if_fwip.c revision 1.24.12.1 1 /* $NetBSD: if_fwip.c,v 1.24.12.1 2012/04/29 23:04:50 mrg Exp $ */
2 /*-
3 * Copyright (c) 2004
4 * Doug Rabson
5 * Copyright (c) 2002-2003
6 * Hidetoshi Shimokawa. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 *
19 * This product includes software developed by Hidetoshi Shimokawa.
20 *
21 * 4. Neither the name of the author nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * $FreeBSD: src/sys/dev/firewire/if_fwip.c,v 1.18 2009/02/09 16:58:18 fjoe Exp $
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: if_fwip.c,v 1.24.12.1 2012/04/29 23:04:50 mrg Exp $");
42
43 #include <sys/param.h>
44 #include <sys/bus.h>
45 #include <sys/device.h>
46 #include <sys/errno.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/mutex.h>
50 #include <sys/sysctl.h>
51
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_ieee1394.h>
55 #include <net/if_types.h>
56
57 #include <dev/ieee1394/firewire.h>
58 #include <dev/ieee1394/firewirereg.h>
59 #include <dev/ieee1394/iec13213.h>
60 #include <dev/ieee1394/if_fwipvar.h>
61
62 /*
63 * We really need a mechanism for allocating regions in the FIFO
64 * address space. We pick a address in the OHCI controller's 'middle'
65 * address space. This means that the controller will automatically
66 * send responses for us, which is fine since we don't have any
67 * important information to put in the response anyway.
68 */
69 #define INET_FIFO 0xfffe00000000LL
70
71 #define FWIPDEBUG if (fwipdebug) aprint_debug_ifnet
72 #define TX_MAX_QUEUE (FWMAXQUEUE - 1)
73
74
75 struct fw_hwaddr {
76 uint32_t sender_unique_ID_hi;
77 uint32_t sender_unique_ID_lo;
78 uint8_t sender_max_rec;
79 uint8_t sspd;
80 uint16_t sender_unicast_FIFO_hi;
81 uint32_t sender_unicast_FIFO_lo;
82 };
83
84
85 static int fwipmatch(device_t, cfdata_t, void *);
86 static void fwipattach(device_t, device_t, void *);
87 static int fwipdetach(device_t, int);
88 static int fwipactivate(device_t, enum devact);
89
90 /* network interface */
91 static void fwip_start(struct ifnet *);
92 static int fwip_ioctl(struct ifnet *, u_long, void *);
93 static int fwip_init(struct ifnet *);
94 static void fwip_stop(struct ifnet *, int);
95
96 static void fwip_post_busreset(void *);
97 static void fwip_output_callback(struct fw_xfer *);
98 static void fwip_async_output(struct fwip_softc *, struct ifnet *);
99 static void fwip_stream_input(struct fw_xferq *);
100 static void fwip_unicast_input(struct fw_xfer *);
101
102 static int fwipdebug = 0;
103 static int broadcast_channel = 0xc0 | 0x1f; /* tag | channel(XXX) */
104 static int tx_speed = 2;
105 static int rx_queue_len = FWMAXQUEUE;
106
107 /*
108 * Setup sysctl(3) MIB, hw.fwip.*
109 *
110 * TBD condition CTLFLAG_PERMANENT on being a module or not
111 */
112 SYSCTL_SETUP(sysctl_fwip, "sysctl fwip(4) subtree setup")
113 {
114 int rc, fwip_node_num;
115 const struct sysctlnode *node;
116
117 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
118 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
119 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
120 goto err;
121 }
122
