z8530tty.c revision 1.79 1 /* $NetBSD: z8530tty.c,v 1.79 2002/03/17 19:40:58 atatat Exp $ */
2
3 /*-
4 * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999
5 * Charles M. Hannum. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Charles M. Hannum.
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994 Gordon W. Ross
35 * Copyright (c) 1992, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * This software was developed by the Computer Systems Engineering group
39 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
40 * contributed to Berkeley.
41 *
42 * All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by the University of
45 * California, Lawrence Berkeley Laboratory.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)zs.c 8.1 (Berkeley) 7/19/93
76 */
77
78 /*
79 * Zilog Z8530 Dual UART driver (tty interface)
80 *
81 * This is the "slave" driver that will be attached to
82 * the "zsc" driver for plain "tty" async. serial lines.
83 *
84 * Credits, history:
85 *
86 * The original version of this code was the sparc/dev/zs.c driver
87 * as distributed with the Berkeley 4.4 Lite release. Since then,
88 * Gordon Ross reorganized the code into the current parent/child
89 * driver scheme, separating the Sun keyboard and mouse support
90 * into independent child drivers.
91 *
92 * RTS/CTS flow-control support was a collaboration of:
93 * Gordon Ross <gwr (at) netbsd.org>,
94 * Bill Studenmund <wrstuden (at) loki.stanford.edu>
95 * Ian Dall <Ian.Dall (at) dsto.defence.gov.au>
96 *
97 * The driver was massively overhauled in November 1997 by Charles Hannum,
98 * fixing *many* bugs, and substantially improving performance.
99 */
100
101 #include <sys/cdefs.h>
102 __KERNEL_RCSID(0, "$NetBSD: z8530tty.c,v 1.79 2002/03/17 19:40:58 atatat Exp $");
103
104 #include "opt_kgdb.h"
105
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/proc.h>
109 #include <sys/device.h>
110 #include <sys/conf.h>
111 #include <sys/file.h>
112 #include <sys/ioctl.h>
113 #include <sys/malloc.h>
114 #include <sys/timepps.h>
115 #include <sys/tty.h>
116 #include <sys/time.h>
117 #include <sys/kernel.h>
118 #include <sys/syslog.h>
119
120 #include <dev/ic/z8530reg.h>
121 #include <machine/z8530var.h>
122
123 #include <dev/cons.h>
124
125 #include "locators.h"
126
127 /*
128 * How many input characters we can buffer.
129 * The port-specific var.h may override this.
130 * Note: must be a power of two!
131 */
132 #ifndef ZSTTY_RING_SIZE
133 #define ZSTTY_RING_SIZE 2048
134 #endif
135
136 static struct cnm_state zstty_cnm_state;
137 /*
138 * Make this an option variable one can patch.
139 * But be warned: this must be a power of 2!
140 */
141 u_int zstty_rbuf_size = ZSTTY_RING_SIZE;
142
143 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
144 u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
145 u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;
146
147 static int zsppscap =
148 PPS_TSFMT_TSPEC |
149 PPS_CAPTUREASSERT |
150 PPS_CAPTURECLEAR |
151 #ifdef PPS_SYNC
152 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
153 #endif /* PPS_SYNC */
154 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
155
156 struct zstty_softc {
157 struct device zst_dev; /* required first: base device */
158 struct tty *zst_tty;
159 struct zs_chanstate *zst_cs;
160
161 struct callout zst_diag_ch;
162
163 u_int zst_overflows,
164 zst_floods,
165 zst_errors;
166
167 int zst_hwflags, /* see z8530var.h */
168 zst_swflags; /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
169
170 u_int zst_r_hiwat,
171 zst_r_lowat;
172 u_char *volatile zst_rbget,
173 *volatile zst_rbput;
174 volatile u_int zst_rbavail;
175 u_char *zst_rbuf,
176 *zst_ebuf;
177
178 /*
179 * The transmit byte count and address are used for pseudo-DMA
180 * output in the hardware interrupt code. PDMA can be suspended
181 * to get pending changes done; heldtbc is used for this. It can
182 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
183 */
184 u_char *zst_tba; /* transmit buffer address */
185 u_int zst_tbc, /* transmit byte count */
186 zst_heldtbc; /* held tbc while xmission stopped */
187
188 /* Flags to communicate with zstty_softint() */
189 volatile u_char zst_rx_flags, /* receiver blocked */
190 #define RX_TTY_BLOCKED 0x01
191 #define RX_TTY_OVERFLOWED 0x02
192 #define RX_IBUF_BLOCKED 0x04
193 #define RX_IBUF_OVERFLOWED 0x08
194 #define RX_ANY_BLOCK 0x0f
195 zst_tx_busy, /* working on an output chunk */
196 zst_tx_done, /* done with one output chunk */
197 zst_tx_stopped, /* H/W level stop (lost CTS) */
198 zst_st_check, /* got a status interrupt */
199 zst_rx_ready;
200
201 /* PPS signal on DCD, with or without inkernel clock disciplining */
202 u_char zst_ppsmask; /* pps signal mask */
203 u_char zst_ppsassert; /* pps leading edge */
204 u_char zst_ppsclear; /* pps trailing edge */
205 pps_info_t ppsinfo;
206 pps_params_t ppsparam;
207 };
208
209 /* Macros to clear/set/test flags. */
210 #define SET(t, f) (t) |= (f)
211 #define CLR(t, f) (t) &= ~(f)
212 #define ISSET(t, f) ((t) & (f))
213
214 /* Definition of the driver for autoconfig. */
215 static int zstty_match(struct device *, struct cfdata *, void *);
216 static void zstty_attach(struct device *, struct device *, void *);
217
218 struct cfattach zstty_ca = {
219 sizeof(struct zstty_softc), zstty_match, zstty_attach
220 };
221
222 extern struct cfdriver zstty_cd;
223
224 struct zsops zsops_tty;
225
226 /* Routines called from other code. */
227 cdev_decl(zs); /* open, close, read, write, ioctl, stop, ... */
228
229 static void zs_shutdown __P((struct zstty_softc *));
230 static void zsstart __P((struct tty *));
231 static int zsparam __P((struct tty *, struct termios *));
232 static void zs_modem __P((struct zstty_softc *, int));
233 static void tiocm_to_zs __P((struct zstty_softc *, u_long, int));
234 static int zs_to_tiocm __P((struct zstty_softc *));
235 static int zshwiflow __P((struct tty *, int));
236 static void zs_hwiflow __P((struct zstty_softc *));
237 static void zs_maskintr __P((struct zstty_softc *));
238
239 /* Low-level routines. */
240 static void zstty_rxint __P((struct zs_chanstate *));
241 static void zstty_stint __P((struct zs_chanstate *, int));
242 static void zstty_txint __P((struct zs_chanstate *));
243 static void zstty_softint __P((struct zs_chanstate *));
244
245 #define ZSUNIT(x) (minor(x) & 0x7ffff)
246 #define ZSDIALOUT(x) (minor(x) & 0x80000)
247
248 /*
249 * zstty_match: how is this zs channel configured?
