z8530tty.c revision 1.56 1 /* $NetBSD: z8530tty.c,v 1.56 1999/01/31 21:41:00 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998
5 * Charles M. Hannum. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Charles M. Hannum.
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994 Gordon W. Ross
35 * Copyright (c) 1992, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * This software was developed by the Computer Systems Engineering group
39 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
40 * contributed to Berkeley.
41 *
42 * All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by the University of
45 * California, Lawrence Berkeley Laboratory.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)zs.c 8.1 (Berkeley) 7/19/93
76 */
77
78 /*
79 * Zilog Z8530 Dual UART driver (tty interface)
80 *
81 * This is the "slave" driver that will be attached to
82 * the "zsc" driver for plain "tty" async. serial lines.
83 *
84 * Credits, history:
85 *
86 * The original version of this code was the sparc/dev/zs.c driver
87 * as distributed with the Berkeley 4.4 Lite release. Since then,
88 * Gordon Ross reorganized the code into the current parent/child
89 * driver scheme, separating the Sun keyboard and mouse support
90 * into independent child drivers.
91 *
92 * RTS/CTS flow-control support was a collaboration of:
93 * Gordon Ross <gwr (at) netbsd.org>,
94 * Bill Studenmund <wrstuden (at) loki.stanford.edu>
95 * Ian Dall <Ian.Dall (at) dsto.defence.gov.au>
96 */
97
98 #include <sys/param.h>
99 #include <sys/systm.h>
100 #include <sys/proc.h>
101 #include <sys/device.h>
102 #include <sys/conf.h>
103 #include <sys/file.h>
104 #include <sys/ioctl.h>
105 #include <sys/malloc.h>
106 #include <sys/tty.h>
107 #include <sys/time.h>
108 #include <sys/kernel.h>
109 #include <sys/syslog.h>
110
111 #include <dev/ic/z8530reg.h>
112 #include <machine/z8530var.h>
113
114 #include <dev/cons.h>
115
116 #include "locators.h"
117
118 /*
119 * How many input characters we can buffer.
120 * The port-specific var.h may override this.
121 * Note: must be a power of two!
122 */
123 #ifndef ZSTTY_RING_SIZE
124 #define ZSTTY_RING_SIZE 2048
125 #endif
126
127 /*
128 * Make this an option variable one can patch.
129 * But be warned: this must be a power of 2!
130 */
131 u_int zstty_rbuf_size = ZSTTY_RING_SIZE;
132
133 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
134 u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
135 u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;
136
137 struct zstty_softc {
138 struct device zst_dev; /* required first: base device */
139 struct tty *zst_tty;
140 struct zs_chanstate *zst_cs;
141
142 u_int zst_overflows,
143 zst_floods,
144 zst_errors;
145
146 int zst_hwflags, /* see z8530var.h */
147 zst_swflags; /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
148
149 u_int zst_r_hiwat,
150 zst_r_lowat;
151 u_char *volatile zst_rbget,
152 *volatile zst_rbput;
153 volatile u_int zst_rbavail;
154 u_char *zst_rbuf,
155 *zst_ebuf;
156
157 /*
158 * The transmit byte count and address are used for pseudo-DMA
159 * output in the hardware interrupt code. PDMA can be suspended
160 * to get pending changes done; heldtbc is used for this. It can
161 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
162 */
163 u_char *zst_tba; /* transmit buffer address */
164 u_int zst_tbc, /* transmit byte count */
165 zst_heldtbc; /* held tbc while xmission stopped */
166
167 /* Flags to communicate with zstty_softint() */
168 volatile u_char zst_rx_flags, /* receiver blocked */
169 #define RX_TTY_BLOCKED 0x01
170 #define RX_TTY_OVERFLOWED 0x02
171 #define RX_IBUF_BLOCKED 0x04
172 #define RX_IBUF_OVERFLOWED 0x08
173 #define RX_ANY_BLOCK 0x0f
174 zst_tx_busy, /* working on an output chunk */
175 zst_tx_done, /* done with one output chunk */
176 zst_tx_stopped, /* H/W level stop (lost CTS) */
177 zst_st_check, /* got a status interrupt */
178 zst_rx_ready;
179 };
180
181 /* Macros to clear/set/test flags. */
182 #define SET(t, f) (t) |= (f)
183 #define CLR(t, f) (t) &= ~(f)
184 #define ISSET(t, f) ((t) & (f))
185
186 /* Definition of the driver for autoconfig. */
187 static int zstty_match(struct device *, struct cfdata *, void *);
188 static void zstty_attach(struct device *, struct device *, void *);
189
190 struct cfattach zstty_ca = {
191 sizeof(struct zstty_softc), zstty_match, zstty_attach
192 };
193
194 extern struct cfdriver zstty_cd;
195
196 struct zsops zsops_tty;
197
198 /* Routines called from other code. */
199 cdev_decl(zs); /* open, close, read, write, ioctl, stop, ... */
200
201 static void zs_shutdown __P((struct zstty_softc *));
202 static void zsstart __P((struct tty *));
203 static int zsparam __P((struct tty *, struct termios *));
204 static void zs_modem __P((struct zstty_softc *, int));
205 static void tiocm_to_zs __P((struct zstty_softc *, struct zs_chanstate *,
206 int, int));
207 static int zs_to_tiocm __P((struct zs_chanstate *));
208 static int zshwiflow __P((struct tty *, int));
209 static void zs_hwiflow __P((struct zstty_softc *));
210
211 #define ZSUNIT(x) (minor(x) & 0x7ffff)
212 #define ZSDIALOUT(x) (minor(x) & 0x80000)
213
214 /*
215 * zstty_match: how is this zs channel configured?
