z8530tty.c revision 1.89 1 /* $NetBSD: z8530tty.c,v 1.89 2003/01/28 12:35:38 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999
5 * Charles M. Hannum. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Charles M. Hannum.
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994 Gordon W. Ross
35 * Copyright (c) 1992, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * This software was developed by the Computer Systems Engineering group
39 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
40 * contributed to Berkeley.
41 *
42 * All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by the University of
45 * California, Lawrence Berkeley Laboratory.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)zs.c 8.1 (Berkeley) 7/19/93
76 */
77
78 /*
79 * Zilog Z8530 Dual UART driver (tty interface)
80 *
81 * This is the "slave" driver that will be attached to
82 * the "zsc" driver for plain "tty" async. serial lines.
83 *
84 * Credits, history:
85 *
86 * The original version of this code was the sparc/dev/zs.c driver
87 * as distributed with the Berkeley 4.4 Lite release. Since then,
88 * Gordon Ross reorganized the code into the current parent/child
89 * driver scheme, separating the Sun keyboard and mouse support
90 * into independent child drivers.
91 *
92 * RTS/CTS flow-control support was a collaboration of:
93 * Gordon Ross <gwr (at) netbsd.org>,
94 * Bill Studenmund <wrstuden (at) loki.stanford.edu>
95 * Ian Dall <Ian.Dall (at) dsto.defence.gov.au>
96 *
97 * The driver was massively overhauled in November 1997 by Charles Hannum,
98 * fixing *many* bugs, and substantially improving performance.
99 */
100
101 #include <sys/cdefs.h>
102 __KERNEL_RCSID(0, "$NetBSD: z8530tty.c,v 1.89 2003/01/28 12:35:38 pk Exp $");
103
104 #include "opt_kgdb.h"
105
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/proc.h>
109 #include <sys/device.h>
110 #include <sys/conf.h>
111 #include <sys/file.h>
112 #include <sys/ioctl.h>
113 #include <sys/malloc.h>
114 #include <sys/timepps.h>
115 #include <sys/tty.h>
116 #include <sys/time.h>
117 #include <sys/kernel.h>
118 #include <sys/syslog.h>
119
120 #include <dev/ic/z8530reg.h>
121 #include <machine/z8530var.h>
122
123 #include <dev/cons.h>
124
125 #include "locators.h"
126
127 /*
128 * How many input characters we can buffer.
129 * The port-specific var.h may override this.
130 * Note: must be a power of two!
131 */
132 #ifndef ZSTTY_RING_SIZE
133 #define ZSTTY_RING_SIZE 2048
134 #endif
135
136 static struct cnm_state zstty_cnm_state;
137 /*
138 * Make this an option variable one can patch.
139 * But be warned: this must be a power of 2!
140 */
141 u_int zstty_rbuf_size = ZSTTY_RING_SIZE;
142
143 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
144 u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
145 u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;
146
147 static int zsppscap =
148 PPS_TSFMT_TSPEC |
149 PPS_CAPTUREASSERT |
150 PPS_CAPTURECLEAR |
151 #ifdef PPS_SYNC
152 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
153 #endif /* PPS_SYNC */
154 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
155
156 struct zstty_softc {
157 struct device zst_dev; /* required first: base device */
158 struct tty *zst_tty;
159 struct zs_chanstate *zst_cs;
160
161 struct callout zst_diag_ch;
162
163 u_int zst_overflows,
164 zst_floods,
165 zst_errors;
166
167 int zst_hwflags, /* see z8530var.h */
168 zst_swflags; /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
169
170 u_int zst_r_hiwat,
171 zst_r_lowat;
172 u_char *volatile zst_rbget,
173 *volatile zst_rbput;
174 volatile u_int zst_rbavail;
175 u_char *zst_rbuf,
176 *zst_ebuf;
177
178 /*
179 * The transmit byte count and address are used for pseudo-DMA
180 * output in the hardware interrupt code. PDMA can be suspended
181 * to get pending changes done; heldtbc is used for this. It can
182 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
183 */
184 u_char *zst_tba; /* transmit buffer address */
185 u_int zst_tbc, /* transmit byte count */
186 zst_heldtbc; /* held tbc while xmission stopped */
187
188 /* Flags to communicate with zstty_softint() */
189 volatile u_char zst_rx_flags, /* receiver blocked */
190 #define RX_TTY_BLOCKED 0x01
191 #define RX_TTY_OVERFLOWED 0x02
192 #define RX_IBUF_BLOCKED 0x04
193 #define RX_IBUF_OVERFLOWED 0x08
194 #define RX_ANY_BLOCK 0x0f
195 zst_tx_busy, /* working on an output chunk */
196 zst_tx_done, /* done with one output chunk */
197 zst_tx_stopped, /* H/W level stop (lost CTS) */
198 zst_st_check, /* got a status interrupt */
199 zst_rx_ready;
200
201 /* PPS signal on DCD, with or without inkernel clock disciplining */
202 u_char zst_ppsmask; /* pps signal mask */
203 u_char zst_ppsassert; /* pps leading edge */
204 u_char zst_ppsclear; /* pps trailing edge */
205 pps_info_t ppsinfo;
206 pps_params_t ppsparam;
207 };
208
209 /* Macros to clear/set/test flags. */
210 #define SET(t, f) (t) |= (f)
211 #define CLR(t, f) (t) &= ~(f)
212 #define ISSET(t, f) ((t) & (f))
213
214 /* Definition of the driver for autoconfig. */
215 static int zstty_match(struct device *, struct cfdata *, void *);
216 static void zstty_attach(struct device *, struct device *, void *);
217
218 CFATTACH_DECL(zstty, sizeof(struct zstty_softc),
219 zstty_match, zstty_attach, NULL, NULL);
220
221 extern struct cfdriver zstty_cd;
222
223 dev_type_open(zsopen);
224 dev_type_close(zsclose);
225 dev_type_read(zsread);
226 dev_type_write(zswrite);
227 dev_type_ioctl(zsioctl);
228 dev_type_stop(zsstop);
229 dev_type_tty(zstty);
230 dev_type_poll(zspoll);
231
232 const struct cdevsw zstty_cdevsw = {
233 zsopen, zsclose, zsread, zswrite, zsioctl,
234 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
235 };
236
237 struct zsops zsops_tty;
238
239 static void zs_shutdown __P((struct zstty_softc *));
240 static void zsstart __P((struct tty *));
241 static int zsparam __P((struct tty *, struct termios *));
242 static void zs_modem __P((struct zstty_softc *, int));
243 static void tiocm_to_zs __P((struct zstty_softc *, u_long, int));
244 static int zs_to_tiocm __P((struct zstty_softc *));
245 static int zshwiflow __P((struct tty *, int));
246 static void zs_hwiflow __P((struct zstty_softc *));
247 static void zs_maskintr __P((struct zstty_softc *));
248
249 /* Low-level routines. */
250 static void zstty_rxint __P((struct zs_chanstate *));
251 static void zstty_stint __P((struct zs_chanstate *, int));
252 static void zstty_txint __P((struct zs_chanstate *));
253 static void zstty_softint __P((struct zs_chanstate *));
254
255 #define ZSUNIT(x) (minor(x) & 0x7ffff)
256 #define ZSDIALOUT(x) (minor(x) & 0x80000)
257
258 /*
259 * zstty_match: how is this zs channel configured?