250 */
251 int
252 zstty_match(parent, cf, aux)
253 struct device *parent;
254 struct cfdata *cf;
255 void *aux;
256 {
257 struct zsc_attach_args *args = aux;
258
259 /* Exact match is better than wildcard. */
260 if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel)
261 return 2;
262
263 /* This driver accepts wildcard. */
264 if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT)
265 return 1;
266
267 return 0;
268 }
269
270 void
271 zstty_attach(parent, self, aux)
272 struct device *parent, *self;
273 void *aux;
274
275 {
276 struct zsc_softc *zsc = (void *) parent;
277 struct zstty_softc *zst = (void *) self;
278 struct cfdata *cf = self->dv_cfdata;
279 struct zsc_attach_args *args = aux;
280 struct zs_chanstate *cs;
281 struct tty *tp;
282 int channel, s, tty_unit;
283 dev_t dev;
284 char *i, *o;
285
286 callout_init(&zst->zst_diag_ch);
287 cn_init_magic(&zstty_cnm_state);
288
289 tty_unit = zst->zst_dev.dv_unit;
290 channel = args->channel;
291 cs = zsc->zsc_cs[channel];
292 cs->cs_private = zst;
293 cs->cs_ops = &zsops_tty;
294
295 zst->zst_cs = cs;
296 zst->zst_swflags = cf->cf_flags; /* softcar, etc. */
297 zst->zst_hwflags = args->hwflags;
298 dev = makedev(zs_major, tty_unit);
299
300 if (zst->zst_swflags)
301 printf(" flags 0x%x", zst->zst_swflags);
302
303 /*
304 * Check whether we serve as a console device.
305 * XXX - split console input/output channels aren't
306 * supported yet on /dev/console
307 */
308 i = o = NULL;
309 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
310 i = "input";
311 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
312 args->consdev->cn_dev = dev;
313 cn_tab->cn_pollc = args->consdev->cn_pollc;
314 cn_tab->cn_getc = args->consdev->cn_getc;
315 }
316 cn_tab->cn_dev = dev;
317 /* Set console magic to BREAK */
318 cn_set_magic("\047\001");
319 }
320 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
321 o = "output";
322 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
323 cn_tab->cn_putc = args->consdev->cn_putc;
324 }
325 cn_tab->cn_dev = dev;
326 }
327 if (i != NULL || o != NULL)
328 printf(" (console %s)", i ? (o ? "i/o" : i) : o);
329
330 #ifdef KGDB
331 if (zs_check_kgdb(cs, dev)) {
332 /*
333 * Allow kgdb to "take over" this port. Returns true
334 * if this serial port is in-use by kgdb.
335 */
336 printf(" (kgdb)\n");
337 /*
338 * This is the kgdb port (exclusive use)
339 * so skip the normal attach code.
340 */
341 return;
342 }
343 #endif
344 printf("\n");
345
346 tp = ttymalloc();
347 tp->t_dev = dev;
348 tp->t_oproc = zsstart;
349 tp->t_param = zsparam;
350 tp->t_hwiflow = zshwiflow;
351 tty_attach(tp);
352
353 zst->zst_tty = tp;
354 zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK);
355 zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
356 /* Disable the high water mark. */
357 zst->zst_r_hiwat = 0;
358 zst->zst_r_lowat = 0;
359 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
360 zst->zst_rbavail = zstty_rbuf_size;
361
362 /* if there are no enable/disable functions, assume the device
363 is always enabled */
364 if (!cs->enable)
365 cs->enabled = 1;
366
367 /*
368 * Hardware init
369 */
370 if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
371 /* Call zsparam similar to open. */
372 struct termios t;
373
374 /* Wait a while for previous console output to complete */
375 DELAY(10000);
376
377 /* Setup the "new" parameters in t. */
378 t.c_ispeed = 0;
379 t.c_ospeed = cs->cs_defspeed;
380 t.c_cflag = cs->cs_defcflag;
381
382 s = splzs();
383
384 /*
385 * Turn on receiver and status interrupts.
386 * We defer the actual write of the register to zsparam(),
387 * but we must make sure status interrupts are turned on by
388 * the time zsparam() reads the initial rr0 state.
389 */
390 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
391
392 splx(s);
393
394 /* Make sure zsparam will see changes. */
395 tp->t_ospeed = 0;
396 (void) zsparam(tp, &t);
397
398 s = splzs();
399
400 /* Make sure DTR is on now. */
401 zs_modem(zst, 1);
402
403 splx(s);
404 } else if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_NORESET)) {
405 /* Not the console; may need reset. */
406 int reset;
407
408 reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
409
410 s = splzs();
411
412 zs_write_reg(cs, 9, reset);
413
414 /* Will raise DTR in open. */
415 zs_modem(zst, 0);
416
417 splx(s);
418 }
419 }
420
421
422 /*
423 * Return pointer to our tty.
424 */
425 struct tty *
426 zstty(dev)
427 dev_t dev;
428 {
429 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
430
431 return (zst->zst_tty);
432 }
433
434
435 void
436 zs_shutdown(zst)
437 struct zstty_softc *zst;
438 {
439 struct zs_chanstate *cs = zst->zst_cs;
440 struct tty *tp = zst->zst_tty;
441 int s;
442
443 s = splzs();
444
445 /* If we were asserting flow control, then deassert it. */
446 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
447 zs_hwiflow(zst);
448
449 /* Clear any break condition set with TIOCSBRK. */
450 zs_break(cs, 0);
451
452 /* Turn off PPS capture on last close. */
453 zst->zst_ppsmask = 0;
454 zst->ppsparam.mode = 0;
455
456 /*
457 * Hang up if necessary. Wait a bit, so the other side has time to
458 * notice even if we immediately open the port again.
459 */
460 if (ISSET(tp->t_cflag, HUPCL)) {
461 zs_modem(zst, 0);
462 (void) tsleep(cs, TTIPRI, ttclos, hz);
463 }
464
465 /* Turn off interrupts if not the console. */
466 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
467 CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
468 cs->cs_creg[1] = cs->cs_preg[1];
469 zs_write_reg(cs, 1, cs->cs_creg[1]);
470 }
471
472 /* Call the power management hook. */
473 if (cs->disable) {
474 #ifdef DIAGNOSTIC
475 if (!cs->enabled)
476 panic("zs_shutdown: not enabled?");
477 #endif
478 (*cs->disable)(zst->zst_cs);
479 }
480
481 splx(s);
482 }
483
484 /*
485 * Open a zs serial (tty) port.
