z8530tty.c revision 1.124 1 /* $NetBSD: z8530tty.c,v 1.124 2009/03/20 16:28:57 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999
5 * Charles M. Hannum. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Charles M. Hannum.
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This software was developed by the Computer Systems Engineering group
38 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
39 * contributed to Berkeley.
40 *
41 * All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Lawrence Berkeley Laboratory.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)zs.c 8.1 (Berkeley) 7/19/93
71 */
72
73 /*
74 * Copyright (c) 1994 Gordon W. Ross
75 *
76 * This software was developed by the Computer Systems Engineering group
77 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
78 * contributed to Berkeley.
79 *
80 * All advertising materials mentioning features or use of this software
81 * must display the following acknowledgement:
82 * This product includes software developed by the University of
83 * California, Lawrence Berkeley Laboratory.
84 *
85 * Redistribution and use in source and binary forms, with or without
86 * modification, are permitted provided that the following conditions
87 * are met:
88 * 1. Redistributions of source code must retain the above copyright
89 * notice, this list of conditions and the following disclaimer.
90 * 2. Redistributions in binary form must reproduce the above copyright
91 * notice, this list of conditions and the following disclaimer in the
92 * documentation and/or other materials provided with the distribution.
93 * 3. All advertising materials mentioning features or use of this software
94 * must display the following acknowledgement:
95 * This product includes software developed by the University of
96 * California, Berkeley and its contributors.
97 * 4. Neither the name of the University nor the names of its contributors
98 * may be used to endorse or promote products derived from this software
99 * without specific prior written permission.
100 *
101 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
102 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
103 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
104 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
105 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
106 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
107 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
108 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
109 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
110 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
111 * SUCH DAMAGE.
112 *
113 * @(#)zs.c 8.1 (Berkeley) 7/19/93
114 */
115
116 /*
117 * Zilog Z8530 Dual UART driver (tty interface)
118 *
119 * This is the "slave" driver that will be attached to
120 * the "zsc" driver for plain "tty" async. serial lines.
121 *
122 * Credits, history:
123 *
124 * The original version of this code was the sparc/dev/zs.c driver
125 * as distributed with the Berkeley 4.4 Lite release. Since then,
126 * Gordon Ross reorganized the code into the current parent/child
127 * driver scheme, separating the Sun keyboard and mouse support
128 * into independent child drivers.
129 *
130 * RTS/CTS flow-control support was a collaboration of:
131 * Gordon Ross <gwr (at) NetBSD.org>,
132 * Bill Studenmund <wrstuden (at) loki.stanford.edu>
133 * Ian Dall <Ian.Dall (at) dsto.defence.gov.au>
134 *
135 * The driver was massively overhauled in November 1997 by Charles Hannum,
136 * fixing *many* bugs, and substantially improving performance.
137 */
138
139 #include <sys/cdefs.h>
140 __KERNEL_RCSID(0, "$NetBSD: z8530tty.c,v 1.124 2009/03/20 16:28:57 tsutsui Exp $");
141
142 #include "opt_kgdb.h"
143 #include "opt_ntp.h"
144
145 #include <sys/param.h>
146 #include <sys/systm.h>
147 #include <sys/proc.h>
148 #include <sys/device.h>
149 #include <sys/conf.h>
150 #include <sys/file.h>
151 #include <sys/ioctl.h>
152 #include <sys/malloc.h>
153 #include <sys/timepps.h>
154 #include <sys/tty.h>
155 #include <sys/time.h>
156 #include <sys/kernel.h>
157 #include <sys/syslog.h>
158 #include <sys/kauth.h>
159
160 #include <dev/ic/z8530reg.h>
161 #include <machine/z8530var.h>
162
163 #include <dev/cons.h>
164
165 #include "ioconf.h"
166 #include "locators.h"
167
168 /*
169 * How many input characters we can buffer.
170 * The port-specific var.h may override this.
171 * Note: must be a power of two!
172 */
173 #ifndef ZSTTY_RING_SIZE
174 #define ZSTTY_RING_SIZE 2048
175 #endif
176
177 static struct cnm_state zstty_cnm_state;
178 /*
179 * Make this an option variable one can patch.
180 * But be warned: this must be a power of 2!
181 */
182 u_int zstty_rbuf_size = ZSTTY_RING_SIZE;
183
184 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
185 u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
186 u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;
187
188 struct zstty_softc {
189 device_t zst_dev; /* required first: base device */
190 struct tty *zst_tty;
191 struct zs_chanstate *zst_cs;
192
193 struct callout zst_diag_ch;
194
195 u_int zst_overflows,
196 zst_floods,
197 zst_errors;
198
199 int zst_hwflags, /* see z8530var.h */
200 zst_swflags; /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
201
202 u_int zst_r_hiwat,
203 zst_r_lowat;
204 uint8_t *volatile zst_rbget,
205 *volatile zst_rbput;
206 volatile u_int zst_rbavail;
207 uint8_t *zst_rbuf,
208 *zst_ebuf;
209
210 /*
211 * The transmit byte count and address are used for pseudo-DMA
212 * output in the hardware interrupt code. PDMA can be suspended
213 * to get pending changes done; heldtbc is used for this. It can
214 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
215 */
216 uint8_t *zst_tba; /* transmit buffer address */
217 u_int zst_tbc, /* transmit byte count */
218 zst_heldtbc; /* held tbc while xmission stopped */
219
220 /* Flags to communicate with zstty_softint() */
221 volatile uint8_t zst_rx_flags, /* receiver blocked */
222 #define RX_TTY_BLOCKED 0x01
223 #define RX_TTY_OVERFLOWED 0x02
224 #define RX_IBUF_BLOCKED 0x04
225 #define RX_IBUF_OVERFLOWED 0x08
226 #define RX_ANY_BLOCK 0x0f
227 zst_tx_busy, /* working on an output chunk */
228 zst_tx_done, /* done with one output chunk */
229 zst_tx_stopped, /* H/W level stop (lost CTS) */
230 zst_st_check, /* got a status interrupt */
231 zst_rx_ready;
232
233 /* PPS signal on DCD, with or without inkernel clock disciplining */
234 uint8_t zst_ppsmask; /* pps signal mask */
235 struct pps_state zst_pps_state;
236 };
237
238 /* Definition of the driver for autoconfig. */
239 static int zstty_match(device_t, cfdata_t, void *);
240 static void zstty_attach(device_t, device_t, void *);
241
242 CFATTACH_DECL_NEW(zstty, sizeof(struct zstty_softc),
243 zstty_match, zstty_attach, NULL, NULL);
244
245 dev_type_open(zsopen);
246 dev_type_close(zsclose);
247 dev_type_read(zsread);
248 dev_type_write(zswrite);
249 dev_type_ioctl(zsioctl);
250 dev_type_stop(zsstop);
251 dev_type_tty(zstty);
252 dev_type_poll(zspoll);
253
254 const struct cdevsw zstty_cdevsw = {
255 zsopen, zsclose, zsread, zswrite, zsioctl,
256 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
257 };
258
259 struct zsops zsops_tty;
260
261 static void zs_shutdown(struct zstty_softc *);
262 static void zsstart(struct tty *);
263 static int zsparam(struct tty *, struct termios *);
264 static void zs_modem(struct zstty_softc *, int);
265 static void tiocm_to_zs(struct zstty_softc *, u_long, int);
266 static int zs_to_tiocm(struct zstty_softc *);
267 static int zshwiflow(struct tty *, int);
268 static void zs_hwiflow(struct zstty_softc *);
269 static void zs_maskintr(struct zstty_softc *);
270
271 /* Low-level routines. */
272 static void zstty_rxint (struct zs_chanstate *);
273 static void zstty_stint (struct zs_chanstate *, int);
274 static void zstty_txint (struct zs_chanstate *);
275 static void zstty_softint(struct zs_chanstate *);
276 static void zstty_softint1(struct zs_chanstate *);
277
278 #define ZSUNIT(x) (minor(x) & 0x7ffff)
279 #define ZSDIALOUT(x) (minor(x) & 0x80000)
280
281 struct tty *zstty_get_tty_from_dev(struct device *);
282
283 /*
284 * XXX get the (struct tty *) out of a (struct device *) we trust to be a
285 * (struct zstty_softc *) - needed by sparc/dev/zs.c, sparc64/dev/zs.c,
286 * sun3/dev/zs.c and sun2/dev/zs.c will probably need it at some point
287 */
288
289 struct tty *
290 zstty_get_tty_from_dev(struct device *dev)
291 {
292 struct zstty_softc *sc = device_private(dev);
293
294 return sc->zst_tty;
295 }
296
297 /*
298 * zstty_match: how is this zs channel configured?
