z8530tty.c revision 1.77 1 /* $NetBSD: z8530tty.c,v 1.77 2001/05/30 15:24:24 lukem Exp $ */
2
3 /*-
4 * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999
5 * Charles M. Hannum. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Charles M. Hannum.
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994 Gordon W. Ross
35 * Copyright (c) 1992, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * This software was developed by the Computer Systems Engineering group
39 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
40 * contributed to Berkeley.
41 *
42 * All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by the University of
45 * California, Lawrence Berkeley Laboratory.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)zs.c 8.1 (Berkeley) 7/19/93
76 */
77
78 /*
79 * Zilog Z8530 Dual UART driver (tty interface)
80 *
81 * This is the "slave" driver that will be attached to
82 * the "zsc" driver for plain "tty" async. serial lines.
83 *
84 * Credits, history:
85 *
86 * The original version of this code was the sparc/dev/zs.c driver
87 * as distributed with the Berkeley 4.4 Lite release. Since then,
88 * Gordon Ross reorganized the code into the current parent/child
89 * driver scheme, separating the Sun keyboard and mouse support
90 * into independent child drivers.
91 *
92 * RTS/CTS flow-control support was a collaboration of:
93 * Gordon Ross <gwr (at) netbsd.org>,
94 * Bill Studenmund <wrstuden (at) loki.stanford.edu>
95 * Ian Dall <Ian.Dall (at) dsto.defence.gov.au>
96 *
97 * The driver was massively overhauled in November 1997 by Charles Hannum,
98 * fixing *many* bugs, and substantially improving performance.
99 */
100
101 #include "opt_kgdb.h"
102
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/proc.h>
106 #include <sys/device.h>
107 #include <sys/conf.h>
108 #include <sys/file.h>
109 #include <sys/ioctl.h>
110 #include <sys/malloc.h>
111 #include <sys/timepps.h>
112 #include <sys/tty.h>
113 #include <sys/time.h>
114 #include <sys/kernel.h>
115 #include <sys/syslog.h>
116
117 #include <dev/ic/z8530reg.h>
118 #include <machine/z8530var.h>
119
120 #include <dev/cons.h>
121
122 #include "locators.h"
123
124 /*
125 * How many input characters we can buffer.
126 * The port-specific var.h may override this.
127 * Note: must be a power of two!
128 */
129 #ifndef ZSTTY_RING_SIZE
130 #define ZSTTY_RING_SIZE 2048
131 #endif
132
133 static struct cnm_state zstty_cnm_state;
134 /*
135 * Make this an option variable one can patch.
136 * But be warned: this must be a power of 2!
137 */
138 u_int zstty_rbuf_size = ZSTTY_RING_SIZE;
139
140 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
141 u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
142 u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;
143
144 static int zsppscap =
145 PPS_TSFMT_TSPEC |
146 PPS_CAPTUREASSERT |
147 PPS_CAPTURECLEAR |
148 #ifdef PPS_SYNC
149 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
150 #endif /* PPS_SYNC */
151 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
152
153 struct zstty_softc {
154 struct device zst_dev; /* required first: base device */
155 struct tty *zst_tty;
156 struct zs_chanstate *zst_cs;
157
158 struct callout zst_diag_ch;
159
160 u_int zst_overflows,
161 zst_floods,
162 zst_errors;
163
164 int zst_hwflags, /* see z8530var.h */
165 zst_swflags; /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
166
167 u_int zst_r_hiwat,
168 zst_r_lowat;
169 u_char *volatile zst_rbget,
170 *volatile zst_rbput;
171 volatile u_int zst_rbavail;
172 u_char *zst_rbuf,
173 *zst_ebuf;
174
175 /*
176 * The transmit byte count and address are used for pseudo-DMA
177 * output in the hardware interrupt code. PDMA can be suspended
178 * to get pending changes done; heldtbc is used for this. It can
179 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
180 */
181 u_char *zst_tba; /* transmit buffer address */
182 u_int zst_tbc, /* transmit byte count */
183 zst_heldtbc; /* held tbc while xmission stopped */
184
185 /* Flags to communicate with zstty_softint() */
186 volatile u_char zst_rx_flags, /* receiver blocked */
187 #define RX_TTY_BLOCKED 0x01
188 #define RX_TTY_OVERFLOWED 0x02
189 #define RX_IBUF_BLOCKED 0x04
190 #define RX_IBUF_OVERFLOWED 0x08
191 #define RX_ANY_BLOCK 0x0f
192 zst_tx_busy, /* working on an output chunk */
193 zst_tx_done, /* done with one output chunk */
194 zst_tx_stopped, /* H/W level stop (lost CTS) */
195 zst_st_check, /* got a status interrupt */
196 zst_rx_ready;
197
198 /* PPS signal on DCD, with or without inkernel clock disciplining */
199 u_char zst_ppsmask; /* pps signal mask */
200 u_char zst_ppsassert; /* pps leading edge */
201 u_char zst_ppsclear; /* pps trailing edge */
202 pps_info_t ppsinfo;
203 pps_params_t ppsparam;
204 };
205
206 /* Macros to clear/set/test flags. */
207 #define SET(t, f) (t) |= (f)
208 #define CLR(t, f) (t) &= ~(f)
209 #define ISSET(t, f) ((t) & (f))
210
211 /* Definition of the driver for autoconfig. */
212 static int zstty_match(struct device *, struct cfdata *, void *);
213 static void zstty_attach(struct device *, struct device *, void *);
214
215 struct cfattach zstty_ca = {
216 sizeof(struct zstty_softc), zstty_match, zstty_attach
217 };
218
219 extern struct cfdriver zstty_cd;
220
221 struct zsops zsops_tty;
222
223 /* Routines called from other code. */
224 cdev_decl(zs); /* open, close, read, write, ioctl, stop, ... */
225
226 static void zs_shutdown __P((struct zstty_softc *));
227 static void zsstart __P((struct tty *));
228 static int zsparam __P((struct tty *, struct termios *));
229 static void zs_modem __P((struct zstty_softc *, int));
230 static void tiocm_to_zs __P((struct zstty_softc *, u_long, int));
231 static int zs_to_tiocm __P((struct zstty_softc *));
232 static int zshwiflow __P((struct tty *, int));
233 static void zs_hwiflow __P((struct zstty_softc *));
234 static void zs_maskintr __P((struct zstty_softc *));
235
236 /* Low-level routines. */
237 static void zstty_rxint __P((struct zs_chanstate *));
238 static void zstty_stint __P((struct zs_chanstate *, int));
239 static void zstty_txint __P((struct zs_chanstate *));
240 static void zstty_softint __P((struct zs_chanstate *));
241
242 #define ZSUNIT(x) (minor(x) & 0x7ffff)
243 #define ZSDIALOUT(x) (minor(x) & 0x80000)
244
245 /*
246 * zstty_match: how is this zs channel configured?