260 */
261 int
262 zstty_match(parent, cf, aux)
263 struct device *parent;
264 struct cfdata *cf;
265 void *aux;
266 {
267 struct zsc_attach_args *args = aux;
268
269 /* Exact match is better than wildcard. */
270 if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel)
271 return 2;
272
273 /* This driver accepts wildcard. */
274 if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT)
275 return 1;
276
277 return 0;
278 }
279
280 void
281 zstty_attach(parent, self, aux)
282 struct device *parent, *self;
283 void *aux;
284
285 {
286 struct zsc_softc *zsc = (void *) parent;
287 struct zstty_softc *zst = (void *) self;
288 struct cfdata *cf = self->dv_cfdata;
289 struct zsc_attach_args *args = aux;
290 struct zs_chanstate *cs;
291 struct tty *tp;
292 int channel, s, tty_unit;
293 dev_t dev;
294 char *i, *o;
295 int dtr_on;
296 int resetbit;
297
298 callout_init(&zst->zst_diag_ch);
299 cn_init_magic(&zstty_cnm_state);
300
301 tty_unit = zst->zst_dev.dv_unit;
302 channel = args->channel;
303 cs = zsc->zsc_cs[channel];
304 cs->cs_private = zst;
305 cs->cs_ops = &zsops_tty;
306
307 zst->zst_cs = cs;
308 zst->zst_swflags = cf->cf_flags; /* softcar, etc. */
309 zst->zst_hwflags = args->hwflags;
310 dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), tty_unit);
311
312 if (zst->zst_swflags)
313 printf(" flags 0x%x", zst->zst_swflags);
314
315 /*
316 * Check whether we serve as a console device.
317 * XXX - split console input/output channels aren't
318 * supported yet on /dev/console
319 */
320 i = o = NULL;
321 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
322 i = "input";
323 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
324 args->consdev->cn_dev = dev;
325 cn_tab->cn_pollc = args->consdev->cn_pollc;
326 cn_tab->cn_getc = args->consdev->cn_getc;
327 }
328 cn_tab->cn_dev = dev;
329 /* Set console magic to BREAK */
330 cn_set_magic("\047\001");
331 }
332 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
333 o = "output";
334 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
335 cn_tab->cn_putc = args->consdev->cn_putc;
336 }
337 cn_tab->cn_dev = dev;
338 }
339 if (i != NULL || o != NULL)
340 printf(" (console %s)", i ? (o ? "i/o" : i) : o);
341
342 #ifdef KGDB
343 if (zs_check_kgdb(cs, dev)) {
344 /*
345 * Allow kgdb to "take over" this port. Returns true
346 * if this serial port is in-use by kgdb.
347 */
348 printf(" (kgdb)\n");
349 /*
350 * This is the kgdb port (exclusive use)
351 * so skip the normal attach code.
352 */
353 return;
354 }
355 #endif
356 printf("\n");
357
358 tp = ttymalloc();
359 tp->t_dev = dev;
360 tp->t_oproc = zsstart;
361 tp->t_param = zsparam;
362 tp->t_hwiflow = zshwiflow;
363 tty_attach(tp);
364
365 zst->zst_tty = tp;
366 zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK);
367 zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
368 /* Disable the high water mark. */
369 zst->zst_r_hiwat = 0;
370 zst->zst_r_lowat = 0;
371 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
372 zst->zst_rbavail = zstty_rbuf_size;
373
374 /* if there are no enable/disable functions, assume the device
375 is always enabled */
376 if (!cs->enable)
377 cs->enabled = 1;
378
379 /*
380 * Hardware init
381 */
382 dtr_on = 0;
383 resetbit = 0;
384 if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
385 /* Call zsparam similar to open. */
386 struct termios t;
387
388 /* Wait a while for previous console output to complete */
389 DELAY(10000);
390
391 /* Setup the "new" parameters in t. */
392 t.c_ispeed = 0;
393 t.c_ospeed = cs->cs_defspeed;
394 t.c_cflag = cs->cs_defcflag;
395
396 /*
397 * Turn on receiver and status interrupts.
398 * We defer the actual write of the register to zsparam(),
399 * but we must make sure status interrupts are turned on by
400 * the time zsparam() reads the initial rr0 state.
401 */
402 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
403
404 /* Make sure zsparam will see changes. */
405 tp->t_ospeed = 0;
406 (void) zsparam(tp, &t);
407
408 /* Make sure DTR is on now. */
409 dtr_on = 1;
410
411 } else if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_NORESET)) {
412 /* Not the console; may need reset. */
413 resetbit = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
414 }
415
416 s = splzs();
417 simple_lock(&cs->cs_lock);
418 if (resetbit)
419 zs_write_reg(cs, 9, resetbit);
420 zs_modem(zst, dtr_on);
421 simple_unlock(&cs->cs_lock);
422 splx(s);
423 }
424
425
426 /*
427 * Return pointer to our tty.
428 */
429 struct tty *
430 zstty(dev)
431 dev_t dev;
432 {
433 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
434
435 return (zst->zst_tty);
436 }
437
438
439 void
440 zs_shutdown(zst)
441 struct zstty_softc *zst;
442 {
443 struct zs_chanstate *cs = zst->zst_cs;
444 struct tty *tp = zst->zst_tty;
445 int s;
446
447 s = splzs();
448 simple_lock(&cs->cs_lock);
449
450 /* If we were asserting flow control, then deassert it. */
451 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
452 zs_hwiflow(zst);
453
454 /* Clear any break condition set with TIOCSBRK. */
455 zs_break(cs, 0);
456
457 /* Turn off PPS capture on last close. */
458 zst->zst_ppsmask = 0;
459 zst->ppsparam.mode = 0;
460
461 /*
462 * Hang up if necessary. Wait a bit, so the other side has time to
463 * notice even if we immediately open the port again.
464 */
465 if (ISSET(tp->t_cflag, HUPCL)) {
466 zs_modem(zst, 0);
467 simple_unlock(&cs->cs_lock);
468 splx(s);
469 /*
470 * XXX - another process is not prevented from opening
471 * the device during our sleep.
472 */
473 (void) tsleep(cs, TTIPRI, ttclos, hz);
474 /* Re-check state in case we were opened during our sleep */
475 if (ISSET(tp->t_state, TS_ISOPEN) || tp->t_wopen != 0)
476 return;
477
478 s = splzs();
479 simple_lock(&cs->cs_lock);
480 }
481
482 /* Turn off interrupts if not the console. */
483 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
484 CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
485 cs->cs_creg[1] = cs->cs_preg[1];
486 zs_write_reg(cs, 1, cs->cs_creg[1]);
487 }
488
489 /* Call the power management hook. */
490 if (cs->disable) {
491 #ifdef DIAGNOSTIC
492 if (!cs->enabled)
493 panic("zs_shutdown: not enabled?");
494 #endif
495 (*cs->disable)(zst->zst_cs);
496 }
497
498 simple_unlock(&cs->cs_lock);
499 splx(s);
500 }
501
502 /*
503 * Open a zs serial (tty) port.