216 */
217 int
218 zstty_match(parent, cf, aux)
219 struct device *parent;
220 struct cfdata *cf;
221 void *aux;
222 {
223 struct zsc_attach_args *args = aux;
224
225 /* Exact match is better than wildcard. */
226 if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel)
227 return 2;
228
229 /* This driver accepts wildcard. */
230 if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT)
231 return 1;
232
233 return 0;
234 }
235
236 void
237 zstty_attach(parent, self, aux)
238 struct device *parent, *self;
239 void *aux;
240
241 {
242 struct zsc_softc *zsc = (void *) parent;
243 struct zstty_softc *zst = (void *) self;
244 struct cfdata *cf = self->dv_cfdata;
245 struct zsc_attach_args *args = aux;
246 struct zs_chanstate *cs;
247 struct tty *tp;
248 int channel, s, tty_unit;
249 dev_t dev;
250
251 tty_unit = zst->zst_dev.dv_unit;
252 channel = args->channel;
253 cs = zsc->zsc_cs[channel];
254 cs->cs_private = zst;
255 cs->cs_ops = &zsops_tty;
256
257 zst->zst_cs = cs;
258 zst->zst_swflags = cf->cf_flags; /* softcar, etc. */
259 zst->zst_hwflags = args->hwflags;
260 dev = makedev(zs_major, tty_unit);
261
262 if (zst->zst_swflags)
263 printf(" flags 0x%x", zst->zst_swflags);
264
265 if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
266 printf(" (console)");
267 cn_tab->cn_dev = dev;
268 } else {
269 #ifdef KGDB
270 /*
271 * Allow kgdb to "take over" this port. Returns true
272 * if this serial port is in-use by kgdb.
273 */
274 if (zs_check_kgdb(cs, dev)) {
275 printf(" (kgdb)\n");
276 /*
277 * This is the kgdb port (exclusive use)
278 * so skip the normal attach code.
279 */
280 return;
281 }
282 #endif
283 }
284 printf("\n");
285
286 tp = ttymalloc();
287 tp->t_dev = dev;
288 tp->t_oproc = zsstart;
289 tp->t_param = zsparam;
290 tp->t_hwiflow = zshwiflow;
291 tty_attach(tp);
292
293 zst->zst_tty = tp;
294 zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK);
295 zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
296 /* Disable the high water mark. */
297 zst->zst_r_hiwat = 0;
298 zst->zst_r_lowat = 0;
299 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
300 zst->zst_rbavail = zstty_rbuf_size;
301
302 /* XXX - Do we need an MD hook here? */
303
304 /*
305 * Hardware init
306 */
307 if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
308 /* Call zsparam similar to open. */
309 struct termios t;
310
311 DELAY(20000);
312
313 s = splzs();
314
315 /* Fetch the current modem control status, needed later. */
316 cs->cs_rr0 = zs_read_csr(cs);
317
318 splx(s);
319
320 /* Setup the "new" parameters in t. */
321 t.c_ispeed = 0;
322 t.c_ospeed = cs->cs_defspeed;
323 t.c_cflag = cs->cs_defcflag;
324 /* Make sure zsparam will see changes. */
325 tp->t_ospeed = 0;
326
327 /* Turn on interrupts when zsparam writes the chip. */
328 cs->cs_creg[1] = cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_SIE;
329
330 (void) zsparam(tp, &t);
331
332 s = splzs();
333
334 /* Make sure DTR is on now. */
335 zs_modem(zst, 1);
336
337 splx(s);
338 } else {
339 /* Not the console; may need reset. */
340 int reset;
341
342 reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
343
344 s = splzs();
345
346 zs_write_reg(cs, 9, reset);
347
348 /* Will raise DTR in open. */
349 zs_modem(zst, 0);
350
351 splx(s);
352 }
353 }
354
355
356 /*
357 * Return pointer to our tty.
358 */
359 struct tty *
360 zstty(dev)
361 dev_t dev;
362 {
363 struct zstty_softc *zst;
364 int unit = ZSUNIT(dev);
365
366 #ifdef DIAGNOSTIC
367 if (unit >= zstty_cd.cd_ndevs)
368 panic("zstty");
369 #endif
370 zst = zstty_cd.cd_devs[unit];
371 return (zst->zst_tty);
372 }
373
374
375 void
376 zs_shutdown(zst)
377 struct zstty_softc *zst;
378 {
379 struct zs_chanstate *cs = zst->zst_cs;
380 struct tty *tp = zst->zst_tty;
381 int s;
382
383 s = splzs();
384
385 /* If we were asserting flow control, then deassert it. */
386 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
387 zs_hwiflow(zst);
388
389 /* Clear any break condition set with TIOCSBRK. */
390 zs_break(cs, 0);
391
392 /*
393 * Hang up if necessary. Wait a bit, so the other side has time to
394 * notice even if we immediately open the port again.
395 */
396 if (ISSET(tp->t_cflag, HUPCL)) {
397 zs_modem(zst, 0);
398 (void) tsleep(cs, TTIPRI, ttclos, hz);
399 }
400
401 /* Turn off interrupts if not the console. */
402 if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE))
403 cs->cs_creg[1] = cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_SIE;
404 else
405 cs->cs_creg[1] = cs->cs_preg[1] = 0;
406 zs_write_reg(cs, 1, cs->cs_creg[1]);
407
408 splx(s);
409 }
410
411 /*
412 * Open a zs serial (tty) port.
