z8530tty.c revision 1.60 1 /* $NetBSD: z8530tty.c,v 1.60 1999/04/22 20:37:37 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999
5 * Charles M. Hannum. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Charles M. Hannum.
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994 Gordon W. Ross
35 * Copyright (c) 1992, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * This software was developed by the Computer Systems Engineering group
39 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
40 * contributed to Berkeley.
41 *
42 * All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by the University of
45 * California, Lawrence Berkeley Laboratory.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)zs.c 8.1 (Berkeley) 7/19/93
76 */
77
78 /*
79 * Zilog Z8530 Dual UART driver (tty interface)
80 *
81 * This is the "slave" driver that will be attached to
82 * the "zsc" driver for plain "tty" async. serial lines.
83 *
84 * Credits, history:
85 *
86 * The original version of this code was the sparc/dev/zs.c driver
87 * as distributed with the Berkeley 4.4 Lite release. Since then,
88 * Gordon Ross reorganized the code into the current parent/child
89 * driver scheme, separating the Sun keyboard and mouse support
90 * into independent child drivers.
91 *
92 * RTS/CTS flow-control support was a collaboration of:
93 * Gordon Ross <gwr (at) netbsd.org>,
94 * Bill Studenmund <wrstuden (at) loki.stanford.edu>
95 * Ian Dall <Ian.Dall (at) dsto.defence.gov.au>
96 *
97 * The driver was massively overhauled in November 1997 by Charles Hannum,
98 * fixing *many* bugs, and substantially improving performance.
99 */
100
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/device.h>
105 #include <sys/conf.h>
106 #include <sys/file.h>
107 #include <sys/ioctl.h>
108 #include <sys/malloc.h>
109 #include <sys/timepps.h>
110 #include <sys/tty.h>
111 #include <sys/time.h>
112 #include <sys/kernel.h>
113 #include <sys/syslog.h>
114
115 #include <dev/ic/z8530reg.h>
116 #include <machine/z8530var.h>
117
118 #include <dev/cons.h>
119
120 #include "locators.h"
121
122 /*
123 * How many input characters we can buffer.
124 * The port-specific var.h may override this.
125 * Note: must be a power of two!
126 */
127 #ifndef ZSTTY_RING_SIZE
128 #define ZSTTY_RING_SIZE 2048
129 #endif
130
131 /*
132 * Make this an option variable one can patch.
133 * But be warned: this must be a power of 2!
134 */
135 u_int zstty_rbuf_size = ZSTTY_RING_SIZE;
136
137 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
138 u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
139 u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;
140
141 static int zsppscap =
142 PPS_TSFMT_TSPEC |
143 PPS_CAPTUREASSERT |
144 PPS_CAPTURECLEAR |
145 #ifdef PPS_SYNC
146 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
147 #endif /* PPS_SYNC */
148 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
149
150 struct zstty_softc {
151 struct device zst_dev; /* required first: base device */
152 struct tty *zst_tty;
153 struct zs_chanstate *zst_cs;
154
155 u_int zst_overflows,
156 zst_floods,
157 zst_errors;
158
159 int zst_hwflags, /* see z8530var.h */
160 zst_swflags; /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
161
162 u_int zst_r_hiwat,
163 zst_r_lowat;
164 u_char *volatile zst_rbget,
165 *volatile zst_rbput;
166 volatile u_int zst_rbavail;
167 u_char *zst_rbuf,
168 *zst_ebuf;
169
170 /*
171 * The transmit byte count and address are used for pseudo-DMA
172 * output in the hardware interrupt code. PDMA can be suspended
173 * to get pending changes done; heldtbc is used for this. It can
174 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
175 */
176 u_char *zst_tba; /* transmit buffer address */
177 u_int zst_tbc, /* transmit byte count */
178 zst_heldtbc; /* held tbc while xmission stopped */
179
180 /* Flags to communicate with zstty_softint() */
181 volatile u_char zst_rx_flags, /* receiver blocked */
182 #define RX_TTY_BLOCKED 0x01
183 #define RX_TTY_OVERFLOWED 0x02
184 #define RX_IBUF_BLOCKED 0x04
185 #define RX_IBUF_OVERFLOWED 0x08
186 #define RX_ANY_BLOCK 0x0f
187 zst_tx_busy, /* working on an output chunk */
188 zst_tx_done, /* done with one output chunk */
189 zst_tx_stopped, /* H/W level stop (lost CTS) */
190 zst_st_check, /* got a status interrupt */
191 zst_rx_ready;
192
193 /* PPS signal on DCD, with or without inkernel clock disciplining */
194 u_char zst_ppsmask; /* pps signal mask */
195 u_char zst_ppsassert; /* pps leading edge */
196 u_char zst_ppsclear; /* pps trailing edge */
197 pps_info_t ppsinfo;
198 pps_params_t ppsparam;
199 };
200
201 /* Macros to clear/set/test flags. */
202 #define SET(t, f) (t) |= (f)
203 #define CLR(t, f) (t) &= ~(f)
204 #define ISSET(t, f) ((t) & (f))
205
206 /* Definition of the driver for autoconfig. */
207 static int zstty_match(struct device *, struct cfdata *, void *);
208 static void zstty_attach(struct device *, struct device *, void *);
209
210 struct cfattach zstty_ca = {
211 sizeof(struct zstty_softc), zstty_match, zstty_attach
212 };
213
214 extern struct cfdriver zstty_cd;
215
216 struct zsops zsops_tty;
217
218 /* Routines called from other code. */
219 cdev_decl(zs); /* open, close, read, write, ioctl, stop, ... */
220
221 static void zs_shutdown __P((struct zstty_softc *));
222 static void zsstart __P((struct tty *));
223 static int zsparam __P((struct tty *, struct termios *));
224 static void zs_modem __P((struct zstty_softc *, int));
225 static void tiocm_to_zs __P((struct zstty_softc *, int, int));
226 static int zs_to_tiocm __P((struct zstty_softc *));
227 static int zshwiflow __P((struct tty *, int));
228 static void zs_hwiflow __P((struct zstty_softc *));
229 static void zs_maskintr __P((struct zstty_softc *));
230
231 /* Low-level routines. */
232 static void zstty_rxint __P((struct zs_chanstate *));
233 static void zstty_stint __P((struct zs_chanstate *, int));
234 static void zstty_txint __P((struct zs_chanstate *));
235 static void zstty_softint __P((struct zs_chanstate *));
236
237 #define ZSUNIT(x) (minor(x) & 0x7ffff)
238 #define ZSDIALOUT(x) (minor(x) & 0x80000)
239
240 /*
241 * zstty_match: how is this zs channel configured?