504 */
505 int
506 zsopen(dev, flags, mode, p)
507 dev_t dev;
508 int flags;
509 int mode;
510 struct proc *p;
511 {
512 struct zstty_softc *zst;
513 struct zs_chanstate *cs;
514 struct tty *tp;
515 int s, s2;
516 int error;
517
518 zst = device_lookup(&zstty_cd, ZSUNIT(dev));
519 if (zst == NULL)
520 return (ENXIO);
521
522 tp = zst->zst_tty;
523 cs = zst->zst_cs;
524
525 /* If KGDB took the line, then tp==NULL */
526 if (tp == NULL)
527 return (EBUSY);
528
529 if (ISSET(tp->t_state, TS_ISOPEN) &&
530 ISSET(tp->t_state, TS_XCLUDE) &&
531 p->p_ucred->cr_uid != 0)
532 return (EBUSY);
533
534 s = spltty();
535
536 /*
537 * Do the following iff this is a first open.
538 */
539 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
540 struct termios t;
541
542 tp->t_dev = dev;
543
544 /* Call the power management hook. */
545 if (cs->enable) {
546 if ((*cs->enable)(cs)) {
547 splx(s);
548 printf("%s: device enable failed\n",
549 zst->zst_dev.dv_xname);
550 return (EIO);
551 }
552 }
553
554 /*
555 * Initialize the termios status to the defaults. Add in the
556 * sticky bits from TIOCSFLAGS.
557 */
558 t.c_ispeed = 0;
559 t.c_ospeed = cs->cs_defspeed;
560 t.c_cflag = cs->cs_defcflag;
561 if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
562 SET(t.c_cflag, CLOCAL);
563 if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
564 SET(t.c_cflag, CRTSCTS);
565 if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
566 SET(t.c_cflag, CDTRCTS);
567 if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
568 SET(t.c_cflag, MDMBUF);
569
570 s2 = splzs();
571 simple_lock(&cs->cs_lock);
572
573 /*
574 * Turn on receiver and status interrupts.
575 * We defer the actual write of the register to zsparam(),
576 * but we must make sure status interrupts are turned on by
577 * the time zsparam() reads the initial rr0 state.
578 */
579 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
580
581 /* Clear PPS capture state on first open. */
582 zst->zst_ppsmask = 0;
583 zst->ppsparam.mode = 0;
584
585 simple_unlock(&cs->cs_lock);
586 splx(s2);
587
588 /* Make sure zsparam will see changes. */
589 tp->t_ospeed = 0;
590 (void) zsparam(tp, &t);
591
592 /*
593 * Note: zsparam has done: cflag, ispeed, ospeed
594 * so we just need to do: iflag, oflag, lflag, cc
595 * For "raw" mode, just leave all zeros.
596 */
597 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
598 tp->t_iflag = TTYDEF_IFLAG;
599 tp->t_oflag = TTYDEF_OFLAG;
600 tp->t_lflag = TTYDEF_LFLAG;
601 } else {
602 tp->t_iflag = 0;
603 tp->t_oflag = 0;
604 tp->t_lflag = 0;
605 }
606 ttychars(tp);
607 ttsetwater(tp);
608
609 s2 = splzs();
610 simple_lock(&cs->cs_lock);
611
612 /*
613 * Turn on DTR. We must always do this, even if carrier is not
614 * present, because otherwise we'd have to use TIOCSDTR
615 * immediately after setting CLOCAL, which applications do not
616 * expect. We always assert DTR while the device is open
617 * unless explicitly requested to deassert it.
618 */
619 zs_modem(zst, 1);
620
621 /* Clear the input ring, and unblock. */
622 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
623 zst->zst_rbavail = zstty_rbuf_size;
624 zs_iflush(cs);
625 CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
626 zs_hwiflow(zst);
627
628 simple_unlock(&cs->cs_lock);
629 splx(s2);
630 }
631
632 splx(s);
633
634 error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
635 if (error)
636 goto bad;
637
638 error = (*tp->t_linesw->l_open)(dev, tp);
639 if (error)
640 goto bad;
641
642 return (0);
643
644 bad:
645 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
646 /*
647 * We failed to open the device, and nobody else had it opened.
648 * Clean up the state as appropriate.
649 */
650 zs_shutdown(zst);
651 }
652
653 return (error);
654 }
655
656 /*
657 * Close a zs serial port.
658 */
659 int
660 zsclose(dev, flags, mode, p)
661 dev_t dev;
662 int flags;
663 int mode;
664 struct proc *p;
665 {
666 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
667 struct tty *tp = zst->zst_tty;
668
669 /* XXX This is for cons.c. */
670 if (!ISSET(tp->t_state, TS_ISOPEN))
671 return 0;
672
673 (*tp->t_linesw->l_close)(tp, flags);
674 ttyclose(tp);
675
676 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
677 /*
678 * Although we got a last close, the device may still be in
679 * use; e.g. if this was the dialout node, and there are still
680 * processes waiting for carrier on the non-dialout node.
681 */
682 zs_shutdown(zst);
683 }
684
685 return (0);
686 }
687
688 /*
689 * Read/write zs serial port.
690 */
691 int
692 zsread(dev, uio, flags)
693 dev_t dev;
694 struct uio *uio;
695 int flags;
696 {
697 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
698 struct tty *tp = zst->zst_tty;
699
700 return ((*tp->t_linesw->l_read)(tp, uio, flags));
701 }
702
703 int
704 zswrite(dev, uio, flags)
705 dev_t dev;
706 struct uio *uio;
707 int flags;
708 {
709 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
710 struct tty *tp = zst->zst_tty;
711
712 return ((*tp->t_linesw->l_write)(tp, uio, flags));
713 }
714
715 int
716 zspoll(dev, events, p)
717 dev_t dev;
718 int events;
719 struct proc *p;
720 {
721 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
722 struct tty *tp = zst->zst_tty;
723
724 return ((*tp->t_linesw->l_poll)(tp, events, p));
725 }
726
727 int
728 zsioctl(dev, cmd, data, flag, p)
729 dev_t dev;
730 u_long cmd;
731 caddr_t data;
732 int flag;
733 struct proc *p;
734 {
735 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
736 struct zs_chanstate *cs = zst->zst_cs;
737 struct tty *tp = zst->zst_tty;
738 int error;
739 int s;
740
741 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p);
742 if (error != EPASSTHROUGH)
743 return (error);
744
745 error = ttioctl(tp, cmd, data, flag, p);
746 if (error != EPASSTHROUGH)
747 return (error);
748
749 #ifdef ZS_MD_IOCTL
750 error = ZS_MD_IOCTL(cs, cmd, data);
751 if (error != EPASSTHROUGH)
752 return (error);
753 #endif /* ZS_MD_IOCTL */
754
755 error = 0;
756
757 s = splzs();
758 simple_lock(&cs->cs_lock);
759
760 switch (cmd) {
761 case TIOCSBRK:
762 zs_break(cs, 1);
763 break;
764
765 case TIOCCBRK:
766 zs_break(cs, 0);
767 break;
768
769 case TIOCGFLAGS:
770 *(int *)data = zst->zst_swflags;
771 break;
772
773 case TIOCSFLAGS:
774 error = suser(p->p_ucred, &p->p_acflag);
775 if (error)
776 break;
777 zst->zst_swflags = *(int *)data;
778 break;
779
780 case TIOCSDTR:
781 zs_modem(zst, 1);
782 break;
783
784 case TIOCCDTR:
785 zs_modem(zst, 0);
786 break;
787
788 case TIOCMSET:
789 case TIOCMBIS:
790 case TIOCMBIC:
791 tiocm_to_zs(zst, cmd, *(int *)data);
792 break;
793
794 case TIOCMGET:
795 *(int *)data = zs_to_tiocm(zst);
796 break;
797
798 case PPS_IOC_CREATE:
799 break;
800
801 case PPS_IOC_DESTROY:
802 break;
803
804 case PPS_IOC_GETPARAMS: {
805 pps_params_t *pp;
806 pp = (pps_params_t *)data;
807 *pp = zst->ppsparam;
808 break;
809 }
810
811 case PPS_IOC_SETPARAMS: {
812 pps_params_t *pp;
813 int mode;
814 if (cs->cs_rr0_pps == 0) {
815 error = EINVAL;
816 break;
817 }
818 pp = (pps_params_t *)data;
819 if (pp->mode & ~zsppscap) {
820 error = EINVAL;
821 break;
822 }
823 zst->ppsparam = *pp;
824 /*
825 * compute masks from user-specified timestamp state.
