z8530tty.c revision 1.64 1 /* $NetBSD: z8530tty.c,v 1.64 2000/03/19 12:42:45 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999
5 * Charles M. Hannum. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Charles M. Hannum.
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994 Gordon W. Ross
35 * Copyright (c) 1992, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * This software was developed by the Computer Systems Engineering group
39 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
40 * contributed to Berkeley.
41 *
42 * All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by the University of
45 * California, Lawrence Berkeley Laboratory.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)zs.c 8.1 (Berkeley) 7/19/93
76 */
77
78 /*
79 * Zilog Z8530 Dual UART driver (tty interface)
80 *
81 * This is the "slave" driver that will be attached to
82 * the "zsc" driver for plain "tty" async. serial lines.
83 *
84 * Credits, history:
85 *
86 * The original version of this code was the sparc/dev/zs.c driver
87 * as distributed with the Berkeley 4.4 Lite release. Since then,
88 * Gordon Ross reorganized the code into the current parent/child
89 * driver scheme, separating the Sun keyboard and mouse support
90 * into independent child drivers.
91 *
92 * RTS/CTS flow-control support was a collaboration of:
93 * Gordon Ross <gwr (at) netbsd.org>,
94 * Bill Studenmund <wrstuden (at) loki.stanford.edu>
95 * Ian Dall <Ian.Dall (at) dsto.defence.gov.au>
96 *
97 * The driver was massively overhauled in November 1997 by Charles Hannum,
98 * fixing *many* bugs, and substantially improving performance.
99 */
100
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/device.h>
105 #include <sys/conf.h>
106 #include <sys/file.h>
107 #include <sys/ioctl.h>
108 #include <sys/malloc.h>
109 #include <sys/timepps.h>
110 #include <sys/tty.h>
111 #include <sys/time.h>
112 #include <sys/kernel.h>
113 #include <sys/syslog.h>
114
115 #include <dev/ic/z8530reg.h>
116 #include <machine/z8530var.h>
117
118 #include <dev/cons.h>
119
120 #include "locators.h"
121
122 /*
123 * How many input characters we can buffer.
124 * The port-specific var.h may override this.
125 * Note: must be a power of two!
126 */
127 #ifndef ZSTTY_RING_SIZE
128 #define ZSTTY_RING_SIZE 2048
129 #endif
130
131 /*
132 * Make this an option variable one can patch.
133 * But be warned: this must be a power of 2!
134 */
135 u_int zstty_rbuf_size = ZSTTY_RING_SIZE;
136
137 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
138 u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
139 u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;
140
141 static int zsppscap =
142 PPS_TSFMT_TSPEC |
143 PPS_CAPTUREASSERT |
144 PPS_CAPTURECLEAR |
145 #ifdef PPS_SYNC
146 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
147 #endif /* PPS_SYNC */
148 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
149
150 struct zstty_softc {
151 struct device zst_dev; /* required first: base device */
152 struct tty *zst_tty;
153 struct zs_chanstate *zst_cs;
154
155 u_int zst_overflows,
156 zst_floods,
157 zst_errors;
158
159 int zst_hwflags, /* see z8530var.h */
160 zst_swflags; /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
161
162 u_int zst_r_hiwat,
163 zst_r_lowat;
164 u_char *volatile zst_rbget,
165 *volatile zst_rbput;
166 volatile u_int zst_rbavail;
167 u_char *zst_rbuf,
168 *zst_ebuf;
169
170 /*
171 * The transmit byte count and address are used for pseudo-DMA
172 * output in the hardware interrupt code. PDMA can be suspended
173 * to get pending changes done; heldtbc is used for this. It can
174 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
175 */
176 u_char *zst_tba; /* transmit buffer address */
177 u_int zst_tbc, /* transmit byte count */
178 zst_heldtbc; /* held tbc while xmission stopped */
179
180 /* Flags to communicate with zstty_softint() */
181 volatile u_char zst_rx_flags, /* receiver blocked */
182 #define RX_TTY_BLOCKED 0x01
183 #define RX_TTY_OVERFLOWED 0x02
184 #define RX_IBUF_BLOCKED 0x04
185 #define RX_IBUF_OVERFLOWED 0x08
186 #define RX_ANY_BLOCK 0x0f
187 zst_tx_busy, /* working on an output chunk */
188 zst_tx_done, /* done with one output chunk */
189 zst_tx_stopped, /* H/W level stop (lost CTS) */
190 zst_st_check, /* got a status interrupt */
191 zst_rx_ready;
192
193 /* PPS signal on DCD, with or without inkernel clock disciplining */
194 u_char zst_ppsmask; /* pps signal mask */
195 u_char zst_ppsassert; /* pps leading edge */
196 u_char zst_ppsclear; /* pps trailing edge */
197 pps_info_t ppsinfo;
198 pps_params_t ppsparam;
199 };
200
201 /* Macros to clear/set/test flags. */
202 #define SET(t, f) (t) |= (f)
203 #define CLR(t, f) (t) &= ~(f)
204 #define ISSET(t, f) ((t) & (f))
205
206 /* Definition of the driver for autoconfig. */
207 static int zstty_match(struct device *, struct cfdata *, void *);
208 static void zstty_attach(struct device *, struct device *, void *);
209
210 struct cfattach zstty_ca = {
211 sizeof(struct zstty_softc), zstty_match, zstty_attach
212 };
213
214 extern struct cfdriver zstty_cd;
215
216 struct zsops zsops_tty;
217
218 /* Routines called from other code. */
219 cdev_decl(zs); /* open, close, read, write, ioctl, stop, ... */
220
221 static void zs_shutdown __P((struct zstty_softc *));
222 static void zsstart __P((struct tty *));
223 static int zsparam __P((struct tty *, struct termios *));
224 static void zs_modem __P((struct zstty_softc *, int));
225 static void tiocm_to_zs __P((struct zstty_softc *, int, int));
226 static int zs_to_tiocm __P((struct zstty_softc *));
227 static int zshwiflow __P((struct tty *, int));
228 static void zs_hwiflow __P((struct zstty_softc *));
229 static void zs_maskintr __P((struct zstty_softc *));
230
231 /* Low-level routines. */
232 static void zstty_rxint __P((struct zs_chanstate *));
233 static void zstty_stint __P((struct zs_chanstate *, int));
234 static void zstty_txint __P((struct zs_chanstate *));
235 static void zstty_softint __P((struct zs_chanstate *));
236
237 #define ZSUNIT(x) (minor(x) & 0x7ffff)
238 #define ZSDIALOUT(x) (minor(x) & 0x80000)
239
240 /*
241 * zstty_match: how is this zs channel configured?