413 */
414 int
415 zsopen(dev, flags, mode, p)
416 dev_t dev;
417 int flags;
418 int mode;
419 struct proc *p;
420 {
421 int unit = ZSUNIT(dev);
422 struct zstty_softc *zst;
423 struct zs_chanstate *cs;
424 struct tty *tp;
425 int s, s2;
426 int error;
427
428 if (unit >= zstty_cd.cd_ndevs)
429 return (ENXIO);
430 zst = zstty_cd.cd_devs[unit];
431 if (zst == 0)
432 return (ENXIO);
433 tp = zst->zst_tty;
434 cs = zst->zst_cs;
435
436 /* If KGDB took the line, then tp==NULL */
437 if (tp == NULL)
438 return (EBUSY);
439
440 if (ISSET(tp->t_state, TS_ISOPEN) &&
441 ISSET(tp->t_state, TS_XCLUDE) &&
442 p->p_ucred->cr_uid != 0)
443 return (EBUSY);
444
445 s = spltty();
446
447 /*
448 * Do the following iff this is a first open.
449 */
450 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
451 struct termios t;
452
453 tp->t_dev = dev;
454
455 s2 = splzs();
456
457 /* Turn on interrupts. */
458 cs->cs_creg[1] = cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_SIE;
459 zs_write_reg(cs, 1, cs->cs_creg[1]);
460
461 /* Fetch the current modem control status, needed later. */
462 cs->cs_rr0 = zs_read_csr(cs);
463
464 splx(s2);
465
466 /*
467 * Initialize the termios status to the defaults. Add in the
468 * sticky bits from TIOCSFLAGS.
469 */
470 t.c_ispeed = 0;
471 t.c_ospeed = cs->cs_defspeed;
472 t.c_cflag = cs->cs_defcflag;
473 if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
474 SET(t.c_cflag, CLOCAL);
475 if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
476 SET(t.c_cflag, CRTSCTS);
477 if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
478 SET(t.c_cflag, CDTRCTS);
479 if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
480 SET(t.c_cflag, MDMBUF);
481 /* Make sure zsparam will see changes. */
482 tp->t_ospeed = 0;
483 (void) zsparam(tp, &t);
484 /*
485 * Note: zsparam has done: cflag, ispeed, ospeed
486 * so we just need to do: iflag, oflag, lflag, cc
487 * For "raw" mode, just leave all zeros.
488 */
489 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
490 tp->t_iflag = TTYDEF_IFLAG;
491 tp->t_oflag = TTYDEF_OFLAG;
492 tp->t_lflag = TTYDEF_LFLAG;
493 } else {
494 tp->t_iflag = 0;
495 tp->t_oflag = 0;
496 tp->t_lflag = 0;
497 }
498 ttychars(tp);
499 ttsetwater(tp);
500
501 s2 = splzs();
502
503 /*
504 * Turn on DTR. We must always do this, even if carrier is not
505 * present, because otherwise we'd have to use TIOCSDTR
506 * immediately after setting CLOCAL, which applications do not
507 * expect. We always assert DTR while the device is open
508 * unless explicitly requested to deassert it.
509 */
510 zs_modem(zst, 1);
511
512 /* Clear the input ring, and unblock. */
513 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
514 zst->zst_rbavail = zstty_rbuf_size;
515 zs_iflush(cs);
516 CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
517 zs_hwiflow(zst);
518
519 splx(s2);
520 }
521
522 splx(s);
523
524 error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
525 if (error)
526 goto bad;
527
528 error = (*linesw[tp->t_line].l_open)(dev, tp);
529 if (error)
530 goto bad;
531
532 return (0);
533
534 bad:
535 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
536 /*
537 * We failed to open the device, and nobody else had it opened.
538 * Clean up the state as appropriate.
539 */
540 zs_shutdown(zst);
541 }
542
543 return (error);
544 }
545
546 /*
547 * Close a zs serial port.
548 */
549 int
550 zsclose(dev, flags, mode, p)
551 dev_t dev;
552 int flags;
553 int mode;
554 struct proc *p;
555 {
556 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
557 struct tty *tp = zst->zst_tty;
558
559 /* XXX This is for cons.c. */
560 if (!ISSET(tp->t_state, TS_ISOPEN))
561 return 0;
562
563 (*linesw[tp->t_line].l_close)(tp, flags);
564 ttyclose(tp);
565
566 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
567 /*
568 * Although we got a last close, the device may still be in
569 * use; e.g. if this was the dialout node, and there are still
570 * processes waiting for carrier on the non-dialout node.
571 */
572 zs_shutdown(zst);
573 }
574
575 return (0);
576 }
577
578 /*
579 * Read/write zs serial port.