247 */
248 int
249 zstty_match(parent, cf, aux)
250 struct device *parent;
251 struct cfdata *cf;
252 void *aux;
253 {
254 struct zsc_attach_args *args = aux;
255
256 /* Exact match is better than wildcard. */
257 if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel)
258 return 2;
259
260 /* This driver accepts wildcard. */
261 if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT)
262 return 1;
263
264 return 0;
265 }
266
267 void
268 zstty_attach(parent, self, aux)
269 struct device *parent, *self;
270 void *aux;
271
272 {
273 struct zsc_softc *zsc = (void *) parent;
274 struct zstty_softc *zst = (void *) self;
275 struct cfdata *cf = self->dv_cfdata;
276 struct zsc_attach_args *args = aux;
277 struct zs_chanstate *cs;
278 struct tty *tp;
279 int channel, s, tty_unit;
280 dev_t dev;
281 char *i, *o;
282
283 callout_init(&zst->zst_diag_ch);
284 cn_init_magic(&zstty_cnm_state);
285
286 tty_unit = zst->zst_dev.dv_unit;
287 channel = args->channel;
288 cs = zsc->zsc_cs[channel];
289 cs->cs_private = zst;
290 cs->cs_ops = &zsops_tty;
291
292 zst->zst_cs = cs;
293 zst->zst_swflags = cf->cf_flags; /* softcar, etc. */
294 zst->zst_hwflags = args->hwflags;
295 dev = makedev(zs_major, tty_unit);
296
297 if (zst->zst_swflags)
298 printf(" flags 0x%x", zst->zst_swflags);
299
300 /*
301 * Check whether we serve as a console device.
302 * XXX - split console input/output channels aren't
303 * supported yet on /dev/console
304 */
305 i = o = NULL;
306 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
307 i = "input";
308 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
309 args->consdev->cn_dev = dev;
310 cn_tab->cn_pollc = args->consdev->cn_pollc;
311 cn_tab->cn_getc = args->consdev->cn_getc;
312 }
313 cn_tab->cn_dev = dev;
314 /* Set console magic to BREAK */
315 cn_set_magic("\047\001");
316 }
317 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
318 o = "output";
319 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
320 cn_tab->cn_putc = args->consdev->cn_putc;
321 }
322 cn_tab->cn_dev = dev;
323 }
324 if (i != NULL || o != NULL)
325 printf(" (console %s)", i ? (o ? "i/o" : i) : o);
326
327 #ifdef KGDB
328 if (zs_check_kgdb(cs, dev)) {
329 /*
330 * Allow kgdb to "take over" this port. Returns true
331 * if this serial port is in-use by kgdb.
332 */
333 printf(" (kgdb)\n");
334 /*
335 * This is the kgdb port (exclusive use)
336 * so skip the normal attach code.
337 */
338 return;
339 }
340 #endif
341 printf("\n");
342
343 tp = ttymalloc();
344 tp->t_dev = dev;
345 tp->t_oproc = zsstart;
346 tp->t_param = zsparam;
347 tp->t_hwiflow = zshwiflow;
348 tty_attach(tp);
349
350 zst->zst_tty = tp;
351 zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK);
352 zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
353 /* Disable the high water mark. */
354 zst->zst_r_hiwat = 0;
355 zst->zst_r_lowat = 0;
356 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
357 zst->zst_rbavail = zstty_rbuf_size;
358
359 /* if there are no enable/disable functions, assume the device
360 is always enabled */
361 if (!cs->enable)
362 cs->enabled = 1;
363
364 /*
365 * Hardware init
366 */
367 if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
368 /* Call zsparam similar to open. */
369 struct termios t;
370
371 /* Wait a while for previous console output to complete */
372 DELAY(10000);
373
374 /* Setup the "new" parameters in t. */
375 t.c_ispeed = 0;
376 t.c_ospeed = cs->cs_defspeed;
377 t.c_cflag = cs->cs_defcflag;
378
379 s = splzs();
380
381 /*
382 * Turn on receiver and status interrupts.
383 * We defer the actual write of the register to zsparam(),
384 * but we must make sure status interrupts are turned on by
385 * the time zsparam() reads the initial rr0 state.
386 */
387 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
388
389 splx(s);
390
391 /* Make sure zsparam will see changes. */
392 tp->t_ospeed = 0;
393 (void) zsparam(tp, &t);
394
395 s = splzs();
396
397 /* Make sure DTR is on now. */
398 zs_modem(zst, 1);
399
400 splx(s);
401 } else if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_NORESET)) {
402 /* Not the console; may need reset. */
403 int reset;
404
405 reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
406
407 s = splzs();
408
409 zs_write_reg(cs, 9, reset);
410
411 /* Will raise DTR in open. */
412 zs_modem(zst, 0);
413
414 splx(s);
415 }
416 }
417
418
419 /*
420 * Return pointer to our tty.
421 */
422 struct tty *
423 zstty(dev)
424 dev_t dev;
425 {
426 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
427
428 return (zst->zst_tty);
429 }
430
431
432 void
433 zs_shutdown(zst)
434 struct zstty_softc *zst;
435 {
436 struct zs_chanstate *cs = zst->zst_cs;
437 struct tty *tp = zst->zst_tty;
438 int s;
439
440 s = splzs();
441
442 /* If we were asserting flow control, then deassert it. */
443 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
444 zs_hwiflow(zst);
445
446 /* Clear any break condition set with TIOCSBRK. */
447 zs_break(cs, 0);
448
449 /* Turn off PPS capture on last close. */
450 zst->zst_ppsmask = 0;
451 zst->ppsparam.mode = 0;
452
453 /*
454 * Hang up if necessary. Wait a bit, so the other side has time to
455 * notice even if we immediately open the port again.
456 */
457 if (ISSET(tp->t_cflag, HUPCL)) {
458 zs_modem(zst, 0);
459 (void) tsleep(cs, TTIPRI, ttclos, hz);
460 }
461
462 /* Turn off interrupts if not the console. */
463 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
464 CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
465 cs->cs_creg[1] = cs->cs_preg[1];
466 zs_write_reg(cs, 1, cs->cs_creg[1]);
467 }
468
469 /* Call the power management hook. */
470 if (cs->disable) {
471 #ifdef DIAGNOSTIC
472 if (!cs->enabled)
473 panic("zs_shutdown: not enabled?");
474 #endif
475 (*cs->disable)(zst->zst_cs);
476 }
477
478 splx(s);
479 }
480
481 /*
482 * Open a zs serial (tty) port.
