z8530tty.c revision 1.108 1 /* $NetBSD: z8530tty.c,v 1.108 2006/06/07 22:33:36 kardel Exp $ */
2
3 /*-
4 * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999
5 * Charles M. Hannum. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Charles M. Hannum.
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This software was developed by the Computer Systems Engineering group
38 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
39 * contributed to Berkeley.
40 *
41 * All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Lawrence Berkeley Laboratory.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)zs.c 8.1 (Berkeley) 7/19/93
71 */
72
73 /*
74 * Copyright (c) 1994 Gordon W. Ross
75 *
76 * This software was developed by the Computer Systems Engineering group
77 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
78 * contributed to Berkeley.
79 *
80 * All advertising materials mentioning features or use of this software
81 * must display the following acknowledgement:
82 * This product includes software developed by the University of
83 * California, Lawrence Berkeley Laboratory.
84 *
85 * Redistribution and use in source and binary forms, with or without
86 * modification, are permitted provided that the following conditions
87 * are met:
88 * 1. Redistributions of source code must retain the above copyright
89 * notice, this list of conditions and the following disclaimer.
90 * 2. Redistributions in binary form must reproduce the above copyright
91 * notice, this list of conditions and the following disclaimer in the
92 * documentation and/or other materials provided with the distribution.
93 * 3. All advertising materials mentioning features or use of this software
94 * must display the following acknowledgement:
95 * This product includes software developed by the University of
96 * California, Berkeley and its contributors.
97 * 4. Neither the name of the University nor the names of its contributors
98 * may be used to endorse or promote products derived from this software
99 * without specific prior written permission.
100 *
101 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
102 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
103 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
104 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
105 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
106 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
107 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
108 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
109 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
110 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
111 * SUCH DAMAGE.
112 *
113 * @(#)zs.c 8.1 (Berkeley) 7/19/93
114 */
115
116 /*
117 * Zilog Z8530 Dual UART driver (tty interface)
118 *
119 * This is the "slave" driver that will be attached to
120 * the "zsc" driver for plain "tty" async. serial lines.
121 *
122 * Credits, history:
123 *
124 * The original version of this code was the sparc/dev/zs.c driver
125 * as distributed with the Berkeley 4.4 Lite release. Since then,
126 * Gordon Ross reorganized the code into the current parent/child
127 * driver scheme, separating the Sun keyboard and mouse support
128 * into independent child drivers.
129 *
130 * RTS/CTS flow-control support was a collaboration of:
131 * Gordon Ross <gwr (at) NetBSD.org>,
132 * Bill Studenmund <wrstuden (at) loki.stanford.edu>
133 * Ian Dall <Ian.Dall (at) dsto.defence.gov.au>
134 *
135 * The driver was massively overhauled in November 1997 by Charles Hannum,
136 * fixing *many* bugs, and substantially improving performance.
137 */
138
139 #include <sys/cdefs.h>
140 __KERNEL_RCSID(0, "$NetBSD: z8530tty.c,v 1.108 2006/06/07 22:33:36 kardel Exp $");
141
142 #include "opt_kgdb.h"
143 #include "opt_ntp.h"
144
145 #include <sys/param.h>
146 #include <sys/systm.h>
147 #include <sys/proc.h>
148 #include <sys/device.h>
149 #include <sys/conf.h>
150 #include <sys/file.h>
151 #include <sys/ioctl.h>
152 #include <sys/malloc.h>
153 #include <sys/timepps.h>
154 #include <sys/tty.h>
155 #include <sys/time.h>
156 #include <sys/kernel.h>
157 #include <sys/syslog.h>
158 #include <sys/kauth.h>
159
160 #include <dev/ic/z8530reg.h>
161 #include <machine/z8530var.h>
162
163 #include <dev/cons.h>
164
165 #include "locators.h"
166
167 /*
168 * How many input characters we can buffer.
169 * The port-specific var.h may override this.
170 * Note: must be a power of two!
171 */
172 #ifndef ZSTTY_RING_SIZE
173 #define ZSTTY_RING_SIZE 2048
174 #endif
175
176 static struct cnm_state zstty_cnm_state;
177 /*
178 * Make this an option variable one can patch.
179 * But be warned: this must be a power of 2!
180 */
181 u_int zstty_rbuf_size = ZSTTY_RING_SIZE;
182
183 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
184 u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
185 u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;
186
187 #ifndef __HAVE_TIMECOUNTER
188 static int zsppscap =
189 PPS_TSFMT_TSPEC |
190 PPS_CAPTUREASSERT |
191 PPS_CAPTURECLEAR |
192 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
193 #endif /* __HAVE_TIMECOUNTER */
194
195 struct zstty_softc {
196 struct device zst_dev; /* required first: base device */
197 struct tty *zst_tty;
198 struct zs_chanstate *zst_cs;
199
200 struct callout zst_diag_ch;
201
202 u_int zst_overflows,
203 zst_floods,
204 zst_errors;
205
206 int zst_hwflags, /* see z8530var.h */
207 zst_swflags; /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
208
209 u_int zst_r_hiwat,
210 zst_r_lowat;
211 u_char *volatile zst_rbget,
212 *volatile zst_rbput;
213 volatile u_int zst_rbavail;
214 u_char *zst_rbuf,
215 *zst_ebuf;
216
217 /*
218 * The transmit byte count and address are used for pseudo-DMA
219 * output in the hardware interrupt code. PDMA can be suspended
220 * to get pending changes done; heldtbc is used for this. It can
221 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
222 */
223 u_char *zst_tba; /* transmit buffer address */
224 u_int zst_tbc, /* transmit byte count */
225 zst_heldtbc; /* held tbc while xmission stopped */
226
227 /* Flags to communicate with zstty_softint() */
228 volatile u_char zst_rx_flags, /* receiver blocked */
229 #define RX_TTY_BLOCKED 0x01
230 #define RX_TTY_OVERFLOWED 0x02
231 #define RX_IBUF_BLOCKED 0x04
232 #define RX_IBUF_OVERFLOWED 0x08
233 #define RX_ANY_BLOCK 0x0f
234 zst_tx_busy, /* working on an output chunk */
235 zst_tx_done, /* done with one output chunk */
236 zst_tx_stopped, /* H/W level stop (lost CTS) */
237 zst_st_check, /* got a status interrupt */
238 zst_rx_ready;
239
240 /* PPS signal on DCD, with or without inkernel clock disciplining */
241 u_char zst_ppsmask; /* pps signal mask */
242 #ifdef __HAVE_TIMECOUNTER
243 struct pps_state zst_pps_state;
244 #else /* !__HAVE_TIMECOUNTER */
245 u_char zst_ppsassert; /* pps leading edge */
246 u_char zst_ppsclear; /* pps trailing edge */
247 pps_info_t ppsinfo;
248 pps_params_t ppsparam;
249 #endif /* !__HAVE_TIMECOUNTER */
250 };
251
252 /* Definition of the driver for autoconfig. */
253 static int zstty_match(struct device *, struct cfdata *, void *);
254 static void zstty_attach(struct device *, struct device *, void *);
255
256 CFATTACH_DECL(zstty, sizeof(struct zstty_softc),
257 zstty_match, zstty_attach, NULL, NULL);
258
259 extern struct cfdriver zstty_cd;
260
261 dev_type_open(zsopen);
262 dev_type_close(zsclose);
263 dev_type_read(zsread);
264 dev_type_write(zswrite);
265 dev_type_ioctl(zsioctl);
266 dev_type_stop(zsstop);
267 dev_type_tty(zstty);
268 dev_type_poll(zspoll);
269
270 const struct cdevsw zstty_cdevsw = {
271 zsopen, zsclose, zsread, zswrite, zsioctl,
272 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
273 };
274
275 struct zsops zsops_tty;
276
277 static void zs_shutdown(struct zstty_softc *);
278 static void zsstart(struct tty *);
279 static int zsparam(struct tty *, struct termios *);
280 static void zs_modem(struct zstty_softc *, int);
281 static void tiocm_to_zs(struct zstty_softc *, u_long, int);
282 static int zs_to_tiocm(struct zstty_softc *);
283 static int zshwiflow(struct tty *, int);
284 static void zs_hwiflow(struct zstty_softc *);
285 static void zs_maskintr(struct zstty_softc *);
286
287 /* Low-level routines. */
288 static void zstty_rxint (struct zs_chanstate *);
289 static void zstty_stint (struct zs_chanstate *, int);
290 static void zstty_txint (struct zs_chanstate *);
291 static void zstty_softint(struct zs_chanstate *);
292
293 #define ZSUNIT(x) (minor(x) & 0x7ffff)
294 #define ZSDIALOUT(x) (minor(x) & 0x80000)
295
296 struct tty *zstty_get_tty_from_dev(struct device *);
297
298 /*
299 * XXX get the (struct tty *) out of a (struct device *) we trust to be a
300 * (struct zstty_softc *) - needed by sparc/dev/zs.c, sparc64/dev/zs.c,
301 * sun3/dev/zs.c and sun2/dev/zs.c will probably need it at some point
302 */
303
304 struct tty *
305 zstty_get_tty_from_dev(struct device *dev)
306 {
307 struct zstty_softc *sc = (struct zstty_softc *)dev;
308
309 return sc->zst_tty;
310 }
311
312 /*
313 * zstty_match: how is this zs channel configured?