580 */
581 int
582 zsread(dev, uio, flags)
583 dev_t dev;
584 struct uio *uio;
585 int flags;
586 {
587 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
588 struct tty *tp = zst->zst_tty;
589
590 return ((*linesw[tp->t_line].l_read)(tp, uio, flags));
591 }
592
593 int
594 zswrite(dev, uio, flags)
595 dev_t dev;
596 struct uio *uio;
597 int flags;
598 {
599 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
600 struct tty *tp = zst->zst_tty;
601
602 return ((*linesw[tp->t_line].l_write)(tp, uio, flags));
603 }
604
605 int
606 zsioctl(dev, cmd, data, flag, p)
607 dev_t dev;
608 u_long cmd;
609 caddr_t data;
610 int flag;
611 struct proc *p;
612 {
613 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
614 struct zs_chanstate *cs = zst->zst_cs;
615 struct tty *tp = zst->zst_tty;
616 int error;
617 int s;
618
619 error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
620 if (error >= 0)
621 return (error);
622
623 error = ttioctl(tp, cmd, data, flag, p);
624 if (error >= 0)
625 return (error);
626
627 #ifdef ZS_MD_IOCTL
628 error = ZS_MD_IOCTL;
629 if (error >= 0)
630 return (error);
631 #endif /* ZS_MD_IOCTL */
632
633 error = 0;
634
635 s = splzs();
636
637 switch (cmd) {
638 case TIOCSBRK:
639 zs_break(cs, 1);
640 break;
641
642 case TIOCCBRK:
643 zs_break(cs, 0);
644 break;
645
646 case TIOCGFLAGS:
647 *(int *)data = zst->zst_swflags;
648 break;
649
650 case TIOCSFLAGS:
651 error = suser(p->p_ucred, &p->p_acflag);
652 if (error)
653 break;
654 zst->zst_swflags = *(int *)data;
655 break;
656
657 case TIOCSDTR:
658 zs_modem(zst, 1);
659 break;
660
661 case TIOCCDTR:
662 zs_modem(zst, 0);
663 break;
664
665 case TIOCMSET:
666 case TIOCMBIS:
667 case TIOCMBIC:
668 tiocm_to_zs(zst, cs, cmd, *(int *)data);
669 break;
670
671 case TIOCMGET:
672 *(int *)data = zs_to_tiocm(cs);
673 break;
674
675 default:
676 error = ENOTTY;
677 break;
678 }
679
680 splx(s);
681
682 return (error);
683 }
684
685 /*
686 * Start or restart transmission.
687 */
688 static void
689 zsstart(tp)
690 struct tty *tp;
691 {
692 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
693 struct zs_chanstate *cs = zst->zst_cs;
694 int s;
695
696 s = spltty();
697 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
698 goto out;
699 if (zst->zst_tx_stopped)
700 goto out;
701
702 if (tp->t_outq.c_cc <= tp->t_lowat) {
703 if (ISSET(tp->t_state, TS_ASLEEP)) {
704 CLR(tp->t_state, TS_ASLEEP);
705 wakeup((caddr_t)&tp->t_outq);
706 }
707 selwakeup(&tp->t_wsel);
708 if (tp->t_outq.c_cc == 0)
709 goto out;
710 }
711
712 /* Grab the first contiguous region of buffer space. */
713 {
714 u_char *tba;
715 int tbc;
716
717 tba = tp->t_outq.c_cf;
718 tbc = ndqb(&tp->t_outq, 0);
719
720 (void) splzs();
721
722 zst->zst_tba = tba;
723 zst->zst_tbc = tbc;
724 }
725
726 SET(tp->t_state, TS_BUSY);
727 zst->zst_tx_busy = 1;
728
729 /* Enable transmit completion interrupts if necessary. */
730 if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
731 SET(cs->cs_preg[1], ZSWR1_TIE);
732 cs->cs_creg[1] = cs->cs_preg[1];
733 zs_write_reg(cs, 1, cs->cs_creg[1]);
734 }
735
736 /* Output the first character of the contiguous buffer. */
737 {
738 zs_write_data(cs, *zst->zst_tba);
739 zst->zst_tbc--;
740 zst->zst_tba++;
741 }
742 out:
743 splx(s);
744 return;
745 }
746
747 /*
748 * Stop output, e.g., for ^S or output flush.
749 */
750 void
751 zsstop(tp, flag)
752 struct tty *tp;
753 int flag;
754 {
755 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
756 int s;
757
758 s = splzs();
759 if (ISSET(tp->t_state, TS_BUSY)) {
760 /* Stop transmitting at the next chunk. */
761 zst->zst_tbc = 0;
762 zst->zst_heldtbc = 0;
763 if (!ISSET(tp->t_state, TS_TTSTOP))
764 SET(tp->t_state, TS_FLUSH);
765 }
766 splx(s);
767 }
768
769 /*
770 * Set ZS tty parameters from termios.
771 * XXX - Should just copy the whole termios after
772 * making sure all the changes could be done.
773 */
774 static int
775 zsparam(tp, t)
776 struct tty *tp;
777 struct termios *t;
778 {
779 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
780 struct zs_chanstate *cs = zst->zst_cs;
781 int ospeed, cflag;
782 u_char tmp3, tmp4, tmp5, tmp15;
783 int s, error;
784
785 ospeed = t->c_ospeed;
786 cflag = t->c_cflag;
787
788 /* Check requested parameters. */
789 if (ospeed < 0)
790 return (EINVAL);
791 if (t->c_ispeed && t->c_ispeed != ospeed)
792 return (EINVAL);
793
794 /*
795 * For the console, always force CLOCAL and !HUPCL, so that the port
796 * is always active.
797 */
798 if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
799 ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
800 SET(cflag, CLOCAL);
801 CLR(cflag, HUPCL);
802 }
803
804 /*
805 * Only whack the UART when params change.
806 * Some callers need to clear tp->t_ospeed
807 * to make sure initialization gets done.
808 */
809 if (tp->t_ospeed == ospeed &&
810 tp->t_cflag == cflag)
811 return (0);
812
813 /*
814 * Call MD functions to deal with changed
815 * clock modes or H/W flow control modes.