483 */
484 int
485 zsopen(dev, flags, mode, p)
486 dev_t dev;
487 int flags;
488 int mode;
489 struct proc *p;
490 {
491 struct zstty_softc *zst;
492 struct zs_chanstate *cs;
493 struct tty *tp;
494 int s, s2;
495 int error;
496
497 zst = device_lookup(&zstty_cd, ZSUNIT(dev));
498 if (zst == NULL)
499 return (ENXIO);
500
501 tp = zst->zst_tty;
502 cs = zst->zst_cs;
503
504 /* If KGDB took the line, then tp==NULL */
505 if (tp == NULL)
506 return (EBUSY);
507
508 if (ISSET(tp->t_state, TS_ISOPEN) &&
509 ISSET(tp->t_state, TS_XCLUDE) &&
510 p->p_ucred->cr_uid != 0)
511 return (EBUSY);
512
513 s = spltty();
514
515 /*
516 * Do the following iff this is a first open.
517 */
518 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
519 struct termios t;
520
521 tp->t_dev = dev;
522
523 /* Call the power management hook. */
524 if (cs->enable) {
525 if ((*cs->enable)(cs)) {
526 splx(s);
527 printf("%s: device enable failed\n",
528 zst->zst_dev.dv_xname);
529 return (EIO);
530 }
531 }
532
533 /*
534 * Initialize the termios status to the defaults. Add in the
535 * sticky bits from TIOCSFLAGS.
536 */
537 t.c_ispeed = 0;
538 t.c_ospeed = cs->cs_defspeed;
539 t.c_cflag = cs->cs_defcflag;
540 if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
541 SET(t.c_cflag, CLOCAL);
542 if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
543 SET(t.c_cflag, CRTSCTS);
544 if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
545 SET(t.c_cflag, CDTRCTS);
546 if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
547 SET(t.c_cflag, MDMBUF);
548
549 s2 = splzs();
550
551 /*
552 * Turn on receiver and status interrupts.
553 * We defer the actual write of the register to zsparam(),
554 * but we must make sure status interrupts are turned on by
555 * the time zsparam() reads the initial rr0 state.
556 */
557 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
558
559 /* Clear PPS capture state on first open. */
560 zst->zst_ppsmask = 0;
561 zst->ppsparam.mode = 0;
562
563 splx(s2);
564
565 /* Make sure zsparam will see changes. */
566 tp->t_ospeed = 0;
567 (void) zsparam(tp, &t);
568
569 /*
570 * Note: zsparam has done: cflag, ispeed, ospeed
571 * so we just need to do: iflag, oflag, lflag, cc
572 * For "raw" mode, just leave all zeros.
573 */
574 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
575 tp->t_iflag = TTYDEF_IFLAG;
576 tp->t_oflag = TTYDEF_OFLAG;
577 tp->t_lflag = TTYDEF_LFLAG;
578 } else {
579 tp->t_iflag = 0;
580 tp->t_oflag = 0;
581 tp->t_lflag = 0;
582 }
583 ttychars(tp);
584 ttsetwater(tp);
585
586 s2 = splzs();
587
588 /*
589 * Turn on DTR. We must always do this, even if carrier is not
590 * present, because otherwise we'd have to use TIOCSDTR
591 * immediately after setting CLOCAL, which applications do not
592 * expect. We always assert DTR while the device is open
593 * unless explicitly requested to deassert it.
594 */
595 zs_modem(zst, 1);
596
597 /* Clear the input ring, and unblock. */
598 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
599 zst->zst_rbavail = zstty_rbuf_size;
600 zs_iflush(cs);
601 CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
602 zs_hwiflow(zst);
603
604 splx(s2);
605 }
606
607 splx(s);
608
609 error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
610 if (error)
611 goto bad;
612
613 error = (*tp->t_linesw->l_open)(dev, tp);
614 if (error)
615 goto bad;
616
617 return (0);
618
619 bad:
620 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
621 /*
622 * We failed to open the device, and nobody else had it opened.
623 * Clean up the state as appropriate.
624 */
625 zs_shutdown(zst);
626 }
627
628 return (error);
629 }
630
631 /*
632 * Close a zs serial port.
633 */
634 int
635 zsclose(dev, flags, mode, p)
636 dev_t dev;
637 int flags;
638 int mode;
639 struct proc *p;
640 {
641 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
642 struct tty *tp = zst->zst_tty;
643
644 /* XXX This is for cons.c. */
645 if (!ISSET(tp->t_state, TS_ISOPEN))
646 return 0;
647
648 (*tp->t_linesw->l_close)(tp, flags);
649 ttyclose(tp);
650
651 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
652 /*
653 * Although we got a last close, the device may still be in
654 * use; e.g. if this was the dialout node, and there are still
655 * processes waiting for carrier on the non-dialout node.
656 */
657 zs_shutdown(zst);
658 }
659
660 return (0);
661 }
662
663 /*
664 * Read/write zs serial port.
665 */
666 int
667 zsread(dev, uio, flags)
668 dev_t dev;
669 struct uio *uio;
670 int flags;
671 {
672 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
673 struct tty *tp = zst->zst_tty;
674
675 return ((*tp->t_linesw->l_read)(tp, uio, flags));
676 }
677
678 int
679 zswrite(dev, uio, flags)
680 dev_t dev;
681 struct uio *uio;
682 int flags;
683 {
684 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
685 struct tty *tp = zst->zst_tty;
686
687 return ((*tp->t_linesw->l_write)(tp, uio, flags));
688 }
689
690 int
691 zspoll(dev, events, p)
692 dev_t dev;
693 int events;
694 struct proc *p;
695 {
696 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
697 struct tty *tp = zst->zst_tty;
698
699 return ((*tp->t_linesw->l_poll)(tp, events, p));
700 }
701
702 int
703 zsioctl(dev, cmd, data, flag, p)
704 dev_t dev;
705 u_long cmd;
706 caddr_t data;
707 int flag;
708 struct proc *p;
709 {
710 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
711 struct zs_chanstate *cs = zst->zst_cs;
712 struct tty *tp = zst->zst_tty;
713 int error;
714 int s;
715
716 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p);
717 if (error >= 0)
718 return (error);
719
720 error = ttioctl(tp, cmd, data, flag, p);
721 if (error >= 0)
722 return (error);
723
724 #ifdef ZS_MD_IOCTL
725 error = ZS_MD_IOCTL;
726 if (error >= 0)
727 return (error);
728 #endif /* ZS_MD_IOCTL */
729
730 error = 0;
731
732 s = splzs();
733
734 switch (cmd) {
735 case TIOCSBRK:
736 zs_break(cs, 1);
737 break;
738
739 case TIOCCBRK:
740 zs_break(cs, 0);
741 break;
742
743 case TIOCGFLAGS:
744 *(int *)data = zst->zst_swflags;
745 break;
746
747 case TIOCSFLAGS:
748 error = suser(p->p_ucred, &p->p_acflag);
749 if (error)
750 break;
751 zst->zst_swflags = *(int *)data;
752 break;
753
754 case TIOCSDTR:
755 zs_modem(zst, 1);
756 break;
757
758 case TIOCCDTR:
759 zs_modem(zst, 0);
760 break;
761
762 case TIOCMSET:
763 case TIOCMBIS:
764 case TIOCMBIC:
765 tiocm_to_zs(zst, cmd, *(int *)data);
766 break;
767
768 case TIOCMGET:
769 *(int *)data = zs_to_tiocm(zst);
770 break;
771
772 case PPS_IOC_CREATE:
773 break;
774
775 case PPS_IOC_DESTROY:
776 break;
777
778 case PPS_IOC_GETPARAMS: {
779 pps_params_t *pp;
780 pp = (pps_params_t *)data;
781 *pp = zst->ppsparam;
782 break;
783 }
784
785 case PPS_IOC_SETPARAMS: {
786 pps_params_t *pp;
787 int mode;
788 if (cs->cs_rr0_pps == 0) {
789 error = EINVAL;
790 break;
791 }
792 pp = (pps_params_t *)data;
793 if (pp->mode & ~zsppscap) {
794 error = EINVAL;
795 break;
796 }
797 zst->ppsparam = *pp;
798 /*
799 * compute masks from user-specified timestamp state.