299 */
300 int
301 zstty_match(device_t parent, cfdata_t cf, void *aux)
302 {
303 struct zsc_attach_args *args = aux;
304
305 /* Exact match is better than wildcard. */
306 if (cf->zsccf_channel == args->channel)
307 return 2;
308
309 /* This driver accepts wildcard. */
310 if (cf->zsccf_channel == ZSCCF_CHANNEL_DEFAULT)
311 return 1;
312
313 return 0;
314 }
315
316 void
317 zstty_attach(device_t parent, device_t self, void *aux)
318 {
319 struct zstty_softc *zst = device_private(self);
320 struct zsc_softc *zsc = device_private(parent);
321 struct cfdata *cf = device_cfdata(self);
322 struct zsc_attach_args *args = aux;
323 struct zs_chanstate *cs;
324 struct tty *tp;
325 int channel, tty_unit;
326 dev_t dev;
327 const char *i, *o;
328 int dtr_on;
329 int resetbit;
330
331 zst->zst_dev = self;
332
333 callout_init(&zst->zst_diag_ch, 0);
334 cn_init_magic(&zstty_cnm_state);
335
336 tty_unit = device_unit(self);
337 channel = args->channel;
338 cs = zsc->zsc_cs[channel];
339 cs->cs_private = zst;
340 cs->cs_ops = &zsops_tty;
341
342 zst->zst_cs = cs;
343 zst->zst_swflags = cf->cf_flags; /* softcar, etc. */
344 zst->zst_hwflags = args->hwflags;
345 dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), tty_unit);
346
347 if (zst->zst_swflags)
348 aprint_normal(" flags 0x%x", zst->zst_swflags);
349
350 /*
351 * Check whether we serve as a console device.
352 * XXX - split console input/output channels aren't
353 * supported yet on /dev/console
354 */
355 i = o = NULL;
356 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
357 i = "input";
358 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
359 args->consdev->cn_dev = dev;
360 cn_tab->cn_pollc = args->consdev->cn_pollc;
361 cn_tab->cn_getc = args->consdev->cn_getc;
362 }
363 cn_tab->cn_dev = dev;
364 /* Set console magic to BREAK */
365 cn_set_magic("\047\001");
366 }
367 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
368 o = "output";
369 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
370 cn_tab->cn_putc = args->consdev->cn_putc;
371 }
372 cn_tab->cn_dev = dev;
373 }
374 if (i != NULL || o != NULL)
375 aprint_normal(" (console %s)", i ? (o ? "i/o" : i) : o);
376
377 #ifdef KGDB
378 if (zs_check_kgdb(cs, dev)) {
379 /*
380 * Allow kgdb to "take over" this port. Returns true
381 * if this serial port is in-use by kgdb.
382 */
383 aprint_normal(" (kgdb)\n");
384 /*
385 * This is the kgdb port (exclusive use)
386 * so skip the normal attach code.
387 */
388 return;
389 }
390 #endif
391 aprint_normal("\n");
392
393 tp = ttymalloc();
394 tp->t_dev = dev;
395 tp->t_oproc = zsstart;
396 tp->t_param = zsparam;
397 tp->t_hwiflow = zshwiflow;
398 tty_attach(tp);
399
400 zst->zst_tty = tp;
401 zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
402 if (zst->zst_rbuf == NULL) {
403 aprint_error_dev(zst->zst_dev,
404 "unable to allocate ring buffer\n");
405 return;
406 }
407 zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
408 /* Disable the high water mark. */
409 zst->zst_r_hiwat = 0;
410 zst->zst_r_lowat = 0;
411 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
412 zst->zst_rbavail = zstty_rbuf_size;
413
414 /* if there are no enable/disable functions, assume the device
415 is always enabled */
416 if (!cs->enable)
417 cs->enabled = 1;
418
419 /*
420 * Hardware init
421 */
422 dtr_on = 0;
423 resetbit = 0;
424 if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
425 /* Call zsparam similar to open. */
426 struct termios t;
427
428 /* Wait a while for previous console output to complete */
429 DELAY(10000);
430
431 /* Setup the "new" parameters in t. */
432 t.c_ispeed = 0;
433 t.c_ospeed = cs->cs_defspeed;
434 t.c_cflag = cs->cs_defcflag;
435
436 /*
437 * Turn on receiver and status interrupts.
438 * We defer the actual write of the register to zsparam(),
439 * but we must make sure status interrupts are turned on by
440 * the time zsparam() reads the initial rr0 state.
441 */
442 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE);
443
444 /* Make sure zsparam will see changes. */
445 tp->t_ospeed = 0;
446 (void) zsparam(tp, &t);
447
448 /* Make sure DTR is on now. */
449 dtr_on = 1;
450
451 } else if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_NORESET)) {
452 /* Not the console; may need reset. */
453 resetbit = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
454 }
455
456 mutex_spin_enter(&cs->cs_lock);
457 if (resetbit)
458 zs_write_reg(cs, 9, resetbit);
459 zs_modem(zst, dtr_on);
460 mutex_spin_exit(&cs->cs_lock);
461 }
462
463
464 /*
465 * Return pointer to our tty.