816 * The BRG divisor is set now. (reg 12,13)
817 */
818 error = zs_set_speed(cs, ospeed);
819 if (error)
820 return (error);
821 error = zs_set_modes(cs, cflag);
822 if (error)
823 return (error);
824
825 /*
826 * Block interrupts so that state will not
827 * be altered until we are done setting it up.
828 *
829 * Initial values in cs_preg are set before
830 * our attach routine is called. The master
831 * interrupt enable is handled by zsc.c
832 *
833 */
834 s = splzs();
835
836 cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
837 tmp15 = cs->cs_preg[15];
838 #if 1
839 if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
840 SET(tmp15, ZSWR15_DCD_IE);
841 else
842 CLR(tmp15, ZSWR15_DCD_IE);
843 if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
844 SET(tmp15, ZSWR15_CTS_IE);
845 else
846 CLR(tmp15, ZSWR15_CTS_IE);
847 #else
848 SET(tmp15, ZSWR15_DCD_IE | ZSWR15_CTS_IE);
849 #endif
850 cs->cs_preg[15] = tmp15;
851
852 /* Recompute character size bits. */
853 tmp3 = cs->cs_preg[3];
854 tmp5 = cs->cs_preg[5];
855 CLR(tmp3, ZSWR3_RXSIZE);
856 CLR(tmp5, ZSWR5_TXSIZE);
857 switch (ISSET(cflag, CSIZE)) {
858 case CS5:
859 SET(tmp3, ZSWR3_RX_5);
860 SET(tmp5, ZSWR5_TX_5);
861 break;
862 case CS6:
863 SET(tmp3, ZSWR3_RX_6);
864 SET(tmp5, ZSWR5_TX_6);
865 break;
866 case CS7:
867 SET(tmp3, ZSWR3_RX_7);
868 SET(tmp5, ZSWR5_TX_7);
869 break;
870 case CS8:
871 SET(tmp3, ZSWR3_RX_8);
872 SET(tmp5, ZSWR5_TX_8);
873 break;
874 }
875 cs->cs_preg[3] = tmp3;
876 cs->cs_preg[5] = tmp5;
877
878 /*
879 * Recompute the stop bits and parity bits. Note that
880 * zs_set_speed() may have set clock selection bits etc.
881 * in wr4, so those must preserved.
882 */
883 tmp4 = cs->cs_preg[4];
884 CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
885 if (ISSET(cflag, CSTOPB))
886 SET(tmp4, ZSWR4_TWOSB);
887 else
888 SET(tmp4, ZSWR4_ONESB);
889 if (!ISSET(cflag, PARODD))
890 SET(tmp4, ZSWR4_EVENP);
891 if (ISSET(cflag, PARENB))
892 SET(tmp4, ZSWR4_PARENB);
893 cs->cs_preg[4] = tmp4;
894
895 /* And copy to tty. */
896 tp->t_ispeed = 0;
897 tp->t_ospeed = ospeed;
898 tp->t_cflag = cflag;
899
900 /*
901 * If nothing is being transmitted, set up new current values,
902 * else mark them as pending.
903 */
904 if (!cs->cs_heldchange) {
905 if (zst->zst_tx_busy) {
906 zst->zst_heldtbc = zst->zst_tbc;
907 zst->zst_tbc = 0;
908 cs->cs_heldchange = 1;
909 } else
910 zs_loadchannelregs(cs);
911 }
912
913 if (!ISSET(cflag, CHWFLOW)) {
914 /* Disable the high water mark. */
915 zst->zst_r_hiwat = 0;
916 zst->zst_r_lowat = 0;
917 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
918 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
919 zst->zst_rx_ready = 1;
920 cs->cs_softreq = 1;
921 }
922 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
923 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
924 zs_hwiflow(zst);
925 }
926 } else {
927 zst->zst_r_hiwat = zstty_rbuf_hiwat;
928 zst->zst_r_lowat = zstty_rbuf_lowat;
929 }
930
931 /*
932 * Fetch current state of rr0 - it might have changed if interrupts
933 * were off.
934 */
935 cs->cs_rr0 = zs_read_csr(cs);
936
937 splx(s);
938
939 /*
940 * Update the tty layer's idea of the carrier bit, in case we changed
941 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
942 * explicit request.
943 */
944 (void) (*linesw[tp->t_line].l_modem)(tp, ISSET(cs->cs_rr0, ZSRR0_DCD));
945
946 if (!ISSET(cflag, CHWFLOW)) {
947 if (zst->zst_tx_stopped) {
948 zst->zst_tx_stopped = 0;
949 zsstart(tp);
950 }
951 }
952
953 return (0);
954 }
955
956 /*
957 * Raise or lower modem control (DTR/RTS) signals. If a character is
958 * in transmission, the change is deferred.