123 if ((rc = sysctl_createv(clog, 0, NULL, &node,
124 CTLFLAG_PERMANENT, CTLTYPE_NODE, "fwip",
125 SYSCTL_DESCR("fwip controls"),
126 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
127 goto err;
128 }
129 fwip_node_num = node->sysctl_num;
130
131 /* fwip RX queue length */
132 if ((rc = sysctl_createv(clog, 0, NULL, &node,
133 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
134 "rx_queue_len", SYSCTL_DESCR("Length of the receive queue"),
135 NULL, 0, &rx_queue_len,
136 0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) {
137 goto err;
138 }
139
140 /* fwip RX queue length */
141 if ((rc = sysctl_createv(clog, 0, NULL, &node,
142 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
143 "if_fwip_debug", SYSCTL_DESCR("fwip driver debug flag"),
144 NULL, 0, &fwipdebug,
145 0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) {
146 goto err;
147 }
148
149 return;
150
151 err:
152 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
153 }
154
155
156 CFATTACH_DECL_NEW(fwip, sizeof(struct fwip_softc),
157 fwipmatch, fwipattach, fwipdetach, fwipactivate);
158
159
160 static int
161 fwipmatch(device_t parent, cfdata_t cf, void *aux)
162 {
163 struct fw_attach_args *fwa = aux;
164
165 if (strcmp(fwa->name, "fwip") == 0)
166 return 1;
167 return 0;
168 }
169
170 static void
171 fwipattach(device_t parent, device_t self, void *aux)
172 {
173 struct fwip_softc *sc = device_private(self);
174 struct fw_attach_args *fwa = (struct fw_attach_args *)aux;
175 struct fw_hwaddr *hwaddr;
176 struct ifnet *ifp;
177
178 aprint_naive("\n");
179 aprint_normal(": IP over IEEE1394\n");
180
181 sc->sc_fd.dev = self;
182 sc->sc_eth.fwip_ifp = &sc->sc_eth.fwcom.fc_if;
183 hwaddr = (struct fw_hwaddr *)&sc->sc_eth.fwcom.ic_hwaddr;
184
185 ifp = sc->sc_eth.fwip_ifp;
186
187 mutex_init(&sc->sc_fwb.fwb_mtx, MUTEX_DEFAULT, IPL_NET);
188 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
189
190 /* XXX */
191 sc->sc_dma_ch = -1;
192
193 sc->sc_fd.fc = fwa->fc;
194 if (tx_speed < 0)
195 tx_speed = sc->sc_fd.fc->speed;
196
197 sc->sc_fd.post_explore = NULL;
198 sc->sc_fd.post_busreset = fwip_post_busreset;
199 sc->sc_eth.fwip = sc;
200
201 /*
202 * Encode our hardware the way that arp likes it.
203 */
204 hwaddr->sender_unique_ID_hi = htonl(sc->sc_fd.fc->eui.hi);
205 hwaddr->sender_unique_ID_lo = htonl(sc->sc_fd.fc->eui.lo);
206 hwaddr->sender_max_rec = sc->sc_fd.fc->maxrec;
207 hwaddr->sspd = sc->sc_fd.fc->speed;
208 hwaddr->sender_unicast_FIFO_hi = htons((uint16_t)(INET_FIFO >> 32));
209 hwaddr->sender_unicast_FIFO_lo = htonl((uint32_t)INET_FIFO);
210
211 /* fill the rest and attach interface */
212 ifp->if_softc = &sc->sc_eth;
213
214 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
215 ifp->if_start = fwip_start;
216 ifp->if_ioctl = fwip_ioctl;
217 ifp->if_init = fwip_init;
218 ifp->if_stop = fwip_stop;
219 ifp->if_flags = (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST);
220 IFQ_SET_READY(&ifp->if_snd);
221 IFQ_SET_MAXLEN(&ifp->if_snd, TX_MAX_QUEUE);
222
223 if_attach(ifp);
224 ieee1394_ifattach(ifp, (const struct ieee1394_hwaddr *)hwaddr);
225