800 */
801 mode = zst->ppsparam.mode;
802 #ifdef PPS_SYNC
803 if (mode & PPS_HARDPPSONASSERT) {
804 mode |= PPS_CAPTUREASSERT;
805 /* XXX revoke any previous HARDPPS source */
806 }
807 if (mode & PPS_HARDPPSONCLEAR) {
808 mode |= PPS_CAPTURECLEAR;
809 /* XXX revoke any previous HARDPPS source */
810 }
811 #endif /* PPS_SYNC */
812 switch (mode & PPS_CAPTUREBOTH) {
813 case 0:
814 zst->zst_ppsmask = 0;
815 break;
816
817 case PPS_CAPTUREASSERT:
818 zst->zst_ppsmask = ZSRR0_DCD;
819 zst->zst_ppsassert = ZSRR0_DCD;
820 zst->zst_ppsclear = -1;
821 break;
822
823 case PPS_CAPTURECLEAR:
824 zst->zst_ppsmask = ZSRR0_DCD;
825 zst->zst_ppsassert = -1;
826 zst->zst_ppsclear = 0;
827 break;
828
829 case PPS_CAPTUREBOTH:
830 zst->zst_ppsmask = ZSRR0_DCD;
831 zst->zst_ppsassert = ZSRR0_DCD;
832 zst->zst_ppsclear = 0;
833 break;
834
835 default:
836 error = EINVAL;
837 break;
838 }
839
840 /*
841 * Now update interrupts.
842 */
843 zs_maskintr(zst);
844 /*
845 * If nothing is being transmitted, set up new current values,
846 * else mark them as pending.
847 */
848 if (!cs->cs_heldchange) {
849 if (zst->zst_tx_busy) {
850 zst->zst_heldtbc = zst->zst_tbc;
851 zst->zst_tbc = 0;
852 cs->cs_heldchange = 1;
853 } else
854 zs_loadchannelregs(cs);
855 }
856
857 break;
858 }
859
860 case PPS_IOC_GETCAP:
861 *(int *)data = zsppscap;
862 break;
863
864 case PPS_IOC_FETCH: {
865 pps_info_t *pi;
866 pi = (pps_info_t *)data;
867 *pi = zst->ppsinfo;
868 break;
869 }
870
871 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
872 if (cs->cs_rr0_pps == 0) {
873 error = EINVAL;
874 break;
875 }
876 /*
877 * Some GPS clocks models use the falling rather than
878 * rising edge as the on-the-second signal.
879 * The old API has no way to specify PPS polarity.
880 */
881 zst->zst_ppsmask = ZSRR0_DCD;
882 #ifndef PPS_TRAILING_EDGE
883 zst->zst_ppsassert = ZSRR0_DCD;
884 zst->zst_ppsclear = -1;
885 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
886 &zst->ppsinfo.assert_timestamp);
887 #else
888 zst->zst_ppsassert = -1;
889 zst->zst_ppsclear = 01;
890 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
891 &zst->ppsinfo.clear_timestamp);
892 #endif
893 /*
894 * Now update interrupts.
895 */
896 zs_maskintr(zst);
897 /*
898 * If nothing is being transmitted, set up new current values,
899 * else mark them as pending.
900 */
901 if (!cs->cs_heldchange) {
902 if (zst->zst_tx_busy) {
903 zst->zst_heldtbc = zst->zst_tbc;
904 zst->zst_tbc = 0;
905 cs->cs_heldchange = 1;
906 } else
907 zs_loadchannelregs(cs);
908 }
909
910 break;
911
912 default:
913 error = ENOTTY;
914 break;
915 }
916
917 splx(s);
918
919 return (error);
920 }
921
922 /*
923 * Start or restart transmission.
924 */
925 static void
926 zsstart(tp)
927 struct tty *tp;
928 {
929 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
930 struct zs_chanstate *cs = zst->zst_cs;
931 int s;
932
933 s = spltty();
934 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
935 goto out;
936 if (zst->zst_tx_stopped)
937 goto out;
938
939 if (tp->t_outq.c_cc <= tp->t_lowat) {
940 if (ISSET(tp->t_state, TS_ASLEEP)) {
941 CLR(tp->t_state, TS_ASLEEP);
942 wakeup((caddr_t)&tp->t_outq);
943 }
944 selwakeup(&tp->t_wsel);
945 if (tp->t_outq.c_cc == 0)
946 goto out;
947 }
948
949 /* Grab the first contiguous region of buffer space. */
950 {
951 u_char *tba;
952 int tbc;
953
954 tba = tp->t_outq.c_cf;
955 tbc = ndqb(&tp->t_outq, 0);
956
957 (void) splzs();
958
959 zst->zst_tba = tba;
960 zst->zst_tbc = tbc;
961 }
962
963 SET(tp->t_state, TS_BUSY);
964 zst->zst_tx_busy = 1;
965
966 /* Enable transmit completion interrupts if necessary. */
967 if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
968 SET(cs->cs_preg[1], ZSWR1_TIE);
969 cs->cs_creg[1] = cs->cs_preg[1];
970 zs_write_reg(cs, 1, cs->cs_creg[1]);
971 }
972
973 /* Output the first character of the contiguous buffer. */
974 {
975 zs_write_data(cs, *zst->zst_tba);
976 zst->zst_tbc--;
977 zst->zst_tba++;
978 }
979 out:
980 splx(s);
981 return;
982 }
983
984 /*
985 * Stop output, e.g., for ^S or output flush.