242 */
243 int
244 zstty_match(parent, cf, aux)
245 struct device *parent;
246 struct cfdata *cf;
247 void *aux;
248 {
249 struct zsc_attach_args *args = aux;
250
251 /* Exact match is better than wildcard. */
252 if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel)
253 return 2;
254
255 /* This driver accepts wildcard. */
256 if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT)
257 return 1;
258
259 return 0;
260 }
261
262 void
263 zstty_attach(parent, self, aux)
264 struct device *parent, *self;
265 void *aux;
266
267 {
268 struct zsc_softc *zsc = (void *) parent;
269 struct zstty_softc *zst = (void *) self;
270 struct cfdata *cf = self->dv_cfdata;
271 struct zsc_attach_args *args = aux;
272 struct zs_chanstate *cs;
273 struct tty *tp;
274 int channel, s, tty_unit;
275 dev_t dev;
276 char *i, *o;
277
278 tty_unit = zst->zst_dev.dv_unit;
279 channel = args->channel;
280 cs = zsc->zsc_cs[channel];
281 cs->cs_private = zst;
282 cs->cs_ops = &zsops_tty;
283
284 zst->zst_cs = cs;
285 zst->zst_swflags = cf->cf_flags; /* softcar, etc. */
286 zst->zst_hwflags = args->hwflags;
287 dev = makedev(zs_major, tty_unit);
288
289 if (zst->zst_swflags)
290 printf(" flags 0x%x", zst->zst_swflags);
291
292 /*
293 * Check whether we serve as a console device.
294 * XXX - split console input/output channels aren't
295 * supported yet on /dev/console
296 */
297 i = o = NULL;
298 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
299 i = "input";
300 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
301 cn_tab->cn_pollc = args->consdev->cn_pollc;
302 cn_tab->cn_getc = args->consdev->cn_getc;
303 }
304 cn_tab->cn_dev = dev;
305 }
306 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
307 o = "output";
308 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
309 cn_tab->cn_putc = args->consdev->cn_putc;
310 }
311 cn_tab->cn_dev = dev;
312 }
313 if (i != NULL || o != NULL)
314 printf(" (console %s)", i ? (o ? "i/o" : i) : o);
315
316 #ifdef KGDB
317 if (zs_check_kgdb(cs, dev)) {
318 /*
319 * Allow kgdb to "take over" this port. Returns true
320 * if this serial port is in-use by kgdb.
321 */
322 printf(" (kgdb)");
323 /*
324 * This is the kgdb port (exclusive use)
325 * so skip the normal attach code.
326 */
327 return;
328 }
329 #endif
330 printf("\n");
331
332 tp = ttymalloc();
333 tp->t_dev = dev;
334 tp->t_oproc = zsstart;
335 tp->t_param = zsparam;
336 tp->t_hwiflow = zshwiflow;
337 tty_attach(tp);
338
339 zst->zst_tty = tp;
340 zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK);
341 zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
342 /* Disable the high water mark. */
343 zst->zst_r_hiwat = 0;
344 zst->zst_r_lowat = 0;
345 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
346 zst->zst_rbavail = zstty_rbuf_size;
347
348 /* if there are no enable/disable functions, assume the device
349 is always enabled */
350 if (!cs->enable)
351 cs->enabled = 1;
352
353 /*
354 * Hardware init
355 */
356 if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
357 /* Call zsparam similar to open. */
358 struct termios t;
359
360 /* Setup the "new" parameters in t. */
361 t.c_ispeed = 0;
362 t.c_ospeed = cs->cs_defspeed;
363 t.c_cflag = cs->cs_defcflag;
364
365 s = splzs();
366
367 /*
368 * Turn on receiver and status interrupts.
369 * We defer the actual write of the register to zsparam(),
370 * but we must make sure status interrupts are turned on by
371 * the time zsparam() reads the initial rr0 state.
372 */
373 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
374
375 splx(s);
376
377 /* Make sure zsparam will see changes. */
378 tp->t_ospeed = 0;
379 (void) zsparam(tp, &t);
380
381 s = splzs();
382
383 /* Make sure DTR is on now. */
384 zs_modem(zst, 1);
385
386 splx(s);
387 } else {
388 /* Not the console; may need reset. */
389 int reset;
390
391 reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
392
393 s = splzs();
394
395 zs_write_reg(cs, 9, reset);
396
397 /* Will raise DTR in open. */
398 zs_modem(zst, 0);
399
400 splx(s);
401 }
402 }
403
404
405 /*
406 * Return pointer to our tty.
407 */
408 struct tty *
409 zstty(dev)
410 dev_t dev;
411 {
412 struct zstty_softc *zst;
413 int unit = ZSUNIT(dev);
414
415 #ifdef DIAGNOSTIC
416 if (unit >= zstty_cd.cd_ndevs)
417 panic("zstty");
418 #endif
419 zst = zstty_cd.cd_devs[unit];
420 return (zst->zst_tty);
421 }
422
423
424 void
425 zs_shutdown(zst)
426 struct zstty_softc *zst;
427 {
428 struct zs_chanstate *cs = zst->zst_cs;
429 struct tty *tp = zst->zst_tty;
430 int s;
431
432 s = splzs();
433
434 /* If we were asserting flow control, then deassert it. */
435 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
436 zs_hwiflow(zst);
437
438 /* Clear any break condition set with TIOCSBRK. */
439 zs_break(cs, 0);
440
441 /* Turn off PPS capture on last close. */
442 zst->zst_ppsmask = 0;
443 zst->ppsparam.mode = 0;
444
445 /*
446 * Hang up if necessary. Wait a bit, so the other side has time to
447 * notice even if we immediately open the port again.
448 */
449 if (ISSET(tp->t_cflag, HUPCL)) {
450 zs_modem(zst, 0);
451 (void) tsleep(cs, TTIPRI, ttclos, hz);
452 }
453
454 /* Turn off interrupts if not the console. */
455 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
456 CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
457 cs->cs_creg[1] = cs->cs_preg[1];
458 zs_write_reg(cs, 1, cs->cs_creg[1]);
459 }
460
461 /* Call the power management hook. */
462 if (cs->disable) {
463 #ifdef DIAGNOSTIC
464 if (!cs->enabled)
465 panic("zs_shutdown: not enabled?");
466 #endif
467 (*cs->disable)(zst->zst_cs);
468 }
469
470 splx(s);
471 }
472
473 /*
474 * Open a zs serial (tty) port.