466 */
467 struct tty *
468 zstty(dev_t dev)
469 {
470 struct zstty_softc *zst;
471
472 zst = device_lookup_private(&zstty_cd, ZSUNIT(dev));
473
474 return (zst->zst_tty);
475 }
476
477
478 void
479 zs_shutdown(struct zstty_softc *zst)
480 {
481 struct zs_chanstate *cs = zst->zst_cs;
482 struct tty *tp = zst->zst_tty;
483
484 mutex_spin_enter(&cs->cs_lock);
485
486 /* If we were asserting flow control, then deassert it. */
487 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
488 zs_hwiflow(zst);
489
490 /* Clear any break condition set with TIOCSBRK. */
491 zs_break(cs, 0);
492
493 /*
494 * Hang up if necessary. Wait a bit, so the other side has time to
495 * notice even if we immediately open the port again.
496 */
497 if (ISSET(tp->t_cflag, HUPCL)) {
498 zs_modem(zst, 0);
499 mutex_spin_exit(&cs->cs_lock);
500 /*
501 * XXX - another process is not prevented from opening
502 * the device during our sleep.
503 */
504 (void) tsleep(cs, TTIPRI, ttclos, hz);
505 /* Re-check state in case we were opened during our sleep */
506 if (ISSET(tp->t_state, TS_ISOPEN) || tp->t_wopen != 0)
507 return;
508
509 mutex_spin_enter(&cs->cs_lock);
510 }
511
512 /* Turn off interrupts if not the console. */
513 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
514 CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE);
515 cs->cs_creg[1] = cs->cs_preg[1];
516 zs_write_reg(cs, 1, cs->cs_creg[1]);
517 }
518
519 /* Call the power management hook. */
520 if (cs->disable) {
521 #ifdef DIAGNOSTIC
522 if (!cs->enabled)
523 panic("%s: not enabled?", __func__);
524 #endif
525 (*cs->disable)(zst->zst_cs);
526 }
527
528 mutex_spin_exit(&cs->cs_lock);
529 }
530
531 /*
532 * Open a zs serial (tty) port.
533 */
534 int
535 zsopen(dev_t dev, int flags, int mode, struct lwp *l)
536 {
537 struct zstty_softc *zst;
538 struct zs_chanstate *cs;
539 struct tty *tp;
540 int error;
541
542 zst = device_lookup_private(&zstty_cd, ZSUNIT(dev));
543 if (zst == NULL)
544 return (ENXIO);
545
546 tp = zst->zst_tty;
547 cs = zst->zst_cs;
548
549 /* If KGDB took the line, then tp==NULL */
550 if (tp == NULL)
551 return (EBUSY);
552
553 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
554 return (EBUSY);
555
556 mutex_spin_enter(&tty_lock);
557
558 /*
559 * Do the following iff this is a first open.
560 */
561 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
562 struct termios t;
563
564 tp->t_dev = dev;
565
566 /* Call the power management hook. */
567 if (cs->enable) {
568 if ((*cs->enable)(cs)) {
569 mutex_spin_exit(&tty_lock);
570 printf("%s: device enable failed\n",
571 device_xname(zst->zst_dev));
572 return (EIO);
573 }
574 }
575
576 /*
577 * Initialize the termios status to the defaults. Add in the
578 * sticky bits from TIOCSFLAGS.
579 */
580 t.c_ispeed = 0;
581 t.c_ospeed = cs->cs_defspeed;
582 t.c_cflag = cs->cs_defcflag;
583 if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
584 SET(t.c_cflag, CLOCAL);
585 if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
586 SET(t.c_cflag, CRTSCTS);
587 if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
588 SET(t.c_cflag, CDTRCTS);
589 if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
590 SET(t.c_cflag, MDMBUF);
591
592 mutex_spin_enter(&cs->cs_lock);
593
594 /*
595 * Turn on receiver and status interrupts.
596 * We defer the actual write of the register to zsparam(),
597 * but we must make sure status interrupts are turned on by
598 * the time zsparam() reads the initial rr0 state.
599 */
600 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE);
601
602 /* Clear PPS capture state on first open. */
603 mutex_spin_enter(&timecounter_lock);
604 zst->zst_ppsmask = 0;
605 memset(&zst->zst_pps_state, 0, sizeof(zst->zst_pps_state));
606 zst->zst_pps_state.ppscap =
607 PPS_CAPTUREASSERT | PPS_CAPTURECLEAR;
608 pps_init(&zst->zst_pps_state);
609 mutex_spin_exit(&timecounter_lock);
610
611 mutex_spin_exit(&cs->cs_lock);
612
613 /* Make sure zsparam will see changes. */
614 tp->t_ospeed = 0;
615 (void) zsparam(tp, &t);
616
617 /*
618 * Note: zsparam has done: cflag, ispeed, ospeed
619 * so we just need to do: iflag, oflag, lflag, cc
620 * For "raw" mode, just leave all zeros.
621 */
622 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
623 tp->t_iflag = TTYDEF_IFLAG;
624 tp->t_oflag = TTYDEF_OFLAG;
625 tp->t_lflag = TTYDEF_LFLAG;
626 } else {
627 tp->t_iflag = 0;
628 tp->t_oflag = 0;
629 tp->t_lflag = 0;
630 }
631 ttychars(tp);
632 ttsetwater(tp);
633
634 mutex_spin_enter(&cs->cs_lock);
635
636 /*
637 * Turn on DTR. We must always do this, even if carrier is not
638 * present, because otherwise we'd have to use TIOCSDTR
639 * immediately after setting CLOCAL, which applications do not
640 * expect. We always assert DTR while the device is open
641 * unless explicitly requested to deassert it.
642 */
643 zs_modem(zst, 1);
644
645 /* Clear the input ring, and unblock. */
646 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
647 zst->zst_rbavail = zstty_rbuf_size;
648 zs_iflush(cs);
649 CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
650 zs_hwiflow(zst);
651
652 mutex_spin_exit(&cs->cs_lock);
653 }
654
655 mutex_spin_exit(&tty_lock);
656
657 error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
658 if (error)
659 goto bad;
660
661 error = (*tp->t_linesw->l_open)(dev, tp);
662 if (error)
663 goto bad;
664
665 return (0);
666
667 bad:
668 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
669 /*
670 * We failed to open the device, and nobody else had it opened.
671 * Clean up the state as appropriate.
672 */
673 zs_shutdown(zst);
674 }
675
676 return (error);
677 }
678
679 /*
680 * Close a zs serial port.