986 */
987 void
988 zsstop(tp, flag)
989 struct tty *tp;
990 int flag;
991 {
992 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
993 int s;
994
995 s = splzs();
996 if (ISSET(tp->t_state, TS_BUSY)) {
997 /* Stop transmitting at the next chunk. */
998 zst->zst_tbc = 0;
999 zst->zst_heldtbc = 0;
1000 if (!ISSET(tp->t_state, TS_TTSTOP))
1001 SET(tp->t_state, TS_FLUSH);
1002 }
1003 splx(s);
1004 }
1005
1006 /*
1007 * Set ZS tty parameters from termios.
1008 * XXX - Should just copy the whole termios after
1009 * making sure all the changes could be done.
1010 */
1011 static int
1012 zsparam(tp, t)
1013 struct tty *tp;
1014 struct termios *t;
1015 {
1016 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1017 struct zs_chanstate *cs = zst->zst_cs;
1018 int ospeed, cflag;
1019 u_char tmp3, tmp4, tmp5;
1020 int s, error;
1021
1022 ospeed = t->c_ospeed;
1023 cflag = t->c_cflag;
1024
1025 /* Check requested parameters. */
1026 if (ospeed < 0)
1027 return (EINVAL);
1028 if (t->c_ispeed && t->c_ispeed != ospeed)
1029 return (EINVAL);
1030
1031 /*
1032 * For the console, always force CLOCAL and !HUPCL, so that the port
1033 * is always active.
1034 */
1035 if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
1036 ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
1037 SET(cflag, CLOCAL);
1038 CLR(cflag, HUPCL);
1039 }
1040
1041 /*
1042 * Only whack the UART when params change.
1043 * Some callers need to clear tp->t_ospeed
1044 * to make sure initialization gets done.
1045 */
1046 if (tp->t_ospeed == ospeed &&
1047 tp->t_cflag == cflag)
1048 return (0);
1049
1050 /*
1051 * Call MD functions to deal with changed
1052 * clock modes or H/W flow control modes.
1053 * The BRG divisor is set now. (reg 12,13)
1054 */
1055 error = zs_set_speed(cs, ospeed);
1056 if (error)
1057 return (error);
1058 error = zs_set_modes(cs, cflag);
1059 if (error)
1060 return (error);
1061
1062 /*
1063 * Block interrupts so that state will not
1064 * be altered until we are done setting it up.
1065 *
1066 * Initial values in cs_preg are set before
1067 * our attach routine is called. The master
1068 * interrupt enable is handled by zsc.c
1069 *
1070 */
1071 s = splzs();
1072
1073 /*
1074 * Recalculate which status ints to enable.
1075 */
1076 zs_maskintr(zst);
1077
1078 /* Recompute character size bits. */
1079 tmp3 = cs->cs_preg[3];
1080 tmp5 = cs->cs_preg[5];
1081 CLR(tmp3, ZSWR3_RXSIZE);
1082 CLR(tmp5, ZSWR5_TXSIZE);
1083 switch (ISSET(cflag, CSIZE)) {
1084 case CS5:
1085 SET(tmp3, ZSWR3_RX_5);
1086 SET(tmp5, ZSWR5_TX_5);
1087 break;
1088 case CS6:
1089 SET(tmp3, ZSWR3_RX_6);
1090 SET(tmp5, ZSWR5_TX_6);
1091 break;
1092 case CS7:
1093 SET(tmp3, ZSWR3_RX_7);
1094 SET(tmp5, ZSWR5_TX_7);
1095 break;
1096 case CS8:
1097 SET(tmp3, ZSWR3_RX_8);
1098 SET(tmp5, ZSWR5_TX_8);
1099 break;
1100 }
1101 cs->cs_preg[3] = tmp3;
1102 cs->cs_preg[5] = tmp5;
1103
1104 /*
1105 * Recompute the stop bits and parity bits. Note that
1106 * zs_set_speed() may have set clock selection bits etc.
1107 * in wr4, so those must preserved.
1108 */
1109 tmp4 = cs->cs_preg[4];
1110 CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
1111 if (ISSET(cflag, CSTOPB))
1112 SET(tmp4, ZSWR4_TWOSB);
1113 else
1114 SET(tmp4, ZSWR4_ONESB);
1115 if (!ISSET(cflag, PARODD))
1116 SET(tmp4, ZSWR4_EVENP);
1117 if (ISSET(cflag, PARENB))
1118 SET(tmp4, ZSWR4_PARENB);
1119 cs->cs_preg[4] = tmp4;
1120
1121 /* And copy to tty. */
1122 tp->t_ispeed = 0;
1123 tp->t_ospeed = ospeed;
1124 tp->t_cflag = cflag;
1125
1126 /*
1127 * If nothing is being transmitted, set up new current values,
1128 * else mark them as pending.
1129 */
1130 if (!cs->cs_heldchange) {
1131 if (zst->zst_tx_busy) {
1132 zst->zst_heldtbc = zst->zst_tbc;
1133 zst->zst_tbc = 0;
1134 cs->cs_heldchange = 1;
1135 } else
1136 zs_loadchannelregs(cs);
1137 }
1138
1139 /*
1140 * If hardware flow control is disabled, turn off the buffer water
1141 * marks and unblock any soft flow control state. Otherwise, enable
1142 * the water marks.
1143 */
1144 if (!ISSET(cflag, CHWFLOW)) {
1145 zst->zst_r_hiwat = 0;
1146 zst->zst_r_lowat = 0;
1147 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1148 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1149 zst->zst_rx_ready = 1;
1150 cs->cs_softreq = 1;
1151 }
1152 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1153 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1154 zs_hwiflow(zst);
1155 }
1156 } else {
1157 zst->zst_r_hiwat = zstty_rbuf_hiwat;
1158 zst->zst_r_lowat = zstty_rbuf_lowat;
1159 }
1160
1161 /*
1162 * Force a recheck of the hardware carrier and flow control status,
1163 * since we may have changed which bits we're looking at.
1164 */
1165 zstty_stint(cs, 1);
1166
1167 splx(s);
1168
1169 /*
1170 * If hardware flow control is disabled, unblock any hard flow control
1171 * state.
1172 */
1173 if (!ISSET(cflag, CHWFLOW)) {
1174 if (zst->zst_tx_stopped) {
1175 zst->zst_tx_stopped = 0;
1176 zsstart(tp);
1177 }
1178 }
1179
1180 zstty_softint(cs);
1181
1182 return (0);
1183 }
1184
1185 /*
1186 * Compute interupt enable bits and set in the pending bits. Called both
1187 * in zsparam() and when PPS (pulse per second timing) state changes.
1188 * Must be called at splzs().