226 if (!pmf_device_register(self, NULL, NULL))
227 aprint_error_dev(self, "couldn't establish power handler\n");
228 else
229 pmf_class_network_register(self, ifp);
230
231 FWIPDEBUG(ifp, "interface created\n");
232 return;
233 }
234
235 static int
236 fwipdetach(device_t self, int flags)
237 {
238 struct fwip_softc *sc = device_private(self);
239 struct ifnet *ifp = sc->sc_eth.fwip_ifp;
240
241 fwip_stop(sc->sc_eth.fwip_ifp, 1);
242 ieee1394_ifdetach(ifp);
243 if_detach(ifp);
244 mutex_destroy(&sc->sc_mtx);
245 mutex_destroy(&sc->sc_fwb.fwb_mtx);
246 return 0;
247 }
248
249 static int
250 fwipactivate(device_t self, enum devact act)
251 {
252 struct fwip_softc *sc = device_private(self);
253
254 switch (act) {
255 case DVACT_DEACTIVATE:
256 if_deactivate(sc->sc_eth.fwip_ifp);
257 return 0;
258 default:
259 return EOPNOTSUPP;
260 }
261 }
262
263 static void
264 fwip_start(struct ifnet *ifp)
265 {
266 struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
267
268 FWIPDEBUG(ifp, "starting\n");
269
270 if (sc->sc_dma_ch < 0) {
271 struct mbuf *m = NULL;
272
273 FWIPDEBUG(ifp, "not ready\n");
274
275 do {
276 IF_DEQUEUE(&ifp->if_snd, m);
277 if (m != NULL)
278 m_freem(m);
279 ifp->if_oerrors++;
280 } while (m != NULL);
281
282 return;
283 }
284
285 ifp->if_flags |= IFF_OACTIVE;
286
287 if (ifp->if_snd.ifq_len != 0)
288 fwip_async_output(sc, ifp);
289
290 ifp->if_flags &= ~IFF_OACTIVE;
291 }
292
293 static int
294 fwip_ioctl(struct ifnet *ifp, u_long cmd, void *data)
295 {
296 int s, error = 0;
297
298 s = splnet();
299
300 switch (cmd) {
301 case SIOCSIFFLAGS:
302 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
303 break;
304 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
305 case IFF_RUNNING:
306 fwip_stop(ifp, 0);
307 break;
308 case IFF_UP:
309 fwip_init(ifp);
310 break;
311 default:
312 break;
313 }
314 break;
315
316 case SIOCADDMULTI:
317 case SIOCDELMULTI:
318 break;
319
320 default:
321 error = ieee1394_ioctl(ifp, cmd, data);
322 if (error == ENETRESET)
323 error = 0;
324 break;
325 }
326
327 splx(s);
328
329 return error;
330 }
331
332 static int
333 fwip_init(struct ifnet *ifp)
334 {
335 struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
336 struct firewire_comm *fc;
337 struct fw_xferq *xferq;
338 struct fw_xfer *xfer;
339 struct mbuf *m;
340 int i;
341
342 FWIPDEBUG(ifp, "initializing\n");
343
344 fc = sc->sc_fd.fc;
345 if (sc->sc_dma_ch < 0) {
346 sc->sc_dma_ch = fw_open_isodma(fc, /* tx */0);
347 if (sc->sc_dma_ch < 0)
348 return ENXIO;
349 xferq = fc->ir[sc->sc_dma_ch];
350 xferq->flag |=
351 FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_STREAM;
352 xferq->flag &= ~0xff;
353 xferq->flag |= broadcast_channel & 0xff;
354 /* register fwip_input handler */
355 xferq->sc = (void *) sc;
356 xferq->hand = fwip_stream_input;
357 xferq->bnchunk = rx_queue_len;
358 xferq->bnpacket = 1;
359 xferq->psize = MCLBYTES;
360 xferq->queued = 0;
361 xferq->buf = NULL;
362 xferq->bulkxfer = (struct fw_bulkxfer *) malloc(
363 sizeof(struct fw_bulkxfer) * xferq->bnchunk,
364 M_FW, M_WAITOK);
365 if (xferq->bulkxfer == NULL) {
366 aprint_error_ifnet(ifp, "if_fwip: malloc failed\n");