681 */
682 int
683 zsclose(dev_t dev, int flags, int mode, struct lwp *l)
684 {
685 struct zstty_softc *zst;
686 struct tty *tp;
687
688 zst = device_lookup_private(&zstty_cd, ZSUNIT(dev));
689 tp = zst->zst_tty;
690
691 /* XXX This is for cons.c. */
692 if (!ISSET(tp->t_state, TS_ISOPEN))
693 return 0;
694
695 (*tp->t_linesw->l_close)(tp, flags);
696 ttyclose(tp);
697
698 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
699 /*
700 * Although we got a last close, the device may still be in
701 * use; e.g. if this was the dialout node, and there are still
702 * processes waiting for carrier on the non-dialout node.
703 */
704 zs_shutdown(zst);
705 }
706
707 return (0);
708 }
709
710 /*
711 * Read/write zs serial port.
712 */
713 int
714 zsread(dev_t dev, struct uio *uio, int flags)
715 {
716 struct zstty_softc *zst;
717 struct tty *tp;
718
719 zst = device_lookup_private(&zstty_cd, ZSUNIT(dev));
720 tp = zst->zst_tty;
721
722 return ((*tp->t_linesw->l_read)(tp, uio, flags));
723 }
724
725 int
726 zswrite(dev_t dev, struct uio *uio, int flags)
727 {
728 struct zstty_softc *zst;
729 struct tty *tp;
730
731 zst = device_lookup_private(&zstty_cd, ZSUNIT(dev));
732 tp = zst->zst_tty;
733
734 return ((*tp->t_linesw->l_write)(tp, uio, flags));
735 }
736
737 int
738 zspoll(dev_t dev, int events, struct lwp *l)
739 {
740 struct zstty_softc *zst;
741 struct tty *tp;
742
743 zst = device_lookup_private(&zstty_cd, ZSUNIT(dev));
744 tp = zst->zst_tty;
745
746 return ((*tp->t_linesw->l_poll)(tp, events, l));
747 }
748
749 int
750 zsioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
751 {
752 struct zstty_softc *zst;
753 struct zs_chanstate *cs;
754 struct tty *tp;
755 int error;
756
757 zst = device_lookup_private(&zstty_cd, ZSUNIT(dev));
758 cs = zst->zst_cs;
759 tp = zst->zst_tty;
760 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
761 if (error != EPASSTHROUGH)
762 return (error);
763
764 error = ttioctl(tp, cmd, data, flag, l);
765 if (error != EPASSTHROUGH)
766 return (error);
767
768 #ifdef ZS_MD_IOCTL
769 error = ZS_MD_IOCTL(cs, cmd, data);
770 if (error != EPASSTHROUGH)
771 return (error);
772 #endif /* ZS_MD_IOCTL */
773
774 error = 0;
775
776 mutex_spin_enter(&cs->cs_lock);
777
778 switch (cmd) {
779 case TIOCSBRK:
780 zs_break(cs, 1);
781 break;
782
783 case TIOCCBRK:
784 zs_break(cs, 0);
785 break;
786
787 case TIOCGFLAGS:
788 *(int *)data = zst->zst_swflags;
789 break;
790
791 case TIOCSFLAGS:
792 error = kauth_authorize_device_tty(l->l_cred,
793 KAUTH_DEVICE_TTY_PRIVSET, tp);
794 if (error)
795 break;
796 zst->zst_swflags = *(int *)data;
797 break;
798
799 case TIOCSDTR:
800 zs_modem(zst, 1);
801 break;
802
803 case TIOCCDTR:
804 zs_modem(zst, 0);
805 break;
806
807 case TIOCMSET:
808 case TIOCMBIS:
809 case TIOCMBIC:
810 tiocm_to_zs(zst, cmd, *(int *)data);
811 break;
812
813 case TIOCMGET:
814 *(int *)data = zs_to_tiocm(zst);
815 break;
816
817 case PPS_IOC_CREATE:
818 case PPS_IOC_DESTROY:
819 case PPS_IOC_GETPARAMS:
820 case PPS_IOC_SETPARAMS:
821 case PPS_IOC_GETCAP:
822 case PPS_IOC_FETCH:
823 #ifdef PPS_SYNC
824 case PPS_IOC_KCBIND:
825 #endif
826 mutex_spin_enter(&timecounter_lock);
827 error = pps_ioctl(cmd, data, &zst->zst_pps_state);
828 if (zst->zst_pps_state.ppsparam.mode & PPS_CAPTUREBOTH)
829 zst->zst_ppsmask = ZSRR0_DCD;
830 else
831 zst->zst_ppsmask = 0;
832 mutex_spin_exit(&timecounter_lock);
833 break;
834
835 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
836 if (cs->cs_rr0_pps == 0) {
837 error = EINVAL;
838 break;
839 }
840 mutex_spin_enter(&timecounter_lock);
841 #ifndef PPS_TRAILING_EDGE
842 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
843 &zst->zst_pps_state.ppsinfo.assert_timestamp);
844 #else
845 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
846 &zst->zst_pps_state.ppsinfo.clear_timestamp);
847 #endif
848 mutex_spin_exit(&timecounter_lock);
849 /*
850 * Now update interrupts.
851 */
852 zs_maskintr(zst);
853 /*
854 * If nothing is being transmitted, set up new current values,
855 * else mark them as pending.
856 */
857 if (!cs->cs_heldchange) {
858 if (zst->zst_tx_busy) {
859 zst->zst_heldtbc = zst->zst_tbc;
860 zst->zst_tbc = 0;
861 cs->cs_heldchange = 1;
862 } else
863 zs_loadchannelregs(cs);
864 }
865
866 break;
867
868 default:
869 error = EPASSTHROUGH;
870 break;
871 }
872
873 mutex_spin_exit(&cs->cs_lock);
874
875 return (error);
876 }
877
878 /*
879 * Start or restart transmission.
880 */
881 static void
882 zsstart(struct tty *tp)
883 {
884 struct zstty_softc *zst;
885 struct zs_chanstate *cs;
886 u_char *tba;
887 int tbc;
888
889 zst = device_lookup_private(&zstty_cd, ZSUNIT(tp->t_dev));
890 cs = zst->zst_cs;
891
892 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
893 return;
894 if (zst->zst_tx_stopped)
895 return;
896 if (!ttypull(tp))
897 return;
898
899 /* Grab the first contiguous region of buffer space. */
900 tba = tp->t_outq.c_cf;
901 tbc = ndqb(&tp->t_outq, 0);
902
903 mutex_spin_enter(&cs->cs_lock);
904
905 zst->zst_tba = tba;
906 zst->zst_tbc = tbc;
907 SET(tp->t_state, TS_BUSY);
908 zst->zst_tx_busy = 1;
909
910 #ifdef ZS_TXDMA
911 if (zst->zst_tbc > 1) {
912 zs_dma_setup(cs, zst->zst_tba, zst->zst_tbc);
913 mutex_spin_exit(&cs->cs_lock);
914 return;
915 }
916 #endif
917
918 /* Output the first character of the contiguous buffer. */
919 zs_write_data(cs, *zst->zst_tba);
920 zst->zst_tbc--;
921 zst->zst_tba++;
922
923 mutex_spin_exit(&cs->cs_lock);
924 }
925
926 /*
927 * Stop output, e.g., for ^S or output flush.