314 */
315 int
316 zstty_match(parent, cf, aux)
317 struct device *parent;
318 struct cfdata *cf;
319 void *aux;
320 {
321 struct zsc_attach_args *args = aux;
322
323 /* Exact match is better than wildcard. */
324 if (cf->zsccf_channel == args->channel)
325 return 2;
326
327 /* This driver accepts wildcard. */
328 if (cf->zsccf_channel == ZSCCF_CHANNEL_DEFAULT)
329 return 1;
330
331 return 0;
332 }
333
334 void
335 zstty_attach(parent, self, aux)
336 struct device *parent, *self;
337 void *aux;
338
339 {
340 struct zsc_softc *zsc = (void *) parent;
341 struct zstty_softc *zst = (void *) self;
342 struct cfdata *cf = device_cfdata(self);
343 struct zsc_attach_args *args = aux;
344 struct zs_chanstate *cs;
345 struct tty *tp;
346 int channel, s, tty_unit;
347 dev_t dev;
348 const char *i, *o;
349 int dtr_on;
350 int resetbit;
351
352 callout_init(&zst->zst_diag_ch);
353 cn_init_magic(&zstty_cnm_state);
354
355 tty_unit = device_unit(&zst->zst_dev);
356 channel = args->channel;
357 cs = zsc->zsc_cs[channel];
358 cs->cs_private = zst;
359 cs->cs_ops = &zsops_tty;
360
361 zst->zst_cs = cs;
362 zst->zst_swflags = cf->cf_flags; /* softcar, etc. */
363 zst->zst_hwflags = args->hwflags;
364 dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), tty_unit);
365
366 if (zst->zst_swflags)
367 printf(" flags 0x%x", zst->zst_swflags);
368
369 /*
370 * Check whether we serve as a console device.
371 * XXX - split console input/output channels aren't
372 * supported yet on /dev/console
373 */
374 i = o = NULL;
375 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
376 i = "input";
377 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
378 args->consdev->cn_dev = dev;
379 cn_tab->cn_pollc = args->consdev->cn_pollc;
380 cn_tab->cn_getc = args->consdev->cn_getc;
381 }
382 cn_tab->cn_dev = dev;
383 /* Set console magic to BREAK */
384 cn_set_magic("\047\001");
385 }
386 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
387 o = "output";
388 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
389 cn_tab->cn_putc = args->consdev->cn_putc;
390 }
391 cn_tab->cn_dev = dev;
392 }
393 if (i != NULL || o != NULL)
394 printf(" (console %s)", i ? (o ? "i/o" : i) : o);
395
396 #ifdef KGDB
397 if (zs_check_kgdb(cs, dev)) {
398 /*
399 * Allow kgdb to "take over" this port. Returns true
400 * if this serial port is in-use by kgdb.
401 */
402 printf(" (kgdb)\n");
403 /*
404 * This is the kgdb port (exclusive use)
405 * so skip the normal attach code.
406 */
407 return;
408 }
409 #endif
410 printf("\n");
411
412 tp = ttymalloc();
413 tp->t_dev = dev;
414 tp->t_oproc = zsstart;
415 tp->t_param = zsparam;
416 tp->t_hwiflow = zshwiflow;
417 tty_attach(tp);
418
419 zst->zst_tty = tp;
420 zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
421 if (zst->zst_rbuf == NULL) {
422 aprint_error("%s: unable to allocate ring buffer\n",
423 zst->zst_dev.dv_xname);
424 return;
425 }
426 zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
427 /* Disable the high water mark. */
428 zst->zst_r_hiwat = 0;
429 zst->zst_r_lowat = 0;
430 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
431 zst->zst_rbavail = zstty_rbuf_size;
432
433 /* if there are no enable/disable functions, assume the device
434 is always enabled */
435 if (!cs->enable)
436 cs->enabled = 1;
437
438 /*
439 * Hardware init
440 */
441 dtr_on = 0;
442 resetbit = 0;
443 if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
444 /* Call zsparam similar to open. */
445 struct termios t;
446
447 /* Wait a while for previous console output to complete */
448 DELAY(10000);
449
450 /* Setup the "new" parameters in t. */
451 t.c_ispeed = 0;
452 t.c_ospeed = cs->cs_defspeed;
453 t.c_cflag = cs->cs_defcflag;
454
455 /*
456 * Turn on receiver and status interrupts.
457 * We defer the actual write of the register to zsparam(),
458 * but we must make sure status interrupts are turned on by
459 * the time zsparam() reads the initial rr0 state.
460 */
461 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
462
463 /* Make sure zsparam will see changes. */
464 tp->t_ospeed = 0;
465 (void) zsparam(tp, &t);
466
467 /* Make sure DTR is on now. */
468 dtr_on = 1;
469
470 } else if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_NORESET)) {
471 /* Not the console; may need reset. */
472 resetbit = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
473 }
474
475 s = splzs();
476 simple_lock(&cs->cs_lock);
477 if (resetbit)
478 zs_write_reg(cs, 9, resetbit);
479 zs_modem(zst, dtr_on);
480 simple_unlock(&cs->cs_lock);
481 splx(s);
482 }
483
484
485 /*
486 * Return pointer to our tty.
487 */
488 struct tty *
489 zstty(dev)
490 dev_t dev;
491 {
492 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
493
494 return (zst->zst_tty);
495 }
496
497
498 void
499 zs_shutdown(zst)
500 struct zstty_softc *zst;
501 {
502 struct zs_chanstate *cs = zst->zst_cs;
503 struct tty *tp = zst->zst_tty;
504 int s;
505
506 s = splzs();
507 simple_lock(&cs->cs_lock);
508
509 /* If we were asserting flow control, then deassert it. */
510 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
511 zs_hwiflow(zst);
512
513 /* Clear any break condition set with TIOCSBRK. */
514 zs_break(cs, 0);
515
516 #ifndef __HAVE_TIMECOUNTER
517 /* Turn off PPS capture on last close. */
518 zst->zst_ppsmask = 0;
519 zst->ppsparam.mode = 0;
520 #endif /* __HAVE_TIMECOUNTER */
521
522 /*
523 * Hang up if necessary. Wait a bit, so the other side has time to
524 * notice even if we immediately open the port again.
525 */
526 if (ISSET(tp->t_cflag, HUPCL)) {
527 zs_modem(zst, 0);
528 simple_unlock(&cs->cs_lock);
529 splx(s);
530 /*
531 * XXX - another process is not prevented from opening
532 * the device during our sleep.