367 return ENOMEM;
368 }
369 STAILQ_INIT(&xferq->stvalid);
370 STAILQ_INIT(&xferq->stfree);
371 STAILQ_INIT(&xferq->stdma);
372 xferq->stproc = NULL;
373 for (i = 0; i < xferq->bnchunk; i++) {
374 m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR);
375 xferq->bulkxfer[i].mbuf = m;
376 if (m != NULL) {
377 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
378 STAILQ_INSERT_TAIL(&xferq->stfree,
379 &xferq->bulkxfer[i], link);
380 } else
381 aprint_error_ifnet(ifp,
382 "fwip_as_input: m_getcl failed\n");
383 }
384
385 sc->sc_fwb.start = INET_FIFO;
386 sc->sc_fwb.end = INET_FIFO + 16384; /* S3200 packet size */
387
388 /* pre-allocate xfer */
389 STAILQ_INIT(&sc->sc_fwb.xferlist);
390 for (i = 0; i < rx_queue_len; i++) {
391 xfer = fw_xfer_alloc(M_FW);
392 if (xfer == NULL)
393 break;
394 m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR);
395 xfer->recv.payload = mtod(m, uint32_t *);
396 xfer->recv.pay_len = MCLBYTES;
397 xfer->hand = fwip_unicast_input;
398 xfer->fc = fc;
399 xfer->sc = (void *) sc;
400 xfer->mbuf = m;
401 STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link);
402 }
403 fw_bindadd(fc, &sc->sc_fwb);
404
405 STAILQ_INIT(&sc->sc_xferlist);
406 for (i = 0; i < TX_MAX_QUEUE; i++) {
407 xfer = fw_xfer_alloc(M_FW);
408 if (xfer == NULL)
409 break;
410 xfer->send.spd = tx_speed;
411 xfer->fc = sc->sc_fd.fc;
412 xfer->sc = (void *)sc;
413 xfer->hand = fwip_output_callback;
414 STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link);
415 }
416 } else
417 xferq = fc->ir[sc->sc_dma_ch];
418
419 sc->sc_last_dest.hi = 0;
420 sc->sc_last_dest.lo = 0;
421
422 /* start dma */
423 if ((xferq->flag & FWXFERQ_RUNNING) == 0)
424 fc->irx_enable(fc, sc->sc_dma_ch);
425
426 ifp->if_flags |= IFF_RUNNING;
427 ifp->if_flags &= ~IFF_OACTIVE;
428
429 #if 0
430 /* attempt to start output */
431 fwip_start(ifp);
432 #endif
433 return 0;
434 }
435
436 static void
437 fwip_stop(struct ifnet *ifp, int disable)
438 {
439 struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
440 struct firewire_comm *fc = sc->sc_fd.fc;
441 struct fw_xferq *xferq;
442 struct fw_xfer *xfer, *next;
443 int i;
444
445 if (sc->sc_dma_ch >= 0) {
446 xferq = fc->ir[sc->sc_dma_ch];
447
448 if (xferq->flag & FWXFERQ_RUNNING)
449 fc->irx_disable(fc, sc->sc_dma_ch);
450 xferq->flag &=
451 ~(FWXFERQ_MODEMASK | FWXFERQ_OPEN | FWXFERQ_STREAM |
452 FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_CHTAGMASK);
453 xferq->hand = NULL;
454
455 for (i = 0; i < xferq->bnchunk; i++)
456 m_freem(xferq->bulkxfer[i].mbuf);
457 free(xferq->bulkxfer, M_FW);
458
459 fw_bindremove(fc, &sc->sc_fwb);
460 for (xfer = STAILQ_FIRST(&sc->sc_fwb.xferlist); xfer != NULL;
461 xfer = next) {
462 next = STAILQ_NEXT(xfer, link);
463 fw_xfer_free(xfer);
464 }
465
466 for (xfer = STAILQ_FIRST(&sc->sc_xferlist); xfer != NULL;
467 xfer = next) {
468 next = STAILQ_NEXT(xfer, link);
469 fw_xfer_free(xfer);
470 }
471
472 xferq->bulkxfer = NULL;
473 sc->sc_dma_ch = -1;
474 }
475
476 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
477 }
478
479 static void
480 fwip_post_busreset(void *arg)