928 */
929 void
930 zsstop(struct tty *tp, int flag)
931 {
932 struct zstty_softc *zst;
933 int s;
934
935 zst = device_lookup_private(&zstty_cd, ZSUNIT(tp->t_dev));
936
937 s = splzs();
938 if (ISSET(tp->t_state, TS_BUSY)) {
939 /* Stop transmitting at the next chunk. */
940 zst->zst_tbc = 0;
941 zst->zst_heldtbc = 0;
942 if (!ISSET(tp->t_state, TS_TTSTOP))
943 SET(tp->t_state, TS_FLUSH);
944 }
945 splx(s);
946 }
947
948 /*
949 * Set ZS tty parameters from termios.
950 * XXX - Should just copy the whole termios after
951 * making sure all the changes could be done.
952 */
953 static int
954 zsparam(struct tty *tp, struct termios *t)
955 {
956 struct zstty_softc *zst;
957 struct zs_chanstate *cs;
958 int ospeed;
959 tcflag_t cflag;
960 uint8_t tmp3, tmp4, tmp5;
961 int error;
962
963 zst = device_lookup_private(&zstty_cd, ZSUNIT(tp->t_dev));
964 cs = zst->zst_cs;
965 ospeed = t->c_ospeed;
966 cflag = t->c_cflag;
967
968 /* Check requested parameters. */
969 if (ospeed < 0)
970 return (EINVAL);
971 if (t->c_ispeed && t->c_ispeed != ospeed)
972 return (EINVAL);
973
974 /*
975 * For the console, always force CLOCAL and !HUPCL, so that the port
976 * is always active.
977 */
978 if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
979 ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
980 SET(cflag, CLOCAL);
981 CLR(cflag, HUPCL);
982 }
983
984 /*
985 * Only whack the UART when params change.
986 * Some callers need to clear tp->t_ospeed
987 * to make sure initialization gets done.
988 */
989 if (tp->t_ospeed == ospeed &&
990 tp->t_cflag == cflag)
991 return (0);
992
993 /*
994 * Call MD functions to deal with changed
995 * clock modes or H/W flow control modes.
996 * The BRG divisor is set now. (reg 12,13)
997 */
998 error = zs_set_speed(cs, ospeed);
999 if (error)
1000 return (error);
1001 error = zs_set_modes(cs, cflag);
1002 if (error)
1003 return (error);
1004
1005 /*
1006 * Block interrupts so that state will not
1007 * be altered until we are done setting it up.
1008 *
1009 * Initial values in cs_preg are set before
1010 * our attach routine is called. The master
1011 * interrupt enable is handled by zsc.c
1012 *
1013 */
1014 mutex_spin_enter(&cs->cs_lock);
1015
1016 /*
1017 * Recalculate which status ints to enable.
1018 */
1019 zs_maskintr(zst);
1020
1021 /* Recompute character size bits. */
1022 tmp3 = cs->cs_preg[3];
1023 tmp5 = cs->cs_preg[5];
1024 CLR(tmp3, ZSWR3_RXSIZE);
1025 CLR(tmp5, ZSWR5_TXSIZE);
1026 switch (ISSET(cflag, CSIZE)) {
1027 case CS5:
1028 SET(tmp3, ZSWR3_RX_5);
1029 SET(tmp5, ZSWR5_TX_5);
1030 break;
1031 case CS6:
1032 SET(tmp3, ZSWR3_RX_6);
1033 SET(tmp5, ZSWR5_TX_6);
1034 break;
1035 case CS7:
1036 SET(tmp3, ZSWR3_RX_7);
1037 SET(tmp5, ZSWR5_TX_7);
1038 break;
1039 case CS8:
1040 SET(tmp3, ZSWR3_RX_8);
1041 SET(tmp5, ZSWR5_TX_8);
1042 break;
1043 }
1044 cs->cs_preg[3] = tmp3;
1045 cs->cs_preg[5] = tmp5;
1046
1047 /*
1048 * Recompute the stop bits and parity bits. Note that
1049 * zs_set_speed() may have set clock selection bits etc.
1050 * in wr4, so those must preserved.
1051 */
1052 tmp4 = cs->cs_preg[4];
1053 CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
1054 if (ISSET(cflag, CSTOPB))
1055 SET(tmp4, ZSWR4_TWOSB);
1056 else
1057 SET(tmp4, ZSWR4_ONESB);
1058 if (!ISSET(cflag, PARODD))
1059 SET(tmp4, ZSWR4_EVENP);
1060 if (ISSET(cflag, PARENB))
1061 SET(tmp4, ZSWR4_PARENB);
1062 cs->cs_preg[4] = tmp4;
1063
1064 /* And copy to tty. */
1065 tp->t_ispeed = 0;
1066 tp->t_ospeed = ospeed;
1067 tp->t_cflag = cflag;
1068
1069 /*
1070 * If nothing is being transmitted, set up new current values,
1071 * else mark them as pending.
1072 */
1073 if (!cs->cs_heldchange) {
1074 if (zst->zst_tx_busy) {
1075 zst->zst_heldtbc = zst->zst_tbc;
1076 zst->zst_tbc = 0;
1077 cs->cs_heldchange = 1;
1078 } else
1079 zs_loadchannelregs(cs);
1080 }
1081
1082 /*
1083 * If hardware flow control is disabled, turn off the buffer water
1084 * marks and unblock any soft flow control state. Otherwise, enable
1085 * the water marks.
1086 */
1087 if (!ISSET(cflag, CHWFLOW)) {
1088 zst->zst_r_hiwat = 0;
1089 zst->zst_r_lowat = 0;
1090 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1091 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1092 zst->zst_rx_ready = 1;
1093 cs->cs_softreq = 1;
1094 }
1095 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1096 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1097 zs_hwiflow(zst);
1098 }
1099 } else {
1100 zst->zst_r_hiwat = zstty_rbuf_hiwat;
1101 zst->zst_r_lowat = zstty_rbuf_lowat;
1102 }
1103
1104 /*
1105 * Force a recheck of the hardware carrier and flow control status,
1106 * since we may have changed which bits we're looking at.
1107 */
1108 zstty_stint(cs, 1);
1109
1110 mutex_spin_exit(&cs->cs_lock);
1111
1112 /*
1113 * If hardware flow control is disabled, unblock any hard flow control
1114 * state.
1115 */
1116 if (!ISSET(cflag, CHWFLOW)) {
1117 if (zst->zst_tx_stopped) {
1118 zst->zst_tx_stopped = 0;
1119 zsstart(tp);
1120 }
1121 }
1122
1123 zstty_softint1(cs);
1124
1125 return (0);
1126 }
1127
1128 /*
1129 * Compute interrupt enable bits and set in the pending bits. Called both
1130 * in zsparam() and when PPS (pulse per second timing) state changes.