486 */
487 int
488 zsopen(dev, flags, mode, p)
489 dev_t dev;
490 int flags;
491 int mode;
492 struct proc *p;
493 {
494 struct zstty_softc *zst;
495 struct zs_chanstate *cs;
496 struct tty *tp;
497 int s, s2;
498 int error;
499
500 zst = device_lookup(&zstty_cd, ZSUNIT(dev));
501 if (zst == NULL)
502 return (ENXIO);
503
504 tp = zst->zst_tty;
505 cs = zst->zst_cs;
506
507 /* If KGDB took the line, then tp==NULL */
508 if (tp == NULL)
509 return (EBUSY);
510
511 if (ISSET(tp->t_state, TS_ISOPEN) &&
512 ISSET(tp->t_state, TS_XCLUDE) &&
513 p->p_ucred->cr_uid != 0)
514 return (EBUSY);
515
516 s = spltty();
517
518 /*
519 * Do the following iff this is a first open.
520 */
521 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
522 struct termios t;
523
524 tp->t_dev = dev;
525
526 /* Call the power management hook. */
527 if (cs->enable) {
528 if ((*cs->enable)(cs)) {
529 splx(s);
530 printf("%s: device enable failed\n",
531 zst->zst_dev.dv_xname);
532 return (EIO);
533 }
534 }
535
536 /*
537 * Initialize the termios status to the defaults. Add in the
538 * sticky bits from TIOCSFLAGS.
539 */
540 t.c_ispeed = 0;
541 t.c_ospeed = cs->cs_defspeed;
542 t.c_cflag = cs->cs_defcflag;
543 if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
544 SET(t.c_cflag, CLOCAL);
545 if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
546 SET(t.c_cflag, CRTSCTS);
547 if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
548 SET(t.c_cflag, CDTRCTS);
549 if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
550 SET(t.c_cflag, MDMBUF);
551
552 s2 = splzs();
553
554 /*
555 * Turn on receiver and status interrupts.
556 * We defer the actual write of the register to zsparam(),
557 * but we must make sure status interrupts are turned on by
558 * the time zsparam() reads the initial rr0 state.
559 */
560 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
561
562 /* Clear PPS capture state on first open. */
563 zst->zst_ppsmask = 0;
564 zst->ppsparam.mode = 0;
565
566 splx(s2);
567
568 /* Make sure zsparam will see changes. */
569 tp->t_ospeed = 0;
570 (void) zsparam(tp, &t);
571
572 /*
573 * Note: zsparam has done: cflag, ispeed, ospeed
574 * so we just need to do: iflag, oflag, lflag, cc
575 * For "raw" mode, just leave all zeros.
576 */
577 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
578 tp->t_iflag = TTYDEF_IFLAG;
579 tp->t_oflag = TTYDEF_OFLAG;
580 tp->t_lflag = TTYDEF_LFLAG;
581 } else {
582 tp->t_iflag = 0;
583 tp->t_oflag = 0;
584 tp->t_lflag = 0;
585 }
586 ttychars(tp);
587 ttsetwater(tp);
588
589 s2 = splzs();
590
591 /*
592 * Turn on DTR. We must always do this, even if carrier is not
593 * present, because otherwise we'd have to use TIOCSDTR
594 * immediately after setting CLOCAL, which applications do not
595 * expect. We always assert DTR while the device is open
596 * unless explicitly requested to deassert it.
597 */
598 zs_modem(zst, 1);
599
600 /* Clear the input ring, and unblock. */
601 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
602 zst->zst_rbavail = zstty_rbuf_size;
603 zs_iflush(cs);
604 CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
605 zs_hwiflow(zst);
606
607 splx(s2);
608 }
609
610 splx(s);
611
612 error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
613 if (error)
614 goto bad;
615
616 error = (*tp->t_linesw->l_open)(dev, tp);
617 if (error)
618 goto bad;
619
620 return (0);
621
622 bad:
623 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
624 /*
625 * We failed to open the device, and nobody else had it opened.
626 * Clean up the state as appropriate.
627 */
628 zs_shutdown(zst);
629 }
630
631 return (error);
632 }
633
634 /*
635 * Close a zs serial port.
636 */
637 int
638 zsclose(dev, flags, mode, p)
639 dev_t dev;
640 int flags;
641 int mode;
642 struct proc *p;
643 {
644 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
645 struct tty *tp = zst->zst_tty;
646
647 /* XXX This is for cons.c. */
648 if (!ISSET(tp->t_state, TS_ISOPEN))
649 return 0;
650
651 (*tp->t_linesw->l_close)(tp, flags);
652 ttyclose(tp);
653
654 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
655 /*
656 * Although we got a last close, the device may still be in
657 * use; e.g. if this was the dialout node, and there are still
658 * processes waiting for carrier on the non-dialout node.
659 */
660 zs_shutdown(zst);
661 }
662
663 return (0);
664 }
665
666 /*
667 * Read/write zs serial port.
668 */
669 int
670 zsread(dev, uio, flags)
671 dev_t dev;
672 struct uio *uio;
673 int flags;
674 {
675 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
676 struct tty *tp = zst->zst_tty;
677
678 return ((*tp->t_linesw->l_read)(tp, uio, flags));
679 }
680
681 int
682 zswrite(dev, uio, flags)
683 dev_t dev;
684 struct uio *uio;
685 int flags;
686 {
687 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
688 struct tty *tp = zst->zst_tty;
689
690 return ((*tp->t_linesw->l_write)(tp, uio, flags));
691 }
692
693 int
694 zspoll(dev, events, p)
695 dev_t dev;
696 int events;
697 struct proc *p;
698 {
699 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
700 struct tty *tp = zst->zst_tty;
701
702 return ((*tp->t_linesw->l_poll)(tp, events, p));
703 }
704
705 int
706 zsioctl(dev, cmd, data, flag, p)
707 dev_t dev;
708 u_long cmd;
709 caddr_t data;
710 int flag;
711 struct proc *p;
712 {
713 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
714 struct zs_chanstate *cs = zst->zst_cs;
715 struct tty *tp = zst->zst_tty;
716 int error;
717 int s;
718
719 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p);
720 if (error != EPASSTHROUGH)
721 return (error);
722
723 error = ttioctl(tp, cmd, data, flag, p);
724 if (error != EPASSTHROUGH)
725 return (error);
726
727 #ifdef ZS_MD_IOCTL
728 error = ZS_MD_IOCTL(cs, cmd, data);
729 if (error != EPASSTHROUGH)
730 return (error);
731 #endif /* ZS_MD_IOCTL */
732
733 error = 0;
734
735 s = splzs();
736
737 switch (cmd) {
738 case TIOCSBRK:
739 zs_break(cs, 1);
740 break;
741
742 case TIOCCBRK:
743 zs_break(cs, 0);
744 break;
745
746 case TIOCGFLAGS:
747 *(int *)data = zst->zst_swflags;
748 break;
749
750 case TIOCSFLAGS:
751 error = suser(p->p_ucred, &p->p_acflag);
752 if (error)
753 break;
754 zst->zst_swflags = *(int *)data;
755 break;
756
757 case TIOCSDTR:
758 zs_modem(zst, 1);
759 break;
760
761 case TIOCCDTR:
762 zs_modem(zst, 0);
763 break;
764
765 case TIOCMSET:
766 case TIOCMBIS:
767 case TIOCMBIC:
768 tiocm_to_zs(zst, cmd, *(int *)data);
769 break;
770
771 case TIOCMGET:
772 *(int *)data = zs_to_tiocm(zst);
773 break;
774
775 case PPS_IOC_CREATE:
776 break;
777
778 case PPS_IOC_DESTROY:
779 break;
780
781 case PPS_IOC_GETPARAMS: {
782 pps_params_t *pp;
783 pp = (pps_params_t *)data;
784 *pp = zst->ppsparam;
785 break;
786 }
787
788 case PPS_IOC_SETPARAMS: {
789 pps_params_t *pp;
790 int mode;
791 if (cs->cs_rr0_pps == 0) {
792 error = EINVAL;
793 break;
794 }
795 pp = (pps_params_t *)data;
796 if (pp->mode & ~zsppscap) {
797 error = EINVAL;
798 break;
799 }
800 zst->ppsparam = *pp;
801 /*
802 * compute masks from user-specified timestamp state.