481 {
482 struct fwip_softc *sc = arg;
483 struct crom_src *src;
484 struct crom_chunk *root;
485
486 src = sc->sc_fd.fc->crom_src;
487 root = sc->sc_fd.fc->crom_root;
488
489 /* RFC2734 IPv4 over IEEE1394 */
490 memset(&sc->sc_unit4, 0, sizeof(struct crom_chunk));
491 crom_add_chunk(src, root, &sc->sc_unit4, CROM_UDIR);
492 crom_add_entry(&sc->sc_unit4, CSRKEY_SPEC, CSRVAL_IETF);
493 crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_spec4, "IANA");
494 crom_add_entry(&sc->sc_unit4, CSRKEY_VER, 1);
495 crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_ver4, "IPv4");
496
497 /* RFC3146 IPv6 over IEEE1394 */
498 memset(&sc->sc_unit6, 0, sizeof(struct crom_chunk));
499 crom_add_chunk(src, root, &sc->sc_unit6, CROM_UDIR);
500 crom_add_entry(&sc->sc_unit6, CSRKEY_SPEC, CSRVAL_IETF);
501 crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_spec6, "IANA");
502 crom_add_entry(&sc->sc_unit6, CSRKEY_VER, 2);
503 crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_ver6, "IPv6");
504
505 sc->sc_last_dest.hi = 0;
506 sc->sc_last_dest.lo = 0;
507 ieee1394_drain(sc->sc_eth.fwip_ifp);
508 }
509
510 static void
511 fwip_output_callback(struct fw_xfer *xfer)
512 {
513 struct fwip_softc *sc = (struct fwip_softc *)xfer->sc;
514 struct ifnet *ifp;
515
516 ifp = sc->sc_eth.fwip_ifp;
517 /* XXX error check */
518 FWIPDEBUG(ifp, "resp = %d\n", xfer->resp);
519 if (xfer->resp != 0)
520 ifp->if_oerrors++;
521
522 m_freem(xfer->mbuf);
523 fw_xfer_unload(xfer);
524
525 mutex_enter(&sc->sc_mtx);
526 STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link);
527 mutex_exit(&sc->sc_mtx);
528
529 /* for queue full */
530 if (ifp->if_snd.ifq_head != NULL)
531 fwip_start(ifp);
532 }
533
534 /* Async. stream output */
535 static void
536 fwip_async_output(struct fwip_softc *sc, struct ifnet *ifp)
537 {
538 struct firewire_comm *fc = sc->sc_fd.fc;
539 struct mbuf *m;
540 struct m_tag *mtag;
541 struct fw_hwaddr *destfw;
542 struct fw_xfer *xfer;
543 struct fw_xferq *xferq;
544 struct fw_pkt *fp;
545 uint16_t nodeid;
546 int error;
547 int i = 0;
548
549 xfer = NULL;
550 xferq = fc->atq;
551 while ((xferq->queued < xferq->maxq - 1) &&
552 (ifp->if_snd.ifq_head != NULL)) {
553 mutex_enter(&sc->sc_mtx);
554 if (STAILQ_EMPTY(&sc->sc_xferlist)) {
555 mutex_exit(&sc->sc_mtx);
556 #if 0
557 aprint_normal("if_fwip: lack of xfer\n");
558 #endif
559 break;
560 }
561 IF_DEQUEUE(&ifp->if_snd, m);
562 if (m == NULL) {
563 mutex_exit(&sc->sc_mtx);
564 break;
565 }
566 xfer = STAILQ_FIRST(&sc->sc_xferlist);
567 STAILQ_REMOVE_HEAD(&sc->sc_xferlist, link);
568 mutex_exit(&sc->sc_mtx);
569
570 /*
571 * Dig out the link-level address which
572 * firewire_output got via arp or neighbour
573 * discovery. If we don't have a link-level address,
574 * just stick the thing on the broadcast channel.
575 */
576 mtag = m_tag_find(m, MTAG_FIREWIRE_HWADDR, 0);
577 if (mtag == NULL)
578 destfw = 0;
579 else
580 destfw = (struct fw_hwaddr *) (mtag + 1);
581
582 /*
583 * Put the mbuf in the xfer early in case we hit an
584 * error case below - fwip_output_callback will free
585 * the mbuf.