242 */
243 int
244 zstty_match(parent, cf, aux)
245 struct device *parent;
246 struct cfdata *cf;
247 void *aux;
248 {
249 struct zsc_attach_args *args = aux;
250
251 /* Exact match is better than wildcard. */
252 if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel)
253 return 2;
254
255 /* This driver accepts wildcard. */
256 if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT)
257 return 1;
258
259 return 0;
260 }
261
262 void
263 zstty_attach(parent, self, aux)
264 struct device *parent, *self;
265 void *aux;
266
267 {
268 struct zsc_softc *zsc = (void *) parent;
269 struct zstty_softc *zst = (void *) self;
270 struct cfdata *cf = self->dv_cfdata;
271 struct zsc_attach_args *args = aux;
272 struct zs_chanstate *cs;
273 struct tty *tp;
274 int channel, s, tty_unit;
275 dev_t dev;
276
277 tty_unit = zst->zst_dev.dv_unit;
278 channel = args->channel;
279 cs = zsc->zsc_cs[channel];
280 cs->cs_private = zst;
281 cs->cs_ops = &zsops_tty;
282
283 zst->zst_cs = cs;
284 zst->zst_swflags = cf->cf_flags; /* softcar, etc. */
285 zst->zst_hwflags = args->hwflags;
286 dev = makedev(zs_major, tty_unit);
287
288 if (zst->zst_swflags)
289 printf(" flags 0x%x", zst->zst_swflags);
290
291 if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
292 printf(" (console)\n");
293 DELAY(20000);
294 cn_tab->cn_dev = dev;
295 } else
296 #ifdef KGDB
297 if (zs_check_kgdb(cs, dev)) {
298 /*
299 * Allow kgdb to "take over" this port. Returns true
300 * if this serial port is in-use by kgdb.
301 */
302 printf(" (kgdb)\n");
303 /*
304 * This is the kgdb port (exclusive use)
305 * so skip the normal attach code.
306 */
307 return;
308 } else
309 #endif
310 printf("\n");
311
312 tp = ttymalloc();
313 tp->t_dev = dev;
314 tp->t_oproc = zsstart;
315 tp->t_param = zsparam;
316 tp->t_hwiflow = zshwiflow;
317 tty_attach(tp);
318
319 zst->zst_tty = tp;
320 zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK);
321 zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
322 /* Disable the high water mark. */
323 zst->zst_r_hiwat = 0;
324 zst->zst_r_lowat = 0;
325 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
326 zst->zst_rbavail = zstty_rbuf_size;
327
328 /* XXX - Do we need an MD hook here? */
329
330 /*
331 * Hardware init
332 */
333 if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
334 /* Call zsparam similar to open. */
335 struct termios t;
336
337 /* Setup the "new" parameters in t. */
338 t.c_ispeed = 0;
339 t.c_ospeed = cs->cs_defspeed;
340 t.c_cflag = cs->cs_defcflag;
341
342 s = splzs();
343
344 /*
345 * Turn on receiver and status interrupts.
346 * We defer the actual write of the register to zsparam(),
347 * but we must make sure status interrupts are turned on by
348 * the time zsparam() reads the initial rr0 state.
349 */
350 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
351
352 splx(s);
353
354 /* Make sure zsparam will see changes. */
355 tp->t_ospeed = 0;
356 (void) zsparam(tp, &t);
357
358 s = splzs();
359
360 /* Make sure DTR is on now. */
361 zs_modem(zst, 1);
362
363 splx(s);
364 } else {
365 /* Not the console; may need reset. */
366 int reset;
367
368 reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
369
370 s = splzs();
371
372 zs_write_reg(cs, 9, reset);
373
374 /* Will raise DTR in open. */
375 zs_modem(zst, 0);
376
377 splx(s);
378 }
379 }
380
381
382 /*
383 * Return pointer to our tty.
384 */
385 struct tty *
386 zstty(dev)
387 dev_t dev;
388 {
389 struct zstty_softc *zst;
390 int unit = ZSUNIT(dev);
391
392 #ifdef DIAGNOSTIC
393 if (unit >= zstty_cd.cd_ndevs)
394 panic("zstty");
395 #endif
396 zst = zstty_cd.cd_devs[unit];
397 return (zst->zst_tty);
398 }
399
400
401 void
402 zs_shutdown(zst)
403 struct zstty_softc *zst;
404 {
405 struct zs_chanstate *cs = zst->zst_cs;
406 struct tty *tp = zst->zst_tty;
407 int s;
408
409 s = splzs();
410
411 /* If we were asserting flow control, then deassert it. */
412 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
413 zs_hwiflow(zst);
414
415 /* Clear any break condition set with TIOCSBRK. */
416 zs_break(cs, 0);
417
418 /* Turn off PPS capture on last close. */
419 zst->zst_ppsmask = 0;
420 zst->ppsparam.mode = 0;
421
422 /*
423 * Hang up if necessary. Wait a bit, so the other side has time to
424 * notice even if we immediately open the port again.
425 */
426 if (ISSET(tp->t_cflag, HUPCL)) {
427 zs_modem(zst, 0);
428 (void) tsleep(cs, TTIPRI, ttclos, hz);
429 }
430
431 /* Turn off interrupts if not the console. */
432 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
433 CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
434 cs->cs_creg[1] = cs->cs_preg[1];
435 zs_write_reg(cs, 1, cs->cs_creg[1]);
436 }
437
438 splx(s);
439 }
440
441 /*
442 * Open a zs serial (tty) port.
443 */
444 int
445 zsopen(dev, flags, mode, p)
446 dev_t dev;
447 int flags;
448 int mode;
449 struct proc *p;
450 {
451 int unit = ZSUNIT(dev);
452 struct zstty_softc *zst;
453 struct zs_chanstate *cs;
454 struct tty *tp;
455 int s, s2;
456 int error;
457
458 if (unit >= zstty_cd.cd_ndevs)
459 return (ENXIO);
460 zst = zstty_cd.cd_devs[unit];
461 if (zst == 0)
462 return (ENXIO);
463 tp = zst->zst_tty;
464 cs = zst->zst_cs;
465
466 /* If KGDB took the line, then tp==NULL */
467 if (tp == NULL)
468 return (EBUSY);
469
470 if (ISSET(tp->t_state, TS_ISOPEN) &&
471 ISSET(tp->t_state, TS_XCLUDE) &&
472 p->p_ucred->cr_uid != 0)
473 return (EBUSY);
474
475 s = spltty();
476
477 /*
478 * Do the following iff this is a first open.