1131 * Must be called at splzs().
1132 */
1133 static void
1134 zs_maskintr(struct zstty_softc *zst)
1135 {
1136 struct zs_chanstate *cs = zst->zst_cs;
1137 uint8_t tmp15;
1138
1139 cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
1140 if (zst->zst_ppsmask != 0)
1141 cs->cs_rr0_mask |= cs->cs_rr0_pps;
1142 tmp15 = cs->cs_preg[15];
1143 if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
1144 SET(tmp15, ZSWR15_DCD_IE);
1145 else
1146 CLR(tmp15, ZSWR15_DCD_IE);
1147 if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
1148 SET(tmp15, ZSWR15_CTS_IE);
1149 else
1150 CLR(tmp15, ZSWR15_CTS_IE);
1151 cs->cs_preg[15] = tmp15;
1152 }
1153
1154
1155 /*
1156 * Raise or lower modem control (DTR/RTS) signals. If a character is
1157 * in transmission, the change is deferred.
1158 * Called at splzs() and with the channel lock held.
1159 */
1160 static void
1161 zs_modem(struct zstty_softc *zst, int onoff)
1162 {
1163 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1164
1165 if (cs->cs_wr5_dtr == 0)
1166 return;
1167
1168 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1169
1170 if (onoff)
1171 SET(ccs->cs_preg[5], cs->cs_wr5_dtr);
1172 else
1173 CLR(ccs->cs_preg[5], cs->cs_wr5_dtr);
1174
1175 if (!cs->cs_heldchange) {
1176 if (zst->zst_tx_busy) {
1177 zst->zst_heldtbc = zst->zst_tbc;
1178 zst->zst_tbc = 0;
1179 cs->cs_heldchange = 1;
1180 } else
1181 zs_loadchannelregs(cs);
1182 }
1183 }
1184
1185 /*
1186 * Set modem bits.
1187 * Called at splzs() and with the channel lock held.
1188 */
1189 static void
1190 tiocm_to_zs(struct zstty_softc *zst, u_long how, int ttybits)
1191 {
1192 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1193 uint8_t zsbits;
1194
1195 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1196
1197 zsbits = 0;
1198 if (ISSET(ttybits, TIOCM_DTR))
1199 SET(zsbits, ZSWR5_DTR);
1200 if (ISSET(ttybits, TIOCM_RTS))
1201 SET(zsbits, ZSWR5_RTS);
1202
1203 switch (how) {
1204 case TIOCMBIC:
1205 CLR(ccs->cs_preg[5], zsbits);
1206 break;
1207
1208 case TIOCMBIS:
1209 SET(ccs->cs_preg[5], zsbits);
1210 break;
1211
1212 case TIOCMSET:
1213 CLR(ccs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR);
1214 SET(ccs->cs_preg[5], zsbits);
1215 break;
1216 }
1217
1218 if (!cs->cs_heldchange) {
1219 if (zst->zst_tx_busy) {
1220 zst->zst_heldtbc = zst->zst_tbc;
1221 zst->zst_tbc = 0;
1222 cs->cs_heldchange = 1;
1223 } else
1224 zs_loadchannelregs(cs);
1225 }
1226 }
1227
1228 /*
1229 * Get modem bits.
1230 * Called at splzs() and with the channel lock held.
1231 */
1232 static int
1233 zs_to_tiocm(struct zstty_softc *zst)
1234 {
1235 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1236 uint8_t zsbits;
1237 int ttybits = 0;
1238
1239 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1240
1241 zsbits = ccs->cs_preg[5];
1242 if (ISSET(zsbits, ZSWR5_DTR))
1243 SET(ttybits, TIOCM_DTR);
1244 if (ISSET(zsbits, ZSWR5_RTS))
1245 SET(ttybits, TIOCM_RTS);
1246
1247 zsbits = cs->cs_rr0;
1248 if (ISSET(zsbits, ZSRR0_DCD))
1249 SET(ttybits, TIOCM_CD);
1250 if (ISSET(zsbits, ZSRR0_CTS))
1251 SET(ttybits, TIOCM_CTS);
1252
1253 return (ttybits);
1254 }
1255
1256 /*
1257 * Try to block or unblock input using hardware flow-control.
1258 * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
1259 * if this function returns non-zero, the TS_TBLOCK flag will
1260 * be set or cleared according to the "block" arg passed.
1261 */
1262 int
1263 zshwiflow(struct tty *tp, int block)
1264 {
1265 struct zstty_softc *zst;
1266 struct zs_chanstate *cs;
1267
1268 zst = device_lookup_private(&zstty_cd, ZSUNIT(tp->t_dev));
1269 cs = zst->zst_cs;
1270
1271 if (cs->cs_wr5_rts == 0)
1272 return (0);
1273
1274 mutex_spin_enter(&cs->cs_lock);
1275 if (block) {
1276 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1277 SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
1278 zs_hwiflow(zst);
1279 }
1280 } else {
1281 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1282 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1283 zst->zst_rx_ready = 1;
1284 cs->cs_softreq = 1;
1285 }
1286 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1287 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
1288 zs_hwiflow(zst);
1289 }
1290 }
1291 mutex_spin_exit(&cs->cs_lock);
1292 return (1);
1293 }
1294
1295 /*
1296 * Internal version of zshwiflow
1297 * Called at splzs() and with the channel lock held.
1298 */
1299 static void
1300 zs_hwiflow(struct zstty_softc *zst)
1301 {
1302 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1303
1304 if (cs->cs_wr5_rts == 0)
1305 return;
1306
1307 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1308
1309 if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
1310 CLR(ccs->cs_preg[5], cs->cs_wr5_rts);
1311 CLR(ccs->cs_creg[5], cs->cs_wr5_rts);
1312 } else {
1313 SET(ccs->cs_preg[5], cs->cs_wr5_rts);
1314 SET(ccs->cs_creg[5], cs->cs_wr5_rts);
1315 }
1316 zs_write_reg(ccs, 5, ccs->cs_creg[5]);
1317 }
1318
1319
1320 /****************************************************************
1321 * Interface to the lower layer (zscc)
1322 ****************************************************************/
1323
1324 #define integrate static inline
1325 integrate void zstty_rxsoft(struct zstty_softc *, struct tty *);
1326 integrate void zstty_txsoft(struct zstty_softc *, struct tty *);
1327 integrate void zstty_stsoft(struct zstty_softc *, struct tty *);
1328 static void zstty_diag(void *);
1329
1330 /*
1331 * Receiver Ready interrupt.
1332 * Called at splzs() and with the channel lock held.