533 */
534 (void) tsleep(cs, TTIPRI, ttclos, hz);
535 /* Re-check state in case we were opened during our sleep */
536 if (ISSET(tp->t_state, TS_ISOPEN) || tp->t_wopen != 0)
537 return;
538
539 s = splzs();
540 simple_lock(&cs->cs_lock);
541 }
542
543 /* Turn off interrupts if not the console. */
544 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
545 CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
546 cs->cs_creg[1] = cs->cs_preg[1];
547 zs_write_reg(cs, 1, cs->cs_creg[1]);
548 }
549
550 /* Call the power management hook. */
551 if (cs->disable) {
552 #ifdef DIAGNOSTIC
553 if (!cs->enabled)
554 panic("zs_shutdown: not enabled?");
555 #endif
556 (*cs->disable)(zst->zst_cs);
557 }
558
559 simple_unlock(&cs->cs_lock);
560 splx(s);
561 }
562
563 /*
564 * Open a zs serial (tty) port.
565 */
566 int
567 zsopen(dev, flags, mode, l)
568 dev_t dev;
569 int flags;
570 int mode;
571 struct lwp *l;
572 {
573 struct zstty_softc *zst;
574 struct zs_chanstate *cs;
575 struct tty *tp;
576 struct proc *p;
577 int s, s2;
578 int error;
579
580 zst = device_lookup(&zstty_cd, ZSUNIT(dev));
581 if (zst == NULL)
582 return (ENXIO);
583
584 tp = zst->zst_tty;
585 cs = zst->zst_cs;
586 p = l->l_proc;
587
588 /* If KGDB took the line, then tp==NULL */
589 if (tp == NULL)
590 return (EBUSY);
591
592 if (ISSET(tp->t_state, TS_ISOPEN) &&
593 ISSET(tp->t_state, TS_XCLUDE) &&
594 kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
595 &p->p_acflag) != 0)
596 return (EBUSY);
597
598 s = spltty();
599
600 /*
601 * Do the following iff this is a first open.
602 */
603 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
604 struct termios t;
605
606 tp->t_dev = dev;
607
608 /* Call the power management hook. */
609 if (cs->enable) {
610 if ((*cs->enable)(cs)) {
611 splx(s);
612 printf("%s: device enable failed\n",
613 zst->zst_dev.dv_xname);
614 return (EIO);
615 }
616 }
617
618 /*
619 * Initialize the termios status to the defaults. Add in the
620 * sticky bits from TIOCSFLAGS.
621 */
622 t.c_ispeed = 0;
623 t.c_ospeed = cs->cs_defspeed;
624 t.c_cflag = cs->cs_defcflag;
625 if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
626 SET(t.c_cflag, CLOCAL);
627 if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
628 SET(t.c_cflag, CRTSCTS);
629 if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
630 SET(t.c_cflag, CDTRCTS);
631 if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
632 SET(t.c_cflag, MDMBUF);
633
634 s2 = splzs();
635 simple_lock(&cs->cs_lock);
636
637 /*
638 * Turn on receiver and status interrupts.
639 * We defer the actual write of the register to zsparam(),
640 * but we must make sure status interrupts are turned on by
641 * the time zsparam() reads the initial rr0 state.
642 */
643 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
644
645 /* Clear PPS capture state on first open. */
646 zst->zst_ppsmask = 0;
647 #ifdef __HAVE_TIMECOUNTER
648 memset(&zst->zst_pps_state, 0, sizeof(zst->zst_pps_state));
649 zst->zst_pps_state.ppscap = PPS_CAPTUREASSERT | PPS_CAPTURECLEAR;
650 pps_init(&zst->zst_pps_state);
651 #else /* !__HAVE_TIMECOUNTER */
652 zst->ppsparam.mode = 0;
653 #endif /* !__HAVE_TIMECOUNTER */
654
655 simple_unlock(&cs->cs_lock);
656 splx(s2);
657
658 /* Make sure zsparam will see changes. */
659 tp->t_ospeed = 0;
660 (void) zsparam(tp, &t);
661
662 /*
663 * Note: zsparam has done: cflag, ispeed, ospeed
664 * so we just need to do: iflag, oflag, lflag, cc
665 * For "raw" mode, just leave all zeros.
666 */
667 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
668 tp->t_iflag = TTYDEF_IFLAG;
669 tp->t_oflag = TTYDEF_OFLAG;
670 tp->t_lflag = TTYDEF_LFLAG;
671 } else {
672 tp->t_iflag = 0;
673 tp->t_oflag = 0;
674 tp->t_lflag = 0;
675 }
676 ttychars(tp);
677 ttsetwater(tp);
678
679 s2 = splzs();
680 simple_lock(&cs->cs_lock);
681
682 /*
683 * Turn on DTR. We must always do this, even if carrier is not
684 * present, because otherwise we'd have to use TIOCSDTR
685 * immediately after setting CLOCAL, which applications do not
686 * expect. We always assert DTR while the device is open
687 * unless explicitly requested to deassert it.
688 */
689 zs_modem(zst, 1);
690
691 /* Clear the input ring, and unblock. */
692 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
693 zst->zst_rbavail = zstty_rbuf_size;
694 zs_iflush(cs);
695 CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
696 zs_hwiflow(zst);
697
698 simple_unlock(&cs->cs_lock);
699 splx(s2);
700 }
701
702 splx(s);
703
704 error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
705 if (error)
706 goto bad;
707
708 error = (*tp->t_linesw->l_open)(dev, tp);
709 if (error)
710 goto bad;
711
712 return (0);
713
714 bad:
715 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
716 /*
717 * We failed to open the device, and nobody else had it opened.
718 * Clean up the state as appropriate.
719 */
720 zs_shutdown(zst);
721 }
722
723 return (error);
724 }
725
726 /*
727 * Close a zs serial port.
728 */
729 int
730 zsclose(dev, flags, mode, l)
731 dev_t dev;
732 int flags;
733 int mode;
734 struct lwp *l;
735 {
736 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
737 struct tty *tp = zst->zst_tty;
738
739 /* XXX This is for cons.c. */
740 if (!ISSET(tp->t_state, TS_ISOPEN))
741 return 0;
742
743 (*tp->t_linesw->l_close)(tp, flags);
744 ttyclose(tp);
745
746 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
747 /*
748 * Although we got a last close, the device may still be in
749 * use; e.g. if this was the dialout node, and there are still
750 * processes waiting for carrier on the non-dialout node.
751 */
752 zs_shutdown(zst);
753 }
754
755 return (0);
756 }
757
758 /*
759 * Read/write zs serial port.