959 */
960 static void
961 zs_modem(zst, onoff)
962 struct zstty_softc *zst;
963 int onoff;
964 {
965 struct zs_chanstate *cs = zst->zst_cs;
966
967 if (cs->cs_wr5_dtr == 0)
968 return;
969
970 if (onoff)
971 SET(cs->cs_preg[5], cs->cs_wr5_dtr);
972 else
973 CLR(cs->cs_preg[5], cs->cs_wr5_dtr);
974
975 if (!cs->cs_heldchange) {
976 if (zst->zst_tx_busy) {
977 zst->zst_heldtbc = zst->zst_tbc;
978 zst->zst_tbc = 0;
979 cs->cs_heldchange = 1;
980 } else
981 zs_loadchannelregs(cs);
982 }
983 }
984
985 static void
986 tiocm_to_zs(zst, cs, how, val)
987 struct zstty_softc *zst;
988 struct zs_chanstate *cs;
989 int how, val;
990 {
991 int bits = 0, s;
992
993 if (val & TIOCM_DTR);
994 bits |= ZSWR5_DTR;
995 if (val & TIOCM_RTS)
996 bits |= ZSWR5_RTS;
997
998 s = splzs();
999
1000 switch (how) {
1001 case TIOCMBIC:
1002 cs->cs_preg[5] &= ~bits;
1003 break;
1004
1005 case TIOCMBIS:
1006 cs->cs_preg[5] |= bits;
1007 break;
1008
1009 case TIOCMSET:
1010 cs->cs_preg[5] &= ~(ZSWR5_RTS | ZSWR5_DTR);
1011 cs->cs_preg[5] |= bits;
1012 break;
1013 default:
1014 panic("zs: bad command");
1015 break;
1016 }
1017
1018 if (!cs->cs_heldchange) {
1019 if (zst->zst_tx_busy) {
1020 zst->zst_heldtbc = zst->zst_tbc;
1021 zst->zst_tbc = 0;
1022 cs->cs_heldchange = 1;
1023 } else {
1024 cs->cs_creg[5] = cs->cs_preg[5];
1025 zs_write_reg(cs, 5, cs->cs_creg[5]);
1026 }
1027 }
1028
1029 splx(s);
1030 }
1031
1032 static int
1033 zs_to_tiocm(cs)
1034 struct zs_chanstate *cs;
1035 {
1036 int bits = 0;
1037 u_char m = zs_read_csr(cs);
1038
1039 if (cs->cs_preg[5] & ZSWR5_DTR)
1040 bits |= TIOCM_DTR;
1041 if (cs->cs_preg[5] & ZSWR5_RTS)
1042 bits |= TIOCM_RTS;
1043
1044 if (m & ZSRR0_DCD)
1045 bits |= TIOCM_CD;
1046 if (m & ZSRR0_CTS)
1047 bits |= TIOCM_CTS;
1048
1049 return bits;
1050 }
1051
1052 /*
1053 * Try to block or unblock input using hardware flow-control.
1054 * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
1055 * if this function returns non-zero, the TS_TBLOCK flag will
1056 * be set or cleared according to the "block" arg passed.
1057 */
1058 int
1059 zshwiflow(tp, block)
1060 struct tty *tp;
1061 int block;
1062 {
1063 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
1064 struct zs_chanstate *cs = zst->zst_cs;
1065 int s;
1066
1067 if (cs->cs_wr5_rts == 0)
1068 return (0);
1069
1070 s = splzs();
1071 if (block) {
1072 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1073 SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
1074 zs_hwiflow(zst);
1075 }
1076 } else {
1077 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1078 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1079 zst->zst_rx_ready = 1;
1080 cs->cs_softreq = 1;
1081 }
1082 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1083 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
1084 zs_hwiflow(zst);
1085 }
1086 }
1087 splx(s);
1088 return (1);
1089 }
1090
1091 /*
1092 * Internal version of zshwiflow
1093 * called at splzs
1094 */
1095 static void
1096 zs_hwiflow(zst)
1097 struct zstty_softc *zst;
1098 {
1099 struct zs_chanstate *cs = zst->zst_cs;
1100
1101 if (cs->cs_wr5_rts == 0)
1102 return;
1103
1104 if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
1105 CLR(cs->cs_preg[5], cs->cs_wr5_rts);
1106 CLR(cs->cs_creg[5], cs->cs_wr5_rts);
1107 } else {
1108 SET(cs->cs_preg[5], cs->cs_wr5_rts);
1109 SET(cs->cs_creg[5], cs->cs_wr5_rts);
1110 }
1111 zs_write_reg(cs, 5, cs->cs_creg[5]);
1112 }
1113
1114
1115 /****************************************************************
1116 * Interface to the lower layer (zscc)
1117 ****************************************************************/
1118
1119 static void zstty_rxint __P((struct zs_chanstate *));
1120 static void zstty_txint __P((struct zs_chanstate *));
1121 static void zstty_stint __P((struct zs_chanstate *));
1122
1123 #define integrate static inline
1124 static void zstty_softint __P((struct zs_chanstate *));
1125 integrate void zstty_rxsoft __P((struct zstty_softc *, struct tty *));
1126 integrate void zstty_txsoft __P((struct zstty_softc *, struct tty *));
1127 integrate void zstty_stsoft __P((struct zstty_softc *, struct tty *));
1128 static void zstty_diag __P((void *));
1129
1130 /*
1131 * receiver ready interrupt.
1132 * called at splzs
1133 */
1134 static void
1135 zstty_rxint(cs)
1136 struct zs_chanstate *cs;
1137 {
1138 struct zstty_softc *zst = cs->cs_private;
1139 u_char *put, *end;
1140 u_int cc;
1141 u_char rr0, rr1, c;
1142
1143 end = zst->zst_ebuf;
1144 put = zst->zst_rbput;
1145 cc = zst->zst_rbavail;
1146
1147 while (cc > 0) {
1148 /*
1149 * First read the status, because reading the received char
1150 * destroys the status of this char.