803 */
804 mode = zst->ppsparam.mode;
805 #ifdef PPS_SYNC
806 if (mode & PPS_HARDPPSONASSERT) {
807 mode |= PPS_CAPTUREASSERT;
808 /* XXX revoke any previous HARDPPS source */
809 }
810 if (mode & PPS_HARDPPSONCLEAR) {
811 mode |= PPS_CAPTURECLEAR;
812 /* XXX revoke any previous HARDPPS source */
813 }
814 #endif /* PPS_SYNC */
815 switch (mode & PPS_CAPTUREBOTH) {
816 case 0:
817 zst->zst_ppsmask = 0;
818 break;
819
820 case PPS_CAPTUREASSERT:
821 zst->zst_ppsmask = ZSRR0_DCD;
822 zst->zst_ppsassert = ZSRR0_DCD;
823 zst->zst_ppsclear = -1;
824 break;
825
826 case PPS_CAPTURECLEAR:
827 zst->zst_ppsmask = ZSRR0_DCD;
828 zst->zst_ppsassert = -1;
829 zst->zst_ppsclear = 0;
830 break;
831
832 case PPS_CAPTUREBOTH:
833 zst->zst_ppsmask = ZSRR0_DCD;
834 zst->zst_ppsassert = ZSRR0_DCD;
835 zst->zst_ppsclear = 0;
836 break;
837
838 default:
839 error = EINVAL;
840 break;
841 }
842
843 /*
844 * Now update interrupts.
845 */
846 zs_maskintr(zst);
847 /*
848 * If nothing is being transmitted, set up new current values,
849 * else mark them as pending.
850 */
851 if (!cs->cs_heldchange) {
852 if (zst->zst_tx_busy) {
853 zst->zst_heldtbc = zst->zst_tbc;
854 zst->zst_tbc = 0;
855 cs->cs_heldchange = 1;
856 } else
857 zs_loadchannelregs(cs);
858 }
859
860 break;
861 }
862
863 case PPS_IOC_GETCAP:
864 *(int *)data = zsppscap;
865 break;
866
867 case PPS_IOC_FETCH: {
868 pps_info_t *pi;
869 pi = (pps_info_t *)data;
870 *pi = zst->ppsinfo;
871 break;
872 }
873
874 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
875 if (cs->cs_rr0_pps == 0) {
876 error = EINVAL;
877 break;
878 }
879 /*
880 * Some GPS clocks models use the falling rather than
881 * rising edge as the on-the-second signal.
882 * The old API has no way to specify PPS polarity.
883 */
884 zst->zst_ppsmask = ZSRR0_DCD;
885 #ifndef PPS_TRAILING_EDGE
886 zst->zst_ppsassert = ZSRR0_DCD;
887 zst->zst_ppsclear = -1;
888 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
889 &zst->ppsinfo.assert_timestamp);
890 #else
891 zst->zst_ppsassert = -1;
892 zst->zst_ppsclear = 01;
893 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
894 &zst->ppsinfo.clear_timestamp);
895 #endif
896 /*
897 * Now update interrupts.
898 */
899 zs_maskintr(zst);
900 /*
901 * If nothing is being transmitted, set up new current values,
902 * else mark them as pending.
903 */
904 if (!cs->cs_heldchange) {
905 if (zst->zst_tx_busy) {
906 zst->zst_heldtbc = zst->zst_tbc;
907 zst->zst_tbc = 0;
908 cs->cs_heldchange = 1;
909 } else
910 zs_loadchannelregs(cs);
911 }
912
913 break;
914
915 default:
916 error = EPASSTHROUGH;
917 break;
918 }
919
920 splx(s);
921
922 return (error);
923 }
924
925 /*
926 * Start or restart transmission.
927 */
928 static void
929 zsstart(tp)
930 struct tty *tp;
931 {
932 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
933 struct zs_chanstate *cs = zst->zst_cs;
934 int s;
935
936 s = spltty();
937 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
938 goto out;
939 if (zst->zst_tx_stopped)
940 goto out;
941
942 if (tp->t_outq.c_cc <= tp->t_lowat) {
943 if (ISSET(tp->t_state, TS_ASLEEP)) {
944 CLR(tp->t_state, TS_ASLEEP);
945 wakeup((caddr_t)&tp->t_outq);
946 }
947 selwakeup(&tp->t_wsel);
948 if (tp->t_outq.c_cc == 0)
949 goto out;
950 }
951
952 /* Grab the first contiguous region of buffer space. */
953 {
954 u_char *tba;
955 int tbc;
956
957 tba = tp->t_outq.c_cf;
958 tbc = ndqb(&tp->t_outq, 0);
959
960 (void) splzs();
961
962 zst->zst_tba = tba;
963 zst->zst_tbc = tbc;
964 }
965
966 SET(tp->t_state, TS_BUSY);
967 zst->zst_tx_busy = 1;
968
969 /* Enable transmit completion interrupts if necessary. */
970 if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
971 SET(cs->cs_preg[1], ZSWR1_TIE);
972 cs->cs_creg[1] = cs->cs_preg[1];
973 zs_write_reg(cs, 1, cs->cs_creg[1]);
974 }
975
976 /* Output the first character of the contiguous buffer. */
977 {
978 zs_write_data(cs, *zst->zst_tba);
979 zst->zst_tbc--;
980 zst->zst_tba++;
981 }
982 out:
983 splx(s);
984 return;
985 }
986
987 /*
988 * Stop output, e.g., for ^S or output flush.