586 */
587 xfer->mbuf = m;
588
589 /*
590 * We use the arp result (if any) to add a suitable firewire
591 * packet header before handing off to the bus.
592 */
593 fp = &xfer->send.hdr;
594 nodeid = FWLOCALBUS | fc->nodeid;
595 if ((m->m_flags & M_BCAST) || !destfw) {
596 /*
597 * Broadcast packets are sent as GASP packets with
598 * specifier ID 0x00005e, version 1 on the broadcast
599 * channel. To be conservative, we send at the
600 * slowest possible speed.
601 */
602 uint32_t *p;
603
604 M_PREPEND(m, 2 * sizeof(uint32_t), M_DONTWAIT);
605 p = mtod(m, uint32_t *);
606 fp->mode.stream.len = m->m_pkthdr.len;
607 fp->mode.stream.chtag = broadcast_channel;
608 fp->mode.stream.tcode = FWTCODE_STREAM;
609 fp->mode.stream.sy = 0;
610 xfer->send.spd = 0;
611 p[0] = htonl(nodeid << 16);
612 p[1] = htonl((0x5e << 24) | 1);
613 } else {
614 /*
615 * Unicast packets are sent as block writes to the
616 * target's unicast fifo address. If we can't
617 * find the node address, we just give up. We
618 * could broadcast it but that might overflow
619 * the packet size limitations due to the
620 * extra GASP header. Note: the hardware
621 * address is stored in network byte order to
622 * make life easier for ARP.
623 */
624 struct fw_device *fd;
625 struct fw_eui64 eui;
626
627 eui.hi = ntohl(destfw->sender_unique_ID_hi);
628 eui.lo = ntohl(destfw->sender_unique_ID_lo);
629 if (sc->sc_last_dest.hi != eui.hi ||
630 sc->sc_last_dest.lo != eui.lo) {
631 fd = fw_noderesolve_eui64(fc, &eui);
632 if (!fd) {
633 /* error */
634 ifp->if_oerrors++;
635 /* XXX set error code */
636 fwip_output_callback(xfer);
637 continue;
638
639 }
640 sc->sc_last_hdr.mode.wreqb.dst =
641 FWLOCALBUS | fd->dst;
642 sc->sc_last_hdr.mode.wreqb.tlrt = 0;
643 sc->sc_last_hdr.mode.wreqb.tcode =
644 FWTCODE_WREQB;
645 sc->sc_last_hdr.mode.wreqb.pri = 0;
646 sc->sc_last_hdr.mode.wreqb.src = nodeid;
647 sc->sc_last_hdr.mode.wreqb.dest_hi =
648 ntohs(destfw->sender_unicast_FIFO_hi);
649 sc->sc_last_hdr.mode.wreqb.dest_lo =
650 ntohl(destfw->sender_unicast_FIFO_lo);
651 sc->sc_last_hdr.mode.wreqb.extcode = 0;
652 sc->sc_last_dest = eui;
653 }
654
655 fp->mode.wreqb = sc->sc_last_hdr.mode.wreqb;
656 fp->mode.wreqb.len = m->m_pkthdr.len;
657 xfer->send.spd = min(destfw->sspd, fc->speed);
658 }
659
660 xfer->send.pay_len = m->m_pkthdr.len;
661
662 error = fw_asyreq(fc, -1, xfer);
663 if (error == EAGAIN) {
664 /*
665 * We ran out of tlabels - requeue the packet
666 * for later transmission.