826 */
827 mode = zst->ppsparam.mode;
828 #ifdef PPS_SYNC
829 if (mode & PPS_HARDPPSONASSERT) {
830 mode |= PPS_CAPTUREASSERT;
831 /* XXX revoke any previous HARDPPS source */
832 }
833 if (mode & PPS_HARDPPSONCLEAR) {
834 mode |= PPS_CAPTURECLEAR;
835 /* XXX revoke any previous HARDPPS source */
836 }
837 #endif /* PPS_SYNC */
838 switch (mode & PPS_CAPTUREBOTH) {
839 case 0:
840 zst->zst_ppsmask = 0;
841 break;
842
843 case PPS_CAPTUREASSERT:
844 zst->zst_ppsmask = ZSRR0_DCD;
845 zst->zst_ppsassert = ZSRR0_DCD;
846 zst->zst_ppsclear = -1;
847 break;
848
849 case PPS_CAPTURECLEAR:
850 zst->zst_ppsmask = ZSRR0_DCD;
851 zst->zst_ppsassert = -1;
852 zst->zst_ppsclear = 0;
853 break;
854
855 case PPS_CAPTUREBOTH:
856 zst->zst_ppsmask = ZSRR0_DCD;
857 zst->zst_ppsassert = ZSRR0_DCD;
858 zst->zst_ppsclear = 0;
859 break;
860
861 default:
862 error = EINVAL;
863 break;
864 }
865
866 /*
867 * Now update interrupts.
868 */
869 zs_maskintr(zst);
870 /*
871 * If nothing is being transmitted, set up new current values,
872 * else mark them as pending.
873 */
874 if (!cs->cs_heldchange) {
875 if (zst->zst_tx_busy) {
876 zst->zst_heldtbc = zst->zst_tbc;
877 zst->zst_tbc = 0;
878 cs->cs_heldchange = 1;
879 } else
880 zs_loadchannelregs(cs);
881 }
882
883 break;
884 }
885
886 case PPS_IOC_GETCAP:
887 *(int *)data = zsppscap;
888 break;
889
890 case PPS_IOC_FETCH: {
891 pps_info_t *pi;
892 pi = (pps_info_t *)data;
893 *pi = zst->ppsinfo;
894 break;
895 }
896
897 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
898 if (cs->cs_rr0_pps == 0) {
899 error = EINVAL;
900 break;
901 }
902 /*
903 * Some GPS clocks models use the falling rather than
904 * rising edge as the on-the-second signal.
905 * The old API has no way to specify PPS polarity.
906 */
907 zst->zst_ppsmask = ZSRR0_DCD;
908 #ifndef PPS_TRAILING_EDGE
909 zst->zst_ppsassert = ZSRR0_DCD;
910 zst->zst_ppsclear = -1;
911 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
912 &zst->ppsinfo.assert_timestamp);
913 #else
914 zst->zst_ppsassert = -1;
915 zst->zst_ppsclear = 01;
916 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
917 &zst->ppsinfo.clear_timestamp);
918 #endif
919 /*
920 * Now update interrupts.
921 */
922 zs_maskintr(zst);
923 /*
924 * If nothing is being transmitted, set up new current values,
925 * else mark them as pending.
926 */
927 if (!cs->cs_heldchange) {
928 if (zst->zst_tx_busy) {
929 zst->zst_heldtbc = zst->zst_tbc;
930 zst->zst_tbc = 0;
931 cs->cs_heldchange = 1;
932 } else
933 zs_loadchannelregs(cs);
934 }
935
936 break;
937
938 default:
939 error = EPASSTHROUGH;
940 break;
941 }
942
943 simple_unlock(&cs->cs_lock);
944 splx(s);
945
946 return (error);
947 }
948
949 /*
950 * Start or restart transmission.
951 */
952 static void
953 zsstart(tp)
954 struct tty *tp;
955 {
956 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
957 struct zs_chanstate *cs = zst->zst_cs;
958 int s;
959
960 s = spltty();
961 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
962 goto out;
963 if (zst->zst_tx_stopped)
964 goto out;
965
966 if (tp->t_outq.c_cc <= tp->t_lowat) {
967 if (ISSET(tp->t_state, TS_ASLEEP)) {
968 CLR(tp->t_state, TS_ASLEEP);
969 wakeup((caddr_t)&tp->t_outq);
970 }
971 selwakeup(&tp->t_wsel);
972 if (tp->t_outq.c_cc == 0)
973 goto out;
974 }
975
976 /* Grab the first contiguous region of buffer space. */
977 {
978 u_char *tba;
979 int tbc;
980
981 tba = tp->t_outq.c_cf;
982 tbc = ndqb(&tp->t_outq, 0);
983
984 (void) splzs();
985 simple_lock(&cs->cs_lock);
986
987 zst->zst_tba = tba;
988 zst->zst_tbc = tbc;
989 }
990
991 SET(tp->t_state, TS_BUSY);
992 zst->zst_tx_busy = 1;
993
994 /* Enable transmit completion interrupts if necessary. */
995 if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
996 SET(cs->cs_preg[1], ZSWR1_TIE);
997 cs->cs_creg[1] = cs->cs_preg[1];
998 zs_write_reg(cs, 1, cs->cs_creg[1]);
999 }
1000
1001 /* Output the first character of the contiguous buffer. */
1002 {
1003 zs_write_data(cs, *zst->zst_tba);
1004 zst->zst_tbc--;
1005 zst->zst_tba++;
1006 }
1007 simple_unlock(&cs->cs_lock);
1008 out:
1009 splx(s);
1010 return;
1011 }
1012
1013 /*
1014 * Stop output, e.g., for ^S or output flush.