989 */
990 void
991 zsstop(tp, flag)
992 struct tty *tp;
993 int flag;
994 {
995 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
996 int s;
997
998 s = splzs();
999 if (ISSET(tp->t_state, TS_BUSY)) {
1000 /* Stop transmitting at the next chunk. */
1001 zst->zst_tbc = 0;
1002 zst->zst_heldtbc = 0;
1003 if (!ISSET(tp->t_state, TS_TTSTOP))
1004 SET(tp->t_state, TS_FLUSH);
1005 }
1006 splx(s);
1007 }
1008
1009 /*
1010 * Set ZS tty parameters from termios.
1011 * XXX - Should just copy the whole termios after
1012 * making sure all the changes could be done.
1013 */
1014 static int
1015 zsparam(tp, t)
1016 struct tty *tp;
1017 struct termios *t;
1018 {
1019 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1020 struct zs_chanstate *cs = zst->zst_cs;
1021 int ospeed, cflag;
1022 u_char tmp3, tmp4, tmp5;
1023 int s, error;
1024
1025 ospeed = t->c_ospeed;
1026 cflag = t->c_cflag;
1027
1028 /* Check requested parameters. */
1029 if (ospeed < 0)
1030 return (EINVAL);
1031 if (t->c_ispeed && t->c_ispeed != ospeed)
1032 return (EINVAL);
1033
1034 /*
1035 * For the console, always force CLOCAL and !HUPCL, so that the port
1036 * is always active.
1037 */
1038 if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
1039 ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
1040 SET(cflag, CLOCAL);
1041 CLR(cflag, HUPCL);
1042 }
1043
1044 /*
1045 * Only whack the UART when params change.
1046 * Some callers need to clear tp->t_ospeed
1047 * to make sure initialization gets done.
1048 */
1049 if (tp->t_ospeed == ospeed &&
1050 tp->t_cflag == cflag)
1051 return (0);
1052
1053 /*
1054 * Call MD functions to deal with changed
1055 * clock modes or H/W flow control modes.
1056 * The BRG divisor is set now. (reg 12,13)
1057 */
1058 error = zs_set_speed(cs, ospeed);
1059 if (error)
1060 return (error);
1061 error = zs_set_modes(cs, cflag);
1062 if (error)
1063 return (error);
1064
1065 /*
1066 * Block interrupts so that state will not
1067 * be altered until we are done setting it up.
1068 *
1069 * Initial values in cs_preg are set before
1070 * our attach routine is called. The master
1071 * interrupt enable is handled by zsc.c
1072 *
1073 */
1074 s = splzs();
1075
1076 /*
1077 * Recalculate which status ints to enable.
1078 */
1079 zs_maskintr(zst);
1080
1081 /* Recompute character size bits. */
1082 tmp3 = cs->cs_preg[3];
1083 tmp5 = cs->cs_preg[5];
1084 CLR(tmp3, ZSWR3_RXSIZE);
1085 CLR(tmp5, ZSWR5_TXSIZE);
1086 switch (ISSET(cflag, CSIZE)) {
1087 case CS5:
1088 SET(tmp3, ZSWR3_RX_5);
1089 SET(tmp5, ZSWR5_TX_5);
1090 break;
1091 case CS6:
1092 SET(tmp3, ZSWR3_RX_6);
1093 SET(tmp5, ZSWR5_TX_6);
1094 break;
1095 case CS7:
1096 SET(tmp3, ZSWR3_RX_7);
1097 SET(tmp5, ZSWR5_TX_7);
1098 break;
1099 case CS8:
1100 SET(tmp3, ZSWR3_RX_8);
1101 SET(tmp5, ZSWR5_TX_8);
1102 break;
1103 }
1104 cs->cs_preg[3] = tmp3;
1105 cs->cs_preg[5] = tmp5;
1106
1107 /*
1108 * Recompute the stop bits and parity bits. Note that
1109 * zs_set_speed() may have set clock selection bits etc.
1110 * in wr4, so those must preserved.
1111 */
1112 tmp4 = cs->cs_preg[4];
1113 CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
1114 if (ISSET(cflag, CSTOPB))
1115 SET(tmp4, ZSWR4_TWOSB);
1116 else
1117 SET(tmp4, ZSWR4_ONESB);
1118 if (!ISSET(cflag, PARODD))
1119 SET(tmp4, ZSWR4_EVENP);
1120 if (ISSET(cflag, PARENB))
1121 SET(tmp4, ZSWR4_PARENB);
1122 cs->cs_preg[4] = tmp4;
1123
1124 /* And copy to tty. */
1125 tp->t_ispeed = 0;
1126 tp->t_ospeed = ospeed;
1127 tp->t_cflag = cflag;
1128
1129 /*
1130 * If nothing is being transmitted, set up new current values,
1131 * else mark them as pending.
1132 */
1133 if (!cs->cs_heldchange) {
1134 if (zst->zst_tx_busy) {
1135 zst->zst_heldtbc = zst->zst_tbc;
1136 zst->zst_tbc = 0;
1137 cs->cs_heldchange = 1;
1138 } else
1139 zs_loadchannelregs(cs);
1140 }
1141
1142 /*
1143 * If hardware flow control is disabled, turn off the buffer water
1144 * marks and unblock any soft flow control state. Otherwise, enable
1145 * the water marks.
1146 */
1147 if (!ISSET(cflag, CHWFLOW)) {
1148 zst->zst_r_hiwat = 0;
1149 zst->zst_r_lowat = 0;
1150 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1151 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1152 zst->zst_rx_ready = 1;
1153 cs->cs_softreq = 1;
1154 }
1155 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1156 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1157 zs_hwiflow(zst);
1158 }
1159 } else {
1160 zst->zst_r_hiwat = zstty_rbuf_hiwat;
1161 zst->zst_r_lowat = zstty_rbuf_lowat;
1162 }
1163
1164 /*
1165 * Force a recheck of the hardware carrier and flow control status,
1166 * since we may have changed which bits we're looking at.
1167 */
1168 zstty_stint(cs, 1);
1169
1170 splx(s);
1171
1172 /*
1173 * If hardware flow control is disabled, unblock any hard flow control
1174 * state.
1175 */
1176 if (!ISSET(cflag, CHWFLOW)) {
1177 if (zst->zst_tx_stopped) {
1178 zst->zst_tx_stopped = 0;
1179 zsstart(tp);
1180 }
1181 }
1182
1183 zstty_softint(cs);
1184
1185 return (0);
1186 }
1187
1188 /*
1189 * Compute interupt enable bits and set in the pending bits. Called both
1190 * in zsparam() and when PPS (pulse per second timing) state changes.
1191 * Must be called at splzs().