760 */
761 int
762 zsread(dev, uio, flags)
763 dev_t dev;
764 struct uio *uio;
765 int flags;
766 {
767 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
768 struct tty *tp = zst->zst_tty;
769
770 return ((*tp->t_linesw->l_read)(tp, uio, flags));
771 }
772
773 int
774 zswrite(dev, uio, flags)
775 dev_t dev;
776 struct uio *uio;
777 int flags;
778 {
779 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
780 struct tty *tp = zst->zst_tty;
781
782 return ((*tp->t_linesw->l_write)(tp, uio, flags));
783 }
784
785 int
786 zspoll(dev, events, l)
787 dev_t dev;
788 int events;
789 struct lwp *l;
790 {
791 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
792 struct tty *tp = zst->zst_tty;
793
794 return ((*tp->t_linesw->l_poll)(tp, events, l));
795 }
796
797 int
798 zsioctl(dev, cmd, data, flag, l)
799 dev_t dev;
800 u_long cmd;
801 caddr_t data;
802 int flag;
803 struct lwp *l;
804 {
805 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
806 struct zs_chanstate *cs = zst->zst_cs;
807 struct tty *tp = zst->zst_tty;
808 struct proc *p = l->l_proc;
809 int error;
810 int s;
811
812 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
813 if (error != EPASSTHROUGH)
814 return (error);
815
816 error = ttioctl(tp, cmd, data, flag, l);
817 if (error != EPASSTHROUGH)
818 return (error);
819
820 #ifdef ZS_MD_IOCTL
821 error = ZS_MD_IOCTL(cs, cmd, data);
822 if (error != EPASSTHROUGH)
823 return (error);
824 #endif /* ZS_MD_IOCTL */
825
826 error = 0;
827
828 s = splzs();
829 simple_lock(&cs->cs_lock);
830
831 switch (cmd) {
832 case TIOCSBRK:
833 zs_break(cs, 1);
834 break;
835
836 case TIOCCBRK:
837 zs_break(cs, 0);
838 break;
839
840 case TIOCGFLAGS:
841 *(int *)data = zst->zst_swflags;
842 break;
843
844 case TIOCSFLAGS:
845 error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
846 &p->p_acflag);
847 if (error)
848 break;
849 zst->zst_swflags = *(int *)data;
850 break;
851
852 case TIOCSDTR:
853 zs_modem(zst, 1);
854 break;
855
856 case TIOCCDTR:
857 zs_modem(zst, 0);
858 break;
859
860 case TIOCMSET:
861 case TIOCMBIS:
862 case TIOCMBIC:
863 tiocm_to_zs(zst, cmd, *(int *)data);
864 break;
865
866 case TIOCMGET:
867 *(int *)data = zs_to_tiocm(zst);
868 break;
869
870 #ifdef __HAVE_TIMECOUNTER
871 case PPS_IOC_CREATE:
872 case PPS_IOC_DESTROY:
873 case PPS_IOC_GETPARAMS:
874 case PPS_IOC_SETPARAMS:
875 case PPS_IOC_GETCAP:
876 case PPS_IOC_FETCH:
877 #ifdef PPS_SYNC
878 case PPS_IOC_KCBIND:
879 #endif
880 error = pps_ioctl(cmd, data, &zst->zst_pps_state);
881 if (zst->zst_pps_state.ppsparam.mode & PPS_CAPTUREBOTH)
882 zst->zst_ppsmask = ZSRR0_DCD;
883 else
884 zst->zst_ppsmask = 0;
885 break;
886 #else /* !__HAVE_TIMECOUNTER */
887 case PPS_IOC_CREATE:
888 break;
889
890 case PPS_IOC_DESTROY:
891 break;
892
893 case PPS_IOC_GETPARAMS: {
894 pps_params_t *pp;
895 pp = (pps_params_t *)data;
896 *pp = zst->ppsparam;
897 break;
898 }
899
900 case PPS_IOC_SETPARAMS: {
901 pps_params_t *pp;
902 int mode;
903 if (cs->cs_rr0_pps == 0) {
904 error = EINVAL;
905 break;
906 }
907 pp = (pps_params_t *)data;
908 if (pp->mode & ~zsppscap) {
909 error = EINVAL;
910 break;
911 }
912 zst->ppsparam = *pp;
913 /*
914 * compute masks from user-specified timestamp state.
915 */
916 mode = zst->ppsparam.mode;
917 switch (mode & PPS_CAPTUREBOTH) {
918 case 0:
919 zst->zst_ppsmask = 0;
920 break;
921
922 case PPS_CAPTUREASSERT:
923 zst->zst_ppsmask = ZSRR0_DCD;
924 zst->zst_ppsassert = ZSRR0_DCD;
925 zst->zst_ppsclear = -1;
926 break;
927
928 case PPS_CAPTURECLEAR:
929 zst->zst_ppsmask = ZSRR0_DCD;
930 zst->zst_ppsassert = -1;
931 zst->zst_ppsclear = 0;
932 break;
933
934 case PPS_CAPTUREBOTH:
935 zst->zst_ppsmask = ZSRR0_DCD;
936 zst->zst_ppsassert = ZSRR0_DCD;
937 zst->zst_ppsclear = 0;
938 break;
939
940 default:
941 error = EINVAL;
942 break;
943 }
944
945 /*
946 * Now update interrupts.
947 */
948 zs_maskintr(zst);
949 /*
950 * If nothing is being transmitted, set up new current values,
951 * else mark them as pending.
952 */
953 if (!cs->cs_heldchange) {
954 if (zst->zst_tx_busy) {
955 zst->zst_heldtbc = zst->zst_tbc;
956 zst->zst_tbc = 0;
957 cs->cs_heldchange = 1;
958 } else
959 zs_loadchannelregs(cs);
960 }
961
962 break;
963 }
964
965 case PPS_IOC_GETCAP:
966 *(int *)data = zsppscap;
967 break;
968
969 case PPS_IOC_FETCH: {
970 pps_info_t *pi;
971 pi = (pps_info_t *)data;
972 *pi = zst->ppsinfo;
973 break;
974 }
975
976 #ifdef PPS_SYNC
977 case PPS_IOC_KCBIND: {
978 int edge = (*(int *)data) & PPS_CAPTUREBOTH;
979
980 if (edge == 0) {
981 /*
982 * remove binding for this source; ignore
983 * the request if this is not the current
984 * hardpps source
985 */
986 if (pps_kc_hardpps_source == zst) {
987 pps_kc_hardpps_source = NULL;
988 pps_kc_hardpps_mode = 0;
989 }
990 } else {
991 /*
992 * bind hardpps to this source, replacing any
993 * previously specified source or edges
994 */
995 pps_kc_hardpps_source = zst;
996 pps_kc_hardpps_mode = edge;
997 }
998 break;
999 }
1000 #endif /* PPS_SYNC */
1001 #endif /* !__HAVE_TIMECOUNTER */
1002
1003 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
1004 if (cs->cs_rr0_pps == 0) {
1005 error = EINVAL;
1006 break;
1007 }
1008 #ifdef __HAVE_TIMECOUNTER
1009 #ifndef PPS_TRAILING_EDGE
1010 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1011 &zst->zst_pps_state.ppsinfo.assert_timestamp);
1012 #else
1013 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1014 &zst->zst_pps_state.ppsinfo.clear_timestamp);
1015 #endif
1016 #else /* !__HAVE_TIMECOUNTER */
1017 zst->zst_ppsmask = ZSRR0_DCD;
1018 #ifndef PPS_TRAILING_EDGE
1019 zst->zst_ppsassert = ZSRR0_DCD;
1020 zst->zst_ppsclear = -1;
1021 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1022 &zst->ppsinfo.assert_timestamp);
1023 #else
1024 zst->zst_ppsassert = -1;
1025 zst->zst_ppsclear = 01;
1026 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1027 &zst->ppsinfo.clear_timestamp);
1028 #endif
1029 #endif /* !__HAVE_TIMECOUNTER */
1030 /*
1031 * Now update interrupts.
1032 */
1033 zs_maskintr(zst);
1034 /*
1035 * If nothing is being transmitted, set up new current values,
1036 * else mark them as pending.
1037 */
1038 if (!cs->cs_heldchange) {
1039 if (zst->zst_tx_busy) {
1040 zst->zst_heldtbc = zst->zst_tbc;
1041 zst->zst_tbc = 0;
1042 cs->cs_heldchange = 1;
1043 } else
1044 zs_loadchannelregs(cs);
1045 }
1046
1047 break;
1048
1049 default:
1050 error = EPASSTHROUGH;
1051 break;
1052 }
1053
1054 simple_unlock(&cs->cs_lock);
1055 splx(s);
1056
1057 return (error);
1058 }
1059
1060 /*
1061 * Start or restart transmission.