479 */
480 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
481 struct termios t;
482
483 tp->t_dev = dev;
484
485 /*
486 * Initialize the termios status to the defaults. Add in the
487 * sticky bits from TIOCSFLAGS.
488 */
489 t.c_ispeed = 0;
490 t.c_ospeed = cs->cs_defspeed;
491 t.c_cflag = cs->cs_defcflag;
492 if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
493 SET(t.c_cflag, CLOCAL);
494 if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
495 SET(t.c_cflag, CRTSCTS);
496 if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
497 SET(t.c_cflag, CDTRCTS);
498 if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
499 SET(t.c_cflag, MDMBUF);
500
501 s2 = splzs();
502
503 /*
504 * Turn on receiver and status interrupts.
505 * We defer the actual write of the register to zsparam(),
506 * but we must make sure status interrupts are turned on by
507 * the time zsparam() reads the initial rr0 state.
508 */
509 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
510
511 /* Clear PPS capture state on first open. */
512 zst->zst_ppsmask = 0;
513 zst->ppsparam.mode = 0;
514
515 splx(s2);
516
517 /* Make sure zsparam will see changes. */
518 tp->t_ospeed = 0;
519 (void) zsparam(tp, &t);
520
521 /*
522 * Note: zsparam has done: cflag, ispeed, ospeed
523 * so we just need to do: iflag, oflag, lflag, cc
524 * For "raw" mode, just leave all zeros.
525 */
526 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
527 tp->t_iflag = TTYDEF_IFLAG;
528 tp->t_oflag = TTYDEF_OFLAG;
529 tp->t_lflag = TTYDEF_LFLAG;
530 } else {
531 tp->t_iflag = 0;
532 tp->t_oflag = 0;
533 tp->t_lflag = 0;
534 }
535 ttychars(tp);
536 ttsetwater(tp);
537
538 s2 = splzs();
539
540 /*
541 * Turn on DTR. We must always do this, even if carrier is not
542 * present, because otherwise we'd have to use TIOCSDTR
543 * immediately after setting CLOCAL, which applications do not
544 * expect. We always assert DTR while the device is open
545 * unless explicitly requested to deassert it.
546 */
547 zs_modem(zst, 1);
548
549 /* Clear the input ring, and unblock. */
550 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
551 zst->zst_rbavail = zstty_rbuf_size;
552 zs_iflush(cs);
553 CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
554 zs_hwiflow(zst);
555
556 splx(s2);
557 }
558
559 splx(s);
560
561 error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
562 if (error)
563 goto bad;
564
565 error = (*linesw[tp->t_line].l_open)(dev, tp);
566 if (error)
567 goto bad;
568
569 return (0);
570
571 bad:
572 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
573 /*
574 * We failed to open the device, and nobody else had it opened.
575 * Clean up the state as appropriate.
576 */
577 zs_shutdown(zst);
578 }
579
580 return (error);
581 }
582
583 /*
584 * Close a zs serial port.
585 */
586 int
587 zsclose(dev, flags, mode, p)
588 dev_t dev;
589 int flags;
590 int mode;
591 struct proc *p;
592 {
593 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
594 struct tty *tp = zst->zst_tty;
595
596 /* XXX This is for cons.c. */
597 if (!ISSET(tp->t_state, TS_ISOPEN))
598 return 0;
599
600 (*linesw[tp->t_line].l_close)(tp, flags);
601 ttyclose(tp);
602
603 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
604 /*
605 * Although we got a last close, the device may still be in
606 * use; e.g. if this was the dialout node, and there are still
607 * processes waiting for carrier on the non-dialout node.
608 */
609 zs_shutdown(zst);
610 }
611
612 return (0);
613 }
614
615 /*
616 * Read/write zs serial port.
617 */
618 int
619 zsread(dev, uio, flags)
620 dev_t dev;
621 struct uio *uio;
622 int flags;
623 {
624 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
625 struct tty *tp = zst->zst_tty;
626
627 return ((*linesw[tp->t_line].l_read)(tp, uio, flags));
628 }
629
630 int
631 zswrite(dev, uio, flags)
632 dev_t dev;
633 struct uio *uio;
634 int flags;
635 {
636 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
637 struct tty *tp = zst->zst_tty;
638
639 return ((*linesw[tp->t_line].l_write)(tp, uio, flags));
640 }
641
642 int
643 zsioctl(dev, cmd, data, flag, p)
644 dev_t dev;
645 u_long cmd;
646 caddr_t data;
647 int flag;
648 struct proc *p;
649 {
650 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
651 struct zs_chanstate *cs = zst->zst_cs;
652 struct tty *tp = zst->zst_tty;
653 int error;
654 int s;
655
656 error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
657 if (error >= 0)
658 return (error);
659
660 error = ttioctl(tp, cmd, data, flag, p);
661 if (error >= 0)
662 return (error);
663
664 #ifdef ZS_MD_IOCTL
665 error = ZS_MD_IOCTL;
666 if (error >= 0)
667 return (error);
668 #endif /* ZS_MD_IOCTL */
669
670 error = 0;
671
672 s = splzs();
673
674 switch (cmd) {
675 case TIOCSBRK:
676 zs_break(cs, 1);
677 break;
678
679 case TIOCCBRK:
680 zs_break(cs, 0);
681 break;
682
683 case TIOCGFLAGS:
684 *(int *)data = zst->zst_swflags;
685 break;
686
687 case TIOCSFLAGS:
688 error = suser(p->p_ucred, &p->p_acflag);
689 if (error)
690 break;
691 zst->zst_swflags = *(int *)data;
692 break;
693
694 case TIOCSDTR:
695 zs_modem(zst, 1);
696 break;
697
698 case TIOCCDTR:
699 zs_modem(zst, 0);
700 break;
701
702 case TIOCMSET:
703 case TIOCMBIS:
704 case TIOCMBIC:
705 tiocm_to_zs(zst, cmd, *(int *)data);
706 break;
707
708 case TIOCMGET:
709 *(int *)data = zs_to_tiocm(zst);
710 break;
711
712 case PPS_CREATE:
713 break;
714
715 case PPS_DESTROY:
716 break;
717
718 case PPS_GETPARAMS: {
719 pps_params_t *pp;
720 pp = (pps_params_t *)data;
721 *pp = zst->ppsparam;
722 break;
723 }
724
725 case PPS_SETPARAMS: {
726 pps_params_t *pp;
727 int mode;
728 if (cs->cs_rr0_pps == 0) {
729 error = EINVAL;
730 break;
731 }
732 pp = (pps_params_t *)data;
733 if (pp->mode & ~zsppscap) {
734 error = EINVAL;
735 break;
736 }
737 zst->ppsparam = *pp;
738 /*
739 * compute masks from user-specified timestamp state.