667 */
668 xfer->mbuf = 0;
669 mutex_enter(&sc->sc_mtx);
670 STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link);
671 mutex_exit(&sc->sc_mtx);
672 IF_PREPEND(&ifp->if_snd, m);
673 break;
674 }
675 if (error) {
676 /* error */
677 ifp->if_oerrors++;
678 /* XXX set error code */
679 fwip_output_callback(xfer);
680 continue;
681 } else {
682 ifp->if_opackets++;
683 i++;
684 }
685 }
686 #if 0
687 if (i > 1)
688 aprint_normal("%d queued\n", i);
689 #endif
690 if (i > 0)
691 xferq->start(fc);
692 }
693
694 /* Async. stream output */
695 static void
696 fwip_stream_input(struct fw_xferq *xferq)
697 {
698 struct mbuf *m, *m0;
699 struct m_tag *mtag;
700 struct ifnet *ifp;
701 struct fwip_softc *sc;
702 struct fw_bulkxfer *sxfer;
703 struct fw_pkt *fp;
704 uint16_t src;
705 uint32_t *p;
706
707 sc = (struct fwip_softc *)xferq->sc;
708 ifp = sc->sc_eth.fwip_ifp;
709 while ((sxfer = STAILQ_FIRST(&xferq->stvalid)) != NULL) {
710 STAILQ_REMOVE_HEAD(&xferq->stvalid, link);
711 fp = mtod(sxfer->mbuf, struct fw_pkt *);
712 if (sc->sc_fd.fc->irx_post != NULL)
713 sc->sc_fd.fc->irx_post(sc->sc_fd.fc, fp->mode.ld);
714 m = sxfer->mbuf;
715
716 /* insert new rbuf */
717 sxfer->mbuf = m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
718 if (m0 != NULL) {
719 m0->m_len = m0->m_pkthdr.len = m0->m_ext.ext_size;
720 STAILQ_INSERT_TAIL(&xferq->stfree, sxfer, link);
721 } else
722 aprint_error_ifnet(ifp,
723 "fwip_as_input: m_getcl failed\n");
724
725 /*
726 * We must have a GASP header - leave the
727 * encapsulation sanity checks to the generic
728 * code. Remeber that we also have the firewire async
729 * stream header even though that isn't accounted for
730 * in mode.stream.len.
731 */
732 if (sxfer->resp != 0 ||
733 fp->mode.stream.len < 2 * sizeof(uint32_t)) {
734 m_freem(m);
735 ifp->if_ierrors++;
736 continue;
737 }
738 m->m_len = m->m_pkthdr.len = fp->mode.stream.len
739 + sizeof(fp->mode.stream);
740
741 /*
742 * If we received the packet on the broadcast channel,
743 * mark it as broadcast, otherwise we assume it must
744 * be multicast.
745 */
746 if (fp->mode.stream.chtag == broadcast_channel)
747 m->m_flags |= M_BCAST;
748 else
749 m->m_flags |= M_MCAST;
750
751 /*
752 * Make sure we recognise the GASP specifier and
753 * version.
754 */
755 p = mtod(m, uint32_t *);
756 if ((((ntohl(p[1]) & 0xffff) << 8) | ntohl(p[2]) >> 24) !=
757 0x00005e ||
758 (ntohl(p[2]) & 0xffffff) != 1) {
759 FWIPDEBUG(ifp, "Unrecognised GASP header %#08x %#08x\n",
760 ntohl(p[1]), ntohl(p[2]));
761 m_freem(m);
762 ifp->if_ierrors++;
763 continue;
764 }
765
766 /*
767 * Record the sender ID for possible BPF usage.
768 */
769 src = ntohl(p[1]) >> 16;
770 if (ifp->if_bpf) {
771 mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID,
772 2 * sizeof(uint32_t), M_NOWAIT);
773 if (mtag) {
774 /* bpf wants it in network byte order */
775 struct fw_device *fd;
776 uint32_t *p2 = (uint32_t *) (mtag + 1);
777
778 fd = fw_noderesolve_nodeid(sc->sc_fd.fc,
779 src & 0x3f);
780 if (fd) {
781 p2[0] = htonl(fd->eui.hi);
782 p2[1] = htonl(fd->eui.lo);
783 } else {
784 p2[0] = 0;
785 p2[1] = 0;
786 }
787 m_tag_prepend(m, mtag);
788 }
789 }
790
791 /*
792 * Trim off the GASP header
793 */
794 m_adj(m, 3*sizeof(uint32_t));
795 m->m_pkthdr.rcvif = ifp;
796 ieee1394_input(ifp, m, src);
797 ifp->if_ipackets++;
798 }
799 if (STAILQ_FIRST(&xferq->stfree) != NULL)
800 sc->sc_fd.fc->irx_enable(sc->sc_fd.fc, sc->sc_dma_ch);
801 }
802
803 static inline void
804 fwip_unicast_input_recycle(struct fwip_softc *sc, struct fw_xfer *xfer)
805 {
806 struct mbuf *m;
807
808 /*
809 * We have finished with a unicast xfer. Allocate a new
810 * cluster and stick it on the back of the input queue.