475 */
476 int
477 zsopen(dev, flags, mode, p)
478 dev_t dev;
479 int flags;
480 int mode;
481 struct proc *p;
482 {
483 int unit = ZSUNIT(dev);
484 struct zstty_softc *zst;
485 struct zs_chanstate *cs;
486 struct tty *tp;
487 int s, s2;
488 int error;
489
490 if (unit >= zstty_cd.cd_ndevs)
491 return (ENXIO);
492 zst = zstty_cd.cd_devs[unit];
493 if (zst == 0)
494 return (ENXIO);
495 tp = zst->zst_tty;
496 cs = zst->zst_cs;
497
498 /* If KGDB took the line, then tp==NULL */
499 if (tp == NULL)
500 return (EBUSY);
501
502 if (ISSET(tp->t_state, TS_ISOPEN) &&
503 ISSET(tp->t_state, TS_XCLUDE) &&
504 p->p_ucred->cr_uid != 0)
505 return (EBUSY);
506
507 s = spltty();
508
509 /*
510 * Do the following iff this is a first open.
511 */
512 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
513 struct termios t;
514
515 tp->t_dev = dev;
516
517 /* Call the power management hook. */
518 if (cs->enable) {
519 if ((*cs->enable)(cs)) {
520 splx(s2);
521 splx(s);
522 printf("%s: device enable failed\n",
523 zst->zst_dev.dv_xname);
524 return (EIO);
525 }
526 }
527
528 /*
529 * Initialize the termios status to the defaults. Add in the
530 * sticky bits from TIOCSFLAGS.
531 */
532 t.c_ispeed = 0;
533 t.c_ospeed = cs->cs_defspeed;
534 t.c_cflag = cs->cs_defcflag;
535 if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
536 SET(t.c_cflag, CLOCAL);
537 if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
538 SET(t.c_cflag, CRTSCTS);
539 if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
540 SET(t.c_cflag, CDTRCTS);
541 if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
542 SET(t.c_cflag, MDMBUF);
543
544 s2 = splzs();
545
546 /*
547 * Turn on receiver and status interrupts.
548 * We defer the actual write of the register to zsparam(),
549 * but we must make sure status interrupts are turned on by
550 * the time zsparam() reads the initial rr0 state.
551 */
552 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
553
554 /* Clear PPS capture state on first open. */
555 zst->zst_ppsmask = 0;
556 zst->ppsparam.mode = 0;
557
558 splx(s2);
559
560 /* Make sure zsparam will see changes. */
561 tp->t_ospeed = 0;
562 (void) zsparam(tp, &t);
563
564 /*
565 * Note: zsparam has done: cflag, ispeed, ospeed
566 * so we just need to do: iflag, oflag, lflag, cc
567 * For "raw" mode, just leave all zeros.
568 */
569 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
570 tp->t_iflag = TTYDEF_IFLAG;
571 tp->t_oflag = TTYDEF_OFLAG;
572 tp->t_lflag = TTYDEF_LFLAG;
573 } else {
574 tp->t_iflag = 0;
575 tp->t_oflag = 0;
576 tp->t_lflag = 0;
577 }
578 ttychars(tp);
579 ttsetwater(tp);
580
581 s2 = splzs();
582
583 /*
584 * Turn on DTR. We must always do this, even if carrier is not
585 * present, because otherwise we'd have to use TIOCSDTR
586 * immediately after setting CLOCAL, which applications do not
587 * expect. We always assert DTR while the device is open
588 * unless explicitly requested to deassert it.
589 */
590 zs_modem(zst, 1);
591
592 /* Clear the input ring, and unblock. */
593 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
594 zst->zst_rbavail = zstty_rbuf_size;
595 zs_iflush(cs);
596 CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
597 zs_hwiflow(zst);
598
599 splx(s2);
600 }
601
602 splx(s);
603
604 error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
605 if (error)
606 goto bad;
607
608 error = (*linesw[tp->t_line].l_open)(dev, tp);
609 if (error)
610 goto bad;
611
612 return (0);
613
614 bad:
615 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
616 /*
617 * We failed to open the device, and nobody else had it opened.
618 * Clean up the state as appropriate.
619 */
620 zs_shutdown(zst);
621 }
622
623 return (error);
624 }
625
626 /*
627 * Close a zs serial port.
628 */
629 int
630 zsclose(dev, flags, mode, p)
631 dev_t dev;
632 int flags;
633 int mode;
634 struct proc *p;
635 {
636 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
637 struct tty *tp = zst->zst_tty;
638
639 /* XXX This is for cons.c. */
640 if (!ISSET(tp->t_state, TS_ISOPEN))
641 return 0;
642
643 (*linesw[tp->t_line].l_close)(tp, flags);
644 ttyclose(tp);
645
646 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
647 /*
648 * Although we got a last close, the device may still be in
649 * use; e.g. if this was the dialout node, and there are still
650 * processes waiting for carrier on the non-dialout node.
651 */
652 zs_shutdown(zst);
653 }
654
655 return (0);
656 }
657
658 /*
659 * Read/write zs serial port.
660 */
661 int
662 zsread(dev, uio, flags)
663 dev_t dev;
664 struct uio *uio;
665 int flags;
666 {
667 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
668 struct tty *tp = zst->zst_tty;
669
670 return ((*linesw[tp->t_line].l_read)(tp, uio, flags));
671 }
672
673 int
674 zswrite(dev, uio, flags)
675 dev_t dev;
676 struct uio *uio;
677 int flags;
678 {
679 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
680 struct tty *tp = zst->zst_tty;
681
682 return ((*linesw[tp->t_line].l_write)(tp, uio, flags));
683 }
684
685 int
686 zsioctl(dev, cmd, data, flag, p)
687 dev_t dev;
688 u_long cmd;
689 caddr_t data;
690 int flag;
691 struct proc *p;
692 {
693 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
694 struct zs_chanstate *cs = zst->zst_cs;
695 struct tty *tp = zst->zst_tty;
696 int error;
697 int s;
698
699 error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
700 if (error >= 0)
701 return (error);
702
703 error = ttioctl(tp, cmd, data, flag, p);
704 if (error >= 0)
705 return (error);
706
707 #ifdef ZS_MD_IOCTL
708 error = ZS_MD_IOCTL;
709 if (error >= 0)
710 return (error);
711 #endif /* ZS_MD_IOCTL */
712
713 error = 0;
714
715 s = splzs();
716
717 switch (cmd) {
718 case TIOCSBRK:
719 zs_break(cs, 1);
720 break;
721
722 case TIOCCBRK:
723 zs_break(cs, 0);
724 break;
725
726 case TIOCGFLAGS:
727 *(int *)data = zst->zst_swflags;
728 break;
729
730 case TIOCSFLAGS:
731 error = suser(p->p_ucred, &p->p_acflag);
732 if (error)
733 break;
734 zst->zst_swflags = *(int *)data;
735 break;
736
737 case TIOCSDTR:
738 zs_modem(zst, 1);
739 break;
740
741 case TIOCCDTR:
742 zs_modem(zst, 0);
743 break;
744
745 case TIOCMSET:
746 case TIOCMBIS:
747 case TIOCMBIC:
748 tiocm_to_zs(zst, cmd, *(int *)data);
749 break;
750
751 case TIOCMGET:
752 *(int *)data = zs_to_tiocm(zst);
753 break;
754
755 case PPS_IOC_CREATE:
756 break;
757
758 case PPS_IOC_DESTROY:
759 break;
760
761 case PPS_IOC_GETPARAMS: {
762 pps_params_t *pp;
763 pp = (pps_params_t *)data;
764 *pp = zst->ppsparam;
765 break;
766 }
767
768 case PPS_IOC_SETPARAMS: {
769 pps_params_t *pp;
770 int mode;
771 if (cs->cs_rr0_pps == 0) {
772 error = EINVAL;
773 break;
774 }
775 pp = (pps_params_t *)data;
776 if (pp->mode & ~zsppscap) {
777 error = EINVAL;
778 break;
779 }
780 zst->ppsparam = *pp;
781 /*
782 * compute masks from user-specified timestamp state.