740 */
741 mode = zst->ppsparam.mode;
742 #ifdef PPS_SYNC
743 if (mode & PPS_HARDPPSONASSERT) {
744 mode |= PPS_CAPTUREASSERT;
745 /* XXX revoke any previous HARDPPS source */
746 }
747 if (mode & PPS_HARDPPSONCLEAR) {
748 mode |= PPS_CAPTURECLEAR;
749 /* XXX revoke any previous HARDPPS source */
750 }
751 #endif /* PPS_SYNC */
752 switch (mode & PPS_CAPTUREBOTH) {
753 case 0:
754 zst->zst_ppsmask = 0;
755 break;
756
757 case PPS_CAPTUREASSERT:
758 zst->zst_ppsmask = ZSRR0_DCD;
759 zst->zst_ppsassert = ZSRR0_DCD;
760 zst->zst_ppsclear = -1;
761 break;
762
763 case PPS_CAPTURECLEAR:
764 zst->zst_ppsmask = ZSRR0_DCD;
765 zst->zst_ppsassert = -1;
766 zst->zst_ppsclear = 0;
767 break;
768
769 case PPS_CAPTUREBOTH:
770 zst->zst_ppsmask = ZSRR0_DCD;
771 zst->zst_ppsassert = ZSRR0_DCD;
772 zst->zst_ppsclear = 0;
773 break;
774
775 default:
776 error = EINVAL;
777 break;
778 }
779
780 /*
781 * Now update interrupts.
782 */
783 zs_maskintr(zst);
784 /*
785 * If nothing is being transmitted, set up new current values,
786 * else mark them as pending.
787 */
788 if (!cs->cs_heldchange) {
789 if (zst->zst_tx_busy) {
790 zst->zst_heldtbc = zst->zst_tbc;
791 zst->zst_tbc = 0;
792 cs->cs_heldchange = 1;
793 } else
794 zs_loadchannelregs(cs);
795 }
796
797 break;
798 }
799
800 case PPS_GETCAP:
801 *(int *)data = zsppscap;
802 break;
803
804 case PPS_FETCH: {
805 pps_info_t *pi;
806 pi = (pps_info_t *)data;
807 *pi = zst->ppsinfo;
808 break;
809 }
810
811 case PPS_WAIT:
812 /* XXX */
813 error = EOPNOTSUPP;
814 break;
815
816 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
817 if (cs->cs_rr0_pps == 0) {
818 error = EINVAL;
819 break;
820 }
821 /*
822 * Some GPS clocks models use the falling rather than
823 * rising edge as the on-the-second signal.
824 * The old API has no way to specify PPS polarity.
825 */
826 zst->zst_ppsmask = ZSRR0_DCD;
827 #ifndef PPS_TRAILING_EDGE
828 zst->zst_ppsassert = ZSRR0_DCD;
829 zst->zst_ppsclear = -1;
830 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
831 &zst->ppsinfo.assert_timestamp);
832 #else
833 zst->zst_ppsassert = -1;
834 zst->zst_ppsclear = 01;
835 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
836 &zst->ppsinfo.clear_timestamp);
837 #endif
838 /*
839 * Now update interrupts.
840 */
841 zs_maskintr(zst);
842 /*
843 * If nothing is being transmitted, set up new current values,
844 * else mark them as pending.
845 */
846 if (!cs->cs_heldchange) {
847 if (zst->zst_tx_busy) {
848 zst->zst_heldtbc = zst->zst_tbc;
849 zst->zst_tbc = 0;
850 cs->cs_heldchange = 1;
851 } else
852 zs_loadchannelregs(cs);
853 }
854
855 break;
856
857 default:
858 error = ENOTTY;
859 break;
860 }
861
862 splx(s);
863
864 return (error);
865 }
866
867 /*
868 * Start or restart transmission.
869 */
870 static void
871 zsstart(tp)
872 struct tty *tp;
873 {
874 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
875 struct zs_chanstate *cs = zst->zst_cs;
876 int s;
877
878 s = spltty();
879 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
880 goto out;
881 if (zst->zst_tx_stopped)
882 goto out;
883
884 if (tp->t_outq.c_cc <= tp->t_lowat) {
885 if (ISSET(tp->t_state, TS_ASLEEP)) {
886 CLR(tp->t_state, TS_ASLEEP);
887 wakeup((caddr_t)&tp->t_outq);
888 }
889 selwakeup(&tp->t_wsel);
890 if (tp->t_outq.c_cc == 0)
891 goto out;
892 }
893
894 /* Grab the first contiguous region of buffer space. */
895 {
896 u_char *tba;
897 int tbc;
898
899 tba = tp->t_outq.c_cf;
900 tbc = ndqb(&tp->t_outq, 0);
901
902 (void) splzs();
903
904 zst->zst_tba = tba;
905 zst->zst_tbc = tbc;
906 }
907
908 SET(tp->t_state, TS_BUSY);
909 zst->zst_tx_busy = 1;
910
911 /* Enable transmit completion interrupts if necessary. */
912 if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
913 SET(cs->cs_preg[1], ZSWR1_TIE);
914 cs->cs_creg[1] = cs->cs_preg[1];
915 zs_write_reg(cs, 1, cs->cs_creg[1]);
916 }
917
918 /* Output the first character of the contiguous buffer. */
919 {
920 zs_write_data(cs, *zst->zst_tba);
921 zst->zst_tbc--;
922 zst->zst_tba++;
923 }
924 out:
925 splx(s);
926 return;
927 }
928
929 /*
930 * Stop output, e.g., for ^S or output flush.
931 */
932 void
933 zsstop(tp, flag)
934 struct tty *tp;
935 int flag;
936 {
937 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
938 int s;
939
940 s = splzs();
941 if (ISSET(tp->t_state, TS_BUSY)) {
942 /* Stop transmitting at the next chunk. */
943 zst->zst_tbc = 0;
944 zst->zst_heldtbc = 0;
945 if (!ISSET(tp->t_state, TS_TTSTOP))
946 SET(tp->t_state, TS_FLUSH);
947 }
948 splx(s);
949 }
950
951 /*
952 * Set ZS tty parameters from termios.
953 * XXX - Should just copy the whole termios after
954 * making sure all the changes could be done.