1189 */
1190 static void
1191 zs_maskintr(zst)
1192 struct zstty_softc *zst;
1193 {
1194 struct zs_chanstate *cs = zst->zst_cs;
1195 int tmp15;
1196
1197 cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
1198 if (zst->zst_ppsmask != 0)
1199 cs->cs_rr0_mask |= cs->cs_rr0_pps;
1200 tmp15 = cs->cs_preg[15];
1201 if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
1202 SET(tmp15, ZSWR15_DCD_IE);
1203 else
1204 CLR(tmp15, ZSWR15_DCD_IE);
1205 if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
1206 SET(tmp15, ZSWR15_CTS_IE);
1207 else
1208 CLR(tmp15, ZSWR15_CTS_IE);
1209 cs->cs_preg[15] = tmp15;
1210 }
1211
1212
1213 /*
1214 * Raise or lower modem control (DTR/RTS) signals. If a character is
1215 * in transmission, the change is deferred.
1216 */
1217 static void
1218 zs_modem(zst, onoff)
1219 struct zstty_softc *zst;
1220 int onoff;
1221 {
1222 struct zs_chanstate *cs = zst->zst_cs;
1223
1224 if (cs->cs_wr5_dtr == 0)
1225 return;
1226
1227 if (onoff)
1228 SET(cs->cs_preg[5], cs->cs_wr5_dtr);
1229 else
1230 CLR(cs->cs_preg[5], cs->cs_wr5_dtr);
1231
1232 if (!cs->cs_heldchange) {
1233 if (zst->zst_tx_busy) {
1234 zst->zst_heldtbc = zst->zst_tbc;
1235 zst->zst_tbc = 0;
1236 cs->cs_heldchange = 1;
1237 } else
1238 zs_loadchannelregs(cs);
1239 }
1240 }
1241
1242 static void
1243 tiocm_to_zs(zst, how, ttybits)
1244 struct zstty_softc *zst;
1245 u_long how;
1246 int ttybits;
1247 {
1248 struct zs_chanstate *cs = zst->zst_cs;
1249 u_char zsbits;
1250
1251 zsbits = 0;
1252 if (ISSET(ttybits, TIOCM_DTR))
1253 SET(zsbits, ZSWR5_DTR);
1254 if (ISSET(ttybits, TIOCM_RTS))
1255 SET(zsbits, ZSWR5_RTS);
1256
1257 switch (how) {
1258 case TIOCMBIC:
1259 CLR(cs->cs_preg[5], zsbits);
1260 break;
1261
1262 case TIOCMBIS:
1263 SET(cs->cs_preg[5], zsbits);
1264 break;
1265
1266 case TIOCMSET:
1267 CLR(cs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR);
1268 SET(cs->cs_preg[5], zsbits);
1269 break;
1270 }
1271
1272 if (!cs->cs_heldchange) {
1273 if (zst->zst_tx_busy) {
1274 zst->zst_heldtbc = zst->zst_tbc;
1275 zst->zst_tbc = 0;
1276 cs->cs_heldchange = 1;
1277 } else
1278 zs_loadchannelregs(cs);
1279 }
1280 }
1281
1282 static int
1283 zs_to_tiocm(zst)
1284 struct zstty_softc *zst;
1285 {
1286 struct zs_chanstate *cs = zst->zst_cs;
1287 u_char zsbits;
1288 int ttybits = 0;
1289
1290 zsbits = cs->cs_preg[5];
1291 if (ISSET(zsbits, ZSWR5_DTR))
1292 SET(ttybits, TIOCM_DTR);
1293 if (ISSET(zsbits, ZSWR5_RTS))
1294 SET(ttybits, TIOCM_RTS);
1295
1296 zsbits = cs->cs_rr0;
1297 if (ISSET(zsbits, ZSRR0_DCD))
1298 SET(ttybits, TIOCM_CD);
1299 if (ISSET(zsbits, ZSRR0_CTS))
1300 SET(ttybits, TIOCM_CTS);
1301
1302 return (ttybits);
1303 }
1304
1305 /*
1306 * Try to block or unblock input using hardware flow-control.
1307 * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
1308 * if this function returns non-zero, the TS_TBLOCK flag will
1309 * be set or cleared according to the "block" arg passed.
1310 */
1311 int
1312 zshwiflow(tp, block)
1313 struct tty *tp;
1314 int block;
1315 {
1316 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1317 struct zs_chanstate *cs = zst->zst_cs;
1318 int s;
1319
1320 if (cs->cs_wr5_rts == 0)
1321 return (0);
1322
1323 s = splzs();
1324 if (block) {
1325 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1326 SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
1327 zs_hwiflow(zst);
1328 }
1329 } else {
1330 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1331 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1332 zst->zst_rx_ready = 1;
1333 cs->cs_softreq = 1;
1334 }
1335 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1336 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
1337 zs_hwiflow(zst);
1338 }
1339 }
1340 splx(s);
1341 return (1);
1342 }
1343
1344 /*
1345 * Internal version of zshwiflow
1346 * called at splzs
1347 */
1348 static void
1349 zs_hwiflow(zst)
1350 struct zstty_softc *zst;
1351 {
1352 struct zs_chanstate *cs = zst->zst_cs;
1353
1354 if (cs->cs_wr5_rts == 0)
1355 return;
1356
1357 if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
1358 CLR(cs->cs_preg[5], cs->cs_wr5_rts);
1359 CLR(cs->cs_creg[5], cs->cs_wr5_rts);
1360 } else {
1361 SET(cs->cs_preg[5], cs->cs_wr5_rts);
1362 SET(cs->cs_creg[5], cs->cs_wr5_rts);
1363 }
1364 zs_write_reg(cs, 5, cs->cs_creg[5]);
1365 }
1366
1367
1368 /****************************************************************
1369 * Interface to the lower layer (zscc)
1370 ****************************************************************/
1371
1372 #define integrate static inline
1373 integrate void zstty_rxsoft __P((struct zstty_softc *, struct tty *));
1374 integrate void zstty_txsoft __P((struct zstty_softc *, struct tty *));
1375 integrate void zstty_stsoft __P((struct zstty_softc *, struct tty *));
1376 static void zstty_diag __P((void *));
1377
1378 /*
1379 * receiver ready interrupt.
1380 * called at splzs
1381 */
1382 static void
1383 zstty_rxint(cs)
1384 struct zs_chanstate *cs;
1385 {
1386 struct zstty_softc *zst = cs->cs_private;
1387 u_char *put, *end;
1388 u_int cc;
1389 u_char rr0, rr1, c;
1390
1391 end = zst->zst_ebuf;
1392 put = zst->zst_rbput;
1393 cc = zst->zst_rbavail;
1394
1395 while (cc > 0) {
1396 /*
1397 * First read the status, because reading the received char
1398 * destroys the status of this char.