1062 */
1063 static void
1064 zsstart(tp)
1065 struct tty *tp;
1066 {
1067 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1068 struct zs_chanstate *cs = zst->zst_cs;
1069 u_char *tba;
1070 int s, tbc;
1071
1072 s = spltty();
1073 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1074 goto out;
1075 if (zst->zst_tx_stopped)
1076 goto out;
1077
1078 if (tp->t_outq.c_cc <= tp->t_lowat) {
1079 if (ISSET(tp->t_state, TS_ASLEEP)) {
1080 CLR(tp->t_state, TS_ASLEEP);
1081 wakeup((caddr_t)&tp->t_outq);
1082 }
1083 selwakeup(&tp->t_wsel);
1084 if (tp->t_outq.c_cc == 0)
1085 goto out;
1086 }
1087
1088 /* Grab the first contiguous region of buffer space. */
1089 tba = tp->t_outq.c_cf;
1090 tbc = ndqb(&tp->t_outq, 0);
1091
1092 (void) splzs();
1093 simple_lock(&cs->cs_lock);
1094
1095 zst->zst_tba = tba;
1096 zst->zst_tbc = tbc;
1097 SET(tp->t_state, TS_BUSY);
1098 zst->zst_tx_busy = 1;
1099
1100 #ifdef ZS_TXDMA
1101 if (zst->zst_tbc > 1) {
1102 zs_dma_setup(cs, zst->zst_tba, zst->zst_tbc);
1103 goto out;
1104 }
1105 #endif
1106
1107 /* Enable transmit completion interrupts if necessary. */
1108 if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
1109 SET(cs->cs_preg[1], ZSWR1_TIE);
1110 cs->cs_creg[1] = cs->cs_preg[1];
1111 zs_write_reg(cs, 1, cs->cs_creg[1]);
1112 }
1113
1114 /* Output the first character of the contiguous buffer. */
1115 zs_write_data(cs, *zst->zst_tba);
1116 zst->zst_tbc--;
1117 zst->zst_tba++;
1118
1119 simple_unlock(&cs->cs_lock);
1120 out:
1121 splx(s);
1122 return;
1123 }
1124
1125 /*
1126 * Stop output, e.g., for ^S or output flush.
1127 */
1128 void
1129 zsstop(tp, flag)
1130 struct tty *tp;
1131 int flag;
1132 {
1133 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1134 int s;
1135
1136 s = splzs();
1137 if (ISSET(tp->t_state, TS_BUSY)) {
1138 /* Stop transmitting at the next chunk. */
1139 zst->zst_tbc = 0;
1140 zst->zst_heldtbc = 0;
1141 if (!ISSET(tp->t_state, TS_TTSTOP))
1142 SET(tp->t_state, TS_FLUSH);
1143 }
1144 splx(s);
1145 }
1146
1147 /*
1148 * Set ZS tty parameters from termios.
1149 * XXX - Should just copy the whole termios after
1150 * making sure all the changes could be done.
1151 */
1152 static int
1153 zsparam(tp, t)
1154 struct tty *tp;
1155 struct termios *t;
1156 {
1157 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1158 struct zs_chanstate *cs = zst->zst_cs;
1159 int ospeed;
1160 tcflag_t cflag;
1161 u_char tmp3, tmp4, tmp5;
1162 int s, error;
1163
1164 ospeed = t->c_ospeed;
1165 cflag = t->c_cflag;
1166
1167 /* Check requested parameters. */
1168 if (ospeed < 0)
1169 return (EINVAL);
1170 if (t->c_ispeed && t->c_ispeed != ospeed)
1171 return (EINVAL);
1172
1173 /*
1174 * For the console, always force CLOCAL and !HUPCL, so that the port
1175 * is always active.
1176 */
1177 if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
1178 ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
1179 SET(cflag, CLOCAL);
1180 CLR(cflag, HUPCL);
1181 }
1182
1183 /*
1184 * Only whack the UART when params change.
1185 * Some callers need to clear tp->t_ospeed
1186 * to make sure initialization gets done.
1187 */
1188 if (tp->t_ospeed == ospeed &&
1189 tp->t_cflag == cflag)
1190 return (0);
1191
1192 /*
1193 * Call MD functions to deal with changed
1194 * clock modes or H/W flow control modes.
1195 * The BRG divisor is set now. (reg 12,13)
1196 */
1197 error = zs_set_speed(cs, ospeed);
1198 if (error)
1199 return (error);
1200 error = zs_set_modes(cs, cflag);
1201 if (error)
1202 return (error);
1203
1204 /*
1205 * Block interrupts so that state will not
1206 * be altered until we are done setting it up.
1207 *
1208 * Initial values in cs_preg are set before
1209 * our attach routine is called. The master
1210 * interrupt enable is handled by zsc.c
1211 *
1212 */
1213 s = splzs();
1214 simple_lock(&cs->cs_lock);
1215
1216 /*
1217 * Recalculate which status ints to enable.
1218 */
1219 zs_maskintr(zst);
1220
1221 /* Recompute character size bits. */
1222 tmp3 = cs->cs_preg[3];
1223 tmp5 = cs->cs_preg[5];
1224 CLR(tmp3, ZSWR3_RXSIZE);
1225 CLR(tmp5, ZSWR5_TXSIZE);
1226 switch (ISSET(cflag, CSIZE)) {
1227 case CS5:
1228 SET(tmp3, ZSWR3_RX_5);
1229 SET(tmp5, ZSWR5_TX_5);
1230 break;
1231 case CS6:
1232 SET(tmp3, ZSWR3_RX_6);
1233 SET(tmp5, ZSWR5_TX_6);
1234 break;
1235 case CS7:
1236 SET(tmp3, ZSWR3_RX_7);
1237 SET(tmp5, ZSWR5_TX_7);
1238 break;
1239 case CS8:
1240 SET(tmp3, ZSWR3_RX_8);
1241 SET(tmp5, ZSWR5_TX_8);
1242 break;
1243 }
1244 cs->cs_preg[3] = tmp3;
1245 cs->cs_preg[5] = tmp5;
1246
1247 /*
1248 * Recompute the stop bits and parity bits. Note that
1249 * zs_set_speed() may have set clock selection bits etc.
1250 * in wr4, so those must preserved.
1251 */
1252 tmp4 = cs->cs_preg[4];
1253 CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
1254 if (ISSET(cflag, CSTOPB))
1255 SET(tmp4, ZSWR4_TWOSB);
1256 else
1257 SET(tmp4, ZSWR4_ONESB);
1258 if (!ISSET(cflag, PARODD))
1259 SET(tmp4, ZSWR4_EVENP);
1260 if (ISSET(cflag, PARENB))
1261 SET(tmp4, ZSWR4_PARENB);
1262 cs->cs_preg[4] = tmp4;
1263
1264 /* And copy to tty. */
1265 tp->t_ispeed = 0;
1266 tp->t_ospeed = ospeed;
1267 tp->t_cflag = cflag;
1268
1269 /*
1270 * If nothing is being transmitted, set up new current values,
1271 * else mark them as pending.
1272 */
1273 if (!cs->cs_heldchange) {
1274 if (zst->zst_tx_busy) {
1275 zst->zst_heldtbc = zst->zst_tbc;
1276 zst->zst_tbc = 0;
1277 cs->cs_heldchange = 1;
1278 } else
1279 zs_loadchannelregs(cs);
1280 }
1281
1282 /*
1283 * If hardware flow control is disabled, turn off the buffer water
1284 * marks and unblock any soft flow control state. Otherwise, enable
1285 * the water marks.
1286 */
1287 if (!ISSET(cflag, CHWFLOW)) {
1288 zst->zst_r_hiwat = 0;
1289 zst->zst_r_lowat = 0;
1290 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1291 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1292 zst->zst_rx_ready = 1;
1293 cs->cs_softreq = 1;
1294 }
1295 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1296 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1297 zs_hwiflow(zst);
1298 }
1299 } else {
1300 zst->zst_r_hiwat = zstty_rbuf_hiwat;
1301 zst->zst_r_lowat = zstty_rbuf_lowat;
1302 }
1303
1304 /*
1305 * Force a recheck of the hardware carrier and flow control status,
1306 * since we may have changed which bits we're looking at.