955 */
956 static int
957 zsparam(tp, t)
958 struct tty *tp;
959 struct termios *t;
960 {
961 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
962 struct zs_chanstate *cs = zst->zst_cs;
963 int ospeed, cflag;
964 u_char tmp3, tmp4, tmp5;
965 int s, error;
966
967 ospeed = t->c_ospeed;
968 cflag = t->c_cflag;
969
970 /* Check requested parameters. */
971 if (ospeed < 0)
972 return (EINVAL);
973 if (t->c_ispeed && t->c_ispeed != ospeed)
974 return (EINVAL);
975
976 /*
977 * For the console, always force CLOCAL and !HUPCL, so that the port
978 * is always active.
979 */
980 if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
981 ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
982 SET(cflag, CLOCAL);
983 CLR(cflag, HUPCL);
984 }
985
986 /*
987 * Only whack the UART when params change.
988 * Some callers need to clear tp->t_ospeed
989 * to make sure initialization gets done.
990 */
991 if (tp->t_ospeed == ospeed &&
992 tp->t_cflag == cflag)
993 return (0);
994
995 /*
996 * Call MD functions to deal with changed
997 * clock modes or H/W flow control modes.
998 * The BRG divisor is set now. (reg 12,13)
999 */
1000 error = zs_set_speed(cs, ospeed);
1001 if (error)
1002 return (error);
1003 error = zs_set_modes(cs, cflag);
1004 if (error)
1005 return (error);
1006
1007 /*
1008 * Block interrupts so that state will not
1009 * be altered until we are done setting it up.
1010 *
1011 * Initial values in cs_preg are set before
1012 * our attach routine is called. The master
1013 * interrupt enable is handled by zsc.c
1014 *
1015 */
1016 s = splzs();
1017
1018 /*
1019 * Recalculate which status ints to enable.
1020 */
1021 zs_maskintr(zst);
1022
1023 /* Recompute character size bits. */
1024 tmp3 = cs->cs_preg[3];
1025 tmp5 = cs->cs_preg[5];
1026 CLR(tmp3, ZSWR3_RXSIZE);
1027 CLR(tmp5, ZSWR5_TXSIZE);
1028 switch (ISSET(cflag, CSIZE)) {
1029 case CS5:
1030 SET(tmp3, ZSWR3_RX_5);
1031 SET(tmp5, ZSWR5_TX_5);
1032 break;
1033 case CS6:
1034 SET(tmp3, ZSWR3_RX_6);
1035 SET(tmp5, ZSWR5_TX_6);
1036 break;
1037 case CS7:
1038 SET(tmp3, ZSWR3_RX_7);
1039 SET(tmp5, ZSWR5_TX_7);
1040 break;
1041 case CS8:
1042 SET(tmp3, ZSWR3_RX_8);
1043 SET(tmp5, ZSWR5_TX_8);
1044 break;
1045 }
1046 cs->cs_preg[3] = tmp3;
1047 cs->cs_preg[5] = tmp5;
1048
1049 /*
1050 * Recompute the stop bits and parity bits. Note that
1051 * zs_set_speed() may have set clock selection bits etc.
1052 * in wr4, so those must preserved.
1053 */
1054 tmp4 = cs->cs_preg[4];
1055 CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
1056 if (ISSET(cflag, CSTOPB))
1057 SET(tmp4, ZSWR4_TWOSB);
1058 else
1059 SET(tmp4, ZSWR4_ONESB);
1060 if (!ISSET(cflag, PARODD))
1061 SET(tmp4, ZSWR4_EVENP);
1062 if (ISSET(cflag, PARENB))
1063 SET(tmp4, ZSWR4_PARENB);
1064 cs->cs_preg[4] = tmp4;
1065
1066 /* And copy to tty. */
1067 tp->t_ispeed = 0;
1068 tp->t_ospeed = ospeed;
1069 tp->t_cflag = cflag;
1070
1071 /*
1072 * If nothing is being transmitted, set up new current values,
1073 * else mark them as pending.
1074 */
1075 if (!cs->cs_heldchange) {
1076 if (zst->zst_tx_busy) {
1077 zst->zst_heldtbc = zst->zst_tbc;
1078 zst->zst_tbc = 0;
1079 cs->cs_heldchange = 1;
1080 } else
1081 zs_loadchannelregs(cs);
1082 }
1083
1084 /*
1085 * If hardware flow control is disabled, turn off the buffer water
1086 * marks and unblock any soft flow control state. Otherwise, enable
1087 * the water marks.
1088 */
1089 if (!ISSET(cflag, CHWFLOW)) {
1090 zst->zst_r_hiwat = 0;
1091 zst->zst_r_lowat = 0;
1092 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1093 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1094 zst->zst_rx_ready = 1;
1095 cs->cs_softreq = 1;
1096 }
1097 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1098 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1099 zs_hwiflow(zst);
1100 }
1101 } else {
1102 zst->zst_r_hiwat = zstty_rbuf_hiwat;
1103 zst->zst_r_lowat = zstty_rbuf_lowat;
1104 }
1105
1106 /*
1107 * Force a recheck of the hardware carrier and flow control status,
1108 * since we may have changed which bits we're looking at.
1109 */
1110 zstty_stint(cs, 1);
1111
1112 splx(s);
1113
1114 /*
1115 * If hardware flow control is disabled, unblock any hard flow control
1116 * state.
1117 */
1118 if (!ISSET(cflag, CHWFLOW)) {
1119 if (zst->zst_tx_stopped) {
1120 zst->zst_tx_stopped = 0;
1121 zsstart(tp);
1122 }
1123 }
1124
1125 zstty_softint(cs);
1126
1127 return (0);
1128 }
1129
1130 /*
1131 * Compute interupt enable bits and set in the pending bits. Called both
1132 * in zsparam() and when PPS (pulse per second timing) state changes.
1133 * Must be called at splzs().
1134 */
1135 static void
1136 zs_maskintr(zst)
1137 struct zstty_softc *zst;
1138 {
1139 struct zs_chanstate *cs = zst->zst_cs;
1140 int tmp15;
1141
1142 cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
1143 if (zst->zst_ppsmask != 0)
1144 cs->cs_rr0_mask |= cs->cs_rr0_pps;
1145 tmp15 = cs->cs_preg[15];
1146 if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
1147 SET(tmp15, ZSWR15_DCD_IE);
1148 else
1149 CLR(tmp15, ZSWR15_DCD_IE);
1150 if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
1151 SET(tmp15, ZSWR15_CTS_IE);
1152 else
1153 CLR(tmp15, ZSWR15_CTS_IE);
1154 cs->cs_preg[15] = tmp15;
1155 }
1156
1157
1158 /*
1159 * Raise or lower modem control (DTR/RTS) signals. If a character is
1160 * in transmission, the change is deferred.