1399 */
1400 rr1 = zs_read_reg(cs, 1);
1401 c = zs_read_data(cs);
1402
1403 if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
1404 /* Clear the receive error. */
1405 zs_write_csr(cs, ZSWR0_RESET_ERRORS);
1406 }
1407
1408 cn_check_magic(zst->zst_tty->t_dev, c, zstty_cnm_state);
1409 put[0] = c;
1410 put[1] = rr1;
1411 put += 2;
1412 if (put >= end)
1413 put = zst->zst_rbuf;
1414 cc--;
1415
1416 rr0 = zs_read_csr(cs);
1417 if (!ISSET(rr0, ZSRR0_RX_READY))
1418 break;
1419 }
1420
1421 /*
1422 * Current string of incoming characters ended because
1423 * no more data was available or we ran out of space.
1424 * Schedule a receive event if any data was received.
1425 * If we're out of space, turn off receive interrupts.
1426 */
1427 zst->zst_rbput = put;
1428 zst->zst_rbavail = cc;
1429 if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1430 zst->zst_rx_ready = 1;
1431 cs->cs_softreq = 1;
1432 }
1433
1434 /*
1435 * See if we are in danger of overflowing a buffer. If
1436 * so, use hardware flow control to ease the pressure.
1437 */
1438 if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
1439 cc < zst->zst_r_hiwat) {
1440 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1441 zs_hwiflow(zst);
1442 }
1443
1444 /*
1445 * If we're out of space, disable receive interrupts
1446 * until the queue has drained a bit.
1447 */
1448 if (!cc) {
1449 SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1450 CLR(cs->cs_preg[1], ZSWR1_RIE);
1451 cs->cs_creg[1] = cs->cs_preg[1];
1452 zs_write_reg(cs, 1, cs->cs_creg[1]);
1453 }
1454
1455 #if 0
1456 printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1457 #endif
1458 }
1459
1460 /*
1461 * transmitter ready interrupt. (splzs)
1462 */
1463 static void
1464 zstty_txint(cs)
1465 struct zs_chanstate *cs;
1466 {
1467 struct zstty_softc *zst = cs->cs_private;
1468
1469 /*
1470 * If we've delayed a parameter change, do it now, and restart
1471 * output.
1472 */
1473 if (cs->cs_heldchange) {
1474 zs_loadchannelregs(cs);
1475 cs->cs_heldchange = 0;
1476 zst->zst_tbc = zst->zst_heldtbc;
1477 zst->zst_heldtbc = 0;
1478 }
1479
1480 /* Output the next character in the buffer, if any. */
1481 if (zst->zst_tbc > 0) {
1482 zs_write_data(cs, *zst->zst_tba);
1483 zst->zst_tbc--;
1484 zst->zst_tba++;
1485 } else {
1486 /* Disable transmit completion interrupts if necessary. */
1487 if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
1488 CLR(cs->cs_preg[1], ZSWR1_TIE);
1489 cs->cs_creg[1] = cs->cs_preg[1];
1490 zs_write_reg(cs, 1, cs->cs_creg[1]);
1491 }
1492 if (zst->zst_tx_busy) {
1493 zst->zst_tx_busy = 0;
1494 zst->zst_tx_done = 1;
1495 cs->cs_softreq = 1;
1496 }
1497 }
1498 }
1499
1500 /*
1501 * status change interrupt. (splzs)
1502 */
1503 static void
1504 zstty_stint(cs, force)
1505 struct zs_chanstate *cs;
1506 int force;
1507 {
1508 struct zstty_softc *zst = cs->cs_private;
1509 u_char rr0, delta;
1510
1511 rr0 = zs_read_csr(cs);
1512 zs_write_csr(cs, ZSWR0_RESET_STATUS);
1513
1514 /*
1515 * Check here for console break, so that we can abort
1516 * even when interrupts are locking up the machine.
1517 */
1518 if (ISSET(rr0, ZSRR0_BREAK))
1519 cn_check_magic(zst->zst_tty->t_dev, CNC_BREAK, zstty_cnm_state);
1520
1521 if (!force)
1522 delta = rr0 ^ cs->cs_rr0;
1523 else
1524 delta = cs->cs_rr0_mask;
1525 cs->cs_rr0 = rr0;
1526
1527 if (ISSET(delta, cs->cs_rr0_mask)) {
1528 SET(cs->cs_rr0_delta, delta);
1529
1530 /*
1531 * Pulse-per-second clock signal on edge of DCD?
1532 */
1533 if (ISSET(delta, zst->zst_ppsmask)) {
1534 struct timeval tv;
1535 if (ISSET(rr0, zst->zst_ppsmask) == zst->zst_ppsassert) {
1536 /* XXX nanotime() */
1537 microtime(&tv);
1538 TIMEVAL_TO_TIMESPEC(&tv,
1539 &zst->ppsinfo.assert_timestamp);
1540 if (zst->ppsparam.mode & PPS_OFFSETASSERT) {
1541 timespecadd(&zst->ppsinfo.assert_timestamp,
1542 &zst->ppsparam.assert_offset,
1543 &zst->ppsinfo.assert_timestamp);
1544 }
1545
1546 #ifdef PPS_SYNC
1547 if (zst->ppsparam.mode & PPS_HARDPPSONASSERT)
1548 hardpps(&tv, tv.tv_usec);
1549 #endif
1550 zst->ppsinfo.assert_sequence++;
1551 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1552 } else if (ISSET(rr0, zst->zst_ppsmask) ==
1553 zst->zst_ppsclear) {
1554 /* XXX nanotime() */
1555 microtime(&tv);
1556 TIMEVAL_TO_TIMESPEC(&tv,
1557 &zst->ppsinfo.clear_timestamp);
1558 if (zst->ppsparam.mode & PPS_OFFSETCLEAR) {
1559 timespecadd(&zst->ppsinfo.clear_timestamp,
1560 &zst->ppsparam.clear_offset,
1561 &zst->ppsinfo.clear_timestamp);
1562 }
1563
1564 #ifdef PPS_SYNC
1565 if (zst->ppsparam.mode & PPS_HARDPPSONCLEAR)
1566 hardpps(&tv, tv.tv_usec);
1567 #endif
1568 zst->ppsinfo.clear_sequence++;
1569 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1570 }
1571 }
1572
1573 /*
1574 * Stop output immediately if we lose the output
1575 * flow control signal or carrier detect.