783 */
784 mode = zst->ppsparam.mode;
785 #ifdef PPS_SYNC
786 if (mode & PPS_HARDPPSONASSERT) {
787 mode |= PPS_CAPTUREASSERT;
788 /* XXX revoke any previous HARDPPS source */
789 }
790 if (mode & PPS_HARDPPSONCLEAR) {
791 mode |= PPS_CAPTURECLEAR;
792 /* XXX revoke any previous HARDPPS source */
793 }
794 #endif /* PPS_SYNC */
795 switch (mode & PPS_CAPTUREBOTH) {
796 case 0:
797 zst->zst_ppsmask = 0;
798 break;
799
800 case PPS_CAPTUREASSERT:
801 zst->zst_ppsmask = ZSRR0_DCD;
802 zst->zst_ppsassert = ZSRR0_DCD;
803 zst->zst_ppsclear = -1;
804 break;
805
806 case PPS_CAPTURECLEAR:
807 zst->zst_ppsmask = ZSRR0_DCD;
808 zst->zst_ppsassert = -1;
809 zst->zst_ppsclear = 0;
810 break;
811
812 case PPS_CAPTUREBOTH:
813 zst->zst_ppsmask = ZSRR0_DCD;
814 zst->zst_ppsassert = ZSRR0_DCD;
815 zst->zst_ppsclear = 0;
816 break;
817
818 default:
819 error = EINVAL;
820 break;
821 }
822
823 /*
824 * Now update interrupts.
825 */
826 zs_maskintr(zst);
827 /*
828 * If nothing is being transmitted, set up new current values,
829 * else mark them as pending.
830 */
831 if (!cs->cs_heldchange) {
832 if (zst->zst_tx_busy) {
833 zst->zst_heldtbc = zst->zst_tbc;
834 zst->zst_tbc = 0;
835 cs->cs_heldchange = 1;
836 } else
837 zs_loadchannelregs(cs);
838 }
839
840 break;
841 }
842
843 case PPS_IOC_GETCAP:
844 *(int *)data = zsppscap;
845 break;
846
847 case PPS_IOC_FETCH: {
848 pps_info_t *pi;
849 pi = (pps_info_t *)data;
850 *pi = zst->ppsinfo;
851 break;
852 }
853
854 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
855 if (cs->cs_rr0_pps == 0) {
856 error = EINVAL;
857 break;
858 }
859 /*
860 * Some GPS clocks models use the falling rather than
861 * rising edge as the on-the-second signal.
862 * The old API has no way to specify PPS polarity.
863 */
864 zst->zst_ppsmask = ZSRR0_DCD;
865 #ifndef PPS_TRAILING_EDGE
866 zst->zst_ppsassert = ZSRR0_DCD;
867 zst->zst_ppsclear = -1;
868 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
869 &zst->ppsinfo.assert_timestamp);
870 #else
871 zst->zst_ppsassert = -1;
872 zst->zst_ppsclear = 01;
873 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
874 &zst->ppsinfo.clear_timestamp);
875 #endif
876 /*
877 * Now update interrupts.
878 */
879 zs_maskintr(zst);
880 /*
881 * If nothing is being transmitted, set up new current values,
882 * else mark them as pending.
883 */
884 if (!cs->cs_heldchange) {
885 if (zst->zst_tx_busy) {
886 zst->zst_heldtbc = zst->zst_tbc;
887 zst->zst_tbc = 0;
888 cs->cs_heldchange = 1;
889 } else
890 zs_loadchannelregs(cs);
891 }
892
893 break;
894
895 default:
896 error = ENOTTY;
897 break;
898 }
899
900 splx(s);
901
902 return (error);
903 }
904
905 /*
906 * Start or restart transmission.
907 */
908 static void
909 zsstart(tp)
910 struct tty *tp;
911 {
912 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
913 struct zs_chanstate *cs = zst->zst_cs;
914 int s;
915
916 s = spltty();
917 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
918 goto out;
919 if (zst->zst_tx_stopped)
920 goto out;
921
922 if (tp->t_outq.c_cc <= tp->t_lowat) {
923 if (ISSET(tp->t_state, TS_ASLEEP)) {
924 CLR(tp->t_state, TS_ASLEEP);
925 wakeup((caddr_t)&tp->t_outq);
926 }
927 selwakeup(&tp->t_wsel);
928 if (tp->t_outq.c_cc == 0)
929 goto out;
930 }
931
932 /* Grab the first contiguous region of buffer space. */
933 {
934 u_char *tba;
935 int tbc;
936
937 tba = tp->t_outq.c_cf;
938 tbc = ndqb(&tp->t_outq, 0);
939
940 (void) splzs();
941
942 zst->zst_tba = tba;
943 zst->zst_tbc = tbc;
944 }
945
946 SET(tp->t_state, TS_BUSY);
947 zst->zst_tx_busy = 1;
948
949 /* Enable transmit completion interrupts if necessary. */
950 if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
951 SET(cs->cs_preg[1], ZSWR1_TIE);
952 cs->cs_creg[1] = cs->cs_preg[1];
953 zs_write_reg(cs, 1, cs->cs_creg[1]);
954 }
955
956 /* Output the first character of the contiguous buffer. */
957 {
958 zs_write_data(cs, *zst->zst_tba);
959 zst->zst_tbc--;
960 zst->zst_tba++;
961 }
962 out:
963 splx(s);
964 return;
965 }
966
967 /*
968 * Stop output, e.g., for ^S or output flush.