1151 */
1152 rr1 = zs_read_reg(cs, 1);
1153 c = zs_read_data(cs);
1154
1155 if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
1156 /* Clear the receive error. */
1157 zs_write_csr(cs, ZSWR0_RESET_ERRORS);
1158 }
1159
1160 put[0] = c;
1161 put[1] = rr1;
1162 put += 2;
1163 if (put >= end)
1164 put = zst->zst_rbuf;
1165 cc--;
1166
1167 rr0 = zs_read_csr(cs);
1168 if (!ISSET(rr0, ZSRR0_RX_READY))
1169 break;
1170 }
1171
1172 /*
1173 * Current string of incoming characters ended because
1174 * no more data was available or we ran out of space.
1175 * Schedule a receive event if any data was received.
1176 * If we're out of space, turn off receive interrupts.
1177 */
1178 zst->zst_rbput = put;
1179 zst->zst_rbavail = cc;
1180 if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1181 zst->zst_rx_ready = 1;
1182 cs->cs_softreq = 1;
1183 }
1184
1185 /*
1186 * See if we are in danger of overflowing a buffer. If
1187 * so, use hardware flow control to ease the pressure.
1188 */
1189 if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
1190 cc < zst->zst_r_hiwat) {
1191 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1192 zs_hwiflow(zst);
1193 }
1194
1195 /*
1196 * If we're out of space, disable receive interrupts
1197 * until the queue has drained a bit.
1198 */
1199 if (!cc) {
1200 SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1201 CLR(cs->cs_preg[1], ZSWR1_RIE);
1202 cs->cs_creg[1] = cs->cs_preg[1];
1203 zs_write_reg(cs, 1, cs->cs_creg[1]);
1204 }
1205
1206 #if 0
1207 printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1208 #endif
1209 }
1210
1211 /*
1212 * transmitter ready interrupt. (splzs)
1213 */
1214 static void
1215 zstty_txint(cs)
1216 struct zs_chanstate *cs;
1217 {
1218 struct zstty_softc *zst = cs->cs_private;
1219
1220 /*
1221 * If we've delayed a parameter change, do it now, and restart
1222 * output.
1223 */
1224 if (cs->cs_heldchange) {
1225 zs_loadchannelregs(cs);
1226 cs->cs_heldchange = 0;
1227 zst->zst_tbc = zst->zst_heldtbc;
1228 zst->zst_heldtbc = 0;
1229 }
1230
1231 /* Output the next character in the buffer, if any. */
1232 if (zst->zst_tbc > 0) {
1233 zs_write_data(cs, *zst->zst_tba);
1234 zst->zst_tbc--;
1235 zst->zst_tba++;
1236 } else {
1237 /* Disable transmit completion interrupts if necessary. */
1238 if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
1239 CLR(cs->cs_preg[1], ZSWR1_TIE);
1240 cs->cs_creg[1] = cs->cs_preg[1];
1241 zs_write_reg(cs, 1, cs->cs_creg[1]);
1242 }
1243 if (zst->zst_tx_busy) {
1244 zst->zst_tx_busy = 0;
1245 zst->zst_tx_done = 1;
1246 cs->cs_softreq = 1;
1247 }
1248 }
1249 }
1250
1251 /*
1252 * status change interrupt. (splzs)
1253 */
1254 static void
1255 zstty_stint(cs)
1256 struct zs_chanstate *cs;
1257 {
1258 struct zstty_softc *zst = cs->cs_private;
1259 u_char rr0, delta;
1260
1261 rr0 = zs_read_csr(cs);
1262 zs_write_csr(cs, ZSWR0_RESET_STATUS);
1263
1264 /*
1265 * Check here for console break, so that we can abort
1266 * even when interrupts are locking up the machine.
1267 */
1268 if (ISSET(rr0, ZSRR0_BREAK) &&
1269 ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
1270 zs_abort(cs);
1271 return;
1272 }
1273
1274 delta = rr0 ^ cs->cs_rr0;
1275 cs->cs_rr0 = rr0;
1276 if (ISSET(delta, cs->cs_rr0_mask)) {
1277 SET(cs->cs_rr0_delta, delta);
1278
1279 /*
1280 * Stop output immediately if we lose the output
1281 * flow control signal or carrier detect.
1282 */
1283 if (ISSET(~rr0, cs->cs_rr0_mask)) {
1284 zst->zst_tbc = 0;
1285 zst->zst_heldtbc = 0;
1286 }
1287
1288 zst->zst_st_check = 1;
1289 cs->cs_softreq = 1;
1290 }
1291 }
1292
1293 void
1294 zstty_diag(arg)
1295 void *arg;
1296 {
1297 struct zstty_softc *zst = arg;
1298 int overflows, floods;
1299 int s;
1300
1301 s = splzs();
1302 overflows = zst->zst_overflows;
1303 zst->zst_overflows = 0;
1304 floods = zst->zst_floods;
1305 zst->zst_floods = 0;
1306 zst->zst_errors = 0;
1307 splx(s);
1308
1309 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1310 zst->zst_dev.dv_xname,
1311 overflows, overflows == 1 ? "" : "s",
1312 floods, floods == 1 ? "" : "s");
1313 }
1314
1315 integrate void
1316 zstty_rxsoft(zst, tp)
1317 struct zstty_softc *zst;
1318 struct tty *tp;
1319 {
1320 struct zs_chanstate *cs = zst->zst_cs;
1321 int (*rint) __P((int c, struct tty *tp)) = linesw[tp->t_line].l_rint;
1322 u_char *get, *end;
1323 u_int cc, scc;
1324 u_char rr1;
1325 int code;
1326 int s;
1327
1328 end = zst->zst_ebuf;
1329 get = zst->zst_rbget;
1330 scc = cc = zstty_rbuf_size - zst->zst_rbavail;
1331
1332 if (cc == zstty_rbuf_size) {
1333 zst->zst_floods++;
1334 if (zst->zst_errors++ == 0)
1335 timeout(zstty_diag, zst, 60 * hz);
1336 }
1337
1338 while (cc) {
1339 code = get[0];
1340 rr1 = get[1];
1341 if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
1342 if (ISSET(rr1, ZSRR1_DO)) {
1343 zst->zst_overflows++;
1344 if (zst->zst_errors++ == 0)
1345 timeout(zstty_diag, zst, 60 * hz);
1346 }
1347 if (ISSET(rr1, ZSRR1_FE))
1348 SET(code, TTY_FE);
1349 if (ISSET(rr1, ZSRR1_PE))
1350 SET(code, TTY_PE);
1351 }
1352 if ((*rint)(code, tp) == -1) {
1353 /*
1354 * The line discipline's buffer is out of space.