1192 */
1193 static void
1194 zs_maskintr(zst)
1195 struct zstty_softc *zst;
1196 {
1197 struct zs_chanstate *cs = zst->zst_cs;
1198 int tmp15;
1199
1200 cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
1201 if (zst->zst_ppsmask != 0)
1202 cs->cs_rr0_mask |= cs->cs_rr0_pps;
1203 tmp15 = cs->cs_preg[15];
1204 if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
1205 SET(tmp15, ZSWR15_DCD_IE);
1206 else
1207 CLR(tmp15, ZSWR15_DCD_IE);
1208 if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
1209 SET(tmp15, ZSWR15_CTS_IE);
1210 else
1211 CLR(tmp15, ZSWR15_CTS_IE);
1212 cs->cs_preg[15] = tmp15;
1213 }
1214
1215
1216 /*
1217 * Raise or lower modem control (DTR/RTS) signals. If a character is
1218 * in transmission, the change is deferred.
1219 */
1220 static void
1221 zs_modem(zst, onoff)
1222 struct zstty_softc *zst;
1223 int onoff;
1224 {
1225 struct zs_chanstate *cs = zst->zst_cs;
1226
1227 if (cs->cs_wr5_dtr == 0)
1228 return;
1229
1230 if (onoff)
1231 SET(cs->cs_preg[5], cs->cs_wr5_dtr);
1232 else
1233 CLR(cs->cs_preg[5], cs->cs_wr5_dtr);
1234
1235 if (!cs->cs_heldchange) {
1236 if (zst->zst_tx_busy) {
1237 zst->zst_heldtbc = zst->zst_tbc;
1238 zst->zst_tbc = 0;
1239 cs->cs_heldchange = 1;
1240 } else
1241 zs_loadchannelregs(cs);
1242 }
1243 }
1244
1245 static void
1246 tiocm_to_zs(zst, how, ttybits)
1247 struct zstty_softc *zst;
1248 u_long how;
1249 int ttybits;
1250 {
1251 struct zs_chanstate *cs = zst->zst_cs;
1252 u_char zsbits;
1253
1254 zsbits = 0;
1255 if (ISSET(ttybits, TIOCM_DTR))
1256 SET(zsbits, ZSWR5_DTR);
1257 if (ISSET(ttybits, TIOCM_RTS))
1258 SET(zsbits, ZSWR5_RTS);
1259
1260 switch (how) {
1261 case TIOCMBIC:
1262 CLR(cs->cs_preg[5], zsbits);
1263 break;
1264
1265 case TIOCMBIS:
1266 SET(cs->cs_preg[5], zsbits);
1267 break;
1268
1269 case TIOCMSET:
1270 CLR(cs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR);
1271 SET(cs->cs_preg[5], zsbits);
1272 break;
1273 }
1274
1275 if (!cs->cs_heldchange) {
1276 if (zst->zst_tx_busy) {
1277 zst->zst_heldtbc = zst->zst_tbc;
1278 zst->zst_tbc = 0;
1279 cs->cs_heldchange = 1;
1280 } else
1281 zs_loadchannelregs(cs);
1282 }
1283 }
1284
1285 static int
1286 zs_to_tiocm(zst)
1287 struct zstty_softc *zst;
1288 {
1289 struct zs_chanstate *cs = zst->zst_cs;
1290 u_char zsbits;
1291 int ttybits = 0;
1292
1293 zsbits = cs->cs_preg[5];
1294 if (ISSET(zsbits, ZSWR5_DTR))
1295 SET(ttybits, TIOCM_DTR);
1296 if (ISSET(zsbits, ZSWR5_RTS))
1297 SET(ttybits, TIOCM_RTS);
1298
1299 zsbits = cs->cs_rr0;
1300 if (ISSET(zsbits, ZSRR0_DCD))
1301 SET(ttybits, TIOCM_CD);
1302 if (ISSET(zsbits, ZSRR0_CTS))
1303 SET(ttybits, TIOCM_CTS);
1304
1305 return (ttybits);
1306 }
1307
1308 /*
1309 * Try to block or unblock input using hardware flow-control.
1310 * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
1311 * if this function returns non-zero, the TS_TBLOCK flag will
1312 * be set or cleared according to the "block" arg passed.
1313 */
1314 int
1315 zshwiflow(tp, block)
1316 struct tty *tp;
1317 int block;
1318 {
1319 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1320 struct zs_chanstate *cs = zst->zst_cs;
1321 int s;
1322
1323 if (cs->cs_wr5_rts == 0)
1324 return (0);
1325
1326 s = splzs();
1327 if (block) {
1328 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1329 SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
1330 zs_hwiflow(zst);
1331 }
1332 } else {
1333 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1334 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1335 zst->zst_rx_ready = 1;
1336 cs->cs_softreq = 1;
1337 }
1338 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1339 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
1340 zs_hwiflow(zst);
1341 }
1342 }
1343 splx(s);
1344 return (1);
1345 }
1346
1347 /*
1348 * Internal version of zshwiflow
1349 * called at splzs
1350 */
1351 static void
1352 zs_hwiflow(zst)
1353 struct zstty_softc *zst;
1354 {
1355 struct zs_chanstate *cs = zst->zst_cs;
1356
1357 if (cs->cs_wr5_rts == 0)
1358 return;
1359
1360 if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
1361 CLR(cs->cs_preg[5], cs->cs_wr5_rts);
1362 CLR(cs->cs_creg[5], cs->cs_wr5_rts);
1363 } else {
1364 SET(cs->cs_preg[5], cs->cs_wr5_rts);
1365 SET(cs->cs_creg[5], cs->cs_wr5_rts);
1366 }
1367 zs_write_reg(cs, 5, cs->cs_creg[5]);
1368 }
1369
1370
1371 /****************************************************************
1372 * Interface to the lower layer (zscc)
1373 ****************************************************************/
1374
1375 #define integrate static inline
1376 integrate void zstty_rxsoft __P((struct zstty_softc *, struct tty *));
1377 integrate void zstty_txsoft __P((struct zstty_softc *, struct tty *));
1378 integrate void zstty_stsoft __P((struct zstty_softc *, struct tty *));
1379 static void zstty_diag __P((void *));
1380
1381 /*
1382 * receiver ready interrupt.
1383 * called at splzs
1384 */
1385 static void
1386 zstty_rxint(cs)
1387 struct zs_chanstate *cs;
1388 {
1389 struct zstty_softc *zst = cs->cs_private;
1390 u_char *put, *end;
1391 u_int cc;
1392 u_char rr0, rr1, c;
1393
1394 end = zst->zst_ebuf;
1395 put = zst->zst_rbput;
1396 cc = zst->zst_rbavail;
1397
1398 while (cc > 0) {
1399 /*
1400 * First read the status, because reading the received char
1401 * destroys the status of this char.