811 */
812 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
813 if (m == NULL)
814 aprint_error_dev(sc->sc_fd.dev,
815 "fwip_unicast_input_recycle: m_getcl failed\n");
816 xfer->recv.payload = mtod(m, uint32_t *);
817 xfer->recv.pay_len = MCLBYTES;
818 xfer->mbuf = m;
819 mutex_enter(&sc->sc_fwb.fwb_mtx);
820 STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link);
821 mutex_exit(&sc->sc_fwb.fwb_mtx);
822 }
823
824 static void
825 fwip_unicast_input(struct fw_xfer *xfer)
826 {
827 uint64_t address;
828 struct mbuf *m;
829 struct m_tag *mtag;
830 struct ifnet *ifp;
831 struct fwip_softc *sc;
832 struct fw_pkt *fp;
833 int rtcode;
834
835 sc = (struct fwip_softc *)xfer->sc;
836 ifp = sc->sc_eth.fwip_ifp;
837 m = xfer->mbuf;
838 xfer->mbuf = 0;
839 fp = &xfer->recv.hdr;
840
841 /*
842 * Check the fifo address - we only accept addresses of
843 * exactly INET_FIFO.
844 */
845 address = ((uint64_t)fp->mode.wreqb.dest_hi << 32)
846 | fp->mode.wreqb.dest_lo;
847 if (fp->mode.wreqb.tcode != FWTCODE_WREQB) {
848 rtcode = FWRCODE_ER_TYPE;
849 } else if (address != INET_FIFO) {
850 rtcode = FWRCODE_ER_ADDR;
851 } else {
852 rtcode = FWRCODE_COMPLETE;
853 }
854
855 /*
856 * Pick up a new mbuf and stick it on the back of the receive
857 * queue.
858 */
859 fwip_unicast_input_recycle(sc, xfer);
860
861 /*
862 * If we've already rejected the packet, give up now.
863 */
864 if (rtcode != FWRCODE_COMPLETE) {
865 m_freem(m);
866 ifp->if_ierrors++;
867 return;
868 }
869
870 if (ifp->if_bpf) {
871 /*
872 * Record the sender ID for possible BPF usage.
873 */
874 mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID,
875 2 * sizeof(uint32_t), M_NOWAIT);
876 if (mtag) {
877 /* bpf wants it in network byte order */
878 struct fw_device *fd;
879 uint32_t *p = (uint32_t *) (mtag + 1);
880
881 fd = fw_noderesolve_nodeid(sc->sc_fd.fc,
882 fp->mode.wreqb.src & 0x3f);
883 if (fd) {
884 p[0] = htonl(fd->eui.hi);
885 p[1] = htonl(fd->eui.lo);
886 } else {
887 p[0] = 0;
888 p[1] = 0;
889 }
890 m_tag_prepend(m, mtag);
891 }
892 }
893
894 /*
895 * Hand off to the generic encapsulation code. We don't use
896 * ifp->if_input so that we can pass the source nodeid as an
897 * argument to facilitate link-level fragment reassembly.
898 */
899 m->m_len = m->m_pkthdr.len = fp->mode.wreqb.len;
900 m->m_pkthdr.rcvif = ifp;
901 ieee1394_input(ifp, m, fp->mode.wreqb.src);
902 ifp->if_ipackets++;
903 }
904