1015 */
1016 void
1017 zsstop(tp, flag)
1018 struct tty *tp;
1019 int flag;
1020 {
1021 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1022 int s;
1023
1024 s = splzs();
1025 if (ISSET(tp->t_state, TS_BUSY)) {
1026 /* Stop transmitting at the next chunk. */
1027 zst->zst_tbc = 0;
1028 zst->zst_heldtbc = 0;
1029 if (!ISSET(tp->t_state, TS_TTSTOP))
1030 SET(tp->t_state, TS_FLUSH);
1031 }
1032 splx(s);
1033 }
1034
1035 /*
1036 * Set ZS tty parameters from termios.
1037 * XXX - Should just copy the whole termios after
1038 * making sure all the changes could be done.
1039 */
1040 static int
1041 zsparam(tp, t)
1042 struct tty *tp;
1043 struct termios *t;
1044 {
1045 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1046 struct zs_chanstate *cs = zst->zst_cs;
1047 int ospeed;
1048 tcflag_t cflag;
1049 u_char tmp3, tmp4, tmp5;
1050 int s, error;
1051
1052 ospeed = t->c_ospeed;
1053 cflag = t->c_cflag;
1054
1055 /* Check requested parameters. */
1056 if (ospeed < 0)
1057 return (EINVAL);
1058 if (t->c_ispeed && t->c_ispeed != ospeed)
1059 return (EINVAL);
1060
1061 /*
1062 * For the console, always force CLOCAL and !HUPCL, so that the port
1063 * is always active.
1064 */
1065 if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
1066 ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
1067 SET(cflag, CLOCAL);
1068 CLR(cflag, HUPCL);
1069 }
1070
1071 /*
1072 * Only whack the UART when params change.
1073 * Some callers need to clear tp->t_ospeed
1074 * to make sure initialization gets done.
1075 */
1076 if (tp->t_ospeed == ospeed &&
1077 tp->t_cflag == cflag)
1078 return (0);
1079
1080 /*
1081 * Call MD functions to deal with changed
1082 * clock modes or H/W flow control modes.
1083 * The BRG divisor is set now. (reg 12,13)
1084 */
1085 error = zs_set_speed(cs, ospeed);
1086 if (error)
1087 return (error);
1088 error = zs_set_modes(cs, cflag);
1089 if (error)
1090 return (error);
1091
1092 /*
1093 * Block interrupts so that state will not
1094 * be altered until we are done setting it up.
1095 *
1096 * Initial values in cs_preg are set before
1097 * our attach routine is called. The master
1098 * interrupt enable is handled by zsc.c
1099 *
1100 */
1101 s = splzs();
1102 simple_lock(&cs->cs_lock);
1103
1104 /*
1105 * Recalculate which status ints to enable.
1106 */
1107 zs_maskintr(zst);
1108
1109 /* Recompute character size bits. */
1110 tmp3 = cs->cs_preg[3];
1111 tmp5 = cs->cs_preg[5];
1112 CLR(tmp3, ZSWR3_RXSIZE);
1113 CLR(tmp5, ZSWR5_TXSIZE);
1114 switch (ISSET(cflag, CSIZE)) {
1115 case CS5:
1116 SET(tmp3, ZSWR3_RX_5);
1117 SET(tmp5, ZSWR5_TX_5);
1118 break;
1119 case CS6:
1120 SET(tmp3, ZSWR3_RX_6);
1121 SET(tmp5, ZSWR5_TX_6);
1122 break;
1123 case CS7:
1124 SET(tmp3, ZSWR3_RX_7);
1125 SET(tmp5, ZSWR5_TX_7);
1126 break;
1127 case CS8:
1128 SET(tmp3, ZSWR3_RX_8);
1129 SET(tmp5, ZSWR5_TX_8);
1130 break;
1131 }
1132 cs->cs_preg[3] = tmp3;
1133 cs->cs_preg[5] = tmp5;
1134
1135 /*
1136 * Recompute the stop bits and parity bits. Note that
1137 * zs_set_speed() may have set clock selection bits etc.
1138 * in wr4, so those must preserved.
1139 */
1140 tmp4 = cs->cs_preg[4];
1141 CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
1142 if (ISSET(cflag, CSTOPB))
1143 SET(tmp4, ZSWR4_TWOSB);
1144 else
1145 SET(tmp4, ZSWR4_ONESB);
1146 if (!ISSET(cflag, PARODD))
1147 SET(tmp4, ZSWR4_EVENP);
1148 if (ISSET(cflag, PARENB))
1149 SET(tmp4, ZSWR4_PARENB);
1150 cs->cs_preg[4] = tmp4;
1151
1152 /* And copy to tty. */
1153 tp->t_ispeed = 0;
1154 tp->t_ospeed = ospeed;
1155 tp->t_cflag = cflag;
1156
1157 /*
1158 * If nothing is being transmitted, set up new current values,
1159 * else mark them as pending.
1160 */
1161 if (!cs->cs_heldchange) {
1162 if (zst->zst_tx_busy) {
1163 zst->zst_heldtbc = zst->zst_tbc;
1164 zst->zst_tbc = 0;
1165 cs->cs_heldchange = 1;
1166 } else
1167 zs_loadchannelregs(cs);
1168 }
1169
1170 /*
1171 * If hardware flow control is disabled, turn off the buffer water
1172 * marks and unblock any soft flow control state. Otherwise, enable
1173 * the water marks.
1174 */
1175 if (!ISSET(cflag, CHWFLOW)) {
1176 zst->zst_r_hiwat = 0;
1177 zst->zst_r_lowat = 0;
1178 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1179 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1180 zst->zst_rx_ready = 1;
1181 cs->cs_softreq = 1;
1182 }
1183 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1184 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1185 zs_hwiflow(zst);
1186 }
1187 } else {
1188 zst->zst_r_hiwat = zstty_rbuf_hiwat;
1189 zst->zst_r_lowat = zstty_rbuf_lowat;
1190 }
1191
1192 /*
1193 * Force a recheck of the hardware carrier and flow control status,
1194 * since we may have changed which bits we're looking at.
1195 */
1196 zstty_stint(cs, 1);
1197
1198 simple_unlock(&cs->cs_lock);
1199 splx(s);
1200
1201 /*
1202 * If hardware flow control is disabled, unblock any hard flow control
1203 * state.
1204 */
1205 if (!ISSET(cflag, CHWFLOW)) {
1206 if (zst->zst_tx_stopped) {
1207 zst->zst_tx_stopped = 0;
1208 zsstart(tp);
1209 }
1210 }
1211
1212 zstty_softint(cs);
1213
1214 return (0);
1215 }
1216
1217 /*
1218 * Compute interrupt enable bits and set in the pending bits. Called both
1219 * in zsparam() and when PPS (pulse per second timing) state changes.
1220 * Must be called at splzs().