1307 */
1308 zstty_stint(cs, 1);
1309
1310 simple_unlock(&cs->cs_lock);
1311 splx(s);
1312
1313 /*
1314 * If hardware flow control is disabled, unblock any hard flow control
1315 * state.
1316 */
1317 if (!ISSET(cflag, CHWFLOW)) {
1318 if (zst->zst_tx_stopped) {
1319 zst->zst_tx_stopped = 0;
1320 zsstart(tp);
1321 }
1322 }
1323
1324 zstty_softint(cs);
1325
1326 return (0);
1327 }
1328
1329 /*
1330 * Compute interrupt enable bits and set in the pending bits. Called both
1331 * in zsparam() and when PPS (pulse per second timing) state changes.
1332 * Must be called at splzs().
1333 */
1334 static void
1335 zs_maskintr(zst)
1336 struct zstty_softc *zst;
1337 {
1338 struct zs_chanstate *cs = zst->zst_cs;
1339 int tmp15;
1340
1341 cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
1342 if (zst->zst_ppsmask != 0)
1343 cs->cs_rr0_mask |= cs->cs_rr0_pps;
1344 tmp15 = cs->cs_preg[15];
1345 if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
1346 SET(tmp15, ZSWR15_DCD_IE);
1347 else
1348 CLR(tmp15, ZSWR15_DCD_IE);
1349 if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
1350 SET(tmp15, ZSWR15_CTS_IE);
1351 else
1352 CLR(tmp15, ZSWR15_CTS_IE);
1353 cs->cs_preg[15] = tmp15;
1354 }
1355
1356
1357 /*
1358 * Raise or lower modem control (DTR/RTS) signals. If a character is
1359 * in transmission, the change is deferred.
1360 * Called at splzs() and with the channel lock held.
1361 */
1362 static void
1363 zs_modem(zst, onoff)
1364 struct zstty_softc *zst;
1365 int onoff;
1366 {
1367 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1368
1369 if (cs->cs_wr5_dtr == 0)
1370 return;
1371
1372 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1373
1374 if (onoff)
1375 SET(ccs->cs_preg[5], cs->cs_wr5_dtr);
1376 else
1377 CLR(ccs->cs_preg[5], cs->cs_wr5_dtr);
1378
1379 if (!cs->cs_heldchange) {
1380 if (zst->zst_tx_busy) {
1381 zst->zst_heldtbc = zst->zst_tbc;
1382 zst->zst_tbc = 0;
1383 cs->cs_heldchange = 1;
1384 } else
1385 zs_loadchannelregs(cs);
1386 }
1387 }
1388
1389 /*
1390 * Set modem bits.
1391 * Called at splzs() and with the channel lock held.
1392 */
1393 static void
1394 tiocm_to_zs(zst, how, ttybits)
1395 struct zstty_softc *zst;
1396 u_long how;
1397 int ttybits;
1398 {
1399 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1400 u_char zsbits;
1401
1402 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1403
1404 zsbits = 0;
1405 if (ISSET(ttybits, TIOCM_DTR))
1406 SET(zsbits, ZSWR5_DTR);
1407 if (ISSET(ttybits, TIOCM_RTS))
1408 SET(zsbits, ZSWR5_RTS);
1409
1410 switch (how) {
1411 case TIOCMBIC:
1412 CLR(ccs->cs_preg[5], zsbits);
1413 break;
1414
1415 case TIOCMBIS:
1416 SET(ccs->cs_preg[5], zsbits);
1417 break;
1418
1419 case TIOCMSET:
1420 CLR(ccs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR);
1421 SET(ccs->cs_preg[5], zsbits);
1422 break;
1423 }
1424
1425 if (!cs->cs_heldchange) {
1426 if (zst->zst_tx_busy) {
1427 zst->zst_heldtbc = zst->zst_tbc;
1428 zst->zst_tbc = 0;
1429 cs->cs_heldchange = 1;
1430 } else
1431 zs_loadchannelregs(cs);
1432 }
1433 }
1434
1435 /*
1436 * Get modem bits.
1437 * Called at splzs() and with the channel lock held.
1438 */
1439 static int
1440 zs_to_tiocm(zst)
1441 struct zstty_softc *zst;
1442 {
1443 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1444 u_char zsbits;
1445 int ttybits = 0;
1446
1447 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1448
1449 zsbits = ccs->cs_preg[5];
1450 if (ISSET(zsbits, ZSWR5_DTR))
1451 SET(ttybits, TIOCM_DTR);
1452 if (ISSET(zsbits, ZSWR5_RTS))
1453 SET(ttybits, TIOCM_RTS);
1454
1455 zsbits = cs->cs_rr0;
1456 if (ISSET(zsbits, ZSRR0_DCD))
1457 SET(ttybits, TIOCM_CD);
1458 if (ISSET(zsbits, ZSRR0_CTS))
1459 SET(ttybits, TIOCM_CTS);
1460
1461 return (ttybits);
1462 }
1463
1464 /*
1465 * Try to block or unblock input using hardware flow-control.
1466 * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
1467 * if this function returns non-zero, the TS_TBLOCK flag will
1468 * be set or cleared according to the "block" arg passed.
1469 */
1470 int
1471 zshwiflow(tp, block)
1472 struct tty *tp;
1473 int block;
1474 {
1475 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1476 struct zs_chanstate *cs = zst->zst_cs;
1477 int s;
1478
1479 if (cs->cs_wr5_rts == 0)
1480 return (0);
1481
1482 s = splzs();
1483 simple_lock(&cs->cs_lock);
1484 if (block) {
1485 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1486 SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
1487 zs_hwiflow(zst);
1488 }
1489 } else {
1490 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1491 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1492 zst->zst_rx_ready = 1;
1493 cs->cs_softreq = 1;
1494 }
1495 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1496 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
1497 zs_hwiflow(zst);
1498 }
1499 }
1500 simple_unlock(&cs->cs_lock);
1501 splx(s);
1502 return (1);
1503 }
1504
1505 /*
1506 * Internal version of zshwiflow
1507 * Called at splzs() and with the channel lock held.
1508 */
1509 static void
1510 zs_hwiflow(zst)
1511 struct zstty_softc *zst;
1512 {
1513 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1514
1515 if (cs->cs_wr5_rts == 0)
1516 return;
1517
1518 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1519
1520 if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
1521 CLR(ccs->cs_preg[5], cs->cs_wr5_rts);
1522 CLR(ccs->cs_creg[5], cs->cs_wr5_rts);
1523 } else {
1524 SET(ccs->cs_preg[5], cs->cs_wr5_rts);
1525 SET(ccs->cs_creg[5], cs->cs_wr5_rts);
1526 }
1527 zs_write_reg(ccs, 5, ccs->cs_creg[5]);
1528 }
1529
1530
1531 /****************************************************************
1532 * Interface to the lower layer (zscc)
1533 ****************************************************************/
1534
1535 #define integrate static inline
1536 integrate void zstty_rxsoft(struct zstty_softc *, struct tty *);
1537 integrate void zstty_txsoft(struct zstty_softc *, struct tty *);
1538 integrate void zstty_stsoft(struct zstty_softc *, struct tty *);
1539 static void zstty_diag(void *);
1540
1541 /*
1542 * Receiver Ready interrupt.
1543 * Called at splzs() and with the channel lock held.
1544 */
1545 static void
1546 zstty_rxint(cs)
1547 struct zs_chanstate *cs;
1548 {
1549 struct zstty_softc *zst = cs->cs_private;
1550 u_char *put, *end;
1551 u_int cc;
1552 u_char rr0, rr1, c;
1553
1554 end = zst->zst_ebuf;
1555 put = zst->zst_rbput;
1556 cc = zst->zst_rbavail;
1557
1558 while (cc > 0) {
1559 /*
1560 * First read the status, because reading the received char
1561 * destroys the status of this char.