1576 */
1577 if (ISSET(~rr0, cs->cs_rr0_mask)) {
1578 zst->zst_tbc = 0;
1579 zst->zst_heldtbc = 0;
1580 }
1581
1582 zst->zst_st_check = 1;
1583 cs->cs_softreq = 1;
1584 }
1585 }
1586
1587 void
1588 zstty_diag(arg)
1589 void *arg;
1590 {
1591 struct zstty_softc *zst = arg;
1592 int overflows, floods;
1593 int s;
1594
1595 s = splzs();
1596 overflows = zst->zst_overflows;
1597 zst->zst_overflows = 0;
1598 floods = zst->zst_floods;
1599 zst->zst_floods = 0;
1600 zst->zst_errors = 0;
1601 splx(s);
1602
1603 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1604 zst->zst_dev.dv_xname,
1605 overflows, overflows == 1 ? "" : "s",
1606 floods, floods == 1 ? "" : "s");
1607 }
1608
1609 integrate void
1610 zstty_rxsoft(zst, tp)
1611 struct zstty_softc *zst;
1612 struct tty *tp;
1613 {
1614 struct zs_chanstate *cs = zst->zst_cs;
1615 int (*rint) __P((int c, struct tty *tp)) = tp->t_linesw->l_rint;
1616 u_char *get, *end;
1617 u_int cc, scc;
1618 u_char rr1;
1619 int code;
1620 int s;
1621
1622 end = zst->zst_ebuf;
1623 get = zst->zst_rbget;
1624 scc = cc = zstty_rbuf_size - zst->zst_rbavail;
1625
1626 if (cc == zstty_rbuf_size) {
1627 zst->zst_floods++;
1628 if (zst->zst_errors++ == 0)
1629 callout_reset(&zst->zst_diag_ch, 60 * hz,
1630 zstty_diag, zst);
1631 }
1632
1633 /* If not yet open, drop the entire buffer content here */
1634 if (!ISSET(tp->t_state, TS_ISOPEN)) {
1635 get += cc << 1;
1636 if (get >= end)
1637 get -= zstty_rbuf_size << 1;
1638 cc = 0;
1639 }
1640 while (cc) {
1641 code = get[0];
1642 rr1 = get[1];
1643 if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
1644 if (ISSET(rr1, ZSRR1_DO)) {
1645 zst->zst_overflows++;
1646 if (zst->zst_errors++ == 0)
1647 callout_reset(&zst->zst_diag_ch,
1648 60 * hz, zstty_diag, zst);
1649 }
1650 if (ISSET(rr1, ZSRR1_FE))
1651 SET(code, TTY_FE);
1652 if (ISSET(rr1, ZSRR1_PE))
1653 SET(code, TTY_PE);
1654 }
1655 if ((*rint)(code, tp) == -1) {
1656 /*
1657 * The line discipline's buffer is out of space.
1658 */
1659 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1660 /*
1661 * We're either not using flow control, or the
1662 * line discipline didn't tell us to block for
1663 * some reason. Either way, we have no way to
1664 * know when there's more space available, so
1665 * just drop the rest of the data.
1666 */
1667 get += cc << 1;
1668 if (get >= end)
1669 get -= zstty_rbuf_size << 1;
1670 cc = 0;
1671 } else {
1672 /*
1673 * Don't schedule any more receive processing
1674 * until the line discipline tells us there's
1675 * space available (through comhwiflow()).
1676 * Leave the rest of the data in the input
1677 * buffer.
1678 */
1679 SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1680 }
1681 break;
1682 }
1683 get += 2;
1684 if (get >= end)
1685 get = zst->zst_rbuf;
1686 cc--;
1687 }
1688
1689 if (cc != scc) {
1690 zst->zst_rbget = get;
1691 s = splzs();
1692 cc = zst->zst_rbavail += scc - cc;
1693 /* Buffers should be ok again, release possible block. */
1694 if (cc >= zst->zst_r_lowat) {
1695 if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
1696 CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1697 SET(cs->cs_preg[1], ZSWR1_RIE);
1698 cs->cs_creg[1] = cs->cs_preg[1];
1699 zs_write_reg(cs, 1, cs->cs_creg[1]);
1700 }
1701 if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
1702 CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1703 zs_hwiflow(zst);
1704 }
1705 }
1706 splx(s);
1707 }
1708
1709 #if 0
1710 printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1711 #endif
1712 }
1713
1714 integrate void
1715 zstty_txsoft(zst, tp)
1716 struct zstty_softc *zst;
1717 struct tty *tp;
1718 {
1719
1720 CLR(tp->t_state, TS_BUSY);
1721 if (ISSET(tp->t_state, TS_FLUSH))
1722 CLR(tp->t_state, TS_FLUSH);
1723 else
1724 ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
1725 (*tp->t_linesw->l_start)(tp);
1726 }
1727
1728 integrate void
1729 zstty_stsoft(zst, tp)
1730 struct zstty_softc *zst;
1731 struct tty *tp;
1732 {
1733 struct zs_chanstate *cs = zst->zst_cs;
1734 u_char rr0, delta;
1735 int s;
1736
1737 s = splzs();
1738 rr0 = cs->cs_rr0;
1739 delta = cs->cs_rr0_delta;
1740 cs->cs_rr0_delta = 0;
1741 splx(s);
1742
1743 if (ISSET(delta, cs->cs_rr0_dcd)) {
1744 /*
1745 * Inform the tty layer that carrier detect changed.
1746 */
1747 (void) (*tp->t_linesw->l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
1748 }
1749
1750 if (ISSET(delta, cs->cs_rr0_cts)) {
1751 /* Block or unblock output according to flow control. */
1752 if (ISSET(rr0, cs->cs_rr0_cts)) {
1753 zst->zst_tx_stopped = 0;
1754 (*tp->t_linesw->l_start)(tp);
1755 } else {
1756 zst->zst_tx_stopped = 1;
1757 }
1758 }
1759 }
1760
1761 /*
1762 * Software interrupt. Called at zssoft
1763 *
1764 * The main job to be done here is to empty the input ring
1765 * by passing its contents up to the tty layer. The ring is
1766 * always emptied during this operation, therefore the ring
1767 * must not be larger than the space after "high water" in
1768 * the tty layer, or the tty layer might drop our input.
1769 *
1770 * Note: an "input blockage" condition is assumed to exist if
1771 * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
1772 */
1773 static void
1774 zstty_softint(cs)
1775 struct zs_chanstate *cs;
1776 {
1777 struct zstty_softc *zst = cs->cs_private;
1778 struct tty *tp = zst->zst_tty;
1779 int s;
1780
1781 s = spltty();
1782
1783 if (zst->zst_rx_ready) {
1784 zst->zst_rx_ready = 0;
1785 zstty_rxsoft(zst, tp);
1786 }
1787
1788 if (zst->zst_st_check) {
1789 zst->zst_st_check = 0;
1790 zstty_stsoft(zst, tp);
1791 }
1792
1793 if (zst->zst_tx_done) {
1794 zst->zst_tx_done = 0;
1795 zstty_txsoft(zst, tp);
1796 }
1797
1798 splx(s);
1799 }
1800
1801 struct zsops zsops_tty = {
1802 zstty_rxint, /* receive char available */
1803 zstty_stint, /* external/status */
1804 zstty_txint, /* xmit buffer empty */
1805 zstty_softint, /* process software interrupt */
1806 };
1807