1333 */
1334 static void
1335 zstty_rxint(struct zs_chanstate *cs)
1336 {
1337 struct zstty_softc *zst = cs->cs_private;
1338 uint8_t *put, *end;
1339 u_int cc;
1340 uint8_t rr0, rr1, c;
1341
1342 end = zst->zst_ebuf;
1343 put = zst->zst_rbput;
1344 cc = zst->zst_rbavail;
1345
1346 while (cc > 0) {
1347 /*
1348 * First read the status, because reading the received char
1349 * destroys the status of this char.
1350 */
1351 rr1 = zs_read_reg(cs, 1);
1352 c = zs_read_data(cs);
1353
1354 if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
1355 /* Clear the receive error. */
1356 zs_write_csr(cs, ZSWR0_RESET_ERRORS);
1357 }
1358
1359 cn_check_magic(zst->zst_tty->t_dev, c, zstty_cnm_state);
1360 put[0] = c;
1361 put[1] = rr1;
1362 put += 2;
1363 if (put >= end)
1364 put = zst->zst_rbuf;
1365 cc--;
1366
1367 rr0 = zs_read_csr(cs);
1368 if (!ISSET(rr0, ZSRR0_RX_READY))
1369 break;
1370 }
1371
1372 /*
1373 * Current string of incoming characters ended because
1374 * no more data was available or we ran out of space.
1375 * Schedule a receive event if any data was received.
1376 * If we're out of space, turn off receive interrupts.
1377 */
1378 zst->zst_rbput = put;
1379 zst->zst_rbavail = cc;
1380 if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1381 zst->zst_rx_ready = 1;
1382 cs->cs_softreq = 1;
1383 }
1384
1385 /*
1386 * See if we are in danger of overflowing a buffer. If
1387 * so, use hardware flow control to ease the pressure.
1388 */
1389 if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
1390 cc < zst->zst_r_hiwat) {
1391 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1392 zs_hwiflow(zst);
1393 }
1394
1395 /*
1396 * If we're out of space, disable receive interrupts
1397 * until the queue has drained a bit.
1398 */
1399 if (!cc) {
1400 SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1401 CLR(cs->cs_preg[1], ZSWR1_RIE);
1402 cs->cs_creg[1] = cs->cs_preg[1];
1403 zs_write_reg(cs, 1, cs->cs_creg[1]);
1404 }
1405
1406 #if 0
1407 printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1408 #endif
1409 }
1410
1411 /*
1412 * Transmitter Ready interrupt.
1413 * Called at splzs() and with the channel lock held.
1414 */
1415 static void
1416 zstty_txint(struct zs_chanstate *cs)
1417 {
1418 struct zstty_softc *zst = cs->cs_private;
1419
1420 zs_write_csr(cs, ZSWR0_RESET_TXINT);
1421
1422 /*
1423 * If we've delayed a parameter change, do it now, and restart
1424 * output.
1425 */
1426 if (cs->cs_heldchange) {
1427 zs_loadchannelregs(cs);
1428 cs->cs_heldchange = 0;
1429 zst->zst_tbc = zst->zst_heldtbc;
1430 zst->zst_heldtbc = 0;
1431 }
1432
1433 /* Output the next character in the buffer, if any. */
1434 if (zst->zst_tbc > 0) {
1435 zs_write_data(cs, *zst->zst_tba);
1436 zst->zst_tbc--;
1437 zst->zst_tba++;
1438 } else {
1439 if (zst->zst_tx_busy) {
1440 zst->zst_tx_busy = 0;
1441 zst->zst_tx_done = 1;
1442 cs->cs_softreq = 1;
1443 }
1444 }
1445 }
1446
1447 /*
1448 * Status Change interrupt.
1449 * Called at splzs() and with the channel lock held.
1450 */
1451 static void
1452 zstty_stint(struct zs_chanstate *cs, int force)
1453 {
1454 struct zstty_softc *zst = cs->cs_private;
1455 uint8_t rr0, delta;
1456
1457 rr0 = zs_read_csr(cs);
1458 zs_write_csr(cs, ZSWR0_RESET_STATUS);
1459
1460 /*
1461 * Check here for console break, so that we can abort
1462 * even when interrupts are locking up the machine.
1463 */
1464 if (ISSET(rr0, ZSRR0_BREAK))
1465 cn_check_magic(zst->zst_tty->t_dev, CNC_BREAK, zstty_cnm_state);
1466
1467 if (!force)
1468 delta = rr0 ^ cs->cs_rr0;
1469 else
1470 delta = cs->cs_rr0_mask;
1471 cs->cs_rr0 = rr0;
1472
1473 if (ISSET(delta, cs->cs_rr0_mask)) {
1474 SET(cs->cs_rr0_delta, delta);
1475
1476 /*
1477 * Pulse-per-second clock signal on edge of DCD?
1478 */
1479 if (ISSET(delta, zst->zst_ppsmask)) {
1480 if (zst->zst_pps_state.ppsparam.mode &
1481 PPS_CAPTUREBOTH) {
1482 mutex_spin_enter(&timecounter_lock);
1483 pps_capture(&zst->zst_pps_state);
1484 pps_event(&zst->zst_pps_state,
1485 (ISSET(cs->cs_rr0, zst->zst_ppsmask))
1486 ? PPS_CAPTUREASSERT
1487 : PPS_CAPTURECLEAR);
1488 mutex_spin_exit(&timecounter_lock);
1489 }
1490 }
1491
1492 /*
1493 * Stop output immediately if we lose the output
1494 * flow control signal or carrier detect.
1495 */
1496 if (ISSET(~rr0, cs->cs_rr0_mask)) {
1497 zst->zst_tbc = 0;
1498 zst->zst_heldtbc = 0;
1499 }
1500
1501 zst->zst_st_check = 1;
1502 cs->cs_softreq = 1;
1503 }
1504 }
1505
1506 void
1507 zstty_diag(void *arg)
1508 {
1509 struct zstty_softc *zst = arg;
1510 int overflows, floods;
1511 int s;
1512
1513 s = splzs();
1514 overflows = zst->zst_overflows;
1515 zst->zst_overflows = 0;
1516 floods = zst->zst_floods;
1517 zst->zst_floods = 0;
1518 zst->zst_errors = 0;
1519 splx(s);
1520
1521 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1522 device_xname(zst->zst_dev),
1523 overflows, overflows == 1 ? "" : "s",
1524 floods, floods == 1 ? "" : "s");
1525 }
1526
1527 integrate void
1528 zstty_rxsoft(struct zstty_softc *zst, struct tty *tp)
1529 {
1530 struct zs_chanstate *cs = zst->zst_cs;
1531 int (*rint)(int, struct tty *) = tp->t_linesw->l_rint;
1532 uint8_t *get, *end;
1533 u_int cc, scc;
1534 uint8_t rr1;
1535 int code;
1536
1537 end = zst->zst_ebuf;
1538 get = zst->zst_rbget;
1539 scc = cc = zstty_rbuf_size - zst->zst_rbavail;
1540
1541 if (cc == zstty_rbuf_size) {
1542 zst->zst_floods++;
1543 if (zst->zst_errors++ == 0)
1544 callout_reset(&zst->zst_diag_ch, 60 * hz,
1545 zstty_diag, zst);
1546 }
1547
1548 /* If not yet open, drop the entire buffer content here */
1549 if (!ISSET(tp->t_state, TS_ISOPEN)) {
1550 get += cc << 1;
1551 if (get >= end)
1552 get -= zstty_rbuf_size << 1;
1553 cc = 0;
1554 }
1555 while (cc) {
1556 code = get[0];
1557 rr1 = get[1];
1558 if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
1559 if (ISSET(rr1, ZSRR1_DO)) {
1560 zst->zst_overflows++;
1561 if (zst->zst_errors++ == 0)
1562 callout_reset(&zst->zst_diag_ch,
1563 60 * hz, zstty_diag, zst);
1564 }
1565 if (ISSET(rr1, ZSRR1_FE))
1566 SET(code, TTY_FE);
1567 if (ISSET(rr1, ZSRR1_PE))
1568 SET(code, TTY_PE);
1569 }
1570 if ((*rint)(code, tp) == -1) {
1571 /*
1572 * The line discipline's buffer is out of space.