1221 */
1222 static void
1223 zs_maskintr(zst)
1224 struct zstty_softc *zst;
1225 {
1226 struct zs_chanstate *cs = zst->zst_cs;
1227 int tmp15;
1228
1229 cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
1230 if (zst->zst_ppsmask != 0)
1231 cs->cs_rr0_mask |= cs->cs_rr0_pps;
1232 tmp15 = cs->cs_preg[15];
1233 if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
1234 SET(tmp15, ZSWR15_DCD_IE);
1235 else
1236 CLR(tmp15, ZSWR15_DCD_IE);
1237 if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
1238 SET(tmp15, ZSWR15_CTS_IE);
1239 else
1240 CLR(tmp15, ZSWR15_CTS_IE);
1241 cs->cs_preg[15] = tmp15;
1242 }
1243
1244
1245 /*
1246 * Raise or lower modem control (DTR/RTS) signals. If a character is
1247 * in transmission, the change is deferred.
1248 * Called at splzs() and with the channel lock held.
1249 */
1250 static void
1251 zs_modem(zst, onoff)
1252 struct zstty_softc *zst;
1253 int onoff;
1254 {
1255 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1256
1257 if (cs->cs_wr5_dtr == 0)
1258 return;
1259
1260 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1261
1262 if (onoff)
1263 SET(ccs->cs_preg[5], cs->cs_wr5_dtr);
1264 else
1265 CLR(ccs->cs_preg[5], cs->cs_wr5_dtr);
1266
1267 if (!cs->cs_heldchange) {
1268 if (zst->zst_tx_busy) {
1269 zst->zst_heldtbc = zst->zst_tbc;
1270 zst->zst_tbc = 0;
1271 cs->cs_heldchange = 1;
1272 } else
1273 zs_loadchannelregs(cs);
1274 }
1275 }
1276
1277 /*
1278 * Set modem bits.
1279 * Called at splzs() and with the channel lock held.
1280 */
1281 static void
1282 tiocm_to_zs(zst, how, ttybits)
1283 struct zstty_softc *zst;
1284 u_long how;
1285 int ttybits;
1286 {
1287 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1288 u_char zsbits;
1289
1290 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1291
1292 zsbits = 0;
1293 if (ISSET(ttybits, TIOCM_DTR))
1294 SET(zsbits, ZSWR5_DTR);
1295 if (ISSET(ttybits, TIOCM_RTS))
1296 SET(zsbits, ZSWR5_RTS);
1297
1298 switch (how) {
1299 case TIOCMBIC:
1300 CLR(ccs->cs_preg[5], zsbits);
1301 break;
1302
1303 case TIOCMBIS:
1304 SET(ccs->cs_preg[5], zsbits);
1305 break;
1306
1307 case TIOCMSET:
1308 CLR(ccs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR);
1309 SET(ccs->cs_preg[5], zsbits);
1310 break;
1311 }
1312
1313 if (!cs->cs_heldchange) {
1314 if (zst->zst_tx_busy) {
1315 zst->zst_heldtbc = zst->zst_tbc;
1316 zst->zst_tbc = 0;
1317 cs->cs_heldchange = 1;
1318 } else
1319 zs_loadchannelregs(cs);
1320 }
1321 }
1322
1323 /*
1324 * Get modem bits.
1325 * Called at splzs() and with the channel lock held.
1326 */
1327 static int
1328 zs_to_tiocm(zst)
1329 struct zstty_softc *zst;
1330 {
1331 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1332 u_char zsbits;
1333 int ttybits = 0;
1334
1335 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1336
1337 zsbits = ccs->cs_preg[5];
1338 if (ISSET(zsbits, ZSWR5_DTR))
1339 SET(ttybits, TIOCM_DTR);
1340 if (ISSET(zsbits, ZSWR5_RTS))
1341 SET(ttybits, TIOCM_RTS);
1342
1343 zsbits = cs->cs_rr0;
1344 if (ISSET(zsbits, ZSRR0_DCD))
1345 SET(ttybits, TIOCM_CD);
1346 if (ISSET(zsbits, ZSRR0_CTS))
1347 SET(ttybits, TIOCM_CTS);
1348
1349 return (ttybits);
1350 }
1351
1352 /*
1353 * Try to block or unblock input using hardware flow-control.
1354 * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
1355 * if this function returns non-zero, the TS_TBLOCK flag will
1356 * be set or cleared according to the "block" arg passed.
1357 */
1358 int
1359 zshwiflow(tp, block)
1360 struct tty *tp;
1361 int block;
1362 {
1363 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1364 struct zs_chanstate *cs = zst->zst_cs;
1365 int s;
1366
1367 if (cs->cs_wr5_rts == 0)
1368 return (0);
1369
1370 s = splzs();
1371 simple_lock(&cs->cs_lock);
1372 if (block) {
1373 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1374 SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
1375 zs_hwiflow(zst);
1376 }
1377 } else {
1378 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1379 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1380 zst->zst_rx_ready = 1;
1381 cs->cs_softreq = 1;
1382 }
1383 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1384 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
1385 zs_hwiflow(zst);
1386 }
1387 }
1388 simple_unlock(&cs->cs_lock);
1389 splx(s);
1390 return (1);
1391 }
1392
1393 /*
1394 * Internal version of zshwiflow
1395 * Called at splzs() and with the channel lock held.
1396 */
1397 static void
1398 zs_hwiflow(zst)
1399 struct zstty_softc *zst;
1400 {
1401 struct zs_chanstate *cs = zst->zst_cs, *ccs;
1402
1403 if (cs->cs_wr5_rts == 0)
1404 return;
1405
1406 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs);
1407
1408 if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
1409 CLR(ccs->cs_preg[5], cs->cs_wr5_rts);
1410 CLR(ccs->cs_creg[5], cs->cs_wr5_rts);
1411 } else {
1412 SET(ccs->cs_preg[5], cs->cs_wr5_rts);
1413 SET(ccs->cs_creg[5], cs->cs_wr5_rts);
1414 }
1415 zs_write_reg(ccs, 5, ccs->cs_creg[5]);
1416 }
1417
1418
1419 /****************************************************************
1420 * Interface to the lower layer (zscc)
1421 ****************************************************************/
1422
1423 #define integrate static inline
1424 integrate void zstty_rxsoft __P((struct zstty_softc *, struct tty *));
1425 integrate void zstty_txsoft __P((struct zstty_softc *, struct tty *));
1426 integrate void zstty_stsoft __P((struct zstty_softc *, struct tty *));
1427 static void zstty_diag __P((void *));
1428
1429 /*
1430 * Receiver Ready interrupt.
1431 * Called at splzs() and with the channel lock held.
1432 */
1433 static void
1434 zstty_rxint(cs)
1435 struct zs_chanstate *cs;
1436 {
1437 struct zstty_softc *zst = cs->cs_private;
1438 u_char *put, *end;
1439 u_int cc;
1440 u_char rr0, rr1, c;
1441
1442 end = zst->zst_ebuf;
1443 put = zst->zst_rbput;
1444 cc = zst->zst_rbavail;
1445
1446 while (cc > 0) {
1447 /*
1448 * First read the status, because reading the received char
1449 * destroys the status of this char.