1161 */
1162 static void
1163 zs_modem(zst, onoff)
1164 struct zstty_softc *zst;
1165 int onoff;
1166 {
1167 struct zs_chanstate *cs = zst->zst_cs;
1168
1169 if (cs->cs_wr5_dtr == 0)
1170 return;
1171
1172 if (onoff)
1173 SET(cs->cs_preg[5], cs->cs_wr5_dtr);
1174 else
1175 CLR(cs->cs_preg[5], cs->cs_wr5_dtr);
1176
1177 if (!cs->cs_heldchange) {
1178 if (zst->zst_tx_busy) {
1179 zst->zst_heldtbc = zst->zst_tbc;
1180 zst->zst_tbc = 0;
1181 cs->cs_heldchange = 1;
1182 } else
1183 zs_loadchannelregs(cs);
1184 }
1185 }
1186
1187 static void
1188 tiocm_to_zs(zst, how, ttybits)
1189 struct zstty_softc *zst;
1190 int how, ttybits;
1191 {
1192 struct zs_chanstate *cs = zst->zst_cs;
1193 u_char zsbits;
1194
1195 zsbits = 0;
1196 if (ISSET(ttybits, TIOCM_DTR))
1197 SET(zsbits, ZSWR5_DTR);
1198 if (ISSET(ttybits, TIOCM_RTS))
1199 SET(zsbits, ZSWR5_RTS);
1200
1201 switch (how) {
1202 case TIOCMBIC:
1203 CLR(cs->cs_preg[5], zsbits);
1204 break;
1205
1206 case TIOCMBIS:
1207 SET(cs->cs_preg[5], zsbits);
1208 break;
1209
1210 case TIOCMSET:
1211 CLR(cs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR);
1212 SET(cs->cs_preg[5], zsbits);
1213 break;
1214 }
1215
1216 if (!cs->cs_heldchange) {
1217 if (zst->zst_tx_busy) {
1218 zst->zst_heldtbc = zst->zst_tbc;
1219 zst->zst_tbc = 0;
1220 cs->cs_heldchange = 1;
1221 } else
1222 zs_loadchannelregs(cs);
1223 }
1224 }
1225
1226 static int
1227 zs_to_tiocm(zst)
1228 struct zstty_softc *zst;
1229 {
1230 struct zs_chanstate *cs = zst->zst_cs;
1231 u_char zsbits;
1232 int ttybits = 0;
1233
1234 zsbits = cs->cs_preg[5];
1235 if (ISSET(zsbits, ZSWR5_DTR))
1236 SET(ttybits, TIOCM_DTR);
1237 if (ISSET(zsbits, ZSWR5_RTS))
1238 SET(ttybits, TIOCM_RTS);
1239
1240 zsbits = cs->cs_rr0;
1241 if (ISSET(zsbits, ZSRR0_DCD))
1242 SET(ttybits, TIOCM_CD);
1243 if (ISSET(zsbits, ZSRR0_CTS))
1244 SET(ttybits, TIOCM_CTS);
1245
1246 return (ttybits);
1247 }
1248
1249 /*
1250 * Try to block or unblock input using hardware flow-control.
1251 * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
1252 * if this function returns non-zero, the TS_TBLOCK flag will
1253 * be set or cleared according to the "block" arg passed.
1254 */
1255 int
1256 zshwiflow(tp, block)
1257 struct tty *tp;
1258 int block;
1259 {
1260 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
1261 struct zs_chanstate *cs = zst->zst_cs;
1262 int s;
1263
1264 if (cs->cs_wr5_rts == 0)
1265 return (0);
1266
1267 s = splzs();
1268 if (block) {
1269 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1270 SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
1271 zs_hwiflow(zst);
1272 }
1273 } else {
1274 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1275 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1276 zst->zst_rx_ready = 1;
1277 cs->cs_softreq = 1;
1278 }
1279 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1280 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
1281 zs_hwiflow(zst);
1282 }
1283 }
1284 splx(s);
1285 return (1);
1286 }
1287
1288 /*
1289 * Internal version of zshwiflow
1290 * called at splzs
1291 */
1292 static void
1293 zs_hwiflow(zst)
1294 struct zstty_softc *zst;
1295 {
1296 struct zs_chanstate *cs = zst->zst_cs;
1297
1298 if (cs->cs_wr5_rts == 0)
1299 return;
1300
1301 if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
1302 CLR(cs->cs_preg[5], cs->cs_wr5_rts);
1303 CLR(cs->cs_creg[5], cs->cs_wr5_rts);
1304 } else {
1305 SET(cs->cs_preg[5], cs->cs_wr5_rts);
1306 SET(cs->cs_creg[5], cs->cs_wr5_rts);
1307 }
1308 zs_write_reg(cs, 5, cs->cs_creg[5]);
1309 }
1310
1311
1312 /****************************************************************
1313 * Interface to the lower layer (zscc)
1314 ****************************************************************/
1315
1316 #define integrate static inline
1317 integrate void zstty_rxsoft __P((struct zstty_softc *, struct tty *));
1318 integrate void zstty_txsoft __P((struct zstty_softc *, struct tty *));
1319 integrate void zstty_stsoft __P((struct zstty_softc *, struct tty *));
1320 static void zstty_diag __P((void *));
1321
1322 /*
1323 * receiver ready interrupt.
1324 * called at splzs
1325 */
1326 static void
1327 zstty_rxint(cs)
1328 struct zs_chanstate *cs;
1329 {
1330 struct zstty_softc *zst = cs->cs_private;
1331 u_char *put, *end;
1332 u_int cc;
1333 u_char rr0, rr1, c;
1334
1335 end = zst->zst_ebuf;
1336 put = zst->zst_rbput;
1337 cc = zst->zst_rbavail;
1338
1339 while (cc > 0) {
1340 /*
1341 * First read the status, because reading the received char
1342 * destroys the status of this char.
1343 */
1344 rr1 = zs_read_reg(cs, 1);
1345 c = zs_read_data(cs);
1346
1347 if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
1348 /* Clear the receive error. */
1349 zs_write_csr(cs, ZSWR0_RESET_ERRORS);
1350 }
1351
1352 put[0] = c;
1353 put[1] = rr1;
1354 put += 2;
1355 if (put >= end)
1356 put = zst->zst_rbuf;
1357 cc--;
1358
1359 rr0 = zs_read_csr(cs);
1360 if (!ISSET(rr0, ZSRR0_RX_READY))
1361 break;
1362 }
1363
1364 /*
1365 * Current string of incoming characters ended because
1366 * no more data was available or we ran out of space.