1402 */
1403 rr1 = zs_read_reg(cs, 1);
1404 c = zs_read_data(cs);
1405
1406 if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
1407 /* Clear the receive error. */
1408 zs_write_csr(cs, ZSWR0_RESET_ERRORS);
1409 }
1410
1411 cn_check_magic(zst->zst_tty->t_dev, c, zstty_cnm_state);
1412 put[0] = c;
1413 put[1] = rr1;
1414 put += 2;
1415 if (put >= end)
1416 put = zst->zst_rbuf;
1417 cc--;
1418
1419 rr0 = zs_read_csr(cs);
1420 if (!ISSET(rr0, ZSRR0_RX_READY))
1421 break;
1422 }
1423
1424 /*
1425 * Current string of incoming characters ended because
1426 * no more data was available or we ran out of space.
1427 * Schedule a receive event if any data was received.
1428 * If we're out of space, turn off receive interrupts.
1429 */
1430 zst->zst_rbput = put;
1431 zst->zst_rbavail = cc;
1432 if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1433 zst->zst_rx_ready = 1;
1434 cs->cs_softreq = 1;
1435 }
1436
1437 /*
1438 * See if we are in danger of overflowing a buffer. If
1439 * so, use hardware flow control to ease the pressure.
1440 */
1441 if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
1442 cc < zst->zst_r_hiwat) {
1443 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1444 zs_hwiflow(zst);
1445 }
1446
1447 /*
1448 * If we're out of space, disable receive interrupts
1449 * until the queue has drained a bit.
1450 */
1451 if (!cc) {
1452 SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1453 CLR(cs->cs_preg[1], ZSWR1_RIE);
1454 cs->cs_creg[1] = cs->cs_preg[1];
1455 zs_write_reg(cs, 1, cs->cs_creg[1]);
1456 }
1457
1458 #if 0
1459 printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1460 #endif
1461 }
1462
1463 /*
1464 * transmitter ready interrupt. (splzs)
1465 */
1466 static void
1467 zstty_txint(cs)
1468 struct zs_chanstate *cs;
1469 {
1470 struct zstty_softc *zst = cs->cs_private;
1471
1472 /*
1473 * If we've delayed a parameter change, do it now, and restart
1474 * output.
1475 */
1476 if (cs->cs_heldchange) {
1477 zs_loadchannelregs(cs);
1478 cs->cs_heldchange = 0;
1479 zst->zst_tbc = zst->zst_heldtbc;
1480 zst->zst_heldtbc = 0;
1481 }
1482
1483 /* Output the next character in the buffer, if any. */
1484 if (zst->zst_tbc > 0) {
1485 zs_write_data(cs, *zst->zst_tba);
1486 zst->zst_tbc--;
1487 zst->zst_tba++;
1488 } else {
1489 /* Disable transmit completion interrupts if necessary. */
1490 if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
1491 CLR(cs->cs_preg[1], ZSWR1_TIE);
1492 cs->cs_creg[1] = cs->cs_preg[1];
1493 zs_write_reg(cs, 1, cs->cs_creg[1]);
1494 }
1495 if (zst->zst_tx_busy) {
1496 zst->zst_tx_busy = 0;
1497 zst->zst_tx_done = 1;
1498 cs->cs_softreq = 1;
1499 }
1500 }
1501 }
1502
1503 /*
1504 * status change interrupt. (splzs)
1505 */
1506 static void
1507 zstty_stint(cs, force)
1508 struct zs_chanstate *cs;
1509 int force;
1510 {
1511 struct zstty_softc *zst = cs->cs_private;
1512 u_char rr0, delta;
1513
1514 rr0 = zs_read_csr(cs);
1515 zs_write_csr(cs, ZSWR0_RESET_STATUS);
1516
1517 /*
1518 * Check here for console break, so that we can abort
1519 * even when interrupts are locking up the machine.
1520 */
1521 if (ISSET(rr0, ZSRR0_BREAK))
1522 cn_check_magic(zst->zst_tty->t_dev, CNC_BREAK, zstty_cnm_state);
1523
1524 if (!force)
1525 delta = rr0 ^ cs->cs_rr0;
1526 else
1527 delta = cs->cs_rr0_mask;
1528 cs->cs_rr0 = rr0;
1529
1530 if (ISSET(delta, cs->cs_rr0_mask)) {
1531 SET(cs->cs_rr0_delta, delta);
1532
1533 /*
1534 * Pulse-per-second clock signal on edge of DCD?
1535 */
1536 if (ISSET(delta, zst->zst_ppsmask)) {
1537 struct timeval tv;
1538 if (ISSET(rr0, zst->zst_ppsmask) == zst->zst_ppsassert) {
1539 /* XXX nanotime() */
1540 microtime(&tv);
1541 TIMEVAL_TO_TIMESPEC(&tv,
1542 &zst->ppsinfo.assert_timestamp);
1543 if (zst->ppsparam.mode & PPS_OFFSETASSERT) {
1544 timespecadd(&zst->ppsinfo.assert_timestamp,
1545 &zst->ppsparam.assert_offset,
1546 &zst->ppsinfo.assert_timestamp);
1547 }
1548
1549 #ifdef PPS_SYNC
1550 if (zst->ppsparam.mode & PPS_HARDPPSONASSERT)
1551 hardpps(&tv, tv.tv_usec);
1552 #endif
1553 zst->ppsinfo.assert_sequence++;
1554 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1555 } else if (ISSET(rr0, zst->zst_ppsmask) ==
1556 zst->zst_ppsclear) {
1557 /* XXX nanotime() */
1558 microtime(&tv);
1559 TIMEVAL_TO_TIMESPEC(&tv,
1560 &zst->ppsinfo.clear_timestamp);
1561 if (zst->ppsparam.mode & PPS_OFFSETCLEAR) {
1562 timespecadd(&zst->ppsinfo.clear_timestamp,
1563 &zst->ppsparam.clear_offset,
1564 &zst->ppsinfo.clear_timestamp);
1565 }
1566
1567 #ifdef PPS_SYNC
1568 if (zst->ppsparam.mode & PPS_HARDPPSONCLEAR)
1569 hardpps(&tv, tv.tv_usec);
1570 #endif
1571 zst->ppsinfo.clear_sequence++;
1572 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1573 }
1574 }
1575
1576 /*
1577 * Stop output immediately if we lose the output
1578 * flow control signal or carrier detect.