1450 */
1451 rr1 = zs_read_reg(cs, 1);
1452 c = zs_read_data(cs);
1453
1454 if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
1455 /* Clear the receive error. */
1456 zs_write_csr(cs, ZSWR0_RESET_ERRORS);
1457 }
1458
1459 cn_check_magic(zst->zst_tty->t_dev, c, zstty_cnm_state);
1460 put[0] = c;
1461 put[1] = rr1;
1462 put += 2;
1463 if (put >= end)
1464 put = zst->zst_rbuf;
1465 cc--;
1466
1467 rr0 = zs_read_csr(cs);
1468 if (!ISSET(rr0, ZSRR0_RX_READY))
1469 break;
1470 }
1471
1472 /*
1473 * Current string of incoming characters ended because
1474 * no more data was available or we ran out of space.
1475 * Schedule a receive event if any data was received.
1476 * If we're out of space, turn off receive interrupts.
1477 */
1478 zst->zst_rbput = put;
1479 zst->zst_rbavail = cc;
1480 if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1481 zst->zst_rx_ready = 1;
1482 cs->cs_softreq = 1;
1483 }
1484
1485 /*
1486 * See if we are in danger of overflowing a buffer. If
1487 * so, use hardware flow control to ease the pressure.
1488 */
1489 if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
1490 cc < zst->zst_r_hiwat) {
1491 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1492 zs_hwiflow(zst);
1493 }
1494
1495 /*
1496 * If we're out of space, disable receive interrupts
1497 * until the queue has drained a bit.
1498 */
1499 if (!cc) {
1500 SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1501 CLR(cs->cs_preg[1], ZSWR1_RIE);
1502 cs->cs_creg[1] = cs->cs_preg[1];
1503 zs_write_reg(cs, 1, cs->cs_creg[1]);
1504 }
1505
1506 #if 0
1507 printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1508 #endif
1509 }
1510
1511 /*
1512 * Transmitter Ready interrupt.
1513 * Called at splzs() and with the channel lock held.
1514 */
1515 static void
1516 zstty_txint(cs)
1517 struct zs_chanstate *cs;
1518 {
1519 struct zstty_softc *zst = cs->cs_private;
1520
1521 /*
1522 * If we've delayed a parameter change, do it now, and restart
1523 * output.
1524 */
1525 if (cs->cs_heldchange) {
1526 zs_loadchannelregs(cs);
1527 cs->cs_heldchange = 0;
1528 zst->zst_tbc = zst->zst_heldtbc;
1529 zst->zst_heldtbc = 0;
1530 }
1531
1532 /* Output the next character in the buffer, if any. */
1533 if (zst->zst_tbc > 0) {
1534 zs_write_data(cs, *zst->zst_tba);
1535 zst->zst_tbc--;
1536 zst->zst_tba++;
1537 } else {
1538 /* Disable transmit completion interrupts if necessary. */
1539 if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
1540 CLR(cs->cs_preg[1], ZSWR1_TIE);
1541 cs->cs_creg[1] = cs->cs_preg[1];
1542 zs_write_reg(cs, 1, cs->cs_creg[1]);
1543 }
1544 if (zst->zst_tx_busy) {
1545 zst->zst_tx_busy = 0;
1546 zst->zst_tx_done = 1;
1547 cs->cs_softreq = 1;
1548 }
1549 }
1550 }
1551
1552 /*
1553 * Status Change interrupt.
1554 * Called at splzs() and with the channel lock held.
1555 */
1556 static void
1557 zstty_stint(cs, force)
1558 struct zs_chanstate *cs;
1559 int force;
1560 {
1561 struct zstty_softc *zst = cs->cs_private;
1562 u_char rr0, delta;
1563
1564 rr0 = zs_read_csr(cs);
1565 zs_write_csr(cs, ZSWR0_RESET_STATUS);
1566
1567 /*
1568 * Check here for console break, so that we can abort
1569 * even when interrupts are locking up the machine.
1570 */
1571 if (ISSET(rr0, ZSRR0_BREAK))
1572 cn_check_magic(zst->zst_tty->t_dev, CNC_BREAK, zstty_cnm_state);
1573
1574 if (!force)
1575 delta = rr0 ^ cs->cs_rr0;
1576 else
1577 delta = cs->cs_rr0_mask;
1578 cs->cs_rr0 = rr0;
1579
1580 if (ISSET(delta, cs->cs_rr0_mask)) {
1581 SET(cs->cs_rr0_delta, delta);
1582
1583 /*
1584 * Pulse-per-second clock signal on edge of DCD?
1585 */
1586 if (ISSET(delta, zst->zst_ppsmask)) {
1587 struct timeval tv;
1588 if (ISSET(rr0, zst->zst_ppsmask) == zst->zst_ppsassert) {
1589 /* XXX nanotime() */
1590 microtime(&tv);
1591 TIMEVAL_TO_TIMESPEC(&tv,
1592 &zst->ppsinfo.assert_timestamp);
1593 if (zst->ppsparam.mode & PPS_OFFSETASSERT) {
1594 timespecadd(&zst->ppsinfo.assert_timestamp,
1595 &zst->ppsparam.assert_offset,
1596 &zst->ppsinfo.assert_timestamp);
1597 }
1598
1599 #ifdef PPS_SYNC
1600 if (zst->ppsparam.mode & PPS_HARDPPSONASSERT)
1601 hardpps(&tv, tv.tv_usec);
1602 #endif
1603 zst->ppsinfo.assert_sequence++;
1604 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1605 } else if (ISSET(rr0, zst->zst_ppsmask) ==
1606 zst->zst_ppsclear) {
1607 /* XXX nanotime() */
1608 microtime(&tv);
1609 TIMEVAL_TO_TIMESPEC(&tv,
1610 &zst->ppsinfo.clear_timestamp);
1611 if (zst->ppsparam.mode & PPS_OFFSETCLEAR) {
1612 timespecadd(&zst->ppsinfo.clear_timestamp,
1613 &zst->ppsparam.clear_offset,
1614 &zst->ppsinfo.clear_timestamp);
1615 }
1616
1617 #ifdef PPS_SYNC
1618 if (zst->ppsparam.mode & PPS_HARDPPSONCLEAR)
1619 hardpps(&tv, tv.tv_usec);
1620 #endif
1621 zst->ppsinfo.clear_sequence++;
1622 zst->ppsinfo.current_mode = zst->ppsparam.mode;
1623 }
1624 }
1625
1626 /*
1627 * Stop output immediately if we lose the output
1628 * flow control signal or carrier detect.