1367 * Schedule a receive event if any data was received.
1368 * If we're out of space, turn off receive interrupts.
1369 */
1370 zst->zst_rbput = put;
1371 zst->zst_rbavail = cc;
1372 if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1373 zst->zst_rx_ready = 1;
1374 cs->cs_softreq = 1;
1375 }
1376
1377 /*
1378 * See if we are in danger of overflowing a buffer. If
1379 * so, use hardware flow control to ease the pressure.
1380 */
1381 if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
1382 cc < zst->zst_r_hiwat) {
1383 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1384 zs_hwiflow(zst);
1385 }
1386
1387 /*
1388 * If we're out of space, disable receive interrupts
1389 * until the queue has drained a bit.
1390 */
1391 if (!cc) {
1392 SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1393 CLR(cs->cs_preg[1], ZSWR1_RIE);
1394 cs->cs_creg[1] = cs->cs_preg[1];
1395 zs_write_reg(cs, 1, cs->cs_creg[1]);
1396 }
1397
1398 #if 0
1399 printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1400 #endif
1401 }
1402
1403 /*
1404 * transmitter ready interrupt. (splzs)
1405 */
1406 static void
1407 zstty_txint(cs)
1408 struct zs_chanstate *cs;
1409 {
1410 struct zstty_softc *zst = cs->cs_private;
1411
1412 /*
1413 * If we've delayed a parameter change, do it now, and restart
1414 * output.
1415 */
1416 if (cs->cs_heldchange) {
1417 zs_loadchannelregs(cs);
1418 cs->cs_heldchange = 0;
1419 zst->zst_tbc = zst->zst_heldtbc;
1420 zst->zst_heldtbc = 0;
1421 }
1422
1423 /* Output the next character in the buffer, if any. */
1424 if (zst->zst_tbc > 0) {
1425 zs_write_data(cs, *zst->zst_tba);
1426 zst->zst_tbc--;
1427 zst->zst_tba++;
1428 } else {
1429 /* Disable transmit completion interrupts if necessary. */
1430 if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
1431 CLR(cs->cs_preg[1], ZSWR1_TIE);
1432 cs->cs_creg[1] = cs->cs_preg[1];
1433 zs_write_reg(cs, 1, cs->cs_creg[1]);
1434 }
1435 if (zst->zst_tx_busy) {
1436 zst->zst_tx_busy = 0;
1437 zst->zst_tx_done = 1;
1438 cs->cs_softreq = 1;
1439 }
1440 }
1441 }
1442
1443 /*
1444 * status change interrupt. (splzs)
1445 */
1446 static void
1447 zstty_stint(cs, force)
1448 struct zs_chanstate *cs;
1449 int force;
1450 {
1451 struct zstty_softc *zst = cs->cs_private;
1452 u_char rr0, delta;
1453
1454 rr0 = zs_read_csr(cs);
1455 zs_write_csr(cs, ZSWR0_RESET_STATUS);
1456
1457 /*
1458 * Check here for console break, so that we can abort
1459 * even when interrupts are locking up the machine.
1460 */
1461 if (ISSET(rr0, ZSRR0_BREAK) &&
1462 ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
1463 zs_abort(cs);
1464 return;
1465 }
1466
1467 if (!force)
1468 delta = rr0 ^ cs->cs_rr0;
1469 else
1470 delta = cs->cs_rr0_mask;
1471 cs->cs_rr0 = rr0;
1472
1473 if (ISSET(delta, cs->cs_rr0_mask)) {
1474 SET(cs->cs_rr0_delta, delta);
1475
1476 /*
1477 * Pulse-per-second clock signal on edge of DCD?
1478 */
1479 if (ISSET(delta, zst->zst_ppsmask)) {
1480 struct timeval tv;
1481 if (ISSET(rr0, zst->zst_ppsmask) == zst->zst_ppsassert) {
1482 /* XXX nanotime() */
1483 microtime(&tv);
1484 TIMEVAL_TO_TIMESPEC(&tv,
1485 &zst->ppsinfo.assert_timestamp);
1486 if (zst->ppsparam.mode & PPS_OFFSETASSERT) {
1487 timespecadd(&zst->ppsinfo.assert_timestamp,
1488 &zst->ppsparam.assert_offset,
1489 &zst->ppsinfo.assert_timestamp);
1490 TIMESPEC_TO_TIMEVAL(&tv,
1491 &zst->ppsinfo.assert_timestamp);
1492 }
1493
1494 #ifdef PPS_SYNC
1495 if (zst->ppsparam.mode & PPS_HARDPPSONASSERT)
1496 hardpps(&tv, tv.tv_usec);
1497 #endif
1498 zst->ppsinfo.assert_sequence++;
1499 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1500 } else if (ISSET(rr0, zst->zst_ppsmask) ==
1501 zst->zst_ppsclear) {
1502 /* XXX nanotime() */
1503 microtime(&tv);
1504 TIMEVAL_TO_TIMESPEC(&tv,
1505 &zst->ppsinfo.clear_timestamp);
1506 if (zst->ppsparam.mode & PPS_OFFSETCLEAR) {
1507 timespecadd(&zst->ppsinfo.clear_timestamp,
1508 &zst->ppsparam.clear_offset,
1509 &zst->ppsinfo.clear_timestamp);
1510 TIMESPEC_TO_TIMEVAL(&tv,
1511 &zst->ppsinfo.clear_timestamp);
1512 }
1513
1514 #ifdef PPS_SYNC
1515 if (zst->ppsparam.mode & PPS_HARDPPSONCLEAR)
1516 hardpps(&tv, tv.tv_usec);
1517 #endif
1518 zst->ppsinfo.clear_sequence++;
1519 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1520 }
1521 }
1522
1523 /*
1524 * Stop output immediately if we lose the output
1525 * flow control signal or carrier detect.