969 */
970 void
971 zsstop(tp, flag)
972 struct tty *tp;
973 int flag;
974 {
975 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
976 int s;
977
978 s = splzs();
979 if (ISSET(tp->t_state, TS_BUSY)) {
980 /* Stop transmitting at the next chunk. */
981 zst->zst_tbc = 0;
982 zst->zst_heldtbc = 0;
983 if (!ISSET(tp->t_state, TS_TTSTOP))
984 SET(tp->t_state, TS_FLUSH);
985 }
986 splx(s);
987 }
988
989 /*
990 * Set ZS tty parameters from termios.
991 * XXX - Should just copy the whole termios after
992 * making sure all the changes could be done.
993 */
994 static int
995 zsparam(tp, t)
996 struct tty *tp;
997 struct termios *t;
998 {
999 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
1000 struct zs_chanstate *cs = zst->zst_cs;
1001 int ospeed, cflag;
1002 u_char tmp3, tmp4, tmp5;
1003 int s, error;
1004
1005 ospeed = t->c_ospeed;
1006 cflag = t->c_cflag;
1007
1008 /* Check requested parameters. */
1009 if (ospeed < 0)
1010 return (EINVAL);
1011 if (t->c_ispeed && t->c_ispeed != ospeed)
1012 return (EINVAL);
1013
1014 /*
1015 * For the console, always force CLOCAL and !HUPCL, so that the port
1016 * is always active.
1017 */
1018 if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
1019 ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
1020 SET(cflag, CLOCAL);
1021 CLR(cflag, HUPCL);
1022 }
1023
1024 /*
1025 * Only whack the UART when params change.
1026 * Some callers need to clear tp->t_ospeed
1027 * to make sure initialization gets done.
1028 */
1029 if (tp->t_ospeed == ospeed &&
1030 tp->t_cflag == cflag)
1031 return (0);
1032
1033 /*
1034 * Call MD functions to deal with changed
1035 * clock modes or H/W flow control modes.
1036 * The BRG divisor is set now. (reg 12,13)
1037 */
1038 error = zs_set_speed(cs, ospeed);
1039 if (error)
1040 return (error);
1041 error = zs_set_modes(cs, cflag);
1042 if (error)
1043 return (error);
1044
1045 /*
1046 * Block interrupts so that state will not
1047 * be altered until we are done setting it up.
1048 *
1049 * Initial values in cs_preg are set before
1050 * our attach routine is called. The master
1051 * interrupt enable is handled by zsc.c
1052 *
1053 */
1054 s = splzs();
1055
1056 /*
1057 * Recalculate which status ints to enable.
1058 */
1059 zs_maskintr(zst);
1060
1061 /* Recompute character size bits. */
1062 tmp3 = cs->cs_preg[3];
1063 tmp5 = cs->cs_preg[5];
1064 CLR(tmp3, ZSWR3_RXSIZE);
1065 CLR(tmp5, ZSWR5_TXSIZE);
1066 switch (ISSET(cflag, CSIZE)) {
1067 case CS5:
1068 SET(tmp3, ZSWR3_RX_5);
1069 SET(tmp5, ZSWR5_TX_5);
1070 break;
1071 case CS6:
1072 SET(tmp3, ZSWR3_RX_6);
1073 SET(tmp5, ZSWR5_TX_6);
1074 break;
1075 case CS7:
1076 SET(tmp3, ZSWR3_RX_7);
1077 SET(tmp5, ZSWR5_TX_7);
1078 break;
1079 case CS8:
1080 SET(tmp3, ZSWR3_RX_8);
1081 SET(tmp5, ZSWR5_TX_8);
1082 break;
1083 }
1084 cs->cs_preg[3] = tmp3;
1085 cs->cs_preg[5] = tmp5;
1086
1087 /*
1088 * Recompute the stop bits and parity bits. Note that
1089 * zs_set_speed() may have set clock selection bits etc.
1090 * in wr4, so those must preserved.
1091 */
1092 tmp4 = cs->cs_preg[4];
1093 CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
1094 if (ISSET(cflag, CSTOPB))
1095 SET(tmp4, ZSWR4_TWOSB);
1096 else
1097 SET(tmp4, ZSWR4_ONESB);
1098 if (!ISSET(cflag, PARODD))
1099 SET(tmp4, ZSWR4_EVENP);
1100 if (ISSET(cflag, PARENB))
1101 SET(tmp4, ZSWR4_PARENB);
1102 cs->cs_preg[4] = tmp4;
1103
1104 /* And copy to tty. */
1105 tp->t_ispeed = 0;
1106 tp->t_ospeed = ospeed;
1107 tp->t_cflag = cflag;
1108
1109 /*
1110 * If nothing is being transmitted, set up new current values,
1111 * else mark them as pending.
1112 */
1113 if (!cs->cs_heldchange) {
1114 if (zst->zst_tx_busy) {
1115 zst->zst_heldtbc = zst->zst_tbc;
1116 zst->zst_tbc = 0;
1117 cs->cs_heldchange = 1;
1118 } else
1119 zs_loadchannelregs(cs);
1120 }
1121
1122 /*
1123 * If hardware flow control is disabled, turn off the buffer water
1124 * marks and unblock any soft flow control state. Otherwise, enable
1125 * the water marks.
1126 */
1127 if (!ISSET(cflag, CHWFLOW)) {
1128 zst->zst_r_hiwat = 0;
1129 zst->zst_r_lowat = 0;
1130 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1131 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1132 zst->zst_rx_ready = 1;
1133 cs->cs_softreq = 1;
1134 }
1135 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1136 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1137 zs_hwiflow(zst);
1138 }
1139 } else {
1140 zst->zst_r_hiwat = zstty_rbuf_hiwat;
1141 zst->zst_r_lowat = zstty_rbuf_lowat;
1142 }
1143
1144 /*
1145 * Force a recheck of the hardware carrier and flow control status,
1146 * since we may have changed which bits we're looking at.
1147 */
1148 zstty_stint(cs, 1);
1149
1150 splx(s);
1151
1152 /*
1153 * If hardware flow control is disabled, unblock any hard flow control
1154 * state.
1155 */
1156 if (!ISSET(cflag, CHWFLOW)) {
1157 if (zst->zst_tx_stopped) {
1158 zst->zst_tx_stopped = 0;
1159 zsstart(tp);
1160 }
1161 }
1162
1163 zstty_softint(cs);
1164
1165 return (0);
1166 }
1167
1168 /*
1169 * Compute interupt enable bits and set in the pending bits. Called both
1170 * in zsparam() and when PPS (pulse per second timing) state changes.
1171 * Must be called at splzs().