1629 */
1630 if (ISSET(~rr0, cs->cs_rr0_mask)) {
1631 zst->zst_tbc = 0;
1632 zst->zst_heldtbc = 0;
1633 }
1634
1635 zst->zst_st_check = 1;
1636 cs->cs_softreq = 1;
1637 }
1638 }
1639
1640 void
1641 zstty_diag(arg)
1642 void *arg;
1643 {
1644 struct zstty_softc *zst = arg;
1645 int overflows, floods;
1646 int s;
1647
1648 s = splzs();
1649 overflows = zst->zst_overflows;
1650 zst->zst_overflows = 0;
1651 floods = zst->zst_floods;
1652 zst->zst_floods = 0;
1653 zst->zst_errors = 0;
1654 splx(s);
1655
1656 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1657 zst->zst_dev.dv_xname,
1658 overflows, overflows == 1 ? "" : "s",
1659 floods, floods == 1 ? "" : "s");
1660 }
1661
1662 integrate void
1663 zstty_rxsoft(zst, tp)
1664 struct zstty_softc *zst;
1665 struct tty *tp;
1666 {
1667 struct zs_chanstate *cs = zst->zst_cs;
1668 int (*rint) __P((int c, struct tty *tp)) = tp->t_linesw->l_rint;
1669 u_char *get, *end;
1670 u_int cc, scc;
1671 u_char rr1;
1672 int code;
1673 int s;
1674
1675 end = zst->zst_ebuf;
1676 get = zst->zst_rbget;
1677 scc = cc = zstty_rbuf_size - zst->zst_rbavail;
1678
1679 if (cc == zstty_rbuf_size) {
1680 zst->zst_floods++;
1681 if (zst->zst_errors++ == 0)
1682 callout_reset(&zst->zst_diag_ch, 60 * hz,
1683 zstty_diag, zst);
1684 }
1685
1686 /* If not yet open, drop the entire buffer content here */
1687 if (!ISSET(tp->t_state, TS_ISOPEN)) {
1688 get += cc << 1;
1689 if (get >= end)
1690 get -= zstty_rbuf_size << 1;
1691 cc = 0;
1692 }
1693 while (cc) {
1694 code = get[0];
1695 rr1 = get[1];
1696 if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
1697 if (ISSET(rr1, ZSRR1_DO)) {
1698 zst->zst_overflows++;
1699 if (zst->zst_errors++ == 0)
1700 callout_reset(&zst->zst_diag_ch,
1701 60 * hz, zstty_diag, zst);
1702 }
1703 if (ISSET(rr1, ZSRR1_FE))
1704 SET(code, TTY_FE);
1705 if (ISSET(rr1, ZSRR1_PE))
1706 SET(code, TTY_PE);
1707 }
1708 if ((*rint)(code, tp) == -1) {
1709 /*
1710 * The line discipline's buffer is out of space.
1711 */
1712 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1713 /*
1714 * We're either not using flow control, or the
1715 * line discipline didn't tell us to block for
1716 * some reason. Either way, we have no way to
1717 * know when there's more space available, so
1718 * just drop the rest of the data.
1719 */
1720 get += cc << 1;
1721 if (get >= end)
1722 get -= zstty_rbuf_size << 1;
1723 cc = 0;
1724 } else {
1725 /*
1726 * Don't schedule any more receive processing
1727 * until the line discipline tells us there's
1728 * space available (through comhwiflow()).
1729 * Leave the rest of the data in the input
1730 * buffer.
1731 */
1732 SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1733 }
1734 break;
1735 }
1736 get += 2;
1737 if (get >= end)
1738 get = zst->zst_rbuf;
1739 cc--;
1740 }
1741
1742 if (cc != scc) {
1743 zst->zst_rbget = get;
1744 s = splzs();
1745 simple_lock(&cs->cs_lock);
1746 cc = zst->zst_rbavail += scc - cc;
1747 /* Buffers should be ok again, release possible block. */
1748 if (cc >= zst->zst_r_lowat) {
1749 if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
1750 CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1751 SET(cs->cs_preg[1], ZSWR1_RIE);
1752 cs->cs_creg[1] = cs->cs_preg[1];
1753 zs_write_reg(cs, 1, cs->cs_creg[1]);
1754 }
1755 if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
1756 CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1757 zs_hwiflow(zst);
1758 }
1759 }
1760 simple_unlock(&cs->cs_lock);
1761 splx(s);
1762 }
1763
1764 #if 0
1765 printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1766 #endif
1767 }
1768
1769 integrate void
1770 zstty_txsoft(zst, tp)
1771 struct zstty_softc *zst;
1772 struct tty *tp;
1773 {
1774 struct zs_chanstate *cs = zst->zst_cs;
1775 int s;
1776
1777 s = splzs();
1778 simple_lock(&cs->cs_lock);
1779 CLR(tp->t_state, TS_BUSY);
1780 if (ISSET(tp->t_state, TS_FLUSH))
1781 CLR(tp->t_state, TS_FLUSH);
1782 else
1783 ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
1784 simple_unlock(&cs->cs_lock);
1785 splx(s);
1786 (*tp->t_linesw->l_start)(tp);
1787 }
1788
1789 integrate void
1790 zstty_stsoft(zst, tp)
1791 struct zstty_softc *zst;
1792 struct tty *tp;
1793 {
1794 struct zs_chanstate *cs = zst->zst_cs;
1795 u_char rr0, delta;
1796 int s;
1797
1798 s = splzs();
1799 simple_lock(&cs->cs_lock);
1800 rr0 = cs->cs_rr0;
1801 delta = cs->cs_rr0_delta;
1802 cs->cs_rr0_delta = 0;
1803 simple_unlock(&cs->cs_lock);
1804 splx(s);
1805
1806 if (ISSET(delta, cs->cs_rr0_dcd)) {
1807 /*
1808 * Inform the tty layer that carrier detect changed.
1809 */
1810 (void) (*tp->t_linesw->l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
1811 }
1812
1813 if (ISSET(delta, cs->cs_rr0_cts)) {
1814 /* Block or unblock output according to flow control. */
1815 if (ISSET(rr0, cs->cs_rr0_cts)) {
1816 zst->zst_tx_stopped = 0;
1817 (*tp->t_linesw->l_start)(tp);
1818 } else {
1819 zst->zst_tx_stopped = 1;
1820 }
1821 }
1822 }
1823
1824 /*
1825 * Software interrupt. Called at zssoft
1826 *
1827 * The main job to be done here is to empty the input ring
1828 * by passing its contents up to the tty layer. The ring is
1829 * always emptied during this operation, therefore the ring
1830 * must not be larger than the space after "high water" in
1831 * the tty layer, or the tty layer might drop our input.
1832 *
1833 * Note: an "input blockage" condition is assumed to exist if
1834 * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
1835 */
1836 static void
1837 zstty_softint(cs)
1838 struct zs_chanstate *cs;
1839 {
1840 struct zstty_softc *zst = cs->cs_private;
1841 struct tty *tp = zst->zst_tty;
1842 int s;
1843
1844 s = spltty();
1845
1846 if (zst->zst_rx_ready) {
1847 zst->zst_rx_ready = 0;
1848 zstty_rxsoft(zst, tp);
1849 }
1850
1851 if (zst->zst_st_check) {
1852 zst->zst_st_check = 0;
1853 zstty_stsoft(zst, tp);
1854 }
1855
1856 if (zst->zst_tx_done) {
1857 zst->zst_tx_done = 0;
1858 zstty_txsoft(zst, tp);
1859 }
1860
1861 splx(s);
1862 }
1863
1864 struct zsops zsops_tty = {
1865 zstty_rxint, /* receive char available */
1866 zstty_stint, /* external/status */
1867 zstty_txint, /* xmit buffer empty */
1868 zstty_softint, /* process software interrupt */
1869 };
1870