1579 */
1580 if (ISSET(~rr0, cs->cs_rr0_mask)) {
1581 zst->zst_tbc = 0;
1582 zst->zst_heldtbc = 0;
1583 }
1584
1585 zst->zst_st_check = 1;
1586 cs->cs_softreq = 1;
1587 }
1588 }
1589
1590 void
1591 zstty_diag(arg)
1592 void *arg;
1593 {
1594 struct zstty_softc *zst = arg;
1595 int overflows, floods;
1596 int s;
1597
1598 s = splzs();
1599 overflows = zst->zst_overflows;
1600 zst->zst_overflows = 0;
1601 floods = zst->zst_floods;
1602 zst->zst_floods = 0;
1603 zst->zst_errors = 0;
1604 splx(s);
1605
1606 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1607 zst->zst_dev.dv_xname,
1608 overflows, overflows == 1 ? "" : "s",
1609 floods, floods == 1 ? "" : "s");
1610 }
1611
1612 integrate void
1613 zstty_rxsoft(zst, tp)
1614 struct zstty_softc *zst;
1615 struct tty *tp;
1616 {
1617 struct zs_chanstate *cs = zst->zst_cs;
1618 int (*rint) __P((int c, struct tty *tp)) = tp->t_linesw->l_rint;
1619 u_char *get, *end;
1620 u_int cc, scc;
1621 u_char rr1;
1622 int code;
1623 int s;
1624
1625 end = zst->zst_ebuf;
1626 get = zst->zst_rbget;
1627 scc = cc = zstty_rbuf_size - zst->zst_rbavail;
1628
1629 if (cc == zstty_rbuf_size) {
1630 zst->zst_floods++;
1631 if (zst->zst_errors++ == 0)
1632 callout_reset(&zst->zst_diag_ch, 60 * hz,
1633 zstty_diag, zst);
1634 }
1635
1636 /* If not yet open, drop the entire buffer content here */
1637 if (!ISSET(tp->t_state, TS_ISOPEN)) {
1638 get += cc << 1;
1639 if (get >= end)
1640 get -= zstty_rbuf_size << 1;
1641 cc = 0;
1642 }
1643 while (cc) {
1644 code = get[0];
1645 rr1 = get[1];
1646 if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
1647 if (ISSET(rr1, ZSRR1_DO)) {
1648 zst->zst_overflows++;
1649 if (zst->zst_errors++ == 0)
1650 callout_reset(&zst->zst_diag_ch,
1651 60 * hz, zstty_diag, zst);
1652 }
1653 if (ISSET(rr1, ZSRR1_FE))
1654 SET(code, TTY_FE);
1655 if (ISSET(rr1, ZSRR1_PE))
1656 SET(code, TTY_PE);
1657 }
1658 if ((*rint)(code, tp) == -1) {
1659 /*
1660 * The line discipline's buffer is out of space.
1661 */
1662 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1663 /*
1664 * We're either not using flow control, or the
1665 * line discipline didn't tell us to block for
1666 * some reason. Either way, we have no way to
1667 * know when there's more space available, so
1668 * just drop the rest of the data.
1669 */
1670 get += cc << 1;
1671 if (get >= end)
1672 get -= zstty_rbuf_size << 1;
1673 cc = 0;
1674 } else {
1675 /*
1676 * Don't schedule any more receive processing
1677 * until the line discipline tells us there's
1678 * space available (through comhwiflow()).
1679 * Leave the rest of the data in the input
1680 * buffer.
1681 */
1682 SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1683 }
1684 break;
1685 }
1686 get += 2;
1687 if (get >= end)
1688 get = zst->zst_rbuf;
1689 cc--;
1690 }
1691
1692 if (cc != scc) {
1693 zst->zst_rbget = get;
1694 s = splzs();
1695 cc = zst->zst_rbavail += scc - cc;
1696 /* Buffers should be ok again, release possible block. */
1697 if (cc >= zst->zst_r_lowat) {
1698 if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
1699 CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1700 SET(cs->cs_preg[1], ZSWR1_RIE);
1701 cs->cs_creg[1] = cs->cs_preg[1];
1702 zs_write_reg(cs, 1, cs->cs_creg[1]);
1703 }
1704 if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
1705 CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1706 zs_hwiflow(zst);
1707 }
1708 }
1709 splx(s);
1710 }
1711
1712 #if 0
1713 printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1714 #endif
1715 }
1716
1717 integrate void
1718 zstty_txsoft(zst, tp)
1719 struct zstty_softc *zst;
1720 struct tty *tp;
1721 {
1722
1723 CLR(tp->t_state, TS_BUSY);
1724 if (ISSET(tp->t_state, TS_FLUSH))
1725 CLR(tp->t_state, TS_FLUSH);
1726 else
1727 ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
1728 (*tp->t_linesw->l_start)(tp);
1729 }
1730
1731 integrate void
1732 zstty_stsoft(zst, tp)
1733 struct zstty_softc *zst;
1734 struct tty *tp;
1735 {
1736 struct zs_chanstate *cs = zst->zst_cs;
1737 u_char rr0, delta;
1738 int s;
1739
1740 s = splzs();
1741 rr0 = cs->cs_rr0;
1742 delta = cs->cs_rr0_delta;
1743 cs->cs_rr0_delta = 0;
1744 splx(s);
1745
1746 if (ISSET(delta, cs->cs_rr0_dcd)) {
1747 /*
1748 * Inform the tty layer that carrier detect changed.
1749 */
1750 (void) (*tp->t_linesw->l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
1751 }
1752
1753 if (ISSET(delta, cs->cs_rr0_cts)) {
1754 /* Block or unblock output according to flow control. */
1755 if (ISSET(rr0, cs->cs_rr0_cts)) {
1756 zst->zst_tx_stopped = 0;
1757 (*tp->t_linesw->l_start)(tp);
1758 } else {
1759 zst->zst_tx_stopped = 1;
1760 }
1761 }
1762 }
1763
1764 /*
1765 * Software interrupt. Called at zssoft
1766 *
1767 * The main job to be done here is to empty the input ring
1768 * by passing its contents up to the tty layer. The ring is
1769 * always emptied during this operation, therefore the ring
1770 * must not be larger than the space after "high water" in
1771 * the tty layer, or the tty layer might drop our input.
1772 *
1773 * Note: an "input blockage" condition is assumed to exist if
1774 * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
1775 */
1776 static void
1777 zstty_softint(cs)
1778 struct zs_chanstate *cs;
1779 {
1780 struct zstty_softc *zst = cs->cs_private;
1781 struct tty *tp = zst->zst_tty;
1782 int s;
1783
1784 s = spltty();
1785
1786 if (zst->zst_rx_ready) {
1787 zst->zst_rx_ready = 0;
1788 zstty_rxsoft(zst, tp);
1789 }
1790
1791 if (zst->zst_st_check) {
1792 zst->zst_st_check = 0;
1793 zstty_stsoft(zst, tp);
1794 }
1795
1796 if (zst->zst_tx_done) {
1797 zst->zst_tx_done = 0;
1798 zstty_txsoft(zst, tp);
1799 }
1800
1801 splx(s);
1802 }
1803
1804 struct zsops zsops_tty = {
1805 zstty_rxint, /* receive char available */
1806 zstty_stint, /* external/status */
1807 zstty_txint, /* xmit buffer empty */
1808 zstty_softint, /* process software interrupt */
1809 };
1810