assert_sequence++;
1673 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1674 } else if (ISSET(rr0, zst->zst_ppsmask) ==
1675 zst->zst_ppsclear) {
1676 /* XXX nanotime() */
1677 microtime(&tv);
1678 TIMEVAL_TO_TIMESPEC(&tv,
1679 &zst->ppsinfo.clear_timestamp);
1680 if (zst->ppsparam.mode & PPS_OFFSETCLEAR) {
1681 timespecadd(&zst->ppsinfo.clear_timestamp,
1682 &zst->ppsparam.clear_offset,
1683 &zst->ppsinfo.clear_timestamp);
1684 }
1685
1686 #ifdef PPS_SYNC
1687 if (pps_kc_hardpps_source == zst &&
1688 pps_kc_hardpps_mode & PPS_CAPTURECLEAR) {
1689 hardpps(&tv, tv.tv_usec);
1690 }
1691 #endif
1692 zst->ppsinfo.clear_sequence++;
1693 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1694 }
1695 }
1696
1697 /*
1698 * Stop output immediately if we lose the output
1699 * flow control signal or carrier detect.
1700 */
1701 if (ISSET(~rr0, cs->cs_rr0_mask)) {
1702 zst->zst_tbc = 0;
1703 zst->zst_heldtbc = 0;
1704 }
1705
1706 zst->zst_st_check = 1;
1707 cs->cs_softreq = 1;
1708 }
1709 }
1710
1711 void
1712 zstty_diag(arg)
1713 void *arg;
1714 {
1715 struct zstty_softc *zst = arg;
1716 int overflows, floods;
1717 int s;
1718
1719 s = splzs();
1720 overflows = zst->zst_overflows;
1721 zst->zst_overflows = 0;
1722 floods = zst->zst_floods;
1723 zst->zst_floods = 0;
1724 zst->zst_errors = 0;
1725 splx(s);
1726
1727 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1728 zst->zst_dev.dv_xname,
1729 overflows, overflows == 1 ? "" : "s",
1730 floods, floods == 1 ? "" : "s");
1731 }
1732
1733 integrate void
1734 zstty_rxsoft(zst, tp)
1735 struct zstty_softc *zst;
1736 struct tty *tp;
1737 {
1738 struct zs_chanstate *cs = zst->zst_cs;
1739 int (*rint)(int, struct tty *) = tp->t_linesw->l_rint;
1740 u_char *get, *end;
1741 u_int cc, scc;
1742 u_char rr1;
1743 int code;
1744 int s;
1745
1746 end = zst->zst_ebuf;
1747 get = zst->zst_rbget;
1748 scc = cc = zstty_rbuf_size - zst->zst_rbavail;
1749
1750 if (cc == zstty_rbuf_size) {
1751 zst->zst_floods++;
1752 if (zst->zst_errors++ == 0)
1753 callout_reset(&zst->zst_diag_ch, 60 * hz,
1754 zstty_diag, zst);
1755 }
1756
1757 /* If not yet open, drop the entire buffer content here */
1758 if (!ISSET(tp->t_state, TS_ISOPEN)) {
1759 get += cc << 1;
1760 if (get >= end)
1761 get -= zstty_rbuf_size << 1;
1762 cc = 0;
1763 }
1764 while (cc) {
1765 code = get[0];
1766 rr1 = get[1];
1767 if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
1768 if (ISSET(rr1, ZSRR1_DO)) {
1769 zst->zst_overflows++;
1770 if (zst->zst_errors++ == 0)
1771 callout_reset(&zst->zst_diag_ch,
1772 60 * hz, zstty_diag, zst);
1773 }
1774 if (ISSET(rr1, ZSRR1_FE))
1775 SET(code, TTY_FE);
1776 if (ISSET(rr1, ZSRR1_PE))
1777 SET(code, TTY_PE);
1778 }
1779 if ((*rint)(code, tp) == -1) {
1780 /*
1781 * The line discipline's buffer is out of space.
1782 */
1783 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1784 /*
1785 * We're either not using flow control, or the
1786 * line discipline didn't tell us to block for
1787 * some reason. Either way, we have no way to
1788 * know when there's more space available, so
1789 * just drop the rest of the data.
1790 */
1791 get += cc << 1;
1792 if (get >= end)
1793 get -= zstty_rbuf_size << 1;
1794 cc = 0;
1795 } else {
1796 /*
1797 * Don't schedule any more receive processing
1798 * until the line discipline tells us there's
1799 * space available (through comhwiflow()).
1800 * Leave the rest of the data in the input
1801 * buffer.