1573 */
1574 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1575 /*
1576 * We're either not using flow control, or the
1577 * line discipline didn't tell us to block for
1578 * some reason. Either way, we have no way to
1579 * know when there's more space available, so
1580 * just drop the rest of the data.
1581 */
1582 get += cc << 1;
1583 if (get >= end)
1584 get -= zstty_rbuf_size << 1;
1585 cc = 0;
1586 } else {
1587 /*
1588 * Don't schedule any more receive processing
1589 * until the line discipline tells us there's
1590 * space available (through comhwiflow()).
1591 * Leave the rest of the data in the input
1592 * buffer.
1593 */
1594 SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1595 }
1596 break;
1597 }
1598 get += 2;
1599 if (get >= end)
1600 get = zst->zst_rbuf;
1601 cc--;
1602 }
1603
1604 if (cc != scc) {
1605 zst->zst_rbget = get;
1606 mutex_spin_enter(&cs->cs_lock);
1607 cc = zst->zst_rbavail += scc - cc;
1608 /* Buffers should be ok again, release possible block. */
1609 if (cc >= zst->zst_r_lowat) {
1610 if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
1611 CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1612 SET(cs->cs_preg[1], ZSWR1_RIE);
1613 cs->cs_creg[1] = cs->cs_preg[1];
1614 zs_write_reg(cs, 1, cs->cs_creg[1]);
1615 }
1616 if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
1617 CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1618 zs_hwiflow(zst);
1619 }
1620 }
1621 mutex_spin_exit(&cs->cs_lock);
1622 }
1623
1624 #if 0
1625 printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1626 #endif
1627 }
1628
1629 integrate void
1630 zstty_txsoft(struct zstty_softc *zst, struct tty *tp)
1631 {
1632 struct zs_chanstate *cs = zst->zst_cs;
1633
1634 mutex_spin_enter(&cs->cs_lock);
1635 CLR(tp->t_state, TS_BUSY);
1636 if (ISSET(tp->t_state, TS_FLUSH))
1637 CLR(tp->t_state, TS_FLUSH);
1638 else
1639 ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
1640 mutex_spin_exit(&cs->cs_lock);
1641 (*tp->t_linesw->l_start)(tp);
1642 }
1643
1644 integrate void
1645 zstty_stsoft(struct zstty_softc *zst, struct tty *tp)
1646 {
1647 struct zs_chanstate *cs = zst->zst_cs;
1648 uint8_t rr0, delta;
1649
1650 mutex_spin_enter(&cs->cs_lock);
1651 rr0 = cs->cs_rr0;
1652 delta = cs->cs_rr0_delta;
1653 cs->cs_rr0_delta = 0;
1654 mutex_spin_exit(&cs->cs_lock);
1655
1656 if (ISSET(delta, cs->cs_rr0_dcd)) {
1657 /*
1658 * Inform the tty layer that carrier detect changed.
1659 */
1660 mutex_spin_exit(&tty_lock);
1661 (void) (*tp->t_linesw->l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
1662 mutex_spin_enter(&tty_lock);
1663 }
1664
1665 if (ISSET(delta, cs->cs_rr0_cts)) {
1666 /* Block or unblock output according to flow control. */
1667 if (ISSET(rr0, cs->cs_rr0_cts)) {
1668 zst->zst_tx_stopped = 0;
1669 (*tp->t_linesw->l_start)(tp);
1670 } else {
1671 zst->zst_tx_stopped = 1;
1672 }
1673 }
1674 }
1675
1676 /*
1677 * Software interrupt. Called at zssoft
1678 *
1679 * The main job to be done here is to empty the input ring
1680 * by passing its contents up to the tty layer. The ring is
1681 * always emptied during this operation, therefore the ring
1682 * must not be larger than the space after "high water" in
1683 * the tty layer, or the tty layer might drop our input.
1684 *
1685 * Note: an "input blockage" condition is assumed to exist if
1686 * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
1687 */
1688 static void
1689 zstty_softint(struct zs_chanstate *cs)
1690 {
1691
1692 zstty_softint1(cs);
1693 }
1694
1695 static void
1696 zstty_softint1(struct zs_chanstate *cs)
1697 {
1698 struct zstty_softc *zst = cs->cs_private;
1699 struct tty *tp = zst->zst_tty;
1700
1701
1702 if (zst->zst_rx_ready) {
1703 zst->zst_rx_ready = 0;
1704 zstty_rxsoft(zst, tp);
1705 }
1706
1707 if (zst->zst_st_check) {
1708 zst->zst_st_check = 0;
1709 zstty_stsoft(zst, tp);
1710 }
1711
1712 if (zst->zst_tx_done) {
1713 zst->zst_tx_done = 0;
1714 zstty_txsoft(zst, tp);
1715 }
1716 }
1717
1718 struct zsops zsops_tty = {
1719 zstty_rxint, /* receive char available */
1720 zstty_stint, /* external/status */
1721 zstty_txint, /* xmit buffer empty */
1722 zstty_softint, /* process software interrupt */
1723 };
1724
1725 #ifdef ZS_TXDMA
1726 void
1727 zstty_txdma_int(void *arg)
1728 {
1729 struct zs_chanstate *cs = arg;
1730 struct zstty_softc *zst = cs->cs_private;
1731
1732 zst->zst_tba += zst->zst_tbc;
1733 zst->zst_tbc = 0;
1734
1735 if (zst->zst_tx_busy) {
1736 zst->zst_tx_busy = 0;
1737 zst->zst_tx_done = 1;
1738 cs->cs_softreq = 1;
1739 }
1740 }
1741 #endif
1742