1172 */
1173 static void
1174 zs_maskintr(zst)
1175 struct zstty_softc *zst;
1176 {
1177 struct zs_chanstate *cs = zst->zst_cs;
1178 int tmp15;
1179
1180 cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
1181 if (zst->zst_ppsmask != 0)
1182 cs->cs_rr0_mask |= cs->cs_rr0_pps;
1183 tmp15 = cs->cs_preg[15];
1184 if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
1185 SET(tmp15, ZSWR15_DCD_IE);
1186 else
1187 CLR(tmp15, ZSWR15_DCD_IE);
1188 if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
1189 SET(tmp15, ZSWR15_CTS_IE);
1190 else
1191 CLR(tmp15, ZSWR15_CTS_IE);
1192 cs->cs_preg[15] = tmp15;
1193 }
1194
1195
1196 /*
1197 * Raise or lower modem control (DTR/RTS) signals. If a character is
1198 * in transmission, the change is deferred.
1199 */
1200 static void
1201 zs_modem(zst, onoff)
1202 struct zstty_softc *zst;
1203 int onoff;
1204 {
1205 struct zs_chanstate *cs = zst->zst_cs;
1206
1207 if (cs->cs_wr5_dtr == 0)
1208 return;
1209
1210 if (onoff)
1211 SET(cs->cs_preg[5], cs->cs_wr5_dtr);
1212 else
1213 CLR(cs->cs_preg[5], cs->cs_wr5_dtr);
1214
1215 if (!cs->cs_heldchange) {
1216 if (zst->zst_tx_busy) {
1217 zst->zst_heldtbc = zst->zst_tbc;
1218 zst->zst_tbc = 0;
1219 cs->cs_heldchange = 1;
1220 } else
1221 zs_loadchannelregs(cs);
1222 }
1223 }
1224
1225 static void
1226 tiocm_to_zs(zst, how, ttybits)
1227 struct zstty_softc *zst;
1228 int how, ttybits;
1229 {
1230 struct zs_chanstate *cs = zst->zst_cs;
1231 u_char zsbits;
1232
1233 zsbits = 0;
1234 if (ISSET(ttybits, TIOCM_DTR))
1235 SET(zsbits, ZSWR5_DTR);
1236 if (ISSET(ttybits, TIOCM_RTS))
1237 SET(zsbits, ZSWR5_RTS);
1238
1239 switch (how) {
1240 case TIOCMBIC:
1241 CLR(cs->cs_preg[5], zsbits);
1242 break;
1243
1244 case TIOCMBIS:
1245 SET(cs->cs_preg[5], zsbits);
1246 break;
1247
1248 case TIOCMSET:
1249 CLR(cs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR);
1250 SET(cs->cs_preg[5], zsbits);
1251 break;
1252 }
1253
1254 if (!cs->cs_heldchange) {
1255 if (zst->zst_tx_busy) {
1256 zst->zst_heldtbc = zst->zst_tbc;
1257 zst->zst_tbc = 0;
1258 cs->cs_heldchange = 1;
1259 } else
1260 zs_loadchannelregs(cs);
1261 }
1262 }
1263
1264 static int
1265 zs_to_tiocm(zst)
1266 struct zstty_softc *zst;
1267 {
1268 struct zs_chanstate *cs = zst->zst_cs;
1269 u_char zsbits;
1270 int ttybits = 0;
1271
1272 zsbits = cs->cs_preg[5];
1273 if (ISSET(zsbits, ZSWR5_DTR))
1274 SET(ttybits, TIOCM_DTR);
1275 if (ISSET(zsbits, ZSWR5_RTS))
1276 SET(ttybits, TIOCM_RTS);
1277
1278 zsbits = cs->cs_rr0;
1279 if (ISSET(zsbits, ZSRR0_DCD))
1280 SET(ttybits, TIOCM_CD);
1281 if (ISSET(zsbits, ZSRR0_CTS))
1282 SET(ttybits, TIOCM_CTS);
1283
1284 return (ttybits);
1285 }
1286
1287 /*
1288 * Try to block or unblock input using hardware flow-control.
1289 * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
1290 * if this function returns non-zero, the TS_TBLOCK flag will
1291 * be set or cleared according to the "block" arg passed.
1292 */
1293 int
1294 zshwiflow(tp, block)
1295 struct tty *tp;
1296 int block;
1297 {
1298 struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
1299 struct zs_chanstate *cs = zst->zst_cs;
1300 int s;
1301
1302 if (cs->cs_wr5_rts == 0)
1303 return (0);
1304
1305 s = splzs();
1306 if (block) {
1307 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1308 SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
1309 zs_hwiflow(zst);
1310 }
1311 } else {
1312 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1313 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1314 zst->zst_rx_ready = 1;
1315 cs->cs_softreq = 1;
1316 }
1317 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1318 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
1319 zs_hwiflow(zst);
1320 }
1321 }
1322 splx(s);
1323 return (1);
1324 }
1325
1326 /*
1327 * Internal version of zshwiflow
1328 * called at splzs
1329 */
1330 static void
1331 zs_hwiflow(zst)
1332 struct zstty_softc *zst;
1333 {
1334 struct zs_chanstate *cs = zst->zst_cs;
1335
1336 if (cs->cs_wr5_rts == 0)
1337 return;
1338
1339 if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
1340 CLR(cs->cs_preg[5], cs->cs_wr5_rts);
1341 CLR(cs->cs_creg[5], cs->cs_wr5_rts);
1342 } else {
1343 SET(cs->cs_preg[5], cs->cs_wr5_rts);
1344 SET(cs->cs_creg[5], cs->cs_wr5_rts);
1345 }
1346 zs_write_reg(cs, 5, cs->cs_creg[5]);
1347 }
1348
1349
1350 /****************************************************************
1351 * Interface to the lower layer (zscc)
1352 ****************************************************************/
1353
1354 #define integrate static inline
1355 integrate void zstty_rxsoft __P((struct zstty_softc *, struct tty *));
1356 integrate void zstty_txsoft __P((struct zstty_softc *, struct tty *));
1357 integrate void zstty_stsoft __P((struct zstty_softc *, struct tty *));
1358 static void zstty_diag __P((void *));
1359
1360 /*
1361 * receiver ready interrupt.
1362 * called at splzs
1363 */
1364 static void
1365 zstty_rxint(cs)
1366 struct zs_chanstate *cs;
1367 {
1368 struct zstty_softc *zst = cs->cs_private;
1369 u_char *put, *end;
1370 u_int cc;
1371 u_char rr0, rr1, c;
1372
1373 end = zst->zst_ebuf;
1374 put = zst->zst_rbput;
1375 cc = zst->zst_rbavail;
1376
1377 while (cc > 0) {
1378 /*
1379 * First read the status, because reading the received char
1380 * destroys the status of this char.