1802 */
1803 SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1804 }
1805 break;
1806 }
1807 get += 2;
1808 if (get >= end)
1809 get = zst->zst_rbuf;
1810 cc--;
1811 }
1812
1813 if (cc != scc) {
1814 zst->zst_rbget = get;
1815 s = splzs();
1816 simple_lock(&cs->cs_lock);
1817 cc = zst->zst_rbavail += scc - cc;
1818 /* Buffers should be ok again, release possible block. */
1819 if (cc >= zst->zst_r_lowat) {
1820 if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
1821 CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1822 SET(cs->cs_preg[1], ZSWR1_RIE);
1823 cs->cs_creg[1] = cs->cs_preg[1];
1824 zs_write_reg(cs, 1, cs->cs_creg[1]);
1825 }
1826 if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
1827 CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1828 zs_hwiflow(zst);
1829 }
1830 }
1831 simple_unlock(&cs->cs_lock);
1832 splx(s);
1833 }
1834
1835 #if 0
1836 printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1837 #endif
1838 }
1839
1840 integrate void
1841 zstty_txsoft(zst, tp)
1842 struct zstty_softc *zst;
1843 struct tty *tp;
1844 {
1845 struct zs_chanstate *cs = zst->zst_cs;
1846 int s;
1847
1848 s = splzs();
1849 simple_lock(&cs->cs_lock);
1850 CLR(tp->t_state, TS_BUSY);
1851 if (ISSET(tp->t_state, TS_FLUSH))
1852 CLR(tp->t_state, TS_FLUSH);
1853 else
1854 ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
1855 simple_unlock(&cs->cs_lock);
1856 splx(s);
1857 (*tp->t_linesw->l_start)(tp);
1858 }
1859
1860 integrate void
1861 zstty_stsoft(zst, tp)
1862 struct zstty_softc *zst;
1863 struct tty *tp;
1864 {
1865 struct zs_chanstate *cs = zst->zst_cs;
1866 u_char rr0, delta;
1867 int s;
1868
1869 s = splzs();
1870 simple_lock(&cs->cs_lock);
1871 rr0 = cs->cs_rr0;
1872 delta = cs->cs_rr0_delta;
1873 cs->cs_rr0_delta = 0;
1874 simple_unlock(&cs->cs_lock);
1875 splx(s);
1876
1877 if (ISSET(delta, cs->cs_rr0_dcd)) {
1878 /*
1879 * Inform the tty layer that carrier detect changed.
1880 */
1881 (void) (*tp->t_linesw->l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
1882 }
1883
1884 if (ISSET(delta, cs->cs_rr0_cts)) {
1885 /* Block or unblock output according to flow control. */
1886 if (ISSET(rr0, cs->cs_rr0_cts)) {
1887 zst->zst_tx_stopped = 0;
1888 (*tp->t_linesw->l_start)(tp);
1889 } else {
1890 zst->zst_tx_stopped = 1;
1891 }
1892 }
1893 }
1894
1895 /*
1896 * Software interrupt. Called at zssoft
1897 *
1898 * The main job to be done here is to empty the input ring
1899 * by passing its contents up to the tty layer. The ring is
1900 * always emptied during this operation, therefore the ring
1901 * must not be larger than the space after "high water" in
1902 * the tty layer, or the tty layer might drop our input.
1903 *
1904 * Note: an "input blockage" condition is assumed to exist if
1905 * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
1906 */
1907 static void
1908 zstty_softint(cs)
1909 struct zs_chanstate *cs;
1910 {
1911 struct zstty_softc *zst = cs->cs_private;
1912 struct tty *tp = zst->zst_tty;
1913 int s;
1914
1915 s = spltty();
1916
1917 if (zst->zst_rx_ready) {
1918 zst->zst_rx_ready = 0;
1919 zstty_rxsoft(zst, tp);
1920 }
1921
1922 if (zst->zst_st_check) {
1923 zst->zst_st_check = 0;
1924 zstty_stsoft(zst, tp);
1925 }
1926
1927 if (zst->zst_tx_done) {
1928 zst->zst_tx_done = 0;
1929 zstty_txsoft(zst, tp);
1930 }
1931
1932 splx(s);
1933 }
1934
1935 struct zsops zsops_tty = {
1936 zstty_rxint, /* receive char available */
1937 zstty_stint, /* external/status */
1938 zstty_txint, /* xmit buffer empty */
1939 zstty_softint, /* process software interrupt */
1940 };
1941
1942 #ifdef ZS_TXDMA
1943 void
1944 zstty_txdma_int(arg)
1945 void *arg;
1946 {
1947 struct zs_chanstate *cs = arg;
1948 struct zstty_softc *zst = cs->cs_private;
1949
1950 zst->zst_tba += zst->zst_tbc;
1951 zst->zst_tbc = 0;
1952
1953 if (zst->zst_tx_busy) {
1954 zst->zst_tx_busy = 0;
1955 zst->zst_tx_done = 1;
1956 cs->cs_softreq = 1;
1957 }
1958 }
1959 #endif
1960