1562 */
1563 rr1 = zs_read_reg(cs, 1);
1564 c = zs_read_data(cs);
1565
1566 if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
1567 /* Clear the receive error. */
1568 zs_write_csr(cs, ZSWR0_RESET_ERRORS);
1569 }
1570
1571 cn_check_magic(zst->zst_tty->t_dev, c, zstty_cnm_state);
1572 put[0] = c;
1573 put[1] = rr1;
1574 put += 2;
1575 if (put >= end)
1576 put = zst->zst_rbuf;
1577 cc--;
1578
1579 rr0 = zs_read_csr(cs);
1580 if (!ISSET(rr0, ZSRR0_RX_READY))
1581 break;
1582 }
1583
1584 /*
1585 * Current string of incoming characters ended because
1586 * no more data was available or we ran out of space.
1587 * Schedule a receive event if any data was received.
1588 * If we're out of space, turn off receive interrupts.
1589 */
1590 zst->zst_rbput = put;
1591 zst->zst_rbavail = cc;
1592 if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1593 zst->zst_rx_ready = 1;
1594 cs->cs_softreq = 1;
1595 }
1596
1597 /*
1598 * See if we are in danger of overflowing a buffer. If
1599 * so, use hardware flow control to ease the pressure.
1600 */
1601 if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
1602 cc < zst->zst_r_hiwat) {
1603 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1604 zs_hwiflow(zst);
1605 }
1606
1607 /*
1608 * If we're out of space, disable receive interrupts
1609 * until the queue has drained a bit.
1610 */
1611 if (!cc) {
1612 SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1613 CLR(cs->cs_preg[1], ZSWR1_RIE);
1614 cs->cs_creg[1] = cs->cs_preg[1];
1615 zs_write_reg(cs, 1, cs->cs_creg[1]);
1616 }
1617
1618 #if 0
1619 printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1620 #endif
1621 }
1622
1623 /*
1624 * Transmitter Ready interrupt.
1625 * Called at splzs() and with the channel lock held.
1626 */
1627 static void
1628 zstty_txint(cs)
1629 struct zs_chanstate *cs;
1630 {
1631 struct zstty_softc *zst = cs->cs_private;
1632
1633 /*
1634 * If we've delayed a parameter change, do it now, and restart
1635 * output.
1636 */
1637 if (cs->cs_heldchange) {
1638 zs_loadchannelregs(cs);
1639 cs->cs_heldchange = 0;
1640 zst->zst_tbc = zst->zst_heldtbc;
1641 zst->zst_heldtbc = 0;
1642 }
1643
1644 /* Output the next character in the buffer, if any. */
1645 if (zst->zst_tbc > 0) {
1646 zs_write_data(cs, *zst->zst_tba);
1647 zst->zst_tbc--;
1648 zst->zst_tba++;
1649 } else {
1650 /* Disable transmit completion interrupts if necessary. */
1651 if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
1652 CLR(cs->cs_preg[1], ZSWR1_TIE);
1653 cs->cs_creg[1] = cs->cs_preg[1];
1654 zs_write_reg(cs, 1, cs->cs_creg[1]);
1655 }
1656 if (zst->zst_tx_busy) {
1657 zst->zst_tx_busy = 0;
1658 zst->zst_tx_done = 1;
1659 cs->cs_softreq = 1;
1660 }
1661 }
1662 }
1663
1664 /*
1665 * Status Change interrupt.
1666 * Called at splzs() and with the channel lock held.
1667 */
1668 static void
1669 zstty_stint(cs, force)
1670 struct zs_chanstate *cs;
1671 int force;
1672 {
1673 struct zstty_softc *zst = cs->cs_private;
1674 u_char rr0, delta;
1675
1676 rr0 = zs_read_csr(cs);
1677 zs_write_csr(cs, ZSWR0_RESET_STATUS);
1678
1679 /*
1680 * Check here for console break, so that we can abort
1681 * even when interrupts are locking up the machine.
1682 */
1683 if (ISSET(rr0, ZSRR0_BREAK))
1684 cn_check_magic(zst->zst_tty->t_dev, CNC_BREAK, zstty_cnm_state);
1685
1686 if (!force)
1687 delta = rr0 ^ cs->cs_rr0;
1688 else
1689 delta = cs->cs_rr0_mask;
1690 cs->cs_rr0 = rr0;
1691
1692 if (ISSET(delta, cs->cs_rr0_mask)) {
1693 SET(cs->cs_rr0_delta, delta);
1694
1695 /*
1696 * Pulse-per-second clock signal on edge of DCD?
1697 */
1698 if (ISSET(delta, zst->zst_ppsmask)) {
1699 #ifdef __HAVE_TIMECOUNTER
1700 if (zst->zst_pps_state.ppsparam.mode & PPS_CAPTUREBOTH) {
1701 pps_capture(&zst->zst_pps_state);
1702 pps_event(&zst->zst_pps_state,
1703 (ISSET(cs->cs_rr0, zst->zst_ppsmask))
1704 ? PPS_CAPTUREASSERT
1705 : PPS_CAPTURECLEAR);
1706 }
1707 #else /* !__HAVE_TIMECOUNTER */
1708 struct timeval tv;
1709 if (ISSET(rr0, zst->zst_ppsmask) == zst->zst_ppsassert) {
1710 /* XXX nanotime() */
1711 microtime(&tv);
1712 TIMEVAL_TO_TIMESPEC(&tv,
1713 &zst->ppsinfo.assert_timestamp);
1714 if (zst->ppsparam.mode & PPS_OFFSETASSERT) {
1715 timespecadd(&zst->ppsinfo.assert_timestamp,
1716 &zst->ppsparam.assert_offset,
1717 &zst->ppsinfo.assert_timestamp);
1718 }
1719
1720 #ifdef PPS_SYNC
1721 if (pps_kc_hardpps_source == zst &&
1722 pps_kc_hardpps_mode & PPS_CAPTUREASSERT) {
1723 hardpps(&tv, tv.tv_usec);
1724 }
1725 #endif
1726 zst->ppsinfo.assert_sequence++;
1727 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1728 } else if (ISSET(rr0, zst->zst_ppsmask) ==
1729 zst->zst_ppsclear) {
1730 /* XXX nanotime() */
1731 microtime(&tv);
1732 TIMEVAL_TO_TIMESPEC(&tv,
1733 &zst->ppsinfo.clear_timestamp);
1734 if (zst->ppsparam.mode & PPS_OFFSETCLEAR) {
1735 timespecadd(&zst->ppsinfo.clear_timestamp,
1736 &zst->ppsparam.clear_offset,
1737 &zst->ppsinfo.clear_timestamp);
1738 }
1739
1740 #ifdef PPS_SYNC
1741 if (pps_kc_hardpps_source == zst &&
1742 pps_kc_hardpps_mode & PPS_CAPTURECLEAR) {
1743 hardpps(&tv, tv.tv_usec);
1744 }
1745 #endif
1746 zst->ppsinfo.clear_sequence++;
1747 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1748 }
1749 #endif /* !__HAVE_TIMECOUNTER */
1750 }
1751
1752 /*
1753 * Stop output immediately if we lose the output
1754 * flow control signal or carrier detect.