1381 */
1382 rr1 = zs_read_reg(cs, 1);
1383 c = zs_read_data(cs);
1384
1385 if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
1386 /* Clear the receive error. */
1387 zs_write_csr(cs, ZSWR0_RESET_ERRORS);
1388 }
1389
1390 put[0] = c;
1391 put[1] = rr1;
1392 put += 2;
1393 if (put >= end)
1394 put = zst->zst_rbuf;
1395 cc--;
1396
1397 rr0 = zs_read_csr(cs);
1398 if (!ISSET(rr0, ZSRR0_RX_READY))
1399 break;
1400 }
1401
1402 /*
1403 * Current string of incoming characters ended because
1404 * no more data was available or we ran out of space.
1405 * Schedule a receive event if any data was received.
1406 * If we're out of space, turn off receive interrupts.
1407 */
1408 zst->zst_rbput = put;
1409 zst->zst_rbavail = cc;
1410 if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1411 zst->zst_rx_ready = 1;
1412 cs->cs_softreq = 1;
1413 }
1414
1415 /*
1416 * See if we are in danger of overflowing a buffer. If
1417 * so, use hardware flow control to ease the pressure.
1418 */
1419 if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
1420 cc < zst->zst_r_hiwat) {
1421 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1422 zs_hwiflow(zst);
1423 }
1424
1425 /*
1426 * If we're out of space, disable receive interrupts
1427 * until the queue has drained a bit.
1428 */
1429 if (!cc) {
1430 SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1431 CLR(cs->cs_preg[1], ZSWR1_RIE);
1432 cs->cs_creg[1] = cs->cs_preg[1];
1433 zs_write_reg(cs, 1, cs->cs_creg[1]);
1434 }
1435
1436 #if 0
1437 printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1438 #endif
1439 }
1440
1441 /*
1442 * transmitter ready interrupt. (splzs)
1443 */
1444 static void
1445 zstty_txint(cs)
1446 struct zs_chanstate *cs;
1447 {
1448 struct zstty_softc *zst = cs->cs_private;
1449
1450 /*
1451 * If we've delayed a parameter change, do it now, and restart
1452 * output.
1453 */
1454 if (cs->cs_heldchange) {
1455 zs_loadchannelregs(cs);
1456 cs->cs_heldchange = 0;
1457 zst->zst_tbc = zst->zst_heldtbc;
1458 zst->zst_heldtbc = 0;
1459 }
1460
1461 /* Output the next character in the buffer, if any. */
1462 if (zst->zst_tbc > 0) {
1463 zs_write_data(cs, *zst->zst_tba);
1464 zst->zst_tbc--;
1465 zst->zst_tba++;
1466 } else {
1467 /* Disable transmit completion interrupts if necessary. */
1468 if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
1469 CLR(cs->cs_preg[1], ZSWR1_TIE);
1470 cs->cs_creg[1] = cs->cs_preg[1];
1471 zs_write_reg(cs, 1, cs->cs_creg[1]);
1472 }
1473 if (zst->zst_tx_busy) {
1474 zst->zst_tx_busy = 0;
1475 zst->zst_tx_done = 1;
1476 cs->cs_softreq = 1;
1477 }
1478 }
1479 }
1480
1481 /*
1482 * status change interrupt. (splzs)
1483 */
1484 static void
1485 zstty_stint(cs, force)
1486 struct zs_chanstate *cs;
1487 int force;
1488 {
1489 struct zstty_softc *zst = cs->cs_private;
1490 u_char rr0, delta;
1491
1492 rr0 = zs_read_csr(cs);
1493 zs_write_csr(cs, ZSWR0_RESET_STATUS);
1494
1495 /*
1496 * Check here for console break, so that we can abort
1497 * even when interrupts are locking up the machine.
1498 */
1499 if (ISSET(rr0, ZSRR0_BREAK) &&
1500 ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE_INPUT)) {
1501 zs_abort(cs);
1502 return;
1503 }
1504
1505 if (!force)
1506 delta = rr0 ^ cs->cs_rr0;
1507 else
1508 delta = cs->cs_rr0_mask;
1509 cs->cs_rr0 = rr0;
1510
1511 if (ISSET(delta, cs->cs_rr0_mask)) {
1512 SET(cs->cs_rr0_delta, delta);
1513
1514 /*
1515 * Pulse-per-second clock signal on edge of DCD?
1516 */
1517 if (ISSET(delta, zst->zst_ppsmask)) {
1518 struct timeval tv;
1519 if (ISSET(rr0, zst->zst_ppsmask) == zst->zst_ppsassert) {
1520 /* XXX nanotime() */
1521 microtime(&tv);
1522 TIMEVAL_TO_TIMESPEC(&tv,
1523 &zst->ppsinfo.assert_timestamp);
1524 if (zst->ppsparam.mode & PPS_OFFSETASSERT) {
1525 timespecadd(&zst->ppsinfo.assert_timestamp,
1526 &zst->ppsparam.assert_offset,
1527 &zst->ppsinfo.assert_timestamp);
1528 }
1529
1530 #ifdef PPS_SYNC
1531 if (zst->ppsparam.mode & PPS_HARDPPSONASSERT)
1532 hardpps(&tv, tv.tv_usec);
1533 #endif
1534 zst->ppsinfo.assert_sequence++;
1535 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1536 } else if (ISSET(rr0, zst->zst_ppsmask) ==
1537 zst->zst_ppsclear) {
1538 /* XXX nanotime() */
1539 microtime(&tv);
1540 TIMEVAL_TO_TIMESPEC(&tv,
1541 &zst->ppsinfo.clear_timestamp);
1542 if (zst->ppsparam.mode & PPS_OFFSETCLEAR) {
1543 timespecadd(&zst->ppsinfo.clear_timestamp,
1544 &zst->ppsparam.clear_offset,
1545 &zst->ppsinfo.clear_timestamp);
1546 }
1547
1548 #ifdef PPS_SYNC
1549 if (zst->ppsparam.mode & PPS_HARDPPSONCLEAR)
1550 hardpps(&tv, tv.tv_usec);
1551 #endif
1552 zst->ppsinfo.clear_sequence++;
1553 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1554 }
1555 }
1556
1557 /*
1558 * Stop output immediately if we lose the output
1559 * flow control signal or carrier detect.