1526 */
1527 if (ISSET(~rr0, cs->cs_rr0_mask)) {
1528 zst->zst_tbc = 0;
1529 zst->zst_heldtbc = 0;
1530 }
1531
1532 zst->zst_st_check = 1;
1533 cs->cs_softreq = 1;
1534 }
1535 }
1536
1537 void
1538 zstty_diag(arg)
1539 void *arg;
1540 {
1541 struct zstty_softc *zst = arg;
1542 int overflows, floods;
1543 int s;
1544
1545 s = splzs();
1546 overflows = zst->zst_overflows;
1547 zst->zst_overflows = 0;
1548 floods = zst->zst_floods;
1549 zst->zst_floods = 0;
1550 zst->zst_errors = 0;
1551 splx(s);
1552
1553 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1554 zst->zst_dev.dv_xname,
1555 overflows, overflows == 1 ? "" : "s",
1556 floods, floods == 1 ? "" : "s");
1557 }
1558
1559 integrate void
1560 zstty_rxsoft(zst, tp)
1561 struct zstty_softc *zst;
1562 struct tty *tp;
1563 {
1564 struct zs_chanstate *cs = zst->zst_cs;
1565 int (*rint) __P((int c, struct tty *tp)) = linesw[tp->t_line].l_rint;
1566 u_char *get, *end;
1567 u_int cc, scc;
1568 u_char rr1;
1569 int code;
1570 int s;
1571
1572 end = zst->zst_ebuf;
1573 get = zst->zst_rbget;
1574 scc = cc = zstty_rbuf_size - zst->zst_rbavail;
1575
1576 if (cc == zstty_rbuf_size) {
1577 zst->zst_floods++;
1578 if (zst->zst_errors++ == 0)
1579 timeout(zstty_diag, zst, 60 * hz);
1580 }
1581
1582 /* If not yet open, drop the entire buffer content here */
1583 if (!ISSET(tp->t_state, TS_ISOPEN)) {
1584 get += cc << 1;
1585 if (get >= end)
1586 get -= zstty_rbuf_size << 1;
1587 cc = 0;
1588 }
1589 while (cc) {
1590 code = get[0];
1591 rr1 = get[1];
1592 if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
1593 if (ISSET(rr1, ZSRR1_DO)) {
1594 zst->zst_overflows++;
1595 if (zst->zst_errors++ == 0)
1596 timeout(zstty_diag, zst, 60 * hz);
1597 }
1598 if (ISSET(rr1, ZSRR1_FE))
1599 SET(code, TTY_FE);
1600 if (ISSET(rr1, ZSRR1_PE))
1601 SET(code, TTY_PE);
1602 }
1603 if ((*rint)(code, tp) == -1) {
1604 /*
1605 * The line discipline's buffer is out of space.
1606 */
1607 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1608 /*
1609 * We're either not using flow control, or the
1610 * line discipline didn't tell us to block for
1611 * some reason. Either way, we have no way to
1612 * know when there's more space available, so
1613 * just drop the rest of the data.
1614 */
1615 get += cc << 1;
1616 if (get >= end)
1617 get -= zstty_rbuf_size << 1;
1618 cc = 0;
1619 } else {
1620 /*
1621 * Don't schedule any more receive processing
1622 * until the line discipline tells us there's
1623 * space available (through comhwiflow()).
1624 * Leave the rest of the data in the input
1625 * buffer.
1626 */
1627 SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1628 }
1629 break;
1630 }
1631 get += 2;
1632 if (get >= end)
1633 get = zst->zst_rbuf;
1634 cc--;
1635 }
1636
1637 if (cc != scc) {
1638 zst->zst_rbget = get;
1639 s = splzs();
1640 cc = zst->zst_rbavail += scc - cc;
1641 /* Buffers should be ok again, release possible block. */
1642 if (cc >= zst->zst_r_lowat) {
1643 if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
1644 CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1645 SET(cs->cs_preg[1], ZSWR1_RIE);
1646 cs->cs_creg[1] = cs->cs_preg[1];
1647 zs_write_reg(cs, 1, cs->cs_creg[1]);
1648 }
1649 if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
1650 CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1651 zs_hwiflow(zst);
1652 }
1653 }
1654 splx(s);
1655 }
1656
1657 #if 0
1658 printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1659 #endif
1660 }
1661
1662 integrate void
1663 zstty_txsoft(zst, tp)
1664 struct zstty_softc *zst;
1665 struct tty *tp;
1666 {
1667
1668 CLR(tp->t_state, TS_BUSY);
1669 if (ISSET(tp->t_state, TS_FLUSH))
1670 CLR(tp->t_state, TS_FLUSH);
1671 else
1672 ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
1673 (*linesw[tp->t_line].l_start)(tp);
1674 }
1675
1676 integrate void
1677 zstty_stsoft(zst, tp)
1678 struct zstty_softc *zst;
1679 struct tty *tp;
1680 {
1681 struct zs_chanstate *cs = zst->zst_cs;
1682 u_char rr0, delta;
1683 int s;
1684
1685 s = splzs();
1686 rr0 = cs->cs_rr0;
1687 delta = cs->cs_rr0_delta;
1688 cs->cs_rr0_delta = 0;
1689 splx(s);
1690
1691 if (ISSET(delta, cs->cs_rr0_dcd)) {
1692 /*
1693 * Inform the tty layer that carrier detect changed.
1694 */
1695 (void) (*linesw[tp->t_line].l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
1696 }
1697
1698 if (ISSET(delta, cs->cs_rr0_cts)) {
1699 /* Block or unblock output according to flow control. */
1700 if (ISSET(rr0, cs->cs_rr0_cts)) {
1701 zst->zst_tx_stopped = 0;
1702 (*linesw[tp->t_line].l_start)(tp);
1703 } else {
1704 zst->zst_tx_stopped = 1;
1705 }
1706 }
1707 }
1708
1709 /*
1710 * Software interrupt. Called at zssoft
1711 *
1712 * The main job to be done here is to empty the input ring
1713 * by passing its contents up to the tty layer. The ring is
1714 * always emptied during this operation, therefore the ring
1715 * must not be larger than the space after "high water" in
1716 * the tty layer, or the tty layer might drop our input.
1717 *
1718 * Note: an "input blockage" condition is assumed to exist if
1719 * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
1720 */
1721 static void
1722 zstty_softint(cs)
1723 struct zs_chanstate *cs;
1724 {
1725 struct zstty_softc *zst = cs->cs_private;
1726 struct tty *tp = zst->zst_tty;
1727 int s;
1728
1729 s = spltty();
1730
1731 if (zst->zst_rx_ready) {
1732 zst->zst_rx_ready = 0;
1733 zstty_rxsoft(zst, tp);
1734 }
1735
1736 if (zst->zst_st_check) {
1737 zst->zst_st_check = 0;
1738 zstty_stsoft(zst, tp);
1739 }
1740
1741 if (zst->zst_tx_done) {
1742 zst->zst_tx_done = 0;
1743 zstty_txsoft(zst, tp);
1744 }
1745
1746 splx(s);
1747 }
1748
1749 struct zsops zsops_tty = {
1750 zstty_rxint, /* receive char available */
1751 zstty_stint, /* external/status */
1752 zstty_txint, /* xmit buffer empty */
1753 zstty_softint, /* process software interrupt */
1754 };
1755