1355 */
1356 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1357 /*
1358 * We're either not using flow control, or the
1359 * line discipline didn't tell us to block for
1360 * some reason. Either way, we have no way to
1361 * know when there's more space available, so
1362 * just drop the rest of the data.
1363 */
1364 get += cc << 1;
1365 if (get >= end)
1366 get -= zstty_rbuf_size << 1;
1367 cc = 0;
1368 } else {
1369 /*
1370 * Don't schedule any more receive processing
1371 * until the line discipline tells us there's
1372 * space available (through comhwiflow()).
1373 * Leave the rest of the data in the input
1374 * buffer.
1375 */
1376 SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1377 }
1378 break;
1379 }
1380 get += 2;
1381 if (get >= end)
1382 get = zst->zst_rbuf;
1383 cc--;
1384 }
1385
1386 if (cc != scc) {
1387 zst->zst_rbget = get;
1388 s = splzs();
1389 cc = zst->zst_rbavail += scc - cc;
1390 /* Buffers should be ok again, release possible block. */
1391 if (cc >= zst->zst_r_lowat) {
1392 if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
1393 CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1394 SET(cs->cs_preg[1], ZSWR1_RIE);
1395 cs->cs_creg[1] = cs->cs_preg[1];
1396 zs_write_reg(cs, 1, cs->cs_creg[1]);
1397 }
1398 if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
1399 CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1400 zs_hwiflow(zst);
1401 }
1402 }
1403 splx(s);
1404 }
1405
1406 #if 0
1407 printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1408 #endif
1409 }
1410
1411 integrate void
1412 zstty_txsoft(zst, tp)
1413 struct zstty_softc *zst;
1414 struct tty *tp;
1415 {
1416
1417 CLR(tp->t_state, TS_BUSY);
1418 if (ISSET(tp->t_state, TS_FLUSH))
1419 CLR(tp->t_state, TS_FLUSH);
1420 else
1421 ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
1422 (*linesw[tp->t_line].l_start)(tp);
1423 }
1424
1425 integrate void
1426 zstty_stsoft(zst, tp)
1427 struct zstty_softc *zst;
1428 struct tty *tp;
1429 {
1430 struct zs_chanstate *cs = zst->zst_cs;
1431 u_char rr0, delta;
1432 int s;
1433
1434 s = splzs();
1435 rr0 = cs->cs_rr0;
1436 delta = cs->cs_rr0_delta;
1437 cs->cs_rr0_delta = 0;
1438 splx(s);
1439
1440 if (ISSET(delta, cs->cs_rr0_dcd)) {
1441 /*
1442 * Inform the tty layer that carrier detect changed.
1443 */
1444 (void) (*linesw[tp->t_line].l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
1445 }
1446
1447 if (ISSET(delta, cs->cs_rr0_cts)) {
1448 /* Block or unblock output according to flow control. */
1449 if (ISSET(rr0, cs->cs_rr0_cts)) {
1450 zst->zst_tx_stopped = 0;
1451 (*linesw[tp->t_line].l_start)(tp);
1452 } else {
1453 zst->zst_tx_stopped = 1;
1454 }
1455 }
1456 }
1457
1458 /*
1459 * Software interrupt. Called at zssoft
1460 *
1461 * The main job to be done here is to empty the input ring
1462 * by passing its contents up to the tty layer. The ring is
1463 * always emptied during this operation, therefore the ring
1464 * must not be larger than the space after "high water" in
1465 * the tty layer, or the tty layer might drop our input.
1466 *
1467 * Note: an "input blockage" condition is assumed to exist if
1468 * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
1469 */
1470 static void
1471 zstty_softint(cs)
1472 struct zs_chanstate *cs;
1473 {
1474 struct zstty_softc *zst = cs->cs_private;
1475 struct tty *tp = zst->zst_tty;
1476 int s;
1477
1478 s = spltty();
1479
1480 if (zst->zst_rx_ready) {
1481 zst->zst_rx_ready = 0;
1482 zstty_rxsoft(zst, tp);
1483 }
1484
1485 if (zst->zst_st_check) {
1486 zst->zst_st_check = 0;
1487 zstty_stsoft(zst, tp);
1488 }
1489
1490 if (zst->zst_tx_done) {
1491 zst->zst_tx_done = 0;
1492 zstty_txsoft(zst, tp);
1493 }
1494
1495 splx(s);
1496 }
1497
1498 struct zsops zsops_tty = {
1499 zstty_rxint, /* receive char available */
1500 zstty_stint, /* external/status */
1501 zstty_txint, /* xmit buffer empty */
1502 zstty_softint, /* process software interrupt */
1503 };
1504