1560 */
1561 if (ISSET(~rr0, cs->cs_rr0_mask)) {
1562 zst->zst_tbc = 0;
1563 zst->zst_heldtbc = 0;
1564 }
1565
1566 zst->zst_st_check = 1;
1567 cs->cs_softreq = 1;
1568 }
1569 }
1570
1571 void
1572 zstty_diag(arg)
1573 void *arg;
1574 {
1575 struct zstty_softc *zst = arg;
1576 int overflows, floods;
1577 int s;
1578
1579 s = splzs();
1580 overflows = zst->zst_overflows;
1581 zst->zst_overflows = 0;
1582 floods = zst->zst_floods;
1583 zst->zst_floods = 0;
1584 zst->zst_errors = 0;
1585 splx(s);
1586
1587 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1588 zst->zst_dev.dv_xname,
1589 overflows, overflows == 1 ? "" : "s",
1590 floods, floods == 1 ? "" : "s");
1591 }
1592
1593 integrate void
1594 zstty_rxsoft(zst, tp)
1595 struct zstty_softc *zst;
1596 struct tty *tp;
1597 {
1598 struct zs_chanstate *cs = zst->zst_cs;
1599 int (*rint) __P((int c, struct tty *tp)) = linesw[tp->t_line].l_rint;
1600 u_char *get, *end;
1601 u_int cc, scc;
1602 u_char rr1;
1603 int code;
1604 int s;
1605
1606 end = zst->zst_ebuf;
1607 get = zst->zst_rbget;
1608 scc = cc = zstty_rbuf_size - zst->zst_rbavail;
1609
1610 if (cc == zstty_rbuf_size) {
1611 zst->zst_floods++;
1612 if (zst->zst_errors++ == 0)
1613 timeout(zstty_diag, zst, 60 * hz);
1614 }
1615
1616 /* If not yet open, drop the entire buffer content here */
1617 if (!ISSET(tp->t_state, TS_ISOPEN)) {
1618 get += cc << 1;
1619 if (get >= end)
1620 get -= zstty_rbuf_size << 1;
1621 cc = 0;
1622 }
1623 while (cc) {
1624 code = get[0];
1625 rr1 = get[1];
1626 if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
1627 if (ISSET(rr1, ZSRR1_DO)) {
1628 zst->zst_overflows++;
1629 if (zst->zst_errors++ == 0)
1630 timeout(zstty_diag, zst, 60 * hz);
1631 }
1632 if (ISSET(rr1, ZSRR1_FE))
1633 SET(code, TTY_FE);
1634 if (ISSET(rr1, ZSRR1_PE))
1635 SET(code, TTY_PE);
1636 }
1637 if ((*rint)(code, tp) == -1) {
1638 /*
1639 * The line discipline's buffer is out of space.
1640 */
1641 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1642 /*
1643 * We're either not using flow control, or the
1644 * line discipline didn't tell us to block for
1645 * some reason. Either way, we have no way to
1646 * know when there's more space available, so
1647 * just drop the rest of the data.
1648 */
1649 get += cc << 1;
1650 if (get >= end)
1651 get -= zstty_rbuf_size << 1;
1652 cc = 0;
1653 } else {
1654 /*
1655 * Don't schedule any more receive processing
1656 * until the line discipline tells us there's
1657 * space available (through comhwiflow()).
1658 * Leave the rest of the data in the input
1659 * buffer.
1660 */
1661 SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1662 }
1663 break;
1664 }
1665 get += 2;
1666 if (get >= end)
1667 get = zst->zst_rbuf;
1668 cc--;
1669 }
1670
1671 if (cc != scc) {
1672 zst->zst_rbget = get;
1673 s = splzs();
1674 cc = zst->zst_rbavail += scc - cc;
1675 /* Buffers should be ok again, release possible block. */
1676 if (cc >= zst->zst_r_lowat) {
1677 if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
1678 CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1679 SET(cs->cs_preg[1], ZSWR1_RIE);
1680 cs->cs_creg[1] = cs->cs_preg[1];
1681 zs_write_reg(cs, 1, cs->cs_creg[1]);
1682 }
1683 if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
1684 CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1685 zs_hwiflow(zst);
1686 }
1687 }
1688 splx(s);
1689 }
1690
1691 #if 0
1692 printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1693 #endif
1694 }
1695
1696 integrate void
1697 zstty_txsoft(zst, tp)
1698 struct zstty_softc *zst;
1699 struct tty *tp;
1700 {
1701
1702 CLR(tp->t_state, TS_BUSY);
1703 if (ISSET(tp->t_state, TS_FLUSH))
1704 CLR(tp->t_state, TS_FLUSH);
1705 else
1706 ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
1707 (*linesw[tp->t_line].l_start)(tp);
1708 }
1709
1710 integrate void
1711 zstty_stsoft(zst, tp)
1712 struct zstty_softc *zst;
1713 struct tty *tp;
1714 {
1715 struct zs_chanstate *cs = zst->zst_cs;
1716 u_char rr0, delta;
1717 int s;
1718
1719 s = splzs();
1720 rr0 = cs->cs_rr0;
1721 delta = cs->cs_rr0_delta;
1722 cs->cs_rr0_delta = 0;
1723 splx(s);
1724
1725 if (ISSET(delta, cs->cs_rr0_dcd)) {
1726 /*
1727 * Inform the tty layer that carrier detect changed.
1728 */
1729 (void) (*linesw[tp->t_line].l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
1730 }
1731
1732 if (ISSET(delta, cs->cs_rr0_cts)) {
1733 /* Block or unblock output according to flow control. */
1734 if (ISSET(rr0, cs->cs_rr0_cts)) {
1735 zst->zst_tx_stopped = 0;
1736 (*linesw[tp->t_line].l_start)(tp);
1737 } else {
1738 zst->zst_tx_stopped = 1;
1739 }
1740 }
1741 }
1742
1743 /*
1744 * Software interrupt. Called at zssoft
1745 *
1746 * The main job to be done here is to empty the input ring
1747 * by passing its contents up to the tty layer. The ring is
1748 * always emptied during this operation, therefore the ring
1749 * must not be larger than the space after "high water" in
1750 * the tty layer, or the tty layer might drop our input.
1751 *
1752 * Note: an "input blockage" condition is assumed to exist if
1753 * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
1754 */
1755 static void
1756 zstty_softint(cs)
1757 struct zs_chanstate *cs;
1758 {
1759 struct zstty_softc *zst = cs->cs_private;
1760 struct tty *tp = zst->zst_tty;
1761 int s;
1762
1763 s = spltty();
1764
1765 if (zst->zst_rx_ready) {
1766 zst->zst_rx_ready = 0;
1767 zstty_rxsoft(zst, tp);
1768 }
1769
1770 if (zst->zst_st_check) {
1771 zst->zst_st_check = 0;
1772 zstty_stsoft(zst, tp);
1773 }
1774
1775 if (zst->zst_tx_done) {
1776 zst->zst_tx_done = 0;
1777 zstty_txsoft(zst, tp);
1778 }
1779
1780 splx(s);
1781 }
1782
1783 struct zsops zsops_tty = {
1784 zstty_rxint, /* receive char available */
1785 zstty_stint, /* external/status */
1786 zstty_txint, /* xmit buffer empty */
1787 zstty_softint, /* process software interrupt */
1788 };
1789