1755 */
1756 if (ISSET(~rr0, cs->cs_rr0_mask)) {
1757 zst->zst_tbc = 0;
1758 zst->zst_heldtbc = 0;
1759 }
1760
1761 zst->zst_st_check = 1;
1762 cs->cs_softreq = 1;
1763 }
1764 }
1765
1766 void
1767 zstty_diag(arg)
1768 void *arg;
1769 {
1770 struct zstty_softc *zst = arg;
1771 int overflows, floods;
1772 int s;
1773
1774 s = splzs();
1775 overflows = zst->zst_overflows;
1776 zst->zst_overflows = 0;
1777 floods = zst->zst_floods;
1778 zst->zst_floods = 0;
1779 zst->zst_errors = 0;
1780 splx(s);
1781
1782 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1783 zst->zst_dev.dv_xname,
1784 overflows, overflows == 1 ? "" : "s",
1785 floods, floods == 1 ? "" : "s");
1786 }
1787
1788 integrate void
1789 zstty_rxsoft(zst, tp)
1790 struct zstty_softc *zst;
1791 struct tty *tp;
1792 {
1793 struct zs_chanstate *cs = zst->zst_cs;
1794 int (*rint)(int, struct tty *) = tp->t_linesw->l_rint;
1795 u_char *get, *end;
1796 u_int cc, scc;
1797 u_char rr1;
1798 int code;
1799 int s;
1800
1801 end = zst->zst_ebuf;
1802 get = zst->zst_rbget;
1803 scc = cc = zstty_rbuf_size - zst->zst_rbavail;
1804
1805 if (cc == zstty_rbuf_size) {
1806 zst->zst_floods++;
1807 if (zst->zst_errors++ == 0)
1808 callout_reset(&zst->zst_diag_ch, 60 * hz,
1809 zstty_diag, zst);
1810 }
1811
1812 /* If not yet open, drop the entire buffer content here */
1813 if (!ISSET(tp->t_state, TS_ISOPEN)) {
1814 get += cc << 1;
1815 if (get >= end)
1816 get -= zstty_rbuf_size << 1;
1817 cc = 0;
1818 }
1819 while (cc) {
1820 code = get[0];
1821 rr1 = get[1];
1822 if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
1823 if (ISSET(rr1, ZSRR1_DO)) {
1824 zst->zst_overflows++;
1825 if (zst->zst_errors++ == 0)
1826 callout_reset(&zst->zst_diag_ch,
1827 60 * hz, zstty_diag, zst);
1828 }
1829 if (ISSET(rr1, ZSRR1_FE))
1830 SET(code, TTY_FE);
1831 if (ISSET(rr1, ZSRR1_PE))
1832 SET(code, TTY_PE);
1833 }
1834 if ((*rint)(code, tp) == -1) {
1835 /*
1836 * The line discipline's buffer is out of space.
1837 */
1838 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1839 /*
1840 * We're either not using flow control, or the
1841 * line discipline didn't tell us to block for
1842 * some reason. Either way, we have no way to
1843 * know when there's more space available, so
1844 * just drop the rest of the data.
1845 */
1846 get += cc << 1;
1847 if (get >= end)
1848 get -= zstty_rbuf_size << 1;
1849 cc = 0;
1850 } else {
1851 /*
1852 * Don't schedule any more receive processing
1853 * until the line discipline tells us there's
1854 * space available (through comhwiflow()).
1855 * Leave the rest of the data in the input
1856 * buffer.
1857 */
1858 SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1859 }
1860 break;
1861 }
1862 get += 2;
1863 if (get >= end)
1864 get = zst->zst_rbuf;
1865 cc--;
1866 }
1867
1868 if (cc != scc) {
1869 zst->zst_rbget = get;
1870 s = splzs();
1871 simple_lock(&cs->cs_lock);
1872 cc = zst->zst_rbavail += scc - cc;
1873 /* Buffers should be ok again, release possible block. */
1874 if (cc >= zst->zst_r_lowat) {
1875 if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
1876 CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1877 SET(cs->cs_preg[1], ZSWR1_RIE);
1878 cs->cs_creg[1] = cs->cs_preg[1];
1879 zs_write_reg(cs, 1, cs->cs_creg[1]);
1880 }
1881 if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
1882 CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1883 zs_hwiflow(zst);
1884 }
1885 }
1886 simple_unlock(&cs->cs_lock);
1887 splx(s);
1888 }
1889
1890 #if 0
1891 printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1892 #endif
1893 }
1894
1895 integrate void
1896 zstty_txsoft(zst, tp)
1897 struct zstty_softc *zst;
1898 struct tty *tp;
1899 {
1900 struct zs_chanstate *cs = zst->zst_cs;
1901 int s;
1902
1903 s = splzs();
1904 simple_lock(&cs->cs_lock);
1905 CLR(tp->t_state, TS_BUSY);
1906 if (ISSET(tp->t_state, TS_FLUSH))
1907 CLR(tp->t_state, TS_FLUSH);
1908 else
1909 ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
1910 simple_unlock(&cs->cs_lock);
1911 splx(s);
1912 (*tp->t_linesw->l_start)(tp);
1913 }
1914
1915 integrate void
1916 zstty_stsoft(zst, tp)
1917 struct zstty_softc *zst;
1918 struct tty *tp;
1919 {
1920 struct zs_chanstate *cs = zst->zst_cs;
1921 u_char rr0, delta;
1922 int s;
1923
1924 s = splzs();
1925 simple_lock(&cs->cs_lock);
1926 rr0 = cs->cs_rr0;
1927 delta = cs->cs_rr0_delta;
1928 cs->cs_rr0_delta = 0;
1929 simple_unlock(&cs->cs_lock);
1930 splx(s);
1931
1932 if (ISSET(delta, cs->cs_rr0_dcd)) {
1933 /*
1934 * Inform the tty layer that carrier detect changed.
1935 */
1936 (void) (*tp->t_linesw->l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
1937 }
1938
1939 if (ISSET(delta, cs->cs_rr0_cts)) {
1940 /* Block or unblock output according to flow control. */
1941 if (ISSET(rr0, cs->cs_rr0_cts)) {
1942 zst->zst_tx_stopped = 0;
1943 (*tp->t_linesw->l_start)(tp);
1944 } else {
1945 zst->zst_tx_stopped = 1;
1946 }
1947 }
1948 }
1949
1950 /*
1951 * Software interrupt. Called at zssoft
1952 *
1953 * The main job to be done here is to empty the input ring
1954 * by passing its contents up to the tty layer. The ring is
1955 * always emptied during this operation, therefore the ring
1956 * must not be larger than the space after "high water" in
1957 * the tty layer, or the tty layer might drop our input.
1958 *
1959 * Note: an "input blockage" condition is assumed to exist if
1960 * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
1961 */
1962 static void
1963 zstty_softint(cs)
1964 struct zs_chanstate *cs;
1965 {
1966 struct zstty_softc *zst = cs->cs_private;
1967 struct tty *tp = zst->zst_tty;
1968 int s;
1969
1970 s = spltty();
1971
1972 if (zst->zst_rx_ready) {
1973 zst->zst_rx_ready = 0;
1974 zstty_rxsoft(zst, tp);
1975 }
1976
1977 if (zst->zst_st_check) {
1978 zst->zst_st_check = 0;
1979 zstty_stsoft(zst, tp);
1980 }
1981
1982 if (zst->zst_tx_done) {
1983 zst->zst_tx_done = 0;
1984 zstty_txsoft(zst, tp);
1985 }
1986
1987 splx(s);
1988 }
1989
1990 struct zsops zsops_tty = {
1991 zstty_rxint, /* receive char available */
1992 zstty_stint, /* external/status */
1993 zstty_txint, /* xmit buffer empty */
1994 zstty_softint, /* process software interrupt */
1995 };
1996
1997 #ifdef ZS_TXDMA
1998 void
1999 zstty_txdma_int(arg)
2000 void *arg;
2001 {
2002 struct zs_chanstate *cs = arg;
2003 struct zstty_softc *zst = cs->cs_private;
2004
2005 zst->zst_tba += zst->zst_tbc;
2006 zst->zst_tbc = 0;
2007
2008 if (zst->zst_tx_busy) {
2009 zst->zst_tx_busy = 0;
2010 zst->zst_tx_done = 1;
2011 cs->cs_softreq = 1;
2012 }
2013 }
2014 #endif
2015